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We analyze fault tolerance in load balancing systems. First, we theoretically analyze some aspects of 
fault-tolerance of traditional and multi-agent approaches. Second, we investigate efficient fault 
detection showing that multi-agent systems can increase fault-tolerance by improving fault detection of 
failed single agents. The presented ideas are applied in a multi-agent system for fault-tolerant network 
load balancing. A detailed description of fault-tolerant issues in design is also given. Finally, the paper 
presents evaluation of a multi-agent application for network load balancing. 

1 Introduction 
Designing and building high quality industrial-strength 
software is difficult, and it has been claimed that such 
development projects range among the most complex 
construction tasks. Among software projects, building 
reliable large Internet services is one of very difficult 
tasks especially because virtually continuous uptime and 
consistent response time are crucial. Stable services must 
be able to cope with many undesired factors such as 
explosive growth of traffic over the Internet, and possible 
hardware and software failures.  
A wide range of software engineering paradigms has 
been devised, and each successive development claims 
either to make the engineering process easier or to extend 
the complexity of applications that can feasibly be built. 
Although there is reasonable evidence to support these 
claims, researchers continually strive for more efficient 
and powerful software engineering techniques. Recently, 
multi-agent systems received a lot of attention as a 
potential mainstream initiative for distributed software 
engineering [5]. A multi-agent system (MAS) is a loosely 
coupled network of software entities that work together 
to solve problems that are beyond the individual 
capabilities or knowledge of each entity [2]. Recently, 
the term MAS has been given a more general meaning, 
and it is now used for all types of systems composed of 
multiple autonomous agents showing the following 
characteristics:  

• each agent has incomplete capabilities to solve a 
problem,  

• there is no global system control,  
• data is decentralized and  
• computation is asynchronous.  
 

MAS is a distributed reactive system, which maintains an 
ongoing interaction with environment. It has long been 
recognized that reactive systems are among the most 
complex types of systems to design and implement [9]. 
Great effort has been devoted to developing software 
tools, programming languages, and methodologies for 
managing this complexity – with some success. But for 

certain types of reactive systems, even specialized 
software engineering techniques and tools fail. 
According to Jennings et al. [4], one can broadly 
subdivide these systems into three classes: 

• open systems, 
• complex systems and 
• ubiquitous computing systems. 
 

An open system is capable of dynamically changing its 
own structure. Consequently its components can be 
heterogeneous and added dynamically. They also can be 
changed over time using different software tools and 
techniques. 
Development of complex systems requires efficient tools 
for handling software complexity. The most powerful 
concepts are modularity and abstraction. Namely, if a 
problem domain is particularly complex, large, or 
unpredictable, then it may be reasonable to develop a 
number of distinct modular components. An agent-
oriented approach is a powerful alternative for making 
systems modular. In case any interdependent problems 
arise the agents in the systems must cooperate with one 
another to ensure that interdependencies are properly 
managed. In such domains an agent-based approach 
means that the overall problem can be partitioned into a 
number of smaller and simpler components, which are 
easier to develop and maintain, and which are specialized 
at solving the constituent sub-problems. This 
decomposition allows each agent to employ the most 
appropriate paradigm for solving its particular problem, 
rather than being forced to adopt a common uniform 
approach that represents a compromise for the entire 
system, which is not optimal for any of its subparts. The 
notion of an autonomous agent also provides a useful 
abstraction in the same way that procedures, abstract data 
types, and objects provide abstractions. 
Ubiquitous systems are expected to ease the interaction 
between humans and computers. But today the user of a 
software product typically has to describe each step that 
needs to be performed to solve a problem down to the 
smallest level of detail. Ubiquitous system should be able 
to recognize opportunities and act in such a way to help 
the users to achieve their goals. One can think of such 
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systems as assistant agents, capable of acting with the 
user in order to achieve the user’s goals.  
In MAS the locus of control is dispersed among agents 
which coordinate and plan their actions according to their 
local perception of environment. If we try to improve 
fault-tolerance of a MAS, we must improve fault-
tolerance of all agents within MAS, or provide system-
wide methods to enable fault detection and recovery. 
This paper addresses the latter problem. It overviews 
fault-tolerance with agent systems and presents a fault-
detection models together with a fault-tolerant agent 
application for network load balancing. 
The structure of this paper is as follows: In Section 2, we 
present functional characteristics and differences 
between traditional and multi-agent load balancing 
system. Section 3 deals with fault tolerance in agent 
societies. An analysis of fault-tolerance related 
differences for two load balancing systems is presented 
in Section 3.1. Fault detection models are presented in 
3.2 and survey of related work is given in Section 3.3. A 
fault tolerant multi-agent system is presented in Section 
4. Finally, conclusions are presented in Section 5 by 
reviewing the ideas presented in the paper. 

