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Abstract

In this work we study non-degenerate homomorphisms from the multiplicative

semigroup of all n-by-n matrices over a field to the semigroup of m-by-m

matrices over the same field.

A general introduction is given in the first chapter. In the second chapter we

first state our main question and give some examples. Further we characterize

all homomorphisms from the multiplicative semigroup of all n-by-n matrices

over an arbitrary field to the field and all non-degenerate homomorphisms from

the multiplicative semigroup of all n-by-n matrices over an arbitrary field to a

semigroup of m-by-m matrices over the same field, if m ≤ n.

In the third chapter we characterize all non-degenerate homomorphisms

from the multiplicative semigroup of all 2-by-2 matrices over an arbitrary field

to the semigroup of 3-by-3 matrices over the same field. If the characteristic

of the field is not equal to 2 then we have two possibilities. Either it is a

symmetric square, combined with a field homomorphism used entrywise and

a matrix conjugation, or a direct sum of the identity and the determinant,

combined with a field homomorphism, a homomorphism of the multiplicative

semigroup of the field and a matrix conjugation. In the characteristic 2 a

symmetric square gives rise to two different homomorphisms and we get three

possibilities. In the case of the field of real numbers every irreducible non-

9
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degenerate homomorphism is a matrix conjugation of the symmetric square.

In the fourth chapter we study non-degenerate irreducible homomorphisms

from the multiplicative semigroup of all 2-by-2 matrices over an algebraically

closed field of characteristic zero to the semigroup of m-by-m matrices over

the same field. If such a homomorphism maps a cyclic unipotent to a cyclic

unipotent, it is the composition of a symmetric power, a field homomorphism

used entrywise, and a matrix conjugation. In the case m = 4 we characterize

all non-degenerate irreducible homomorphisms.

In the fifth chapter we prove that every non-degenerate homomorphism

from the multiplicative semigroup of all n-by-n matrices over an algebraically

closed field of characteristic zero to the semigroup of (n+1)-by-(n+1) matrices

over the same field when n ≥ 3 is reducible and that every non-degenerate

homomorphism from the multiplicative semigroup of all 3-by-3 matrices over

an algebraically closed field of characteristic zero to the semigroup of 5-by-5

matrices over the same field is reducible.

Keywords: matrix semigroup, semigroup homomorphism, multiplicative

map, irreducibility.

Math. Subj. Class. (2000): 08A35, 15A30, 15A69, 20G05



Povzetek

V delu študiramo nedegenerirane homomorfizme iz multiplikativne polgrupe

vseh n× n matrik nad komutativnim obsegom v polgrupo m×m matrik nad

istim obsegom.

Naj bo F poljuben komutativen obseg in n naravno število. Označimo z

Mn(F) množico vseh n×n matrik z elementi v F. Množica Mn(F) je polgrupa

za operacijo množenja matrik. Vprašanje, s katerim se ukvarjamo, se glasi:

Kakšni so homomorfizmi polgrup ϕ : Mn(F) → Mm(F), torej preslikave, ki

zadoščajo enačbi

ϕ(AB) = ϕ(A)ϕ(B)

za vse matrike A,B ∈ Mn(F) ?

Homomorfizem polgrup ϕ : Mn(F) → Mm(F) je nerazcepen, če je njegova

slika nerazcepna polgrupa, torej kot množica matrik nima skupnega invariant-

nega podprostora.

Primeri:

1. Matrična konjugacija: Če je S ∈ Mn(F) obrnljiva matrika, potem je

preslikava ϕ : Mn(F) → Mn(F), ki je definirana s predpisom

ϕ(A) = SAS−1,

homomorfizem polgrupe.

11
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2. Konstanta: Če je E ∈ Mm(F) idempotentna matrika, torej če zadošča

enačbi E2 = E, potem je preslikava ϕ : Mn(F) → Mm(F), ki je definirana s

predpisom

ϕ(A) = E,

homomorfizem polgrup.

3. Homomorfizem komutativnega obsega, uporabljen po elementih: Naj

bo f : F → F homomorfizem komutativnega obsega. Za poljubno matriko

A = [aij ]
n
i,j=1 ∈ Mn(F) definirajmo

ϕ(A) = f̂(A) = [f(aij)]
n
i,j=1.

Preslikava ϕ : Mn(F) → Mn(F) je homomorfizem polgrupe.

4. Degenerani homomorfizmi: Naj bo ϕ′ : GLn(F) → GLm(F) homomor-

fizem grup. Definirajmo ϕ : Mn(F) → Mm(F) takole: Če je detA = 0,

vzamemo ϕ(A) = 0, sicer pa ϕ(A) = ϕ′(A). Očitno je ϕ homomorfizem pol-

grup. Take homomorfizme imenujemo degenerirani. Ker so homomorfizmi

grup ϕ′ : GLn(F) → GLm(F) poznani, se omejimo na nedegenerane homomor-

fizme.

5. Direktna vsota: Za poljubna homomorfizma polgrup ϕ′ : Mn(F) →
Mm′(F) in ϕ′′ : Mn(F) → Mm′′(F) definirajmo preslikavo ϕ : Mn(F) →
Mm′+m′′(F) s predpisom

ϕ(A) = ϕ′(A) ⊕ ϕ′′(A)

za vsako matriko A ∈ Mn(F). Preslikava ϕ je spet homomorfizem polgrup, ki

je vedno razcepen.

6. Zunanja potenca: Naj bo k ≤ n naravno število. Vektorski prostor F(n

k
)

je izomorfen zunanji potenci ∧kFn vseh antisimetričnih tenzorjev stopnje k.
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Če je E = {e1, e2, ..., en} baza prostora Fn, potem je

E ′ = {ei1 ∧ ei2 ∧ ... ∧ eik , 1 ≤ i1 < i2 < ... < ik ≤ n}

baza prostora ∧kFn. Če matrika A ∈ Mn(F) predstavlja linearno preslikavo

prostora Fn, potem ∧kA ∈ M(n

k
)(F) predstavlja linearno preslikavo, ki deluje

na tenzorjih stopnje k takole:

(∧kA)(ei1 ∧ ei2 ∧ ... ∧ eik) = Aei1 ∧ Aei2 ∧ ... ∧ Aeik .

