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Abstract

The distinguishing index D′(G) of a graph G is the least natural number d such that G
has an edge colouring with d colours that is only preserved by the identity automorphism.
In this paper we investigate the distinguishing index of the Cartesian product of connected
finite graphs. We prove that for every k ≥ 2, the k-th Cartesian power of a connected
graph G has distinguishing index equal 2, with the only exception D′(K2

2 ) = 3. We also
prove that if G and H are connected graphs that satisfy the relation 2 ≤ |G| ≤ |H| ≤
2|G|

(
2‖G‖ − 1

)
− |G|+ 2, then D′(G2H) ≤ 2 unless G2H = K2

2 .
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1 Introduction
We use standard graph theory notation (cf. [6]). In particular, Aut(G) denotes the auto-
morphism group of a graph G.

An edge colouring breaks an automorphism ϕ ∈ Aut(G) if ϕ does not preserve the
colouring, i.e., there exists an edge of G that is mapped by ϕ to an edge of different colour.
The distinguishing index D′(G) of a graph G is the least natural number d such that G has
an edge colouring with d colours that breaks all non-trivial automorphisms of G. Such a d-
colouring is called distinguishing. This notion was introduced by Kalinowski and Pilśniak
[10] as an analogue of the well-known distinguishing number D(G) of a graph G defined
by Albertson and Collins [1] as the least number of colours in a vertex colouring that breaks
all non-trivial automorphisms of G. 1 As the distinguishing index is not defined for K2, we
assume henceforth that K2 is not a connected component of any graph considered.
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The distinguishing index of several examples of graphs was exhibited in [10]. For
instance, D′(Pn) = D(Pn) = 2, for n ≥ 3; D′(Cn) = D(Cn) = 2, for n ≥ 6, and
D′(Cn) = 3, for n = 3, 4, 5. There exist graphs G for which D′(G) < D(G), for
instance D′(Kn) = D′(Kp,p) = 2, for any n ≥ 6 and p ≥ 4, while D(Kn) = n and
D(Kp,p) = p+1. It is also possible thatD′(G) > D(G). All trees satisfying this inequality
were characterized in [10]. The following general upper bound of the distinguishing index
was proved in [10].

Theorem 1.1. [10] IfG is a finite connected graph of order n ≥ 3, thenD′(G) ≤ D(G)+
1. Moreover, if ∆ is the maximum degree of G, then D′(G) ≤ ∆ unless G is a C3, C4 or
C5.

The distinguishing index was also investigated for infinite graphs [2] and their Cartesian
product [3].

The Cartesian product of graphs G and H is a graph, denoted G2H , whose vertex
set is V (G) × V (H). Two vertices (g, h) and (g′, h′) are adjacent if either g = g′ and
hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′. Denote G2G by G2, and recursively define the
k-th Cartesian power of G as Gk = G2Gk−1.

A non-trivial graph G is called prime if G = G12G2 implies that either G1 or G2 is
K1. It is easy to see that every non-trivial finite graph has a prime factorization with respect
to the Cartesian product. For connected graphs it is also unique up to isomorphisms and
the order of the factors, as has been shown by Sabidussi and Vizing (cf. [6]). Two graphs
G and H are called relatively prime if K1 is the only common factor of G and H .

Let v be a vertex of H . A Gv-layer (called also a horizontal layer of G2H) is the
subgraph induced by the vertex set {(u, v) : u ∈ V (G)}. An Hu-layer, or vertical layer,
is defined analogously for a vertex u of G. Clearly, each horizontal layer is isomorphic to
G and each vertical one is isomorphic to H . Therefore, speaking of a specified layer of
G2H , we shall usually use only one coordinate of a vertex. The same refers to edges.

We shall need knowledge of the structure of the automorphism group of the Cartesian
product, which was determined by Imrich [7], and independently by Miller [11].

Theorem 1.2. [7, 11] Suppose ψ is an automorphism of a connected graph G with prime
factor decomposition G = G12G22 . . .2Gr. Then there is a permutation π of the set
{1, 2, . . . , r} and there are isomorphisms ψi : Gπ(i) 7→ Gi, i = 1, . . . , r, such that

ψ(x1, x2, . . . , xr) = (ψ1(xπ(1)), ψ2(xπ(2)), . . . , ψr(xπ(r))).