2 Traditional and Multi-Agent Load 
Balancing 

We refer to the term load balancing (LB for short) as 
network load balancing or - more precisely - as IP-level 
load balancing. The term cluster refers to all computers 
within a load balancing system, thus including all 
servers, load balancers and administration computers. 
Sometimes we refer to a cluster of servers and a cluster 
of load balancers, each describing a set of computers 
within the cluster with server/load balancing 
functionality.  
The purpose of network LB system is to evenly distribute 
incoming network traffic among servers in a cluster. The 
distribution is done according to desired LB policy, 
which often takes into account performance metrics such 
as network traffic or processor load.  
  
 
 
 
 
 
 
 
 
 
Figure 1: Network data flow for traditional (a) and multi-

agent (b) load balancing systems. 
 
A traditional load balancing system consists of a single 
load balancer and a set of servers as presented in Figure 
1, a). Accordingly, the input flow is balanced among 
servers and resulting output traffic is redirected directly 
to users. Beside obvious performance benefits, a design 
like this also increases fault tolerance. The failed server 

can easily be replaced by redirecting its traffic destined 
among other active servers. Server and service failures 
are detected by periodic server/service checking. Multi-
agent load balancing systems, shown in Figure 1, b), 
enhance scalability by employing an arbitrary number of 
load balancers. They require a preceding load balancer 
which distributes input traffic between distributed LB 
systems. Load balancing at this level can employ coarser 
distribution policy without any impact on underlying 
systems. Most often round-robin DNS solution is used to 
assure geographical distribution of traffic. The main 
benefit is the possibility to change the size of LB cluster. 
The LB software can be positioned at any location. Load 
balancers and servers can be distributed across the 
Internet, most often geographically. This design makes 
fast fault detection and recovery possible by enabling LB 
agents to constantly monitor system activities. The main 
benefit compared to the previous approach is the fact that 
servers behind the failed load balancer can be still used 
by other balancers. A multi-agent approach may utilize 
an arbitrary number of load balancers and servers. 

3 Fault-Tolerance in Agent Societies 
In theory, fault tolerant systems (chapter 7. in [7]) should 
not have a single point of failure and should be resistant 
to any failure, including the hardware and software ones. 
In reality we aim to achieve sufficiently high degree of 
fault tolerance. According to [10], fault tolerant services 
must be designed to achieve high availability, safety, 
maintainability, and reliability. Availability is defined by 
the percentage of time during which a system is 
operating correctly and is available to perform its 
functions. Safety refers to the situation where a system 
temporarily fails to operate correctly but nothing 
catastrophic happens. Although web services do not fall 
into the same safety category as, for example, nuclear 
power plants, one can easily understand the importance 
of safety considerations when designing web-based 
services. Maintainability refers to how easily a failed 
system can be repaired. A highly maintainable system 
may also show a high degree of availability, especially if 
failures can be detected and repaired automatically. 
Finally, reliability refers to the property that a system can 
run continuously without failure. If a system goes down 
for one millisecond every hour, it has an availability of 
over 99.9999 percent, but it is still highly unreliable. 
Similarly a system that never crashes but is shut down 
for a week every year has high reliability but only 98 
percent availability. 
When developing MASs developers often overlook the 
importance of fault-tolerant software development. 
Sometimes, especially in open systems, it is impossible to 
enforce fault-tolerant developing strategies since we do 
not control the development process. Designers can only 
enforce fault-tolerant strategies through selected multi-
agent architecture design. Complex systems are by 
definition difficult to comprehend and are often affected 
by hard-to-spot faults. Sheer size of such systems 
prevents complete and systematic testing of system 
functionality. System-wide fault-tolerant models are 

