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Instituto de Matemáticas, Universidad Nacional Autónoma de México,
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Research Group, Eötvös Loránd University, H-1117 Budapest, Pázmány s. 1/c, Hungary
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Abstract

A line-coloring of the finite affine space AG(n, q) is proper if any two lines from the
same color class have no point in common, and it is complete if for any two different colors i
and j there exist two intersecting lines, one is colored by i and the other is colored by j. The
pseudoachromatic index of AG(n, q), denoted by ψ′(AG(n, q)), is the maximum number
of colors in any complete line-coloring of AG(n, q). When the coloring is also proper, the
maximum number of colors is called the achromatic index of AG(n, q). We prove that
ψ′(AG(n, q)) ∼ q1.5n−1 for even n, and that q1.5(n−1) < ψ′(AG(n, q)) < q1.5n−1 for
odd n. Moreover, we prove that the achromatic index of AG(n, q) is q1.5n−1 for even n,
and we provide the exact values of both indices in the planar case.
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1 Introduction
This paper is motivated by the well-known combinatorial conjecture about colorings of
finite linear spaces stated by Erdős, Faber and Lovász in 1972. As a starting point, we
briefly recall some definitions and state the conjecture. Let S be a finite linear space. A
line-coloring of S with k colors is a surjective function ς from the lines of S to the set of
colors [k] = {1, . . . , k}. For short, a line-coloring with k colors is called k-coloring. If
ς : S→ [k] is a k-coloring and i ∈ [k] then the subset of lines ς−1(i) is called the i-th color
class of ς. A k-coloring of S is proper if any two lines from the same color class have no
point in common. The chromatic index χ′(S) of S is the smallest k for which there exists
a proper k-coloring of S. The Erdős-Faber-Lovász conjecture (1972) states that if a finite
linear space S contains v points then χ′(S) ≤ v, see [12, 13].

Several papers have investigated the conjecture for particular classes of linear spaces.
For instance, if each line of S has the same number κ of points then S is called a block
design or a (v, κ)-design. The conjecture is still open for designs even for κ = 3, however,
it was proved for finite projective spaces by Beutelspacher, Jungnickel and Vanstone [8]. It
is not hard to see that the conjecture is also true for the n-dimensional affine space AG(n, q)
of order q defined over the Galois field GF(q). Indeed,

χ′(AG(n, q)) =
qn − 1

q − 1
.

For some related results, see for instance [6, 7].
A natural question is to determine similar, but slightly different color parameters in

finite linear spaces. A k-coloring of S is complete if for each pair of different colors i and
j there exist two intersecting lines of S, such that one of them belongs to the i-th and the
other one to the j-th color class. Observe that any proper coloring of S with χ′(S) colors
is a complete coloring. The pseudoachromatic index ψ′(S) of S is the largest k such that
there exists a complete k-coloring (not necessarily proper) of S. When the k-coloring is
required to be complete and proper, the parameter is called the achromatic index and it is
denoted by α′(S). Therefore, we have that

χ′(S) ≤ α′(S) ≤ ψ′(S).

Several authors studied the pseudoachromatic index, see [2, 3, 4, 5, 9, 14, 15, 17]. More-
over, in [1, 10, 18] the achromatic indices of some block designs were also estimated.

In this paper we study the pseudoachromatic and achromatic indices of finite affine
spaces. In the proofs we will often use the notion of the projective closure of AG(n, q).
This is the finite projective space PG(n, q) = AG(n, q) ∪ H∞, where the points of H∞
correspond to the parallel classes of lines in AG(n, q). The space H∞ is isomorphic to
PG(n − 1, q), and it is called the hyperplane at infinity. We assume that the reader is
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familiar with the most important properties of affine and projective geometries. For the
detailed description of these spaces we refer to [16].

The main results in the paper are proved in Sections 2 and 3. They are stated in The-
orems 1.1, 1.2 and 1.3. In these theorems v = qn always denotes the number of points of
the finite affine space AG(n, q).

Theorem 1.1. For all n:

ψ′(AG(n, q)) ≤
√
v(v − 1)

q − 1
−Θ(q

√
v/2).

Theorem 1.2. If n is even:

1

2
·
√
v(v − 1)

q − 1
−Θ(

√
v/2) ≤ ψ′(AG(n, q)).

If n is odd:
1
√
q
·
√
v(v − 1)

q − 1
−Θ(v

√
v/q5) ≤ ψ′(AG(n, q)).

Theorem 1.3. If n is even:

1

3
·
√
v(v − 1)

q − 1
+ Θ(v/q) ≤ α′(AG(n, q)).