It follows in particular that every automorphism of the Cartesian product of two rela-
tively prime graphs is a composition of a permutation of vertical layers generated by an
automorphism of G and a permutation of horizontal layers generated by an automorphism
of H . For additional results about the Cartesian product consult [6].

Our main results are extensions of theorems about the distinguishing number of Carte-
sian powers and of Cartesian products of connected graphs to the distinguishing index. The
results (and some of the proofs) are inspired by a paper [8] by Imrich, Jerebic and Klavžar.
In Section 2 we generalize a result of Imrich and Klavžar.

Theorem 1.3. [9] Let G be a connected graph and k ≥ 2. Then D(Gk) = 2 except for the
graphs K2

2 ,K
3
2 ,K

2
3 whose distinguishing number is three.

The second result that we extend is also due to Imrich and Klavžar:
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Theorem 1.4. [9] Let G and H be connected, relatively prime graphs such that

|G| ≤ |H| ≤ 2|G| − |G|+ 1.

Then D(G2H) ≤ 2.

In Section 3 we prove an analogous result (Theorem 3.4) for the distinguishing index
of the Cartesian product of connected graphs, not necessarily relatively prime (let us note
that, using our method of proof, Theorem 3.4 was already strengthened in [4] by omitting
the assumption that G and H are relatively prime). We also obtain a slightly stronger result
for trees (Theorem 3.1).

In proofs, we usually use colours 1, . . . , d. If d = 2, then we also use colours 0 and 1,
or alternatively red and blue.

2 Distinguishing Cartesian powers
Let us start with the Cartesian powers of K2. Recall that the k-dimensional hypercube is
isomorphic to Kk

2 and denoted by Qk. As mentioned earlier, the distinguished index is not
defined for K2 = Q1. Clearly, D′(Q2) = 3 since Q2 = C4. The following result was
proved in [13].

Theorem 2.1. [13] If a graph G of order at least 7 contains a Hamiltonian path, then
D′(G) ≤ 2.

Proposition 2.2. If k ≥ 3, then D′(Qk) = 2.

Proof. For k ≥ 3 a hypercubeQk is Hamiltonian and has at least eight vertices. Therefore,
D′(Qk) = 2 by Theorem 2.1.

The distinguishing index of the square of cycles and for arbitrary powers of complete
graphs with respect to the Cartesian, direct and strong products has been already considered
by Pilśniak [12]. In particular, she proved that D′(C2

m) = 2 for m ≥ 4, and D′(Kk
n) = 2

for any n ≥ 4 and k ≥ 2.
Here we consider Cartesian powers of arbitrary connected graphs. We first prove some

lemmas.

Lemma 2.3. Let G and H be connected, relatively prime graphs with D′(G) = D′(H) =
2. Then D′(G2H) = 2.

Proof. We colour one G-layer and one H-layer with distinguishing 2-colourings. The
remaining edges can be coloured arbitrarily. Such a colouring breaks all permutations of
both horizontal and vertical layers. Since G and H are relatively prime, it follows from
Theorem 1.2 that this colouring breaks all automorphisms of G2H .

Lemma 2.4. LetG andH be two connected graphs whereG is prime, |G| ≤ ‖H‖+1 and
D′(H) = 2. Then D′(G2H) = 2.

Proof. We first colour the H-layers of the graph G2H . There are at least two H-layers,
so we colour all edges of one layer blue, all edges of another one with a distinguishing
red-blue colouring. If there are moreH-layers, then we colour them such that each of them
has a different number of blue edges (including the H-layers coloured previously). This is
possible since |G| ≤ ‖H‖+ 1. Next, we colour all edges in every G-layer red.
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All automorphisms of the Cartesian product generated by the automorphisms of H are
broken, since one H-layer assumes a distinguishing colouring. Also, no H-layers can be
interchanged as every H-layer has different number of blue edges.

If H has a factor H ′ isomorphic to G, then G2H has an automorphism interchanging
H ′ with G. However, since all G-layers have only red edges and there exists an H-layer
with only blue edges, such an automorphism does not preserve this colouring.