(a)  (b)  
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therefore welcome as additional mechanisms, which 
increase fault resistance of a MAS. Although one can 
argue that faults in ubiquitous systems are least harmful, 
we state that each fault can affect the very essence of 
such systems.  

3.1 Fault-Tolerance in Load Balancing 
Systems 

We compare LB systems presented in Figure 1 in terms 
of reliability. If p is the computer error probability over a 
given time, M is a number of load balancers, and N a 
number of servers within the system, then we can 
estimate overall error probabilities. If we assume 
instantaneous error detection and response, then error 
probability is as follows: 

• Traditional load balancing system with N 
servers:  

p + (1 - p) · pN 
 

• Multi-agent load balancing system with N 
servers and M load-balancers:  

 
pM + pN – pN+M 

 
Results in Figure 2 show that the traditional load 
balancing system is substantially less reliable than the 
multi-agent versions for M=2 and N=10. For small error 
probability p and large numbers of N and M, multi-agent 
systems become highly reliable. 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: System error probability for M=2 and N=10. 
 
The assumption in previous analysis is that a failed 
computer is never repaired. This situation is reasonable 
when we analyze error probability over short intervals of 
time, e.g. one hour.  For longer time periods computers 
are repaired. If p is the probability of an error over time t 
and r is average repair time, then the probability that a 
computer is not operational is p·r/t. Most common 
situation in practice is that either the system is fully 
operational or one computer is not working. In the latter 
case, we assumed that all computers have the same 
failure probability and that the system performance is 

proportional to the number of working servers. Now we 
can analyze the ratio of average performance between a 
system with one failed computer and a system with all 
working computers for various approaches: 

• Traditional load balancing system with N 
servers: 

N (N-1) 
(N+1) N 

 
• Multi-agent load balancing system: 

 
M N (N-1) 

(N+M)
+ 

(N+M) N 
 

Multi-agent LB systems shown in Figure 1 b), perform 
substantially better with one computer down than the 

traditional version as shown in  
Figure 3.  
 

 

 

 

 

 

 

 
Figure 3: Ratio of average system performance with one 

failed computer compared to system with all working 
computers. 

 
Multi-agent systems are prone to failures as any 
distributed system. Agents and resources may become 
unavailable due to machine crashes, communication 
breakdowns, process failures and numerous other 
hardware and software failures. Most of the work done in 
fault handling for multi-agent systems deals with 
communication failures, while the detection and recovery 
from faults typically rely on the traditional techniques for 
failure recovery. However, the traditional fault-tolerance 
techniques are designed for specific situations and the 
introduction of MAS requires special infrastructural 
support, such as support for continuous and fault-tolerant 
agent communication. 

3.2 Fault Detection Models 
Software faults can be avoided by appropriate software 
development process. But often, an open agent society 
does not allow us to enforce software merits on 
participating agents. In addition, software and hardware 
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faults are invariant property of all systems, both software 
and hardware ones. In order to increase fault-tolerance of 
an agent system, we must introduce a system-wide 
strategy to detect faults and to take appropriate steps to 
reduce harmful consequences. The first step therefore is 
to detect software faults. Most often we want to keep the 
fault-detection time below some reasonable time limit. 
To enforce such limit, faults can be detected in a timely 
manner by periodical checking. The proper check 
frequency ensures fault-detection within reasonable 
limits. As faults can severely affect agent functionality, 
we cannot assume that agents will detect their own faults. 
They must be detected by some other entities, which 
raises another interesting problem. How can this entity – 
call it a check agent – detect faulty operation of other 
agents? We present some criteria to decide what kind of 
check models a designer can utilize. The first one is 
based on check semantics. Accordingly, a check can 
belong to different semantic levels: 

• Keep-alive check: a basic query which inspects 
checked entity whether it is alive or not. Most 
often this check can be performed without agent 
knowledge (e.g. system call for process status). 