Elementi matrike ∧kA so k × k minorji matrike A. Preslikava ϕ : Mn(F) →
M(n

k
)(F), definirana s predpisom

ϕ(A) = ∧kA,

je homomorfizem polgrup. Če je k enak n − 1, potem preslikava ϕ slika iz

Mn(F) v Mn(F). V tem primeru je ϕ(A) = ∧n−1A = Cof(A) matrika kofak-

torjev matrike A.

7. Simetrična potenca: Naj bo k naravno število. Vektorski prostor

F(n+k−1

k ) je izomorfen simetrični potenci Symk
Fn vseh simetričnih tenzorjev

stopnje k. Če je E = {e1, e2, ..., en} baza prostora Fn, potem je

E ′ = {ei1 ∨ ei2 ∨ ... ∨ eik ; 1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ n}

baza prostora Symk
Fn. Če matrika A ∈ Mn(F) predstavlja linearno preslikavo

prostora Fn, potem SymkA ∈ M(n+k−1

k )(F) predstavlja linearno preslikavo, ki

deluje na tenzorjih stopnje k takole:

(SymkA)(ei1 ∨ ei2 ∨ ... ∨ eik) = Aei1 ∨ Aei2 ∨ ... ∨ Aeik .

Preslikava ϕ : Mn(F) → M(n+k−1

k
)(F), definirana s predpisom

ϕ(A) = SymkA,
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je homomorfizem polgrup. Za n = 2 in k = 2, dobimo

Sym2

[

a b
c d

]

=





a2 ab b2

2ac ad+ bc 2bd
c2 cd d2





8. Tenzorski produkt: Vektorski prostor Fm′m′′

je izomorfen tenzorskemu

produktu Fm′ ⊗ Fm′′

. Za poljubna homomorfizma polgrup ϕ′ : Mn(F) →
Mm′(F) in ϕ′′ : Mn(F) → Mm′′(F) definirajmo preslikavo ϕ : Mn(F) →
Mm′m′′(F) s predpisom

ϕ(A) = ϕ′(A) ⊗ ϕ′′(A)

za vsako matriko A ∈ Mn(F). Preslikava ϕ je spet homomorfizem polgrup.

Tenzorski produkt ϕ(A) = A⊗ A lahko napǐsemo kot direktno vsoto zunanje

potence in simetrične potence

A⊗A = A ∧A⊕ Sym2A.

9. Kombinacije zgornjih primerov.

V delu najprej karakteriziramo vse homomorfizme iz matrične polgrupe

Mn(F) v obseg F kot multiplikativno polgrupo. To je dobro znan rezultat.

Trditev 1 Naj bo ϕ : Mn(F) → F homomorfizem polgrup. Potem obstaja

homomorfizem multiplikativne polgrupe f : F → F, za katerega velja

ϕ(A) = f(detA)

za vsako matriko A ∈ Mn(F).

Glavni rezultat drugega poglavja je karakterizacija vseh nedegeneriranih

homomorfizmov polgrup ϕ : Mn(F) → Mm(F), kjer je m ≤ n. Izrek je bil

dokazan že leta 1966 v [17] za obseg kompleksnih števil in leta 1969 v [13] za

poljuben komutativen kolobar brez deliteljev niča.
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Izrek 2 Naj bo F poljuben komutativen obseg. Denimo, da za naravni števili

n in m velja n ≥ 2 in m ≤ n. Naj bo ϕ : Mn(F) → Mm(F) nedegeneriran

homomorfizem polgrup, za katerega velja ϕ(0) = 0 in ϕ(I) = I. Potem je

m = n in ϕ ima naslednjo obliko:

ϕ(A) = Sf̂(A)S−1,

ali

ϕ(A) = Sf̂(Cof(A))S−1,

kjer je f : F → F homomorfizem obsega in S ∈ Mn(F) obrnljiva matrika.

V tretjem poglavju najprej pokažemo, da smemo brez škode za splošnost

predpostaviti, da ϕ : Mn(F) → Mm(F) preslika 0 v 0 in identiteto v identiteto.

Lema 3 Naj bo F poljuben komutativen obseg in ϕ : Mn(F) → Mm(F) ho-

momorfizem polgrup. Potem ima ϕ obliko

ϕ(A) = S(ϕ0(A) ⊕ E)S−1,

kjer je

• ϕ0 : Mn(F) → Mk(F) homomorfizem polgrup, za katerega velja ϕ0(0) =

0 in ϕ0(I) = I,

• E ∈ Mm−k(F) je idempotent in

• S ∈ Mm(F) obrnljiva matrika.

Če je k = 0, potem ϕ0(A) ne nastopa, če pa je k = m, potem E ne nastopa.

Glavni rezultat tretjega poglavja je karakterizacija homomorfizmov iz pol-

grupe 2 × 2 matrik v polgrupo 3 × 3 matrik.
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Izrek 4 Naj bo F poljuben komutativen obseg in ϕ : M2(F) → M3(F) nede-

generiran homomorfizem polgrup, za katerega velja ϕ(0) = 0 in ϕ(I) = I. Če

je char F 6= 2, potem ima ϕ eno od naslednjih oblik:

(a)

ϕ

([

a b
c d

])

= S





f(a) f(b) 0
f(c) f(d) 0
0 0 g(ad− bc)



S−1,

kjer je f : F → F homomorfizem obsega, g : F → F homomorfizem multip-

likativne polgrupe (F, ·), za katerega velja g(0) = 0, g(1) = 1, in S ∈ M3(F)

obrnljiva matrika, ali

(b)

ϕ

([

a b
c d

])

= S





h(a2) h(ab) h(b2)
h(2ac) h(ad+ bc) h(2bd)
h(c2) h(cd) h(d2)



S−1,

kjer je h : F → F homomorfizem obsega in S ∈ M3(F) obrnljiva matrika.

Če je char F = 2, potem ima ϕ obliko (a), (b) ali

(c)

ϕ

([

a b
c d

])

= S





h(a2) 0 h(b2)
h(ac) h(ad+ bc) h(bd)
h(c2) 0 h(d2)



S−1,

kjer je h : F → F homomorfizem obsega in S ∈ M3(F) obrnljiva matrika.