Note that when n is even Theorems 1.1 and 1.2 show that ψ′(AG(n, q)) grows asymp-
totically as Θ(v1.5/q), while Theorems 1.2 and 1.3 show that α′(AG(n, q)) grows asymp-
totically as Θ(v1.5/q). Let us remark that no similar estimates regarding the asymptotic
behavior of these indices have appeared so far in the literature.

Finally, in Section 4 we determine the exact values of pseudoachromatic and achromatic
indices of arbitrary (not necessarily Desarguesian) finite affine planes and we improve the
previous lower bounds in dimension 3.

2 Upper bounds
In this section, upper bounds for the pseudoachromatic index of AG(n, q) are presented
when n > 2. The following lemma is pivotal in the proof.

Lemma 2.1. Let L be a set of s lines in AG(n, q), n > 2. Then the number of lines of
AG(n, q) intersecting at least one element of L is at most

q2
(
s
qn−1 − 1

q − 1
− (s− 1)

)
.

Proof. In AG(n, q) there are q
(
qn−1
q−1 − 1

)
= q2

(
qn−1−1
q−1

)
lines intersecting any fixed

line. The number of lines intersecting two lines, say `1 and `2, is at least q2, because if
`1 ∩ `2 = ∅ then the q2 lines joining a point of `1 and a point of `2 intersect both `1 and
`2, while, if `1 ∩ `2 = {P} then the other q

n−1
q−1 − 2 > q2 lines through P intersect both `1

and `2. Consequently, the number of lines intersecting at least one element of L is at most

sq2
(
qn−1 − 1

q − 1

)
− (s− 1)q2.
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Notice that the previous inequality is tight, since if L consists of s parallel lines in a
plane then there are exactly q2

(
s q

n−1−1
q−1 − (s− 1)

)
lines intersecting at least one element

of L.

Lemma 2.2. Let n > 2 be an integer. Then the colorings of the finite affine space AG(n, q)
satisfy the inequality

ψ′(AG(n, q)) ≤
√

4qn(qn − 1)(qn − q2) + (q2 + 1)2(q − 1)2

2(q − 1)
+
q2 + 1

2
. (2.1)

Proof. Consider a complete coloring which contains ψ′(AG(n, q)) color classes. Then the
number of lines in the smallest color class is at most

s =
qn−1(qn − 1)

(q − 1)ψ′(AG(n, q))
.

Each of the other ψ′(AG(n, q)) − 1 color classes must contain at least one line which
intersects a line from the smallest color class. Hence, by Lemma 2.1, we obtain

ψ′(AG(n, q))− 1 ≤ q2
(
s
qn−1 − 1

q − 1
− (s− 1)

)
.

Multiplying it by ψ′(AG(n, q)), we get a quadratic inequality on ψ′(AG(n, q)), whence
the assertion follows.

We are in a position to prove our first main theorem.

Proof of Theorem 1.1. For n > 2 a straightforward computation shows

4qn(qn − 1)(qn − q2) + (q2 + 1)2(q − 1)2

=
(
2q

n
2 (qn − 1)− q n

2 (q2 − 1)
)2 − qn(q2 − 1)2 + (q2 + 1)2(q − 1)2

<
(
2q

n
2 (qn − 1)− q n

2 (q2 − 1)
)2
,

because n > 2 implies that qn(q2 − 1)2 > (q2 + 1)2(q − 1)2. This together with Inequal-
ity (2.1) give

ψ′(AG(n, q)) ≤ q n
2

(
qn − 1

q − 1

)
− q n

2

(
q + 1

2

)
+
q2 + 1

2
,

which proves the theorem for n > 2. For n = 2 the statement is clear.

3 Lower bounds
In this section complete colorings of AG(n, q) are presented. These constructions give
different bounds on ψ′(AG(n, q)) depending on the parity of n. First, we prove some
geometric properties of affine and projective spaces.



G. Araujo-Pardo et al.: On chromatic indices of finite affine spaces 71

Proposition 3.1. Let n > 1 be an integer, Π1 and Π2 be subspaces in PG(n, q) =
AG(n, q) ∪ H∞. Let di denote the dimension of Πi for i = 1, 2. Suppose that
Π1 ∩ Π2 ∩ H∞ is an m-dimensional subspace and d1 + d2 = n + 1 + m. Then Π1 ∩
Π2 ∩AG(n, q) is an (m+ 1)-dimensional subspace in AG(n, q).

In particular, Π1 ∩ Π2 is a single point in AG(n, q) when Π1 ∩ Π2 ∩ H∞ = ∅ and
d1 + d2 = n.

Proof. Since Π1 ∩Π2 ∩H∞ is an m-dimensional subspace, dim(Π1 ∩Π2) ≤ m+ 1. On
the other hand, the dimension formula yields

dim(Π1 ∩Π2) = dim Π1 + dim Πv − dim〈Π1,Π2〉 ≥ d1 + d2 − n = m+ 1.