• Semantic-free check: a query asks agents to 
report its status. The task of performing check is 
delegated to agent where response is only 
“good” or “bad”. Lack of response also 
indicates agent’s fault.  

• Semantic-full check: a series of queries which 
test agent functionality. The queries are actually 
requests for agent functionality. Agent response 
is parsed and analyzed for proper operation. 
Check agent must therefore be able to 
understand the semantics of response. 

 
As each higher semantic level supersedes the lower one 
in terms of check efficiency, it is often not possible to 
implement the full semantic check. The functionality of a 
checked agent can be unknown or simply too complex to 
implement. It is therefore a designer’s obligation to 
devise appropriate level of check semantics.  
Another criterion deals with entity which performs a 
check. Theoretically, it can be the agent itself. Although 
possible, such check does not work for a majority of 
faults as they can affect the operation of an agent. As the 
sole other possibility, different agent instance must 
perform a check. However, we can distinguish between 
different check models, as shown in Figure 4: 

• Buddy: each agent is checked by it’s own check 
entity. 

• Star: a group of agents share the same check 
entity. 

• Parallel:  each agent in a group checks all other 
ones. 

 
Table 1: Various statistics for different check models. 

Check model Buddy Star Parallel 
Check channels n n n(n-1)/2 
Additional check entities n 1 0 
All entities 2n n+1 n 

Different check entities n 1 1 
 
 
 

 
 
 
 

 
 

 
 
 
 
 

 
 

 
 
 

 
 
 

 
 

Figure 4: Different check models in multi-agent systems. 
 

Buddy model is the most appropriate when checking a 
single agent instance with unique functionality within 
MAS. The downside of this model is a big number of 
checking entities which is the same as number of agents. 
Star model is efficient where we have a group of agent 
instances with the same functionality. The same 
functionality is checked for all agent instances. Obvious 
advantages are single check entity and efficient resource 
allocation. The downside is a possible failure of a check 
entity which suppresses all further check activities. 
Parallel model solves this problem by assigning task of 
checking to agents themselves; if one agent fails, all 
others will still perform checking. As agents check each 
other, they do not need additional check entity. 
Accordingly their functionality is extended with the 
check process. This fact also eases the problem of 
semantic-full check as developers already know the exact 
functionality of the agent and can therefore design 
efficient check queries and response analyzers. As a 
negative side of this model one must mention increased 
communication-related resources as agents connect with 
each other. Communication channels must employ 
efficient delivery methods, e.g.: broadcast on local 
networks and multicast on wide area networks. Analysis 
of each model is presented in Table 1, where n represents 
the number of agents within MAS. 

3.3 Related Work 
A large number of techniques for fault-tolerance can be 
found in the traditional database and distributed systems 
literature. Most of these recovery methods [1] primarily 
focus on replication techniques that permit critical 
system data and services to be duplicated as a way to 
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increase reliability. However, this paper focuses on 
agent-oriented approaches. Jennings [4] showed that as 
the world becomes more complex and variable and plans 
tend to fail more often, agent teams as a whole waste 
fewer resources and are more robust than self-interested 
agents. This approach is similar to ours in that both 
approaches are based on the theory of teamwork. 
However, we explicitly address the problem of fault-
tolerance whereas Jenning’s work is more focused 
towards cooperative problem solving. Kumar and Cohen 
[8] argued that teamwork might be used to create a 
robust brokered agent architecture that can recover a 
MAS from broker failures without incurring undue 
overheads. Their brokered architecture also guaranteed a 
specified number of brokers in a large MAS, where agent 
autonomy can be used to guarantee acceptable levels of 
quality of service by an agent. Hägg [3] uses external 
sentinel agents which listen to all broadcast 
communication, interact with other agents and use timers 
to detect agent crashes and communication link failures. 
The sentinels in Hägg’s approach analyze the entire 
communication going on in the MAS to detect state 
inconsistencies. However, this approach is not realistic 
for systems with high volume and message frequency. 
Klein [6] proposes to use exception-handling service to 
monitor the overall progress of a MAS. Agents register a 
model of their normative behavior with the exceptional-
handling service that generates sentinels to guard the 
possible error modes. Such exception handling service is 

