
 Informatica 27 (2003) 417–424 417

Increasing Fault-Tolerance of Multi-Agent Systems
Andraz Bezek, Matjaz Gams
Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
{andraz.bezek, matjaz.gams}@ijs.si

Keywords: fault-tolerance, multi-agent systems

Received: June 15, 2003

We analyze fault tolerance in load balancing systems. First, we theoretically analyze some aspects of
fault-tolerance of traditional and multi-agent approaches. Second, we investigate efficient fault
detection showing that multi-agent systems can increase fault-tolerance by improving fault detection of
failed single agents. The presented ideas are applied in a multi-agent system for fault-tolerant network
load balancing. A detailed description of fault-tolerant issues in design is also given. Finally, the paper
presents evaluation of a multi-agent application for network load balancing.

1 Introduction
Designing and building high quality industrial-strength
software is difficult, and it has been claimed that such
development projects range among the most complex
construction tasks. Among software projects, building
reliable large Internet services is one of very difficult
tasks especially because virtually continuous uptime and
consistent response time are crucial. Stable services must
be able to cope with many undesired factors such as
explosive growth of traffic over the Internet, and possible
hardware and software failures.
A wide range of software engineering paradigms has
been devised, and each successive development claims
either to make the engineering process easier or to extend
the complexity of applications that can feasibly be built.
Although there is reasonable evidence to support these
claims, researchers continually strive for more efficient
and powerful software engineering techniques. Recently,
multi-agent systems received a lot of attention as a
potential mainstream initiative for distributed software
engineering [5]. A multi-agent system (MAS) is a loosely
coupled network of software entities that work together
to solve problems that are beyond the individual
capabilities or knowledge of each entity [2]. Recently,
the term MAS has been given a more general meaning,
and it is now used for all types of systems composed of
multiple autonomous agents showing the following
characteristics:

• each agent has incomplete capabilities to solve a
problem,

• there is no global system control,
• data is decentralized and
• computation is asynchronous.

MAS is a distributed reactive system, which maintains an
ongoing interaction with environment. It has long been
recognized that reactive systems are among the most
complex types of systems to design and implement [9].
Great effort has been devoted to developing software
tools, programming languages, and methodologies for
managing this complexity – with some success. But for

certain types of reactive systems, even specialized
software engineering techniques and tools fail.
According to Jennings et al. [4], one can broadly
subdivide these systems into three classes:

• open systems,
• complex systems and
• ubiquitous computing systems.

An open system is capable of dynamically changing its
own structure. Consequently its components can be
heterogeneous and added dynamically. They also can be
changed over time using different software tools and
techniques.
Development of complex systems requires efficient tools
for handling software complexity. The most powerful
concepts are modularity and abstraction. Namely, if a
problem domain is particularly complex, large, or
unpredictable, then it may be reasonable to develop a
number of distinct modular components. An agent-
oriented approach is a powerful alternative for making
systems modular. In case any interdependent problems
arise the agents in the systems must cooperate with one
another to ensure that interdependencies are properly
managed. In such domains an agent-based approach
means that the overall problem can be partitioned into a
number of smaller and simpler components, which are
easier to develop and maintain, and which are specialized
at solving the constituent sub-problems. This
decomposition allows each agent to employ the most
appropriate paradigm for solving its particular problem,
rather than being forced to adopt a common uniform
approach that represents a compromise for the entire
system, which is not optimal for any of its subparts. The
notion of an autonomous agent also provides a useful
abstraction in the same way that procedures, abstract data
types, and objects provide abstractions.
Ubiquitous systems are expected to ease the interaction
between humans and computers. But today the user of a
software product typically has to describe each step that
needs to be performed to solve a problem down to the
smallest level of detail. Ubiquitous system should be able
to recognize opportunities and act in such a way to help
the users to achieve their goals. One can think of such

418 Informatica 27 (2003) 417–424 A. Bezek et al.

systems as assistant agents, capable of acting with the
user in order to achieve the user’s goals.
In MAS the locus of control is dispersed among agents
which coordinate and plan their actions according to their
local perception of environment. If we try to improve
fault-tolerance of a MAS, we must improve fault-
tolerance of all agents within MAS, or provide system-
wide methods to enable fault detection and recovery.
This paper addresses the latter problem. It overviews
fault-tolerance with agent systems and presents a fault-
detection models together with a fault-tolerant agent
application for network load balancing.
The structure of this paper is as follows: In Section 2, we
present functional characteristics and differences
between traditional and multi-agent load balancing
system. Section 3 deals with fault tolerance in agent
societies. An analysis of fault-tolerance related
differences for two load balancing systems is presented
in Section 3.1. Fault detection models are presented in
3.2 and survey of related work is given in Section 3.3. A
fault tolerant multi-agent system is presented in Section
4. Finally, conclusions are presented in Section 5 by
reviewing the ideas presented in the paper.