Če je char F = 2, sta primera (b) in (c) bistveno različna: Matrike v sliki

ϕ imajo v primeru (b) natanko en skupen netrivialen invarianten podprostor,

ki je dimenzije 2. Po drugi strani pa imajo v primeru (c) skupen invarianten

podprostor dimenzije 1.

Preslikava ϕ je popolnoma razcepna, če ima vsak invarianten podprostor

slike ϕ invarianten komplement. Naslednje trditve so preproste posledice Izreka

4.
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Posledica 5 Naj bo F komutativen obseg s char F 6= 2. Vsak nedegeneriran

homomorfizem polgrup ϕ : M2(F) → M3(F) je popolnoma razcepen.

Posledica 6 Naj bo ϕ : M2(F) → M3(F) nerazcepen nedegeneriran homo-

morfizem polgrup. Potem je char F 6= 2 in

ϕ

([

a b
c d

])

= S





h(a2) h(ab) h(b2)
h(2ac) h(ad+ bc) h(2bd)
h(c2) h(cd) h(d2)



S−1,

kjer je h : F → F homomorfizem obsega in S ∈ M3(F) obrnljiva matrika.

V obsegu realnih števil R je edini neničelni homomorfizem identiteta.

Posledica 7 Naj bo ϕ : M2(R) → M3(R) nerazcepen nedegeneriran homo-

morfizem polgrup. Potem je

ϕ

([

a b
c d

])

= S





a2 ab b2

2ac ad+ bc 2bd
c2 cd d2



S−1,

kjer je S ∈ M3(R) obrnljiva matrika.

Edina zvezna homomorfizma obsega kompleksnih števil C sta identiteta in

kompleksna konjugacija.

Posledica 8 Naj bo ϕ : M2(C) → M3(C) zvezen nerazcepen nedegeneriran

homomorfizem polgrup. Potem je

ϕ

([

a b
c d

])

= S





h(a2) h(ab) h(b2)
h(2ac) h(ad+ bc) h(2bd)
h(c2) h(cd) h(d2)



S−1,

kjer je h : C → C identiteta ali kompleksna konjugacija in S ∈ M3(C)

obrnljiva matrika.
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V četrtem in petem poglavju se omejimo na primer, ko je komutativni obseg

F algebraično zaprt in ima karakteristiko nič. Obravnavamo samo nerazcepne

homomorfizme. Pogosto uporabljamo naslednjo trditev, ki je posledica Burn-

sidovega izreka.

Trditev 9 Denimo, da je F algebraično zaprt obseg s karakteristiko nič. Naj

bo n ≥ 2 in S polgrupa v Mn(F). Če obstaja neničelen linearen funkcional f

na Mn(F), ki je enak nič na S, potem je polgrupa S razcepna.

Na začetku četrtega poglavja pokažemo, da nerazcepen nedegeneriran ho-

momorfizem polgrup ϕ : M2(F) → Mn(F) preslika matrike ranga 1 v matrike

ranga 1.

Vsako n × n matriko razdelimo v 3 × 3 bločno strukturo, kjer je srednji

blok velikosti (n− 2) × (n− 2). Torej je












a b · · · c d
e ∗ · · · ∗ f
...

...
...

...
g ∗ · · · ∗ h
i j · · · k l













=





a x d
y T z
i w l





kjer je T matrika velikosti (n− 2) × (n− 2).

Lema 10 Naj bo n ≥ 3 in ϕ : M2(F) → Mn(F) nerazcepen nedegeneriran

homomorfizem polgrup. Glede na zgornjo dekompozicijo ima ϕ naslednjo ob-

liko:

• če je a, b, c 6= 0, potem je

ϕ

([

a b
c d

])

=

= S





f(a) xTG(a)EG(b) f(b)
G(c)EG(a)y G(c)EG(a)CG( b

a
) G(d)EG(b)y

f(c) xTG(c)EG(d) f(d)



S−1,



19

kjer smo s C označili matriko

yxT + V EG(
ad

bc
− 1)V ;

• če je b 6= 0, potem je

ϕ

([

a b
0 d

])

= S





f(a) xTG(a)EG(b) f(b)
0 G(d

b
)V G(b)EG(a)E G(d)EG(b)y

0 0 f(d)



S−1,

• sicer pa

ϕ

([

a 0
0 d

])

= S





f(a) 0 0
0 EG(a)EG(d) 0
0 0 f(d)



S−1,

kjer sta f : F → F in G : F → Mn−2(F) homomorfizma polgrup, x, y ∈ F
n−2

neničelna vektorja, S ∈ Mn(F) obrnljiva matrika, E ∈ Mn−2(F) matrika z

lastnostjo E2 = I in V ∈ Mn−2(F) matrika s spektrom enakim {1}.

Zgornja tehnična lema nam pomaga pokazati naslednji izrek, ki je karakte-

rizacija homomorfizmov iz polgrupe 2 × 2 matrik v polgrupo 4 × 4 matrik.

Izrek 11 Naj bo ϕ : M2(F) → M4(F) nerazcepen nedegeneriran homomor-

fizem polgrup. Potem ima ϕ eno od naslednjih oblik:

(a)

ϕ

([

a b
c d

])

= Sĝ









a3 a2b ab2 b3

3a2c a2d+ 2abc 2abd+ b2c 3b2d
3ac2 2acd+ bc2 ad2 + 2bcd 3bd2

c3 c2d cd2 d3









S−1 =

= Sĝ(Sym3A)S−1,

kjer je g : F → F homomorfizem obsega in S ∈ M4(F) obrnljiva matrika, ali
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(b)

ϕ

([

a b
c d

])

= S









g(a)h(a) g(a)h(b) g(b)h(a) g(b)h(b)
g(a)h(c) g(a)h(d) g(b)h(c) g(b)h(d)
g(c)h(a) g(c)h(b) g(d)h(a) g(d)h(b)
g(c)h(c) g(c)h(d) g(d)h(c) g(d)h(d)









S−1 =

= S(ĝ(A) ⊗ ĥ(A))S−1,

kjer sta g, h : F → F različna homomorfizma komutativnega obsega in S ∈
M4(F) obrnljiva matrika.