also a centralized approach, which is not suitable for 
scalable distributed systems. 

4 A Fault-Tolerant Multi-Agent 
System 

In this section we briefly present a fault-tolerant multi-
agent LB system. Its architecture is presented in Figure 1 
b). We designed 12 different agent classes. Depending on 
the agent class, an agent instance can reside on a server, 
load balancer, management computer, or on each 
computer within a cluster. A schematic diagram for agent 
connections is presented in Figure 5. Server-based agents 
are responsible for handling service and server-related 
activities: full service/server administration, gathering of 
service/server-related statistics, and synchronization of 
service data. Agents hosted on LB computers are LB-
oriented and cluster-oriented ones. They perform 
important activities, such as: checking activities 
regarding services, servers and load-balancers together 
with the control of LB software, and enforcement of 
desired LB policy. Agents with management status 
handle various cluster-related activities. They provide 
global configuration together with user interface, report 
errors, and perform monitoring of agents. Table 2 
presents all agent classes with their names, optional 
acronyms in parenthesis and locations - all in the first 
line and short descriptions afterwards. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Agent interdependencies and structure of multi-agent LB system.  
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but provides service only for the GUI agent (drawn). 
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Table 2: Descriptions of agents in a multi-agent load balancing system. 

Advanced Traffic Manager (ATM), LB based. 
A central cluster management agent. It handles the whole cluster organization and actively checks other ATMs for 
proper operation. It controls LB software according to configuration, assigns servers and services to LB software, and 
periodically checks their operation. In case of failure, the server or service is immediately marked as inactive. 
Service Management Agent (SMA), server based. 
A service-specific agent, which performs all service-dependent administration. Its primary task is to setup, start, and 
stop specific services. It can also retrieve service specific-metrics (e.g. statistics of http accesses). 
Synchronization Agent, server based. 
Takes care of synchronization of service-based data. Its implementation is service specific. 
LB Policy Agent, LB based. 
Assigns weights in LB software according to the desired LB policy. It must monitor server-based metrics (such as 
CPU load and number of network connections on servers) and compute weights to distribute traffic appropriately. 
LB Control Agent (LBA), LB based. 
Acts as a translator to LB software translating agent commands to specific commands of LB software and reporting 
status changes of the LB software. 
Computer Management Agent, cluster based. 
Controls various computer-related tasks. It can setup network interfaces and report various metrics (such as CPU load, 
number of network connections, memory consumption and amount of free disk space). 
Server Check Agent, LB based. 
Checks if a server is working properly. It is possible to implement several different server checks. 
Service Check Agent, LB based. 
Checks if a service is working properly. Each service demands a different instance of service check agent. 
Configuration Agent, management based. 
Keeps configuration and controls simultaneous access to it. It also broadcasts all recent configuration changes to the 
agent system. 
GUI Agent, management based. 
Acts like a http server for users, and an intermediate agent to the agent system. Its task is to provide web-based user 
interface for cluster management including access to configuration, messages, errors, and up-to-date information about 
servers, services, and LB software. 
Supervisory Agent, cluster based. 
Starts, checks and terminates agents within one computer. According to role defined in configuration it must start or 
stop agent operation of each computer within cluster. In order to deal with unexpected software errors, a special agent 
was assigned to periodically check the health of running agents. In case of no response, the failed agent is forcefully 
terminated and restarted. 
Reporting Agent (RA), cluster based. 
Reports various messages and errors to user (via GUI agent). 
 