2 Traditional and Multi-Agent Load
Balancing

We refer to the term load balancing (LB for short) as
network load balancing or - more precisely - as IP-level
load balancing. The term cluster refers to all computers
within a load balancing system, thus including all
servers, load balancers and administration computers.
Sometimes we refer to a cluster of servers and a cluster
of load balancers, each describing a set of computers
within the cluster with server/load balancing
functionality.
The purpose of network LB system is to evenly distribute
incoming network traffic among servers in a cluster. The
distribution is done according to desired LB policy,
which often takes into account performance metrics such
as network traffic or processor load.

Figure 1: Network data flow for traditional (a) and multi-

agent (b) load balancing systems.

A traditional load balancing system consists of a single
load balancer and a set of servers as presented in Figure
1, a). Accordingly, the input flow is balanced among
servers and resulting output traffic is redirected directly
to users. Beside obvious performance benefits, a design
like this also increases fault tolerance. The failed server

can easily be replaced by redirecting its traffic destined
among other active servers. Server and service failures
are detected by periodic server/service checking. Multi-
agent load balancing systems, shown in Figure 1, b),
enhance scalability by employing an arbitrary number of
load balancers. They require a preceding load balancer
which distributes input traffic between distributed LB
systems. Load balancing at this level can employ coarser
distribution policy without any impact on underlying
systems. Most often round-robin DNS solution is used to
assure geographical distribution of traffic. The main
benefit is the possibility to change the size of LB cluster.
The LB software can be positioned at any location. Load
balancers and servers can be distributed across the
Internet, most often geographically. This design makes
fast fault detection and recovery possible by enabling LB
agents to constantly monitor system activities. The main
benefit compared to the previous approach is the fact that
servers behind the failed load balancer can be still used
by other balancers. A multi-agent approach may utilize
an arbitrary number of load balancers and servers.

3 Fault-Tolerance in Agent Societies
In theory, fault tolerant systems (chapter 7. in [7]) should
not have a single point of failure and should be resistant
to any failure, including the hardware and software ones.
In reality we aim to achieve sufficiently high degree of
fault tolerance. According to [10], fault tolerant services
must be designed to achieve high availability, safety,
maintainability, and reliability. Availability is defined by
the percentage of time during which a system is
operating correctly and is available to perform its
functions. Safety refers to the situation where a system
temporarily fails to operate correctly but nothing
catastrophic happens. Although web services do not fall
into the same safety category as, for example, nuclear
power plants, one can easily understand the importance
of safety considerations when designing web-based
services. Maintainability refers to how easily a failed
system can be repaired. A highly maintainable system
may also show a high degree of availability, especially if
failures can be detected and repaired automatically.
Finally, reliability refers to the property that a system can
run continuously without failure. If a system goes down
for one millisecond every hour, it has an availability of
over 99.9999 percent, but it is still highly unreliable.
Similarly a system that never crashes but is shut down
for a week every year has high reliability but only 98
percent availability.
When developing MASs developers often overlook the
importance of fault-tolerant software development.
Sometimes, especially in open systems, it is impossible to
enforce fault-tolerant developing strategies since we do
not control the development process. Designers can only
enforce fault-tolerant strategies through selected multi-
agent architecture design. Complex systems are by
definition difficult to comprehend and are often affected
by hard-to-spot faults. Sheer size of such systems
prevents complete and systematic testing of system
functionality. System-wide fault-tolerant models are

(a) (b)

INCREASING FAULT-TOLERANCE OF... Informatica 27 (2003) 417–424 419

therefore welcome as additional mechanisms, which
increase fault resistance of a MAS. Although one can
argue that faults in ubiquitous systems are least harmful,
we state that each fault can affect the very essence of
such systems.