Če v primeru (b) velja g = h, potem je homomorfizem ϕ razcepen, ker je

A⊗ A ∼= (A ∨ A) ⊕ (A ∧A); sicer je ϕ nerazcepen.

Posledica 12 Naj bo ϕ : M2(C) → M4(C) zvezen nerazcepen nedegeneriran

homomorfizem polgrup. Potem je bodisi

ϕ(A) = Sĝ(Sym3A)S−1,

kjer je g : C → C identiteta ali kompleksna konjugacija in S ∈ M4(C)

obrnljiva matrika, bodisi

ϕ

([

a b
c d

])

= S









aā ab̄ bā bb̄
ac̄ ad̄ bc̄ bd̄
cā cb̄ dā db̄
cc̄ cd̄ dc̄ dd̄









S−1,

kjer je S ∈ M4(C) obrnljiva matrika.

Matrika A ∈ Mn(F) je unipotentna, če je njen spekter enak {1}. Ma-

trika A ∈ Mn(F) je ciklična, če ima ciklični vektor; to je tak vektor x ∈ Fn

za katerega množica {x,Ax,A2x, ..., An−1x} napenja ves prostor Fn. Vsaka
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ciklična unipotentna matrika v Mn(F) je podobna matriki

















1 1 0 · · · 0 0

0 1 1
. . . 0 0

0 0 1
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 1 1

0 0 0 · · · 0 1

















.

Izrek 13 Naj bo n ≥ 3 in ϕ : M2(F) → Mn(F) nerazcepen nedegeneriran ho-

momorfizem polgrup, ki preslika ciklični unipotent v ciklični unipotent. Potem

je

ϕ(A) = Sĝ(Symn−1A)S−1,

kjer je g : F → F homomorfizem obsega in S ∈ Mn(F) obrnljiva matrika.

V petem poglavju obravnavamo primer, ko je dimenzija matrik v polgrupi

iz katere slikamo vsaj 3.

Trditev 14 Naj bo ϕ : Mn(F) → Mm(F) homomorfizem polgrup, ki preslika

0 v 0 in identiteto v identiteto. Naj bo

k = min{rangA;ϕ(A) 6= 0}.

Potem je
(

n

k

)

≤ m.

Če je rang A = rang B, potem je rang ϕ(A) = rang ϕ(B).

Trditev 15 Denimo, da je n ≥ 3 in m < 2n. Naj bo ϕ : Mn(F) → Mm(F)

nedegeneriran homomorfizem polgrup, ki preslika 0 v 0 in identiteto v iden-

titeto. Denimo, da ϕ slika matrike ranga 1 v matrike ranga 1. Potem ϕ slika

matrike ranga 2 v matrike ranga 2.
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Naslednja trditev je očitna za n = 3 in m < 6. Dokažemo jo še za večje

vrednosti n.

Trditev 16 Denimo, da je n > 4 in m < 2n ali pa n = 4 in m ≤ 5. Naj bo

ϕ : Mn(F) → Mm(F) nedegeneriran homomorfizem polgrup, ki preslika 0 v 0

in identiteto v identiteto. Potem imamo dve možnosti:

(a) če je rang A = 1, potem je rang ϕ(A) = 1, in če je rang A = 2, potem je

rang ϕ(A) = 2, ali

(b) če je rang A < n− 1, potem je ϕ(A) = 0, in če je rang A = n− 1, potem

je rang ϕ(A) = 1.

Naslednji dve trditvi obravnavata možnosti, ki nam jih da Trditev 16.

Trditev 17 Denimo, da je n ≥ 2 in m ≥ n. Naj bo ϕ : Mn(F) → Mm(F)

nedegeneriran homomorfizem polgrup, ki preslika 0 v 0 in identiteto v iden-

titeto. Naj ϕ slika matrike ranga 1 v matrike ranga 1 in matrike ranga 2 v

matrike ranga 2. Potem je

ϕ(A) = S

[

f̂(A) ∗
∗ ∗

]

S−1,

kjer je f : F → F homomorfizem obsega in S ∈ Mm(F) obrnljiva matrika.

Trditev 18 Denimo, da je n ≥ 3 in m ≥ n. Naj bo ϕ : Mn(F) → Mm(F)

nedegeneriran homomorfizem polgrup, ki preslika 0 v 0 in identiteto v iden-

titeto. Naj ϕ slika matrike ranga manǰsega kot n − 1 v 0 in matrike ranga

n− 1 v matrike ranga 1. Potem je

ϕ(A) = S

[

f̂(Cof(A)) ∗
∗ ∗

]

S−1,

kjer je f : F → F homomorfizem multiplikativne polgrupe (F, ·) in S ∈ Mm(F)

obrnljiva matrika.
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Naslednja izreka sta osrednja rezultata petega poglavja.

Izrek 19 Naj bo n ≥ 3. Vsak nedegeneriran homomorfizem polgrup ϕ :

Mn(F) → Mn+1(F) je razcepen.

Izrek 20 Naj bo m = 4 ali m = 5. Vsak nedegeneriran homomorfizem polgrup

ϕ : M3(F) → Mm(F) je razcepen.

Na koncu dodamo še nekaj primerov:

Obstajata dva bistveno različna nedegenerirana nerazcepna homomorfizma

polgrup ϕ : M3(F) → M6(F): simetrični kvadrat

ϕ(A) = Sym2A

in simetrični kvadrat zunanje potence

ϕ(A) = Sym2(A ∧ A).

Obstaja nedegeneriran nerazcepen homomorfizem polgrup ϕ : M4(F) → M6(F),

to je zunanja potenca

ϕ(A) = A ∧A.

Ključne besede: matrična polgrupa, homomorfizem polgrup, multiplika-

tivna preslikava, nerazcepnost.