Lemma 2.5. If H is a graph with 2 ≤ D′(H) = d, then

2 ≤ D′(H2K2) ≤ d.

Proof. We colour the edges of one H-layer with a distinguishing d-colouring, and all the
edges of the other H-layer with the same colour, say 1. Next, we colour all edges of K2-
layers with colour 2. Thus all automorphisms of the Cartesian product H2K2 generated
by the automorphisms ofH are broken, since one of theH-layers assumes a distinguishing
colouring. Also, the two H-layers cannot be interchanged as they have different numbers
of edges coloured with 1.

IfH has a factorH ′ isomorphic toK2, thenK22H has an automorphism interchanging
H ′ with K2. However, since all K2-layers have only colour 2 and there exists an H-layer
with all edges coloured with 1, such an automorphism does not preserve the colouring.

The equality for d = 2 is obvious since the prism of every graph has a non-trivial
automorphism.

We now consider the Cartesian powers of arbitrary connected graphs and continue with
powers of connected prime graphs on at least three vertices.

Lemma 2.6. If G is a connected prime graph with |G| ≥ 3, then D′(Gk) = 2 for every
k ≥ 2.

Proof. The proof goes by induction on k. Let k = 2. There are n horizontal and n vertical
layers, where n = |G|.

Suppose first that G contains a cycle, i.e., ‖G‖ ≥ n. We colour horizontal G-layers
with two colours such that each of them has a different number of blue edges between 0
and n − 1. The other edges are coloured such that every vertical G-layer has a different
number of blue edges between 1 to n. As every horizontalG-layer has a different number of
blue edges they cannot be interchanged. The same is true for vertical G-layers. Therefore
automorphisms of the Cartesian product generated by automorphisms of G are broken.
Our colouring also breaks interchanging the factors, since there exists a completely red
horizontal G-layer but no such vertical G-layer.

Assume now that G is a tree. Every tree has either a central vertex or a central edge
fixed by every automorphism. In case of a tree with a central vertex v, we colour the edges
ofG2 such that consecutive horizontal layers have 0, . . . , n−1 blue edges, and consecutive
vertical layers have 0, . . . , n− 1 blue edges in such a way that the horizontal Gv-layer and
the vertical Gv-layer have all edges coloured red and blue, respectively. The vertex (v, v)
is fixed by every automorphism of G2, hence this colouring is distinguishing. If G has a
central edge e0 = uv, we colour the edge (u, u)(v, u) red and the remaining three edges
of the subgraph e02e0 blue. The vertical and horizontal Gv-layers have all edges blue and
red, respectively. The remaining edges of G2 are coloured as in the case of a tree with a
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central vertex. Such colouring forbids exchange of the horizonal layers with the vertical
layers. Thus D′(G2) = 2.

For the induction step, we apply Lemma 2.4 by taking H = Gk−1 since |G| ≤
‖Gk−1‖+ 1.

Let us now state the main theorem of this section that solves the problem of the distin-
guishing index of the k-th Cartesian power of a connected graph.

Theorem 2.7. Let G be a connected graph and k ≥ 2. Then

D′(Gk) = 2

with the only exception: D′(K2
2 ) = 3.

Proof. Let G = Gp11 2Gp22 2 . . .2Gprr , where pi ≥ 1, i = 1, . . . , r, be the prime factor
decomposition of G.

Assume first that Gi 6= K2, i = 1, 2, . . . , r. Then for every i we have D′(Gkpii ) = 2

due to Lemma 2.6. By repetitive application of Lemma 2.3 we get D′(Gk) = 2 since Gkpii

and Gkpjj are relatively prime if i 6= j.
Suppose now that G has a factor isomorphic to K2, say G1 = K2. If p1 ≥ 2, then

D′(Kkp1
2 ) = 2 and againD′(Gk) = 2 by Lemma 2.3 applied toKkp1

2 andGp22 2 . . .2Gprr .
The same argument applies in case p1 = 1 and k ≥ 3. Finally, if p1 = 1 and k = 2 we
apply Lemma 2.4 twice and we also get D′(Gk) = 2 unless r = 1, i.e., Gk = K2

2 .