4.1 Fault-Tolerant Design Issues 
Since the fault-tolerant computing paradigm expects 
failures as a rule and not as an exception, the system 
must be able to reasonably cope with agent failures. To 
systematize fault-related activities we introduced 
different importance levels together with its fault-tolerant 
design principles. Table 3 presents all importance levels 
together with corresponding agent classes. Consequently, 
our design considers the following four levels of agent 
importance: 
• Core agents perform tasks essential for proper 

functioning of the system which stops or is operating 
erroneous without them. An example for that would 
be the Advanced Traffic Manager that controls vital 
cluster management activities.  

• Support agents carry out tasks regarding 
management of services, servers and agents. They 
are needed only for startup and shutdown activities 
or for reconfiguration of a cluster. For example, the 
lack of Service Management Agent would prevent 
the cluster to start or stop certain service but the 
system would remain stable.  

• Regulative agents perform partial cluster 
optimization, and are not critically required to run 
the system. For example, all checking agents are 
optional; the system is working also without them. 
However, the system is thus unable to detect failures 
of servers or services. 

• User agents are needed only for users to access 
cluster management. Its inexistence does not impact 
the operation of the system. 
 
 



INCREASING FAULT-TOLERANCE OF...  Informatica 27 (2003) 417–424 423 

Table 3: Agent classes with corresponding importance levels. Different levels of shading illustrate importance levels. 
Core agents  

(Critical importance) 
Support agents 

(High importance) 
Regulative agents 

(Medium importance) 
User agents 

(Low importance)
Advanced Traffic Manager Computer Management Agent LB Policy Agent GUI Agent 

LB Control Agent Service Management Agent Server Check Agent Reporting Agent
Configuration Agent Supervisory Agent Service Check Agent  

 Synchronization Agent   
 

Table 4: Actions following possible problems 
Entity Possible problems Action Semantic level Check 

model 
agent agent crash 

agent malfunction 
restart agent 
terminate & restart agent 

Semantic-less Star 

service* service not accessible 
service crash 
service malfunction 

try to setup appropriate 
network interface 
restart service 
exclude it from operation 

Semantic-full Star 

ATM computer crash 
LB software malfunction 

exclude it from operation 
exclude it from operation 

Keep-alive Parallel 

server** computer crash 
server malfunction 

exclude it from cluster 
force server shutdown and 
exclude it from cluster 

Keep-alive 
and 

Semantic-full 

Star 

* Each reported problem forces service on a computer to be excluded from cluster. It is included later if service checks 
report that action was successful. 
** Each server with reported problems is excluded from cluster. It is included later if server checks report that action 
was successful. 
 
To increase the fault-tolerance of our system, we 
incorporated failure prevention for different entities 
within MAS. The anticipated actions on possible 
problems together with their semantic level and check 
model are summarized in Table 4. 
Instances of Supervisory Agent class perform basic agent 
monitoring. Its main function is to monitor agents for 
proper operation. Since implementing semantic-full 
check for arbitrary agent is too time consuming and 
agents can spawn several processes thus forbidding keep-
alive queries with system process routines we 
implemented semantic-less checking. On each check 
query, agents respond with their state. An agent that does 
not respond to a check query is considered failed. 
Because of relatively high number of running agent 
instances, we designed a distributed version of star check 
model. With it one instance Supervisory Agent reside on 
each computer within MAS and monitors only local 
agents; i.e. it checks all agent instances residing on the 
same computer. A failure of a single Supervisory Agents 
therefore only affects monitoring activities on one 
computer. Service, server, and ATM failure detection is 
also achieved by periodical checking of each entity. 
Since the number of services and servers is arbitrary high 
we chose a check model with the lowest communication-
related overhead: a star check model. All checking is 
performed on an active load-balancer by Service/Server 
Check Agents, as shown in Figure 5. Servers can be 
checked with ICMP keep-alive queries  (i.e. ping) or 
semantic-full queries utilizing Computer Management 
Agent hosted on servers. All services are checked with 
semantic-full queries (e.g. we implemented HTML 