Math. Subj. Class. (2000): 08A35, 15A30, 15A69, 20G05





Chapter 1

Introduction

Let S be a set and ◦ : S × S → S a binary operation on S. Then (S, ◦) is

a semigroup, if the operation ◦ is associative. Let (S1, ◦) and (S2, ◦) be two

semigroups. A mapping ϕ : S1 → S2 is a homomorphism of semigroups, if it

preserves the operation ◦,

ϕ(a ◦ b) = ϕ(a) ◦ ϕ(b)

for all a, b ∈ S1. Let F be an arbitrary field and n be an integer. Denote

by Mn(F) the set of all n-by-n matrices with entries in F. Then Mn(F)

is a semigroup under the multiplication of matrices. In this work we study

homomorphisms of these semigroups and try to classify them.

The question of classification of semigroup homomorphisms is quite old and

it may be difficult. Let us look first at a simple example. Let (R,+) be the

additive semigroup of real numbers. A semigroup homomorphism f : R → R

satisfies Cauchy’s functional equation

f(x+ y) = f(x) + f(y)

for all x, y ∈ R. This equation has some simple solutions

f(x) = cx for all x ∈ R,

25
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where c is a real constant. All other solutions are quite wild. The graph of each

solution of Cauchy’s equation which is not of this form is everywhere dense in

the plane R2. The equation was solved by Hamel in [10] a hundred years ago.

He proved that there exists a subset H of R such that every real number x can

be expressed in a unique way in the form

x =

n
∑

k=1

rkhk,

where hk ∈ H and rk are rational. The general solution of Cauchy’s equation

is given by choosing the values of f arbitrary on H and defining

f(x) = f

(

n
∑

k=1

rkhk

)

=

n
∑

k=1

rkf(hk).

The set of real numbers is also a multiplicative semigroup. Its homomorphisms

f : R → R satisfy Cauchy’s power equation

g(xy) = g(x)g(y)

Every solution of this equation is of the form

g(x) = 0 for all x ∈ R

or

g(x) = 1 for all x ∈ R

or

g(0) = 0 and g(x) = ef(log(|x|)) for all x 6= 0,

or

g(0) = 0 and g(x) = signxef(log(|x|)) for all x 6= 0,

where f is a solution of (additive) Cauchy’s equation.
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Let us now move on to matrices. The set of all matrices Mn(F) is an

algebra. It is well-known that every automorphism of this algebra is inner.

More precisely, every bijective linear map ϕ : Mn(F) → Mn(F) satisfying

ϕ(AB) = ϕ(A)ϕ(B) for all A,B ∈ Mn(F) has the form

ϕ(A) = SAS−1

where S ∈ Mn(F) is an invertible matrix.

The above theorem is usually derived as a straightforward consequence of

the Noether-Skolem theorem (see [6], p. 93, theorem 3.14), an easy proof can

be find in [36]. It can also be improved. Every non-zero endomorphism of the

algebra Mn(F) is inner. Indeed, the kernel of an endomorphism is an ideal in

Mn(F). The algebra Mn(F) is simple, i. e., there are no non-trivial two-sided

ideals in Mn(F). So, if ϕ : Mn(F) → Mn(F) is a non-zero endomorphism, it

must be injective and thus, automatically bijective.

A more general approach is to consider Mn(F) only as a ring. If f : F → F

is a field homomorphism, we can apply it entrywise on matrices, to obtain a

ring homomorphism ϕ : Mn(F) → Mn(F),

ϕ(A) = f̂(A) = [f(aij)]
n
i,j=1.

Here we have the following result: every bijective additive map ϕ : Mn(F) →
Mn(F) satisfying ϕ(AB) = ϕ(A)ϕ(B) for all A,B ∈ Mn(F) has the form

ϕ(A) = Sf̂(A)S−1

where S ∈ Mn(F) is an invertible matrix and f : F → F is a field homomor-

phism.

Recall that a map ϕ : Mn(F) → Mn(F) is called an anti-automorphism of

the algebra Mn(F) if it is bijective, linear, and satisfies ϕ(AB) = ϕ(B)ϕ(A)
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for all A,B ∈ Mn(F). The transposition map A 7→ AT is an example of

such a map. It is a straightforward consequence of the theorem on algebra

automorphisms, that every anti-automorphism ϕ : Mn(F) → Mn(F) has the

form

ϕ(A) = SATS−1,

where S ∈ Mn(F) is an invertible matrix.

A map ϕ : Mn(F) → Mn(F) is called a Jordan automorphism of the

algebra Mn(F) if it is bijective, linear, and satisfies ϕ(A2) = ϕ(A)2 for every

A ∈ Mn(F). It follows from [12] and [37] that every Jordan automorphism of

Mn(F), charF 6= 2 is either an automorphism or an anti-automorphism. Thus

every Jordan automorphism ϕ : Mn(F) → Mn(F), charF 6= 2 has the form

ϕ(A) = SAS−1 for all A ∈ Mn(F),

or

ϕ(A) = SATS−1 for all A ∈ Mn(F),

where S ∈ Mn(F) is an invertible matrix.

The next step from ring endomorphisms is to omit the additivity assump-

tion and consider multiplicative maps on matrix algebras, thus homomor-

phisms of matrix semigroups. One way to get a semigroup homomorphism

ϕ : Mn(F) → Mm(F) is to take a group homomorphism ϕ′ : GLn(F) →
GLm(F) and trivially extend it to all matrices taking ϕ(A) = 0 for every A

with det A = 0. This trivial extensions are called degenerate. A group ho-

momorphism ϕ : GLn(F) → GLm(F) can be viewed as a representation of a

full matrix group GLn(F) in GLm(F). The theory of group representations is

well-developed but highly non-trivial. In the case of the field of complex num-

bers C the problem of representations of GLn(F) was solved by Schur in 1901
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(see [33]), today the proof is based on the Weyl theory of representations of

semisimple Lie groups (see for example [39], page 115-136 or [8], page 231). In

the case of finite fields the problem is covered by the theory of representations

of finite groups (for example [34]). The theory for infinite fields of an arbitrary

characteristic can be found in [9]. Other literature on group representations

includes [2], [26], [29] and [41].