Thus Π1 ∩ Π2 is an (m + 1)-dimensional subspace in PG(n, q), therefore Π1 ∩ Π2 ∩
AG(n, q) is an (m+ 1)-dimensional subspace in AG(n, q) if m ≥ 0.

If m = −1, then Π1 ∩ Π2 ∩ H∞ = ∅ and dim(Π1 ∩ Π2) = 0. Hence Π1 ∩ Π2 is a
single point in AG(n, q).

In the following proposition we present a partition of the points of PG(2k, q) that we
will call a good partition in the rest of the paper.

Proposition 3.2. Let k ≥ 1 be an integer and Q ∈ PG(2k, q) be an arbitrary point. The
points of PG(2k, q) \ {Q} can be divided into two subsets, say A and B, and one can
assign a subspace S(P ) to each point P ∈ A ∪ B, such that the following holds true:

• P ∈ S(P ) for all points;

• |A| = q2
(
q2k−1
q2−1

)
and, if A ∈ A then S(A) is a k-dimensional subspace;

• |B| = q
(
q2k−1
q2−1

)
and, if B ∈ B then S(B) is a (k − 1)-dimensional subspace;

• S(A) ∩ S(B) = ∅ for all A ∈ A and B ∈ B.

Proof. We prove the assertion by induction on k. If k = 1 then let {`0, `1, . . . , `q} be
the set of lines through Q. Let A and B consist of points PG(2, q) \ {`0} and `0 \ {Q},
respectively. If A ∈ A then let S(A) be the line AQ, if B ∈ B then let S(B) be the point
B. These sets clearly fulfill the prescribed conditions, so PG(2, q) admits a good partition.

Now, let us suppose that PG(2k, q) admits a good partition. In PG(2k + 2, q) take a
2k-dimensional subspace Π which contains the point Q. Then Π is isomorphic to
PG(2k, q), hence it has a good partition {Q} ∪ A′ ∪ B′ with assigned subspaces S′(P ).
Let H0, . . . ,Hq be the pencil of hyperplanes in PG(2k + 2, q) with carrier Π. Let B =
B′∪(H0 \Π) andA = PG(2k+2, q)\(B∪{Q}). Notice thatA′ and B′ have the required
cardinalities, because

|A′| = q2k+3 − 1

q − 1
− (|B|+ 1) = (q + 1)

q2k+3 − 1

q2 − 1
− q

(
q2k+2 − 1

q2 − 1

)
− 1

= q2
(
q2k+2 − 1

q2 − 1

)
,

|B′| = |B|+ |H0 \Π| = q

(
q2k − 1

q2 − 1

)
+ q2k+1 = q

(
q2k+2 − 1

q2 − 1

)
.
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We assign the subspaces in the following way. If A ∈ A′ then let S(A) be the (k + 1)-
dimensional subspace 〈S′(A), P 〉 where P ∈ ∪qi=1Hi is an arbitrary point, whereas, if
A ∈ (∪qi=1Hi) \ Π then let S(A) be the (k + 1)-dimensional subspace 〈A,S′(P )〉 where
P ∈ A′ is an arbitrary point. In both cases S(A) ⊂ ∪qi=1Hi for all A ∈ A. Similarly,
if B ∈ B′ then let S(B) be the k-dimensional subspace 〈S′(B), P 〉 where P ∈ H0 is
an arbitrary point, whereas, if B ∈ H0 \ Π then let S(B) be the k-dimensional subspace
〈B,S′(P )〉 where P ∈ B′ is an arbitrary point. Also here, in both cases, S(B) ⊂ H0 for
all B ∈ B. Moreover, the assigned subspaces satisfy the intersection condition because if
A ∈ A and B ∈ B are arbitrary points then

S(A) ∩ S(B) = (S(A) ∩ (∪qi=1Hi)) ∩ (S(B) ∩H0) = S′(A) ∩ S′(B) ∩Π = ∅.

Hence PG(2k + 2, q) also admits a good partition, and the statement is proved.

The next theorem proves Theorem 1.2 for even dimensional finite affine spaces. Notice
that the lower bound depends on the parity of q, but its magnitude is

√
v(v−1)
2(q−1) in both cases,

where v = qn.

Theorem 3.3. If k > 1 then the colorings of the even dimensional affine space, AG(2k, q),
satisfy the inequalities

ψ′(AG(2k, q)) ≥

{
qk(q2k−1)
2(q−1) , if q is odd,

qk(q2k−q)
2(q−1) + 1, if q is even.