3 Distinguishing Cartesian products
In this section we investigate sufficient conditions on the sizes of factors of the Cartesian
product of two graphs to have the distinguishing index equal to two.

3.1 Trees

We begin with a result for trees. Observe first that, by Theorem 1.2, the Cartesian product
of two non-isomorphic asymmetric trees is an asymmetric graph, so its distinguishing index
is equal to 1.

Theorem 3.1. Let Tm and Tn be trees of size m and n, respectively. If

2 ≤ m ≤ n ≤ 22m+1 −
⌈m

2

⌉
+ 1,

then D′(Tm2Tn) ≤ 2.

Proof. If Tm is isomorphic to Tn, then the conclusion follows from Lemma2.6. Therefore,
assume that Tm and Tn are non-isomorphic. Then they are relatively prime, and it is enough
to prove the existence of a 2-colouring of edges of Tm2Tn that breaks the automorphisms
generated by automorphisms of Tm and those generated by automorphisms of Tn.

In the proof we use the following well-known fact. In a rooted tree, if a parent vertex
is fixed by every automorphism preserving a given colouring and its children cannot be
permuted, then the children are also fixed.

Assume first that n = 22m+1−dm2 e+ 1. We choose a root u0 of Tm as follows. If Tm
has a central vertex, then we take it as a root u0. If Tm has a central edge, then we choose
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one of its end-vertices as u0 and the other one as u1. Then we choose an enumeration
u0, . . . , um of vertices of the rooted tree Tm satisfying the following condition: if ui is the
parent of uj , then i < j. We enumerate the edge uiuj = ej . Thus E(Tm) = {e1, . . . , em}.
Let v0 be a root of Tn chosen by the same rule as the root u0 of Tm. Then we analo-
gously enumerate vertices and edges of Tn to obtain V (Tn) = {v0, . . . , vn}, E(Tn) =
{ε1, . . . , εn}.

We begin by colouring the T v0m -layer by putting colour 0 on the edges ei, for i =
1, . . . ,

⌈
m
2

⌉
, and colour 1 on the remaining edges of this layer. It is easy to see that we

can choose such an enumeration of vertices, and hence of edges, that the root u0 is fixed
by every automorphism of Tm preserving this colouring. Indeed, this is obvious if u0 is a
central vertex; if e1 = u0u1 is a central edge of Tm, then we enumerate the vertices such
that u1, . . . , ubm2 c belong to the same subtree of Tm − e1, therefore our colouring breaks
all automorphisms of Tm reversing the end-vertices of e1.

Then, we similarly colour the Tu0
n -layer with 0 and 1 in such a way that the ver-

tex (u0, v0) is fixed by every automorphism of Tm2Tn preserving this partial colour-
ing. Hence, the T v0m -layer, as well as the Tu0

n -layer, is mapped onto itself by every ϕ ∈
Aut(Tm2Tn) preserving this colouring.

Next, we colour the other layers. Consider the set S of all 22m+1 binary sequences of
length 2m+ 1. Each T vim -layer with i ≥ 1 is assigned a distinct sequence

si = (a0, a1, . . . , am, b1 . . . , bm)

from S, where aj , j = 0, . . . ,m, is the colour of the edge εi joining the vertex (uj , vi)
with its parent in the Tuj

n -layer (observe that a0 has been already defined for all i ≥ 1), and
bj , j = 1, . . . ,m is the colour of the edge of the T vim -layer corresponding to ej . To break
all permutations of Tn-layers we delete some sequences from the set S. First observe that
the sum of each coordinate taken over all sequences in S is the same (and equal to 22m).
Clearly, a Tuj

n -layer and a T
uj′
n -layer cannot be permuted whenever j ≤ dm2 e < j′ since

the edges ej and ej′ in the T v0m -layer have different colours.
Consider the set A = {sk ∈ S : k = 1, . . . , dm2 e − 1}, where sk = (a0, a1, . . . , am,

b1, . . . , bm) is a sequence such that

aj = adm2 e+j = 1, j = 1, . . . , k,

and all other elements of sk are equal to 0. Thus |S \ A| = 22m+1 − dm2 e + 1. We use
the set S \ A to colour T vim -layers, i = 1, . . . , 22m+1 − dm2 e + 1, hence the numbers of
edges coloured with 1 is distinct for every pair of Tn-layers that could be permuted. Thus,
all edges in Tm2Tn are coloured, and we obtain a distinguishing 2-colouring of Tm2Tn,
when n = 22m+1 − dm2 e+ 1.