We will give here the description of differentiable representations of the full

complex matrix group GLn(C). Denote G = GLn(C), V = Cn and choose a =

(a1, a2, ..., an−1, an) an n-tuple of integers satisfying a1 ≥ 0, a2 ≥ 0, ..., an−1 ≥ 0

and an arbitrary. Let

Ψa : G→ Syma1V ⊗ Syma2(∧2V ) ⊗ ...⊗ Syman−1(∧n−1V )

be defined by

Ψa(A) = Syma1A⊗ Syma2(∧2A) ⊗ ...⊗ Syman−1(∧n−1A) · (detA)an

for every A ∈ G. Representation Ψa is not irreducible, so let Φa be an irre-

ducible subrepresentation of Ψa generated by vector

v = (∨a1(e1)) ⊗ (∨a2(e1 ∧ e2)) ⊗ ...⊗ (∨an−1(e1 ∧ ... ∧ en−1))

where {e1, e2, ..., en} is a basis for V . Vector v is a highest weight vector of the

representations Ψa and Φa. Every (differentiable) irreducible complex repre-

sentation of G is isomorphic to Φa for a unique index a = (a1, a2, ..., an−1, an)

with a1, ..., an−1 ≥ 0. For more details see [8].

The problem of homomorphisms ϕ : Mn(F) → Mm(F) is solved for m ≤ n

in [13] (see Theorem 2.2). The problem for n = 1 of homomorphisms ϕ : C →
Mm(C) in the field of complex numbers is solved in [28].
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Beside multiplicative maps on full matrix algebras we may be interested

also in maps that are multiplicative with respect to Jordan product or Lie

product. Namely, Mn(F) can be equipped with other products like Lie product

[A,B] = AB − BA, or Jordan product A ◦ B = AB + BA. Maps that are

multiplicative with respect to Lie or Jordan product are maps satisfying the

following equations

ϕ(AB − BA) = ϕ(A)ϕ(B) − ϕ(B)ϕ(A),

ϕ(AB +BA) = ϕ(A)ϕ(B) + ϕ(B)ϕ(A),

for all A,B ∈ Mn(F). A related problem is to characterize maps that are

multiplicative with respect to Jordan triple product, i. e. maps satisfying

ϕ(ABA) = ϕ(A)ϕ(B)ϕ(A),

for all A,B ∈ Mn(F).

Next, instead of considering maps that are multiplicative with respect to

one of the above products on the full matrix algebra we can consider such

maps on any subset that is closed under this product. For example, we can

ask what is the general form of maps acting on upper triangular matrices that

are multiplicative with respect to one of the above products. The set of all

symmetric matrices and the set of all complex hermitian matrices are closed

under Jordan product and under Jordan triple product, while the set of skew

symmetric matrices and the set of skew hermitian matrices are closed under

Lie product. So, we can study Jordan multiplicative and Lie multiplicative

maps on these sets. Further, we can try to solve this kind of problems on

matrices over commutative rings or division algebras or on operator algebras

over a Banach space.
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There has been a lot of work done on these questions in recent years and

lots of them are still open. We will state here some results; others can be found

in [4], [11], [18], [20], [21], [23], [24], [25], [30], [38] and [40].

In [7] Dolinar proved that every bijective map ϕ : Mn(C) → Mn(C) that

is multiplicative under Lie product has one of the following forms

ϕ(A) = Sf̂(A)S−1 + g(A)I for all A ∈ Mn(C),

or

ϕ(A) = −Sf̂(AT )S−1 + g(A)I for all A ∈ Mn(C),

where f : C → C is a field homomorphism S ∈ Mm(F) is an invertible matrix

and g : Mn(C) → C a function satisfying g(C) = 0 for every trace zero matrix

C.

Cheung in [3] studied the following problem: If G is a multiplicative semi-

group of Mn(C) and if f : G → C is a function, then Φ(f) denotes the set of

all multiplicative maps ϕ : G→ Mk(C), for some k, such that the (1, 1)-entry

of ϕ(A) is f(A), for every A ∈ G. The set Φ(f) is nonempty for a variety of

functions f , including linear functionals on Mn(C). Further, if f, g : G → C

and neither Φ(f) nor Φ(g) is empty, then one can describe all multiplicative

maps τ : G→ Mn(C) such that f(A) = g (τ(A)), for every A ∈ G.

Cao and Zhang in [5] dealt with the semigroup of upper triangular matrices

Tn(R) over a ring R. They proved that if n ≥ 2 and R is a semiprime ring or a

ring in which all idempotents are central, then ϕ : Tn(R) → Tn(R) is a multi-

plicative semigroup automorphism if and only if there exist a nonsingular ma-

trix S in Tn(R) and a ring automorphism f of R such that ϕ(A) = Sf̂(A)S−1

for all A ∈ Tn(R).

LetX and Y be complex Banach spaces with dimX ≥ 3, and let A ⊂ B(X)
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and B ⊂ B(Y ) be standard operator algebras (that is, algebras of bounded

linear operators that contain all finite-rank operators). Šemrl in [35] described

multiplicative bijective maps of A onto B, while Molnar in [22] dealt with

a problem of bijective maps multiplicative under Jordan triple product. It is

proved that such a map is necessarily linear or conjugate-linear in the case when

X is infinite-dimensional. Lu in [19] proved that if A is a standard operator

algebra on a Banach space X with dimX > 1, R any ring, and ϕ : A → R a

Jordan multiplicative bijective map, then φ is either a ring isomorphism or a

ring anti-isomorphism.



Chapter 2

State of the art

In this chapter we first state our main question and give some examples. We

characterize all homomorphisms from the multiplicative semigroup of all n-

by-n matrices over an arbitrary field to the field and all non-degenerate ho-

momorphisms from the multiplicative semigroup of all n-by-n matrices over

an arbitrary field to a semigroup of m-by-m matrices over the same field, if

m ≤ n.

2.1 Question and examples

Let F be an arbitrary field and let n be an integer. Denote by Mn(F) the set

of all n-by-n matrices with entries in F. Then Mn(F) is a semigroup under

the multiplication of matrices.

Question. What are semigroup homomorphisms ϕ : Mn(F) → Mm(F), i. e.

maps satisfying the equation

ϕ(AB) = ϕ(A)ϕ(B)

for all matrices A,B ∈ Mn(F) ?