Proof. The hyperplane at infinity in the projective closure of AG(2k, q), H∞, is iso-
morphic to PG(2k − 1, q), hence it has a (k − 1)-spread S = {S1, S2, . . . , Sq

k+1}.
The elements of S are pairwise disjoint (k − 1)-dimensional subspaces (see [16, Theo-
rem 4.1]). Let {P i1, P i2, . . . , P i(qk−1)/(q−1)} be the set of points of Si for i = 1, 2, . . . ,

qk + 1. For a point P ∈ H∞ let S(P ) denote the unique element of S that contains
P, and A(P ) = {ΠP,1,ΠP,2, . . . ,ΠP,qk} denote the set of the qk parallel k-dimensional
subspaces of AG(2k, q) whose projective closures intersectH∞ in S(P ).

We define a pairing on the set of points of H∞ which depends on the parity of q.
On the one hand, if q is odd then let (P ij , P

i+1
j ) be the pairs for i = 1, 3, 5, . . . , qk and

j = 1, 2, . . . , q
k−1
q−1 . On the other hand, if q is even then H∞ has an odd number of points,

thus we give the pairing on the set of points H∞ \ {P 1
1 }: let (P ij , P

i+1
j ) be the pairs for

i = 4, 6, . . . , qk and j = 1, 2, . . . , q
k−1
q−1 , and let (P 1

j , P
2
j ), (P 2

j+1, P
3
j+1), (P 1

j+1, P
3
j ) and

(P 2
1 , P

3
1 ) be the pairs for i = 1, 2, 3 and j = 2, 4, 6, . . . , q

k−1
q−1 − 1.

Let (U, V ) be any pair of points. Then, by defintion, S(U) 6= S(V ). Let the color
class CU,V,i contain the lines joining either U and a point from ΠU,i, or V and a point from
ΠV,i, for i = 1, 2, . . . , qk. Clearly, (U, V ) defines qk color classes, each one consists of
the parallel lines of one subspace in A(U) and the parallel lines of one subspace in A(V ).
Finally, if q is even, then let the color class C1 consist of all lines of AG(2k, q) whose point
at infinity is P 1

1 .

We divided the points of H∞ into q2k−1
2(q−1) pairs if q is odd, and into q2k−q

2(q−1) pairs if q is

even. Consequently, the number of color classes is equal to q2k−1
2(q−1)q

k when q is odd, and it

is equal to q2k−q
2(q−1)q

k + 1 when q is even.
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Now, we show that the coloring is complete. The class C1 obviously intersects any
other class. Let CU,V,i and CW,Z,j be two color classes. Then S(U) and S(V ) are distinct
elements of the spread S and S(W ) is also an element of S. Hence we may assume,
without loss of generality, that S(U) ∩ S(W ) = ∅. As

dim(S(U) ∪ΠU,i) = dim(S(W ) ∪ΠW,j) = k

in PG(2k, q), by Proposition 3.1, we have that ΠU,i ∩ ΠW,j consists of a single point in
AG(2k, q). Notice that the coloring is not proper, because the same argument shows that
ΠU,i ∩ΠV,i is also a single point in AG(2k, q).

For odd dimensional spaces we have a slightly weaker estimate. In this case, the mag-
nitude of the lower bound is 1√

q ·
√
v(v−1)
q−1 , where v = qn.

Theorem 3.4. If k ≥ 1 then the colorings of the odd dimensional affine space,
AG(2k + 1, q), satisfy the inequality

qk+2

(
q2k − 1

q2 − 1

)
+ 1 ≤ ψ′(AG(2k + 1, q)).

Proof. The hyperplane at infinity in the projective closure of AG(2k+1, q),H∞, is isomor-
phic to PG(2k, q). Hence, by Proposition 3.2,H∞ admits a good partitionH∞ = A∪B∪
{Q}with assigned subspaces S(U). LetA = {P1, P2, . . . , Pt} andB = {R1, R2, . . . , Rs}
where t = q2

(
q2k−1
q2−1

)
and s = q

(
q2k−1
q2−1

)
.

For a point Pi ∈ A let A(Pi) = {ΠPi,1,ΠPi,2, . . . ,ΠPi,qk} denote the set of the qk

parallel (k+1)-dimensional subspaces of AG(2k+1, q) whose projective closures intersect
H∞ in S(Pi). Similarly, for a point Rj ∈ B let B(Rj) = {ΠRj ,1,ΠRj ,2, . . . ,ΠRj ,qk+1}
denote the set of the qk+1 parallel k-dimensional subspaces of AG(2k + 1, q) whose pro-
jective closures intersectH∞ in S(Rj).