3.1 Fault-Tolerance in Load Balancing
Systems

We compare LB systems presented in Figure 1 in terms
of reliability. If p is the computer error probability over a
given time, M is a number of load balancers, and N a
number of servers within the system, then we can
estimate overall error probabilities. If we assume
instantaneous error detection and response, then error
probability is as follows:

• Traditional load balancing system with N
servers:

p + (1 - p) · pN

• Multi-agent load balancing system with N
servers and M load-balancers:

pM + pN – pN+M

Results in Figure 2 show that the traditional load
balancing system is substantially less reliable than the
multi-agent versions for M=2 and N=10. For small error
probability p and large numbers of N and M, multi-agent
systems become highly reliable.

Figure 2: System error probability for M=2 and N=10.

The assumption in previous analysis is that a failed
computer is never repaired. This situation is reasonable
when we analyze error probability over short intervals of
time, e.g. one hour. For longer time periods computers
are repaired. If p is the probability of an error over time t
and r is average repair time, then the probability that a
computer is not operational is p·r/t. Most common
situation in practice is that either the system is fully
operational or one computer is not working. In the latter
case, we assumed that all computers have the same
failure probability and that the system performance is

proportional to the number of working servers. Now we
can analyze the ratio of average performance between a
system with one failed computer and a system with all
working computers for various approaches:

• Traditional load balancing system with N
servers:

N (N-1)
(N+1) N

• Multi-agent load balancing system:

M N (N-1)

(N+M)
+

(N+M) N

Multi-agent LB systems shown in Figure 1 b), perform
substantially better with one computer down than the

traditional version as shown in
Figure 3.

Figure 3: Ratio of average system performance with one

failed computer compared to system with all working
computers.

Multi-agent systems are prone to failures as any
distributed system. Agents and resources may become
unavailable due to machine crashes, communication
breakdowns, process failures and numerous other
hardware and software failures. Most of the work done in
fault handling for multi-agent systems deals with
communication failures, while the detection and recovery
from faults typically rely on the traditional techniques for
failure recovery. However, the traditional fault-tolerance
techniques are designed for specific situations and the
introduction of MAS requires special infrastructural
support, such as support for continuous and fault-tolerant
agent communication.

3.2 Fault Detection Models
Software faults can be avoided by appropriate software
development process. But often, an open agent society
does not allow us to enforce software merits on
participating agents. In addition, software and hardware

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Computer error probability (p)

S
ys

te
m

 e
rr

or
 p

ro
ba

bi
lit

y

Traditional lod balancing (M=1)

Multi-agent load balancing (M=2)
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of computers (N)

S
ys

te
m

 p
er

fo
rm

an
ce

 ra
tio

Multi-agent load balancing (M=10)

Multi-agent load balancing (M=2)

Traditional load balancing (M=1)

420 Informatica 27 (2003) 417–424 A. Bezek et al.

faults are invariant property of all systems, both software
and hardware ones. In order to increase fault-tolerance of
an agent system, we must introduce a system-wide
strategy to detect faults and to take appropriate steps to
reduce harmful consequences. The first step therefore is
to detect software faults. Most often we want to keep the
fault-detection time below some reasonable time limit.
To enforce such limit, faults can be detected in a timely
manner by periodical checking. The proper check
frequency ensures fault-detection within reasonable
limits. As faults can severely affect agent functionality,
we cannot assume that agents will detect their own faults.
They must be detected by some other entities, which
raises another interesting problem. How can this entity –
call it a check agent – detect faulty operation of other
agents? We present some criteria to decide what kind of
check models a designer can utilize. The first one is
based on check semantics. Accordingly, a check can
belong to different semantic levels:

• Keep-alive check: a basic query which inspects
checked entity whether it is alive or not. Most
often this check can be performed without agent
knowledge (e.g. system call for process status).

• Semantic-free check: a query asks agents to
report its status. The task of performing check is
delegated to agent where response is only
“good” or “bad”. Lack of response also
indicates agent’s fault.

• Semantic-full check: a series of queries which
test agent functionality. The queries are actually
requests for agent functionality. Agent response
is parsed and analyzed for proper operation.
Check agent must therefore be able to
understand the semantics of response.