Sometimes we will be interested only in irreducible homomorphisms. A

33
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semigroup homomorphism ϕ : Mn(F) → Mm(F) is irreducible if the image

of ϕ is an irreducible semigroup i. e. it has no proper non-trivial invariant

subspace of Fm when it is viewed as a set of matrices acting on vector space

Fm.

We first give some examples.

Examples:

1. Matrix conjugation: Let S ∈ Mn(F) be an invertible matrix. Then

ϕ : Mn(F) → Mn(F)

ϕ(A) = SAS−1

is a semigroup homomorphism.

2. Constant: Assume E ∈ Mm(F) is an idempotent, i. e. a matrix satisfying

equation E2 = E. Then ϕ : Mn(F) → Mm(F)

ϕ(A) = E

is a semigroup homomorphism. We would like to avoid such trivial homomor-

phisms. Lemma 3.1 tells us the following: Let ϕ : Mn(F) → Mm(F) be a

semigroup homomorphism. Then ϕ has the form

ϕ(A) = S(ϕ0(A) ⊕ E)S−1,

where ϕ0 : Mn(F) → Mk(F) is a semigroup homomorphism with ϕ0(0) = 0,

ϕ0(I) = I, E ∈ Mm−k(F) is idempotent and S ∈ Mm(F) is an invertible

matrix. Here either k or m − k may be 0, i. e. either ϕ0(A) or E may be

absent. So we may assume that a semigroup homomorphism maps 0 to 0 and

identity to identity. If we assume that ϕ is irreducible, this is automatically

true.
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3. Field homomorphism used entrywise: Let f : F → F be a field

homomorphism. If A = [aij ]
n
i,j=1 ∈ Mn(F) is an arbitrary matrix, define

ϕ(A) = f̂(A) = [f(aij)]
n
i,j=1.

Then ϕ : Mn(F) → Mn(F) is a semigroup homomorphism.

4. Degenerate homomorphisms: If ϕ′ : GLn(F) → GLm(F) is a group

homomorphism, define ϕ : Mn(F) → Mm(F): if detA = 0 take ϕ(A) = 0

and if detA 6= 0 take ϕ(A) = ϕ′(A). It is obvious that ϕ is a semigroup

homomorphism. Such homomorphisms are called degenerate. Since group

homomorphisms ϕ′ : GLn(F) → GLm(F) are known (see chapter 1) we will

restrict ourselves to non-degenerate homomorphisms.

5. Direct sum: If ϕ′ : Mn(F) → Mm′(F) and ϕ′′ : Mn(F) → Mm′′(F) are

two semigroup homomorphisms, define ϕ : Mn(F) → Mm′+m′′(F),

ϕ(A) = ϕ′(A) ⊕ ϕ′′(A)

for every matrix A ∈ Mn(F). Map ϕ is again a semigroup homomorphism,

which is always reducible.

6. Exterior power: Let k ≤ n be an integer. The vector space F(n

k
) is

isomorphic to the exterior power ∧k
F

n of all antisymmetric k-tensors. If

E = {e1, e2, ..., en}

is a basis of Fn, then

E ′ = {ei1 ∧ ei2 ∧ ... ∧ eik , 1 ≤ i1 < i2 < ... < ik ≤ n}

is a basis of ∧kFn. If a matrix A ∈ Mn(F) represents a linear mapping of

F
n, then ∧kA ∈ M(n

k
)(F) represents a linear mapping, acting on k-tensors as
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follows:

(∧kA)(ei1 ∧ ei2 ∧ ... ∧ eik) = Aei1 ∧ Aei2 ∧ ... ∧ Aeik .

The entries of the matrix ∧kA are all k-by-k minors of the matrix A. It is a

direct calculation to prove that

(∧kA)(∧kB) = ∧k(AB)

So ϕ : Mn(F) → M(n

k
)(F), defined as

ϕ(A) = ∧kA

is a semigroup homomorphism. If k equals n− 1, then ϕ : Mn(F) → Mn(F).

In this case ϕ(A) = ∧n−1A = Cof(A) is the so called cofactor matrix of all

(n− 1)-by-(n− 1) minors of matrix A.

7. Symmetric power: Let k be an integer. The vector space F(n+k−1

k ) is

isomorphic to the symmetric power Symk
Fn of all symmetric k-tensors. If

E = {e1, e2, ..., en}

is a basis of Fn, then

E ′ = {ei1 ∨ ei2 ∨ ... ∨ eik ; 1 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ n}

is a basis of Symk
Fn. If a matrix A ∈ Mn(F) represents a linear mapping of Fn,

then SymkA ∈ M(n+k−1

k
)(F) represents a linear mapping, acting on k-tensors

as follows:

(SymkA)(ei1 ∨ ei2 ∨ ... ∨ eik) = Aei1 ∨ Aei2 ∨ ... ∨ Aeik .

It is again a direct calculation to prove that

(SymkA)(SymkB) = Symk(AB)
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So ϕ : Mn(F) → M(n+k−1

k
)(F), defined as

ϕ(A) = SymkA

is a semigroup homomorphism. In a special case n = 2 we have

E ′ = {e(1), ..., e(k+1)}

where

e(i) = (∨k+1−ie1) ∨ (∨i−1e2).

So, if A =

[

a b
c d

]

, then

(SymkA)e(i) = (∨k+1−i(ae1 + ce2)) ∨ (∨i−1(be1 + de2)).

Thus

Symk

[

a b
c d

]

=

=





min{k+1−i,k+1−j}
∑

s=max{0,k+2−i−j}

(

k + 1 − i

s

)(

i− 1

k + 1 − j − s

)

asbk+1−j−sck+1−i−sdi+j+s−k−2





k+1

i,j=1

.

If also k = 2, we have

Sym2

[

a b
c d

]

=





a2 ab b2

2ac ad+ bc 2bd
c2 cd d2





8. Tensor product: The vector space Fm′m′′

is isomorphic to tensor product

F
m′ ⊗ F

m′′

. If ϕ′ : Mn(F) → Mm′(F) and ϕ′′ : Mn(F) → Mm′′(F) are two

semigroup homomorphisms, define ϕ : Mn(F) → Mm′m′′(F) by

ϕ(A) = ϕ′(A) ⊗ ϕ′′(A)

for every matrix A ∈ Mn(F). Map ϕ is again a semigroup homomorphism.