Now, we define the color classes. Let C1 be the color class that contains all lines of
AG(2k+1, q) whose point at infinity isQ. Let the color class Ci,j,m contain the lines join-
ing either P(j−1)q+i and a point from ΠP(j−1)q+i,m, or Rj and a point from ΠRj ,(i−1)qk+m
for j = 1, 2, . . . , s, i = 1, 2, . . . , q and m = 1, 2, . . . , qk. Counting the number of color
classes of type Ci,j,m, we obtain s · q · qk = qk+2

(
q2k−1
q2−1

)
. Each color class consists of

the parallel lines of one subspace in A(P(j−1)q+i) and the parallel lines of one subspace in

B(Rj). Clearly, the total number of color classes is 1 + qk+2
(
q2k−1
q2−1

)
. The color class C1

contains q2k lines and each of the classes of type Ci,j,m consists of qk + qk−1 lines.
To prove that the coloring is complete, notice that the class C1 obviously intersects

any other class. Let Ci,j,m and Ci′,j′,m′ be two color classes other than C1. Consider
the projective closures of those elements of A(P(j−1)q+i) and B(Rj′) whose lines are
contained in Ci,j,m and in Ci′,j′,m′ , respectively. One of these subspaces is a (k + 1)-
dimensional, whereas the other one is a k-dimensional subspace in PG(2k + 1, q), and
they have no point in common in H∞. Thus, by Proposition 3.1, their intersection is a
single point in AG(2k + 1, q).

The coloring is not proper, because the same argument shows that ΠP(j−1)q+i,m ∩
ΠRj ,(i−1)qk+m is also a point in AG(2k + 1, q), thus Ci,j,m contains a pair of intersecting
lines.
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Now, we are ready to prove our second main theorem.

Proof of Theorem 1.2. If n is even then Theorem 3.3 gives the result at once. If n is odd
then v = q2k+1, hence

√
v/q = qk. From the estimate of Theorem 3.4 we get

qk+2

(
q2k − 1

q2 − 1

)
+ 1 =

q3k+2 − qk+2

q2 − 1
+ 1

=
(q + 1)(q3k+1 − qk)

q2 − 1
− q3k+1 + qk+2 − qk+1 − qk

q2 − 1
+ 1

=
1
√
q

√
v(v − 1)

q − 1
− q3k+1 + qk+2 − qk+1 − qk

q2 − 1
+ 1,

which proves the statement.

Next, recall that a lower bound for the achromatic index require a proper and complete
line-coloring of AG(n, q). We consider only the even dimensional case.

Theorem 3.5. Let k > 1 and ε = 0, 1 or 2, such that qk + 1 ≡ ε (mod 3). Then
the achromatic index of the even dimensional finite affine space AG(2k, q) satisfies the
inequality (

qk + 1− ε
3

(qk + 2) + ε

)
qk − 1

q − 1
≤ α′(AG(2k, q)).

Proof. The hyperplane at infinity in the projective closure of AG(2k, q), H∞, is isomor-
phic to PG(2k − 1, q), hence it admits a (k − 1)-spread L = {`1, `2, . . . , `qk+1}. Let
A(`i) = {Π`i,1,Π`i,2, . . . ,Π`i,qk} denote the set of the qk parallel k-dimensional sub-
spaces in AG(2k, q) whose projective closures intersect H∞ in `i. Then, by Proposi-
tion 3.1, the intersection Π`i,s∩Π`j ,t is a single affine point for all i 6= j and 1 ≤ s, t ≤ qk.

First, to any triple of (k − 1)-dimensional subspaces, e, f, g ∈ L, we assign qk + 2
color classes as follows. Take a fourth (k − 1)-dimensional subspace d ∈ L, and, for
u = (qk−1)/(q−1), denote the points of the (k−1)-dimensional subspaces d, e, f and g by
D1, D2, . . . , Du, E1, E2, . . . , Eu, F1, F2, . . . , Fu and G1, G2, . . . , Gu, respectively. For
any triple (Di, e, g) there is a unique line through Di which intersects the skew subspaces
e and g. We can choose the numbering of the points Ei and Gi such that the line EiGi
intersects d in Di for i = 1, 2, . . . , u; the numbering of the points Fi, such that the line
DiFi+1 intersects d and g for i = 1, 2, . . . , u − 1, and, finally, choose the line DuF1 that
intersects d and g.Notice that this construction implies that the lineDiFi does not intersect
g for i = 1, 2, . . . , u. Let the points of Πd,1 denote by M1,M2, . . . ,Mqk . We can choose
the numbering of the elements ofA(e),A(f) andA(g) such that Πe,i∩Πf,i∩Πg,i = {Mi}
for i = 1, 2, . . . , qk.

We define three types of color classes for i = 1, 2, . . . , u and j = 1, 2, . . . , qk. Let
Bi,0e,f,g and Bi,1e,f,g be the color classes that contain the lines through Mj whose point at
infinity is Ei and Fi, respectively. Let Ci,je,f,g be the color class that contains the lines in
Πe,i whose point at infinity is Ej , except the line EjMi, the lines in Πf,i whose point at
infinity is Fj , except the line FjMi, and the lines in Πg,i whose point at infinity is Gj .
Hence each of Bi,0e,f,g and Bi,1e,f,g contains qk lines and Ci,je,f,g contains 3qk−1 − 2 lines.