As each higher semantic level supersedes the lower one
in terms of check efficiency, it is often not possible to
implement the full semantic check. The functionality of a
checked agent can be unknown or simply too complex to
implement. It is therefore a designer’s obligation to
devise appropriate level of check semantics.
Another criterion deals with entity which performs a
check. Theoretically, it can be the agent itself. Although
possible, such check does not work for a majority of
faults as they can affect the operation of an agent. As the
sole other possibility, different agent instance must
perform a check. However, we can distinguish between
different check models, as shown in Figure 4:

• Buddy: each agent is checked by it’s own check
entity.

• Star: a group of agents share the same check
entity.

• Parallel: each agent in a group checks all other
ones.

Table 1: Various statistics for different check models.

Check model Buddy Star Parallel
Check channels n n n(n-1)/2
Additional check entities n 1 0
All entities 2n n+1 n

Different check entities n 1 1

Figure 4: Different check models in multi-agent systems.

Buddy model is the most appropriate when checking a
single agent instance with unique functionality within
MAS. The downside of this model is a big number of
checking entities which is the same as number of agents.
Star model is efficient where we have a group of agent
instances with the same functionality. The same
functionality is checked for all agent instances. Obvious
advantages are single check entity and efficient resource
allocation. The downside is a possible failure of a check
entity which suppresses all further check activities.
Parallel model solves this problem by assigning task of
checking to agents themselves; if one agent fails, all
others will still perform checking. As agents check each
other, they do not need additional check entity.
Accordingly their functionality is extended with the
check process. This fact also eases the problem of
semantic-full check as developers already know the exact
functionality of the agent and can therefore design
efficient check queries and response analyzers. As a
negative side of this model one must mention increased
communication-related resources as agents connect with
each other. Communication channels must employ
efficient delivery methods, e.g.: broadcast on local
networks and multicast on wide area networks. Analysis
of each model is presented in Table 1, where n represents
the number of agents within MAS.

3.3 Related Work
A large number of techniques for fault-tolerance can be
found in the traditional database and distributed systems
literature. Most of these recovery methods [1] primarily
focus on replication techniques that permit critical
system data and services to be duplicated as a way to

C C

C C

C

C

a) Buddy check model. b) Star check model.

c) Parallel check model.

C

Agent

Check entity

INCREASING FAULT-TOLERANCE OF... Informatica 27 (2003) 417–424 421

increase reliability. However, this paper focuses on
agent-oriented approaches. Jennings [4] showed that as
the world becomes more complex and variable and plans
tend to fail more often, agent teams as a whole waste
fewer resources and are more robust than self-interested
agents. This approach is similar to ours in that both
approaches are based on the theory of teamwork.
However, we explicitly address the problem of fault-
tolerance whereas Jenning’s work is more focused
towards cooperative problem solving. Kumar and Cohen
[8] argued that teamwork might be used to create a
robust brokered agent architecture that can recover a
MAS from broker failures without incurring undue
overheads. Their brokered architecture also guaranteed a
specified number of brokers in a large MAS, where agent
autonomy can be used to guarantee acceptable levels of
quality of service by an agent. Hägg [3] uses external
sentinel agents which listen to all broadcast
communication, interact with other agents and use timers
to detect agent crashes and communication link failures.
The sentinels in Hägg’s approach analyze the entire
communication going on in the MAS to detect state
inconsistencies. However, this approach is not realistic
for systems with high volume and message frequency.
Klein [6] proposes to use exception-handling service to
monitor the overall progress of a MAS. Agents register a
model of their normative behavior with the exceptional-
handling service that generates sentinels to guard the
possible error modes. Such exception handling service is

also a centralized approach, which is not suitable for
scalable distributed systems.

4 A Fault-Tolerant Multi-Agent
System

In this section we briefly present a fault-tolerant multi-
agent LB system. Its architecture is presented in Figure 1
b). We designed 12 different agent classes. Depending on
the agent class, an agent instance can reside on a server,
load balancer, management computer, or on each
computer within a cluster. A schematic diagram for agent
connections is presented in Figure 5. Server-based agents
are responsible for handling service and server-related
activities: full service/server administration, gathering of
service/server-related statistics, and synchronization of
service data. Agents hosted on LB computers are LB-
oriented and cluster-oriented ones. They perform
important activities, such as: checking activities
regarding services, servers and load-balancers together
with the control of LB software, and enforcement of
desired LB policy. Agents with management status
handle various cluster-related activities. They provide
global configuration together with user interface, report
errors, and perform monitoring of agents. Table 2
presents all agent classes with their names, optional
acronyms in parenthesis and locations - all in the first
line and short descriptions afterwards.