Now, assume that the difference l = 22m+1 − dm2 e + 1 − n is positive. We have to
choose l sequences from S \ A that will not be used in the colouring. To do this we apply
the idea of complementary pairs used in [8]. Denote 0 = 1, 1 = 0. A pair of sequences

(a0, a1, . . . , am, b1, . . . , bm), (a0, a1, . . . , am, b1, . . . , bm)

from S \ A is called complementary. When l is even, we choose l
2 complementary pairs.

When l is odd, we choose the sequence (0, . . . , 0) ∈ S \ A and l−1
2 complementary pairs.

Again all permutations of layers in Tm2Tn are broken by this colouring since for every
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pair of Tn-layers that could be permuted, the numbers of edges coloured with 1 is distinct,
because aj + aj = 1, j = 1, . . . ,m.

The bound 22m+1−dm2 e+1 for the size of a larger tree is perhaps not sharp. However, it
cannot be improved much since Proposition 3.2 below shows that the distinguishing index
of the Cartesian product of a star K1,n of size n and a path Pm of order m is greater than 2
whenever n > 22m+1. It also shows that the distinguishing index of the Cartesian product
of two graphs with widely different orders and sizes can be arbitrarily large.

Proposition 3.2. If m ≥ 2 and n ≥ 2, then

D′(K1,n2Pm) =
⌈

2m−1
√
n
⌉

unless m = 2 and n = r3 for some r. In the latter case D′(K1,n2P2) = r + 1.

Proof. Let d be a positive integer such that (d − 1)2m−1 < n ≤ d2m−1. Denote by v
the central vertex of the star K1,n, by v1, . . . , vn its pendant vertices, and by u1, . . . , um
consecutive vertices of Pm.

Suppose first that m ≥ 3. Clearly, every automorphism of K1,n2Pm maps the P vm-
layer onto itself. We colour the first edge of this layer with 1 and all other edges of it with
2. Thus the P vm-layer is fixed by every automorphism, hence the K1,n-layers cannot be
permuted.

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

Figure 1: A distinguishing 2-colouring of K1,322P3

We want to show that the remaining edges of K1,n2Pm can be coloured in such a
way that Pm-layers also cannot be interchanged. Then all non-trivial automorphisms of
K1,n2Pm will be broken. Note that a colouring of the yet uncoloured edges can be fully
described by defining a matrix M with 2m − 1 rows and n columns such that in the j-
th column the initial m − 1 elements are colours of consecutive edges of the P vjm -layer,
and the other m elements are colours of the edges of K1,n-layers incident to consecutive
vertices of the P vjm -layer. It is easily seen that there exists a permutation of Pm-layers
preserving colours if and only if M contains at least two identical columns. There are
exactly d2m−1 sequences of length 2m − 1 with elements from the set {1, . . . , d}, hence
there exists a colouring with d colours such that every column of M is distinct. Therefore,
D′(K1,n2Pm) ≤ d = d 2m−1

√
ne. On the other hand, n > (d − 1)2m−1 so for every

edge (d−1)-colouring ofK1,n2Pm, the corresponding matrix has to contain two identical
columns, therefore D′(K1,n2Pm) > d− 1. Figure 1 presents the case n = 32 and m = 3.

For m = 2, we colour the edges of K1,n2P2 in the same way. The only difference is
that every P2-layer has only one edge, hence the two K1,n-layers need not be fixed. This
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is the case when n = d3, because then each element of {1, . . . , d}3 is a column in M , and
there exists a permutation of columns of M which together with the transposition of rows
of M defines a non-trivial automorphism of K1,n2P2 preserving the colouring. Thus we
need an additional colour for one edge in a K1,n-layer. When n < d3, we put the sequence
(1, 1, 2) as the first column of M , and we do not use the sequence (1, 2, 1) any more, thus
breaking the transposition of the K1,n-layers, and all automorphisms of K1,n2P2.