Notice that for each i ∈ {1, 2, . . . , u}, the union of the color classes

Kie,f,g = Bi,0e,f,g ∪B
i,1
e,f,g ∪

qk

j=1 C
i,j
e,f,g
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contains all lines whose point at infinity is Ei, Fi or Gi. Each of the two sets of lines be-
longing toBi,0e,f,g orBi,1e,f,g, naturally defines a (k+1)-dimensional subspace of PG(2k, q),
we denote these subspaces by ΠEi

and ΠFi
, respectively.

For t = 0, 1, . . . , b(qk − 2 − ε)/3c let e = `3t+1, f = `3t+2, g = `3t+3, d = `3t+4,
define `qk+2−ε as `1, and make the qk + 2 color classes Bi,0e,f,g, B

i,1
e,f,g and Ci,je,f,g. Finally,

for each point P in the subspace `qk+1 if ε = 1, or in `qk if ε = 2, define a new color class
DP which contains all lines whose point at infinity is P.

Clearly, the coloring is proper and it contains, by definition, the required number of
color classes. Now, we prove that it is complete. Notice that each color class of type DP

obviously intersects any other color class. In relation to the other cases we have that:

• The color classesBi,j`3m+1,`3m+2,`3m+3
andBi

′,j′

`3m+1,`3m+2,`3m+3
intersect, because both

of them contain all points of the k-dimensional subspace Π`3m+4,1.

• If t 6= m then the color classes Bi,j`3t+1,`3t+2,`3t+3
and Bi

′,j′

`3m+1,`3m+2,`3m+3
intersect,

because the (k− 1)-dimensional subspaces `3t+4 and `3m+4 are skew inH∞, hence
the 2-dimensional intersection of the (k + 1)-dimensional subspaces ΠEi

or ΠFi
,

according as j = 1 or 2, and ΠE′i
or ΠF ′i

, according as j′ = 1 or 2, is not a subspace
of H∞. Thus Proposition 3.1 implies that their intersection contains some affine
points.

• The color classes Bi,j`3m+1,`3m+2,`3m+3
and Ci

′,j′

`3t+1,`3t+2,`3t+3
intersect in both cases

m = t and m 6= t, because the (k − 1)-dimensional subspaces `3m+4 and `3t+3 are
skew inH∞.Again, Proposition 3.1 implies that the intersection of the k-dimensional
subspaces Π`3m+4,1 (which is a subspace of either the (k+ 1)-dimensional subspace
ΠEi

or ΠFi
, according as j = 1 or 2) and Π`3m+3,i′ is an affine point.

• If t 6= m then each pair of color classes Ci,j`3t+1,`3t+2,`3t+3
and Ci

′,j′

`3m+1,`3m+2,`3m+3
,

intersects since, as previously, the (k − 1)-dimensional subspaces `3t+3 and `3m+3

are skew in H∞, thus Proposition 3.1 implies that the projective closures of the k-
dimensional subspaces Π`3t+3,i and Π`3m+3,i′ intersect each other in AG(2k, q).

• Finally, we prove that each pair of classes Ci,j`3t+1,`3t+2,`3t+3
and Ci

′,j′

`3t+1,`3t+2,`3t+3

intersects. It is obvious when i = i′. Suppose that i 6= i′, let Mi = Π`3t+1,i ∩
Π`3t+2,i ∩ Π`3t+3,i and Mi′ = Π`3t+1,i′ ∩ Π`3t+2,i′ ∩ Π`3t+3,i′ . Since the points Mi

and Mi′ are in Π`3t+4,1, the line MiMi′ intersectsH∞ in `3t+4. Take the point T =
MiMi′ ∩ `3t+4 and the lines EjT and FjT. Clearly, at least one of these lines does
not intersect `3t+3, we may assume without loss of generality, that EjT ∩ `3t+3 = ∅.
By Proposition 3.1, there exist affine points Ni = Π`3t+1,i ∩ Π`3t+3,i′ and Ni′ =
Π`3t+1,i′ ∩ Π`3t+3,i. Suppose that Ni ∈ Ej′Mi′ and Ni′ ∈ EjMi. Then `3t+1 ∩
MiMi′ = ∅, hence 〈`3t+1,MiMi′〉 is a (k + 1)-dimensional subspace Σk+1, which
intersects H∞ in a k-dimensional subspace Σk. Obviously, Σk also contains the
pointsEj andEj′ . Then Σk = 〈`3t+1, T 〉, and Σk∩`3t+3 is a single point, say U.As
the linesNi′Mi andNiMi′ are in the k-dimensional subspaces Π`3t+3,i and Π`3t+3,i′ ,
respectively, there exist the points Ni′Mi ∩ `3t+3 and NiMi′ ∩ `3t+3. Moreover, we
have that Ni′Mi ∩ `3t+3 = NiMi′ ∩ `3t+3 = U. Hence the points Ni,Mi, Ni′ and
Mi′ are contained in a 2-dimensional subspace Σ2, and Σ2∩H∞ contains the points
U, Ej , Ej′ and T. Consequently, Σ2 ∩H∞ is the line EjT and it contains the point
U, thus EjT intersects the subspace `3t+3, contradiction.
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Thus Ni 6∈ Ej′Mi′ or Ni′ 6∈ EjMi. This implies that Ni or Ni′ is a common point
of the color classes Ci,j`3t+1,`3t+2,`3t+3