Figure 5: Agent interdependencies and structure of multi-agent LB system.

HTTP

ICMP

 Operating System

LB Kernel Module

Advanced Traffic
Manager

HTTP Service HTTP Svc Agent

DB
Service

DB Service Agent

 Sync Agent

LB Policy Agent

HTTP Service
Check Agent

DB Service
Check Agent

PING Server
Check Agent

Reporting Agent**

Configuration Agent GUI Agent

LB Control Agent

Supervisory Agent*

Supervisory Agent*

Supervisory Agent*

Computer Manag.
Agent

Reporting Agent**

Reporting Agent**

Web browser

SQL

Computer Manag.
Agent

Computer Manag.
Agent

 Operating System

 Operating System

HTTP

DB native

DB native

System
calls

System
calls

LB computer

Management computer

Server

System
calls

System
calls

Service
native

* Supervisory Agent checks all agents within the system. Due
to readability reasons, its connections are not drawn.
** Reporting Agent receives reports from all agents (not drawn),
but provides service only for the GUI agent (drawn).

422 Informatica 27 (2003) 417–424 A. Bezek et al.

Table 2: Descriptions of agents in a multi-agent load balancing system.

Advanced Traffic Manager (ATM), LB based.
A central cluster management agent. It handles the whole cluster organization and actively checks other ATMs for
proper operation. It controls LB software according to configuration, assigns servers and services to LB software, and
periodically checks their operation. In case of failure, the server or service is immediately marked as inactive.
Service Management Agent (SMA), server based.
A service-specific agent, which performs all service-dependent administration. Its primary task is to setup, start, and
stop specific services. It can also retrieve service specific-metrics (e.g. statistics of http accesses).
Synchronization Agent, server based.
Takes care of synchronization of service-based data. Its implementation is service specific.
LB Policy Agent, LB based.
Assigns weights in LB software according to the desired LB policy. It must monitor server-based metrics (such as
CPU load and number of network connections on servers) and compute weights to distribute traffic appropriately.
LB Control Agent (LBA), LB based.
Acts as a translator to LB software translating agent commands to specific commands of LB software and reporting
status changes of the LB software.
Computer Management Agent, cluster based.
Controls various computer-related tasks. It can setup network interfaces and report various metrics (such as CPU load,
number of network connections, memory consumption and amount of free disk space).
Server Check Agent, LB based.
Checks if a server is working properly. It is possible to implement several different server checks.
Service Check Agent, LB based.
Checks if a service is working properly. Each service demands a different instance of service check agent.
Configuration Agent, management based.
Keeps configuration and controls simultaneous access to it. It also broadcasts all recent configuration changes to the
agent system.
GUI Agent, management based.
Acts like a http server for users, and an intermediate agent to the agent system. Its task is to provide web-based user
interface for cluster management including access to configuration, messages, errors, and up-to-date information about
servers, services, and LB software.
Supervisory Agent, cluster based.
Starts, checks and terminates agents within one computer. According to role defined in configuration it must start or
stop agent operation of each computer within cluster. In order to deal with unexpected software errors, a special agent
was assigned to periodically check the health of running agents. In case of no response, the failed agent is forcefully
terminated and restarted.
Reporting Agent (RA), cluster based.
Reports various messages and errors to user (via GUI agent).

4.1 Fault-Tolerant Design Issues
Since the fault-tolerant computing paradigm expects
failures as a rule and not as an exception, the system
must be able to reasonably cope with agent failures. To
systematize fault-related activities we introduced
different importance levels together with its fault-tolerant
design principles. Table 3 presents all importance levels
together with corresponding agent classes. Consequently,
our design considers the following four levels of agent
importance:
• Core agents perform tasks essential for proper

functioning of the system which stops or is operating
erroneous without them. An example for that would
be the Advanced Traffic Manager that controls vital
cluster management activities.

• Support agents carry out tasks regarding
management of services, servers and agents. They
are needed only for startup and shutdown activities
or for reconfiguration of a cluster. For example, the
lack of Service Management Agent would prevent
the cluster to start or stop certain service but the
system would remain stable.