Let us mention in passing that D′(K1,n2Cm) = d 2m
√
ne, unless m ≤ 5 and n = 22m.

In the latter case D′(K1,n2Cm) = 2m
√
n+ 1 = 3. The proof can be led on the lines of the

proof of Proposition 3.2.

3.2 Arbitrary factors

We now consider the Cartesian product of arbitrary connected graphs. We first formulate a
result for relatively prime factors.

Lemma 3.3. Let G and H be connected, relatively prime graphs such that

3 ≤ |G| ≤ |H| ≤ 2|G|
(
2‖G‖ − 1

)
− |G|+ 2.

Then D′(G2H) ≤ 2.

Proof. Let V (G) = {u1, . . . , u|G|}, E(G) = {e1, . . . , e‖G‖}, V (H) = {v1, . . . , v|H|},
E(H) = {ε1, . . . , ε‖H‖}. Assume that v1 is a root of a spanning tree TH of the graph
H , and the vertices of H are enumerated according to the rooted tree TH , i.e., each child
has an index greater than that of its parent. As G and H are relatively prime, the only
automorphisms of G2H are permutations of G-layers and H-layers.

We first colour the edges of the Gv1 -layer with a sequence

(b1, . . . , b‖G‖) = (1, . . . , 1).

We shall not use this sequence to colour the edges of any other G-layer any more. Thus
the Gv1 -layer will be mapped onto itself by every automorphism of G2H preserving the
colouring.

From now on, we proceed similarly as in the proof of Theorem 3.1. For i = 2, . . . , n,
the Gvi -layer will be assigned a distinct sequence of colours

(a1, . . . , a|G|, b1, . . . , b‖G‖),

where aj is a colour of the edge joining the vertex (uj , vi) to its parent in the rooted tree
TH in the Huj -layer, and bj is a colour of ej in the Gvi -layer. We have 2|G|

(
2‖G‖ − 1

)
such sequences, as we excluded all sequences of the form (a1, . . . , a|G|, 1, . . . , 1). Thus all
permutations of G-layers are broken. To break permutations of H-layers, we also exclude
all sequences sk = (a1, . . . , a|G|, b1, . . . , b‖G‖) with a1 = . . . = ak = 1 and ak+1 =

. . . = a|G| = b1 = . . . = b‖G‖ = 0, for every k = 1, . . . , |G| − 1. We have 2|G|
(
2‖G‖ −

1
)
− (|G| − 1) sequences to colour |H| − 1 G-layers. Depending on the size of |H|, we

also exclude a suitable number of complementary pairs of sequences

(a1, . . . , a|G|, b1, . . . , b‖G‖), (a1, . . . , a|G|, b1, . . . , b‖G‖)
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and, possibly, a sequence (0, . . . , 0). Thus we obtain a colouring of G2H with a set of se-
quences such that the number of 1’s is distinct in any of the initial |G| coordinates. There-
fore, no permutation of H-layers preserves this colouring. Hence, this is a distinguishing
2-colouring of G2H .

Finally, we state the main result of this section.

Theorem 3.4. Let G and H be connected graphs such that

2 ≤ |G| ≤ |H| ≤ 2|G|
(
2‖G‖ − 1

)
− |G|+ 2.

Then D′(G2H) ≤ 2 unless G = H = K2.

Proof. If G = K2, then |H| ≤ 4. If H 6= K4, then either D′(H) = 2 or H is a cycle
or a star, and these cases were already settled in Section 2. To construct a distinguishing
2-colouring of K22K4, colour one edge in one K4-layer and two adjacent edges in the
other K4-layer red, and all remaining edges blue.

Let |G| ≥ 3. The case when G and H are relatively prime was settled by Lemma
3.3. Therefore, we focus here on the situation when G and H have at least one common
factor. Then D′(G2H) ≥ 2, since the automorphism group of G2H is non-trivial. Let
G = Gk11 2 . . .2Gktt and H = H l1

1 2 . . .2H ls
s be the prime factor decompositions of

G and H , respectively. Assume that the initial r factors are common, i.e., Gi = Hi for
i = 1, . . . , r. Denote

GII = Gk11 2 . . .2Gkrr , HII = H l1
1 2 . . .2H lr

r .