and Ci
′,j′

`3t+1,`3t+2,`3t+3
.

In consequence, the coloring is complete.

To conclude this section we prove our third main theorem.

Proof of Theorem 1.3. As v = q2k, from Theorem 3.5 we get(
qk + 1− ε

3
(qk + 2) + ε

)
qk − 1

q − 1
=
q3k + (2− ε)q2k + (2ε− 1)qk − 2− ε

3(q − 1)

=
1

3

√
v(v − 1)

q − 1
+

(2− ε)v + 2ε
√
v − 2− ε

3(q − 1)
,

which proves the statement.

4 Small dimensions
In this section, we improve on our bounds in two and three dimensions. First, we prove
the exact values of achromatic and pseudoachromatic indices of finite affine planes. Due
to the fact that there exist non-desarguesian affine planes, we use the notation Aq for an
arbitrary affine plane of order q. For the axiomatic definition of Aq we refer to [11]. The
basic combinatorial properties of Aq are the same as of AG(2, q).

Theorem 4.1. Let Aq be any affine plane of order q. Then

χ′(Aq) = α′(Aq) = q + 1.

Proof. Let S1,S2, . . . ,Sq+1 denote the q + 1 parallell classes of lines in Aq. Two lines
have a point in common if and only if they belong to distinct parallel classes. Hence, if we
define a coloring φ with q + 1 colors such that a line ` gets color i if and only if ` ∈ Si

then φ is proper, so q + 1 ≤ χ′(Aq).
Since χ′(Aq) ≤ α′(Aq), it is enough to prove that α′(Aq) ≤ q + 1. Suppose to the

contrary that ψ is a complete and proper coloring with m > q + 1 color classes. As ψ is
proper, each color class must be a subset of a parallel class. By the pigeonhole principle,
m > q+1 implies that there exist at least two color classes that are subsets of the same par-
allel class. Hence they do not contain intersecting lines, contradicting to the completeness
of ψ. Thus α′(Aq) ≤ q + 1, the theorem is proved.

Theorem 4.2. Let Aq be any affine plane of order q. Then

ψ′(Aq) =
⌊
(q+1)2

2

⌋
.

Proof. First, we prove that ψ′(Aq) ≤
⌊
(q+1)2

2

⌋
. Suppose to the contrary that ϕ is a com-

plete coloring of Aq with
⌊
(q+1)2

2

⌋
+ 1 color classes. As Aq has q2 + q lines, this implies

that ϕ has at most q2 + q −
(
b (q+1)2

2 c+ 1
)

color classes of cardinality greater than one.
Thus, there are at least⌊

(q+1)2

2

⌋
+ 1−

(
q2 + q −

(⌊
(q+1)2

2

⌋
+ 1
))

=

{
q + 2, if q is even,
q + 3, if q is odd,
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color classes of size one. Hence, again by the pigeonhole principle, there are at least two
color classes of size one belonging to the same parallel class. They have empty intersection,
so ϕ is not complete. This contradiction shows that ψ′(Aq) ≤

⌊
(q+1)2

2

⌋
.

We go on to give a complete coloring of Aq with
⌊
(q+1)2

2

⌋
color classes. Let P be

a point and e1, e2, . . . , eq+1 be the lines through P . For i = 1, 2, , . . . , q + 1 let Si

be the parallel class containing ei and denote the q − 1 lines in the set Si \ {ei} by
`i, `(q+1)+i, . . . , `(q−2)(q+1)+i. Then:

q⋃
i=1

(Si \ {ei}) = {`1, `2, . . . , `q2−1},

and `j and `j+1 are non-parallel lines for all 1 ≤ j < q2−1. For better clarity, we construct

q + 1 color classes with even indices and
⌊
q2−1

2

⌋
color classes with odd indices. Let the

color class C2k consist of one line, ek, for k = 1, 2, . . . , q + 1. Let the color class C2k−1

contain the lines `2k−1 and `2k for k = 1, 2, . . . ,
⌊
q2−1

2

⌋
, finally, if q is even, let the color

class Cq2−3 contain the line `q2−1, too.
The coloring is complete, because color classes having even indices intersect at P, and

each color class with odd index contains two non-parallel lines whose union intersects all
lines of the plane.