• Regulative agents perform partial cluster
optimization, and are not critically required to run
the system. For example, all checking agents are
optional; the system is working also without them.
However, the system is thus unable to detect failures
of servers or services.

• User agents are needed only for users to access
cluster management. Its inexistence does not impact
the operation of the system.

INCREASING FAULT-TOLERANCE OF... Informatica 27 (2003) 417–424 423

Table 3: Agent classes with corresponding importance levels. Different levels of shading illustrate importance levels.
Core agents

(Critical importance)
Support agents

(High importance)
Regulative agents

(Medium importance)
User agents

(Low importance)
Advanced Traffic Manager Computer Management Agent LB Policy Agent GUI Agent

LB Control Agent Service Management Agent Server Check Agent Reporting Agent
Configuration Agent Supervisory Agent Service Check Agent

 Synchronization Agent

Table 4: Actions following possible problems
Entity Possible problems Action Semantic level Check

model
agent agent crash

agent malfunction
restart agent
terminate & restart agent

Semantic-less Star

service* service not accessible
service crash
service malfunction

try to setup appropriate
network interface
restart service
exclude it from operation

Semantic-full Star

ATM computer crash
LB software malfunction

exclude it from operation
exclude it from operation

Keep-alive Parallel

server** computer crash
server malfunction

exclude it from cluster
force server shutdown and
exclude it from cluster

Keep-alive
and

Semantic-full

Star

* Each reported problem forces service on a computer to be excluded from cluster. It is included later if service checks
report that action was successful.
** Each server with reported problems is excluded from cluster. It is included later if server checks report that action
was successful.

To increase the fault-tolerance of our system, we
incorporated failure prevention for different entities
within MAS. The anticipated actions on possible
problems together with their semantic level and check
model are summarized in Table 4.
Instances of Supervisory Agent class perform basic agent
monitoring. Its main function is to monitor agents for
proper operation. Since implementing semantic-full
check for arbitrary agent is too time consuming and
agents can spawn several processes thus forbidding keep-
alive queries with system process routines we
implemented semantic-less checking. On each check
query, agents respond with their state. An agent that does
not respond to a check query is considered failed.
Because of relatively high number of running agent
instances, we designed a distributed version of star check
model. With it one instance Supervisory Agent reside on
each computer within MAS and monitors only local
agents; i.e. it checks all agent instances residing on the
same computer. A failure of a single Supervisory Agents
therefore only affects monitoring activities on one
computer. Service, server, and ATM failure detection is
also achieved by periodical checking of each entity.
Since the number of services and servers is arbitrary high
we chose a check model with the lowest communication-
related overhead: a star check model. All checking is
performed on an active load-balancer by Service/Server
Check Agents, as shown in Figure 5. Servers can be
checked with ICMP keep-alive queries (i.e. ping) or
semantic-full queries utilizing Computer Management
Agent hosted on servers. All services are checked with
semantic-full queries (e.g. we implemented HTML

queries for checking web services). The most important
agent within our system, ATM, was designed with a
special protocol to enable mutual checking of ATMs.
According to parallel model, each ATM checks other
active ATMs. Active ATMs announce their active
presence by periodically broadcasting "heartbeat"
messages over LAN that also replaced O(n2)
communication channel utilization with only O(1). If, for
some known period of time, this message is not received
by other ATMs, the sender is considered failed. In this
case, elections start and the newly elected ATM begin
acting as a primary, while previous active ATM is
demoted. Our design allows arbitrary number of ATMs
to act as primary while other act as backup ones. Each
ATM owns its unique identification number (ID), while
each possible active position is represented as one slot
and backup ATMs take part in elections for each slot
separately. Active ATM for one slot cannot participate in
elections for another slot. The voting protocol for each
slot is described in Figure 6.
When ATM is elected as active, it starts advertising
virtual IP of a running cluster. In LAN environments this
can be achieved by advocating virtual IP number with
technique called ARP spoofing, which involves
constructing forged ARP replies. With this technique we
can convince the network gateway that IP of nonexistent
computer is actually owned by an existent computer – a
load balancer in our case. This enables us to have a
virtual IP number, which is associated with an active LB.
The traffic destined to virtual IP number is redirected to
active ATM which hosts operating LB software.