Thus G = GI2GII and H = HI2HII . We use the following notation

n1 = |GI |, n2 = |GII |, m1 = |HI |, m2 = |HII |.

We first show that the distinguishing index of the Cartesian product

GII2HII = Gli+k11 2 . . .2Glr+krr

is equal to 2. If GII2HII = K2
2 , then |HI | ≥ 2 and the graphs GI2K2

2 and HI satisfy
the assumptions of Theorem 3.3, hence D′(G2H) = 2, unless |GI2K2

2 | > |HI |, that is
|HI | < 4|GI |. In the latter case, we can also apply Theorem 3.3 for the graphs GI and HI

which are relatively prime and satisfy the inequalities |GI | ≤ |HI | ≤ 2|GI |(2‖GI‖ − 1)−
|GI |+ 2 unless |GI | = 2 and ≤ |HI | ≤ 7, i.e., G2H = K3

22H
′
I , where H ′I is prime. So

we can apply Proposition 2.2 and Lemma 2.4. In any case D′(G2H) = 2.
If Gli+kii 6= K2

2 for every i = 1, . . . , r, then D′(Gl1+kii ) = 2 due to Theorem 2.7,
and hence D′(GII2HII) = 2 by repeated application of Lemma 2.3. If Gl1+k11 = K2

2 ,
then analogously D′(Gl2+k22 2 . . .2Glr+krr ) = 2, hence D′(GII2HII) = 2 by applying
Lemma 2.5 twice.

Consider now the graphs G′ = GI2GII2HII and H ′ = HI . Clearly, they are rela-
tively prime and

|H ′| < |H| ≤ 2|G|
(
2‖G‖ − 1

)
− |G|+ 2 < 2|G

′|(2‖G′‖ − 1
)
− |G′|+ 2.
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If also |G′| = n1n2m2 ≤ m1 = |H ′|, then graphs G′ and H ′ satisfy the conditions
of Lemma 3.3, and consequently, D′(G2H) = D′(G′2H ′) = 2. Then suppose that
n1n2m2 > m1. We consider two cases here.

Assume first that n1 ≤ n2m2, i.e., |GI | ≤ |GII2HII |. Hence, |GI | ≤ ‖GII2HII‖+
1, and by repeated application of Lemma 2.4 we get D′(G′) = 2. As |H ′| < |G′|, we infer
again from Lemma 2.4 that D′(G2H) = D′(G′2H ′) = 2.

In the second case, i.e., when n2m2 < n1, suppose first that

m1 = |HI | ≤ 2|GI |
(
2‖GI‖ − 1

)
− |GI |+ 2.

Then D′(GI2HI) ≤ 2 since the assumptions of Lemma 3.3 are satisfied whenever |GI | ≤
|HI |. Recall that also D′(GII2HII) = 2 and graphs GI2HI and GII2HII are relatively
prime. Hence D′(G2H) = 2 by Lemma 2.3. Otherwise, if m1 > 2|GI |

(
2‖GI‖ − 1

)
−

|GI |+ 2, then we arrive at the sequence of inequalities

m1 < n1n2m2 ≤ n21 < 2n1(2n1 − 1)− n1 + 2 ≤ 2|GI |
(
2‖GI‖ − 1

)
− |GI |+ 2 < m1,

which is impossible.
Then suppose that |GI | = n1 > m1 = |HI | (and still n2m2 < n1). Let G′′ = GI and

H ′′ = GII2HI2HII . Clearly, |G′′| ≤ |H ′′| since |G| ≤ |H|. Moreover, we have

|H ′′| = n2m2m1 < n1m1 < n21 < 2|G
′′|(2‖G′′‖ − 1

)
− |G′′|+ 2.

It follows from Lemma 3.3 that D′(G2H) = D′(G′′2H ′′) = 2.
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[10] R. Kalinowski and M. Pilśniak, Distinguishing graphs by edge-colourings, European J.
Combin. 45 (2015), 124–131, doi:10.1016/j.ejc.2014.11.003, http://dx.doi.org/10.
1016/j.ejc.2014.11.003.

[11] D. J. Miller, The automorphism group of a product of graphs, Proc. Amer. Math. Soc. 25 (1970),
24–28.
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