queries for checking web services). The most important 
agent within our system, ATM, was designed with a 
special protocol to enable mutual checking of ATMs. 
According to parallel model, each ATM checks other 
active ATMs. Active ATMs announce their active 
presence by periodically broadcasting "heartbeat" 
messages over LAN that also replaced O(n2) 
communication channel utilization with only O(1). If, for 
some known period of time, this message is not received 
by other ATMs, the sender is considered failed. In this 
case, elections start and the newly elected ATM begin 
acting as a primary, while previous active ATM is 
demoted. Our design allows arbitrary number of ATMs 
to act as primary while other act as backup ones. Each 
ATM owns its unique identification number (ID), while 
each possible active position is represented as one slot 
and backup ATMs take part in elections for each slot 
separately. Active ATM for one slot cannot participate in 
elections for another slot. The voting protocol for each 
slot is described in Figure 6. 
When ATM is elected as active, it starts advertising 
virtual IP of a running cluster. In LAN environments this 
can be achieved by advocating virtual IP number with 
technique called ARP spoofing, which involves 
constructing forged ARP replies. With this technique we 
can convince the network gateway that IP of nonexistent 
computer is actually owned by an existent computer – a 
load balancer in our case. This enables us to have a 
virtual IP number, which is associated with an active LB. 
The traffic destined to virtual IP number is redirected to 
active ATM which hosts operating LB software. 
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Figure 6: State diagram for voting protocol used in 
elections for the active load balancer. 

 
The design of Configuration Agent proved to be quite 
demanding. To allow redundancy, Configuration Agents 
must be able to operate simultaneously, thus the task of 
designing a Configuration Agent is similar to designing a 
distributed database. Having known implications of such 
decision, we softened parallelism requirements. The final 
design allowed only one active Configuration Agent, 
while others are running in a backup mode. To achieve 
configuration consistency, all configuration changes can 
only be committed to the active instance. All backup 
instances synchronize its configuration with the active 
one. In case that the active agent fails, configuration can 
still be retrieved from the backup ones. The location of 
the active instance is left to the system administrator so 
as to allow full control over the current configuration 
computer. 
The separated design of agent classes and further 
separated implementation of agent instances introduces 
one important improvement over traditional 
programming. With the latter, developers must 
corporately develop a big and complex program. 
Although its design can be modular and developers 
develop distinct modules, it poses several 
implementation-related problems. For example, as 
developers introduce errors, the development process is 
stopped for all developers working on the same program. 
Sometimes, the big and complex structure prohibits deep 
understanding causing developers to overlook hidden 
module dependencies and introduce hard-to-detect bugs. 
In the development of MAS developers are more evenly 
distributed on development of separate agent instances, 
which also tend to be smaller implementation tasks. 
Typically one developer develops the whole agent, thus 
removing inefficiencies presented with the traditional 
programming. Consequently, the development process is 

more straightforward, thus faster and less error-prone 
thus also more fault-tolerant. 

5 Conclusion 
We have theoretically analyzed fault-tolerance for 
traditional and multi-agent load balancing systems. Our 
analysis show that multi-agent load balancing systems 
formally introduce important improvements such as 
lower system error probability and better average 
performance in case one computer is not working. We 
also presented different semantic check levels and check 
models. Our analysis reports applicability conditions for 
different semantic levels and models. The presented 
ideas are then described in an application of multi-agent 
load balancing system. We show that presented models 
do not increase fault-tolerance of single agent instance 
but clearly improve fault-tolerance of a whole MAS.  
It is important to be aware of the advantages and 
disadvantages of agent and non-agent approaches, but the 
most important is whether advantages prevail. For load 
balancing, our theoretical analysis and practical 
experiences both indicate that advantages of MAS LB 
systems evidently overweight observed disadvantages. 
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