424 Informatica 27 (2003) 417–424 A. Bezek et al.

candidate

active

backup

No heartbeat message
from active LB

ID too low

Periodically
broadcast heartbeat

messages.

Send one
heartbeat
message.

Listen for
 heartbeat
messages.

Highest ID
among candidates

Failure, termination,
or too many active
LBs for one slot

start

Figure 6: State diagram for voting protocol used in
elections for the active load balancer.

The design of Configuration Agent proved to be quite
demanding. To allow redundancy, Configuration Agents
must be able to operate simultaneously, thus the task of
designing a Configuration Agent is similar to designing a
distributed database. Having known implications of such
decision, we softened parallelism requirements. The final
design allowed only one active Configuration Agent,
while others are running in a backup mode. To achieve
configuration consistency, all configuration changes can
only be committed to the active instance. All backup
instances synchronize its configuration with the active
one. In case that the active agent fails, configuration can
still be retrieved from the backup ones. The location of
the active instance is left to the system administrator so
as to allow full control over the current configuration
computer.
The separated design of agent classes and further
separated implementation of agent instances introduces
one important improvement over traditional
programming. With the latter, developers must
corporately develop a big and complex program.
Although its design can be modular and developers
develop distinct modules, it poses several
implementation-related problems. For example, as
developers introduce errors, the development process is
stopped for all developers working on the same program.
Sometimes, the big and complex structure prohibits deep
understanding causing developers to overlook hidden
module dependencies and introduce hard-to-detect bugs.
In the development of MAS developers are more evenly
distributed on development of separate agent instances,
which also tend to be smaller implementation tasks.
Typically one developer develops the whole agent, thus
removing inefficiencies presented with the traditional
programming. Consequently, the development process is

more straightforward, thus faster and less error-prone
thus also more fault-tolerant.

5 Conclusion
We have theoretically analyzed fault-tolerance for
traditional and multi-agent load balancing systems. Our
analysis show that multi-agent load balancing systems
formally introduce important improvements such as
lower system error probability and better average
performance in case one computer is not working. We
also presented different semantic check levels and check
models. Our analysis reports applicability conditions for
different semantic levels and models. The presented
ideas are then described in an application of multi-agent
load balancing system. We show that presented models
do not increase fault-tolerance of single agent instance
but clearly improve fault-tolerance of a whole MAS.
It is important to be aware of the advantages and
disadvantages of agent and non-agent approaches, but the
most important is whether advantages prevail. For load
balancing, our theoretical analysis and practical
experiences both indicate that advantages of MAS LB
systems evidently overweight observed disadvantages.

References
[1] K. P. Birman, editor, "Building Secure and Reliable
Network Applications," Part III, Reliable Distributed
Computing, chapters 12-26, 1996.
[2] E. H. Durfee, V. R.Lesser and D. D. Corkill, "Trends
in Cooperative Distributed Problem Solving," in IEEE
Transactions on Knowledge and Data Engineering, KDE-
1(1), pp. 63-83, 1989.
[3] S. Hägg, "A Sentinel Approach to Fault Handling in
Multi-Agent Systems," In Proceedings of the 2nd
Australian Workshop on Distributed AI, Cairns,
Australia, 1997.
[4] N. R. Jennings, "Controlling Cooperative Problem
Solving in Industrial Multi-Agent Systems using Joint
Intentions," Artificial Intelligence. 75(2), pages 195-240,
1995.
[5] N. R. Jennings, "On agent-based software
engineering," Artificial Intelligence 117, pp. 277-296,
Elsevier, 2000.
[6] M. Klein and C. Dellarocas, "Exception Handling in
Agent Systems," Autonomous Agents ‘99, Seattle, 1999.
[7] S. Tanenbaum, and M. van Steen, "Distributed
Systems: Principles and Paradigms," Prentice-Hall, 2002.
[8] S. Kumar and P. R. Cohen, "Towards a Fault-
Tolerant Multi-Agent System Architecture,", in
Proceedings of The Fourth International Conference on
Autonomous Agents, 2000.
[9] A. Pnueli, "Specification and Development of
Reactive Systems," in Information Processing 86,
Elsevier/North Holland, 1986.
[10] P. Verissimo and H. Kopetz, "Design of distributed
real-time systems," in Shape Mullender, editor,
Distributed Systems, chapter 19. Addison-Wesley, 2nd
edition, 1995.