Our last construction gives a lower bound for the achromatic index of AG(3, q). As
α′(AG(3, q)) ≤ ψ′(AG(3, q)), this can be considered as well as a lower estimate on the
pseudoachromatic index of AG(3, q) and this bound is better than the general one proved
in Theorem 3.4. We use the cyclic model of PG(2, q) to make the coloring. The detailed
description of this model can be found in [16, Theorem 4.8 and Corollary 4.9]. We collect
the most important properties of the cyclic model in the following proposition.

Proposition 4.3. Let q be a prime power. Then the group Zq2+q+1 admits a perfect differ-
ence setD = {d0, d1, d2, . . . , dq}, that is the q2 +q integers di−dj (i 6= j) are all distinct
modulo q2 + q + 1. We may assume without loss of generality that d0 = 0 and d1 = 1.
The plane PG(2, q) can be represented in the following way. The points are the elements
of Zq2+q+1, the lines are the subsets

D + j = {di + j : di ∈ D}

for j = 0, 1, . . . , q2 + q, and the incidence is the set theoretical inclusion.

Theorem 4.4. The achromatic index of AG(3, q) satisfies the inequality:

q(q + 1)2

2
+ 1 ≤ α′(AG(3, q)).

Proof. The plane at infinity in the projective closure of AG(3, q), H∞, is isomorphic to
PG(2, q), hence it has a cyclic representation (described in Proposition 4.3). Let v = q2 +
q+1, let the points and the lines ofH∞ be P1, P2, . . . , Pv, and `1, `2, . . . , `v, respectively.
We can choose the numbering such that for i = 1, 2, 3, . . . , v the line `i contains the points
Pi, Pi+1 and Pi−d (where 0 6= d 6= 1 is a fixed element of the difference set D, and the
subscripts are taken modulo v).
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Let A(Pi) = {ΠPi,1,ΠPi,2, . . . ,ΠPi,q} denote the set of the q parallel planes in
AG(3, q) whose projective closures intersect H∞ in `i, and ΠPi,j denote the projective
closure of ΠPi,j for i = 1, 3, . . . , v, and j = 1, 2, . . . , q. Let Wi be a plane whose pro-
jective closure intersects H∞ in `i−d. Then the projective closure of each element of
A(Pi) ∪ A(Pi+1) intersects Wi in a line whose point at infinity is Pi, so we can choose
the numbering of the elements of A(Pi) and A(Pi+1), such that ΠPi,j ∩ΠPi+1,j ⊂Wi for
i = 1, 3, . . . , v − 2, and j = 1, 2, . . . , q. Let eij denote the line ΠPi,j ∩ΠPi+1,j .

We assign q+1 color classes to the pair (Pi, Pi+1) for i = 1, 3, . . . , v−2. Let the color
class Ci0 contain the lines ei1, e

i
2 . . . , e

i
q. For j = 1, 2, . . . , q, let the color class Cij contain

those lines of ΠPi,j whose point at infinity is Pi, except the line eij , and the q parallel lines
of ΠPi+1,j whose point at infinity is Pi+1. Finally, let the color class Cv contain all lines
whose point at infinity is Pv. In this way we constructed

(q + 1)
v − 1

2
+ 1 =

q(q + 1)2

2
+ 1

color classes and each line belongs to exactly one of them, because Ci0 contains q lines, Cij
contains 2q − 1 lines for each j = 1, 2, . . . , q. and Cv contains q2 lines.

The coloring is proper by construction. The color class Cv obviously intersects any
other class. For other pairs of color classes, two major cases are distinguished when we
prove the completeness. On the one hand, if i 6= k then we have:

• Ci0 ∩ Ck0 6= ∅, because the planes Wi and Wk intersect each other;

• if j > 0 then Ci0 ∩Ckj 6= ∅, because the planes Wi and ΠPk+1,j intersect each other;

• if m > 0 and j > 0 then Cim ∩ Ckj 6= ∅, because the planes ΠPi+1,m and ΠPk+1,j

intersect each other.

On the other hand, color classes having the same superscript also have non-empty intersec-
tion:

• Ci0 ∩ Cij 6= ∅, because the planes Wi and ΠPi+1,j intersect each other;

• if j 6= k then the planes ΠPi,j and ΠPi+1,k intersect in a line f and f 6= eij , hence its
points are not removed from ΠPi,j , so Cij ∩ Cik 6= ∅.

Hence the coloring is also complete, this proves the theorem.
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