The tensor product ϕ(A) = A⊗A can be written as a direct sum of the exterior
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power and the symmetric power

A⊗A = A ∧A⊕ Sym2A.

If the factors are not equal, the tensor product may be irreducible (see for

example case (b) of Theorem 4.3).

9. Compositions of the above

If ϕ : Mn(F) → Mm(F) is an non-degenerate irreducible homomorphism,

these examples show that ϕ can be a tensor product, an exterior power or

a symmetric power combined with field homomorphisms used entrywise and

matrix conjugation. In all these examples m is not arbitrary; it has a special

form, depending on n. We will show that under some additional assumptions

for small n and m this is all that we can get.

2.2 Case m = 1

We will now characterize homomorphisms from the matrix semigroup Mn(F)

to the field F as a multiplicative semigroup. It is a well known result. Our

proof is due to A. Jafarian and H. Radjavi.

Proposition 2.1 Let ϕ : Mn(F) → F be a semigroup homomorphism. Then

there exists a homomorphism f : F → F of the multiplicative semigroup (F, ·)
such that

ϕ(A) = f(detA)

for every A ∈ Mn(F).

Proof. If ϕ(A) = 0 for all A ∈ Mn(F), take f = 0, if ϕ(A) = 1 for all A,

take f = 1. So assume otherwise. Then it is clear that invertible matrices
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have nonzero images and that ϕ(A) = 0 whenever A is singular. Next define

f : F → F by

f(x) = ϕ

























x 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

























.

It follows that f is a semigroup homomorphism. Since the relation ϕ(A) =

f(detA) trivially holds for singular A, we must only verify it for invertible

matrices A. Now every such A can be expressed as

A =













detA 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1













A1

with detA1 = 1. By [31] every matrix with determinant 1 is a product of simple

involutions, that is matrices E ∈ Mn(F) with E2 = I and rank(E − I) = 1.

So we have

A1 = E1E2...Ek

If charF = 2, then every simple involution is similar to












1 1 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1













.

Since ϕ(Ei) is also an involution in F, we have ϕ(Ei) = 1 for all i and con-

sequently ϕ(A1) = 1. If charF 6= 2, then every simple involution is similar

to












−1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1













.
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Since detEi = −1, the number of involutions k must be even. As before, ϕ(Ei)

is an involution in F, so we have ϕ(Ei) = ±1 for all i. We observe that Ei

is similar to Ej for all i and j, and since similar matrices have equal images

under ϕ, either ϕ(Ei) = 1 for all i or ϕ(Ei) = −1 for all i. In either case

ϕ(A1) = ϕ(E1)ϕ(E2)...ϕ(Ek) = (±1)k = 1

Now

ϕ(A) = ϕ

























detA 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

























ϕ(A1) = f(detA)

as desired.

2.3 Case m ≤ n

The main result in this chapter is characterization of all non-degenerate semi-

group homomorphisms ϕ : Mn(F) → Mm(F), where m ≤ n. The result was

proved in [17] for the field of complex numbers and in [13] for an arbitrary

integral domain.

Theorem 2.2 Let F be a field. Assume that integers n,m satisfy n ≥ 2 and

m ≤ n. Let ϕ : Mn(F) → Mm(F) be a semigroup homomorphism, which is

non-degenerate and has the properties ϕ(0) = 0 and ϕ(I) = I. Then m = n

and ϕ has one of the following forms:

(a)

ϕ(A) = Sf̂(A)S−1,

where f : F → F is a field homomorphism, and S ∈ Mn(F) is an invertible

matrix, or
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(b)

ϕ(A) = Sf̂(Cof(A))S−1,

where f : F → F is a field homomorphism, and S ∈ Mn(F) is an invertible

matrix.

We will later (especially in chapter 5) extend the proof of this theorem to

more general setting. We will give the proof in Section 5.2.





Chapter 3

Homomorphisms from
dimension two to three

In this chapter we characterize all non-degenerate homomorphisms from the

multiplicative semigroup of all 2-by-2 matrices over an arbitrary field to the

semigroup of 3-by-3 matrices over the same field. If the characteristic of the

field is not equal to 2 then we have two possibilities. Either it is a symmetric

square, combined with a field homomorphism used entrywise and a matrix

conjugation, or a direct sum of the identity and the determinant, combined

with a field homomorphism, a homomorphism of the multiplicative semigroup

of the field and a matrix conjugation. In the characteristic 2 a symmetric

square gives rise to two different homomorphisms and we get three possibili-

ties. In the case of the field of real numbers every irreducible non-degenerate

homomorphism is a matrix conjugation of the symmetric square.

3.1 Preliminaries

We will first show that there is no loss of generality if we assume that a

semigroup homomorphism ϕ : Mn(F) → Mm(F) maps 0 to 0 and the identity

43
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to the identity.

Lemma 3.1 Let F be a field and ϕ : Mn(F) → Mm(F) a semigroup homo-

morphism. Then ϕ has the form

ϕ(A) = S(ϕ0(A) ⊕ E)S−1,

where ϕ0 : Mn(F) → Mk(F) is a semigroup homomorphism with ϕ0(0) = 0,

ϕ0(I) = I, E ∈ Mm−k(F) is idempotent and S ∈ Mm(F) is an invertible

matrix. Here either k or m − k may be 0, i. e. either ϕ0(A) or E may be

absent.

Proof. Since 0 and I are two commuting idempotents with 0I = 0, ϕ(0)

and ϕ(I) are also two commuting idempotents with ϕ(0)ϕ(I) = ϕ(0). So they

have the form

ϕ(0) = S(0k ⊕ Il ⊕ 0m−l−k)S
−1

and

ϕ(I) = S(Ik ⊕ Il ⊕ 0m−l−k)S
−1,

where 0s, Is ∈ Ms(F) and S is an invertible matrix. For any matrix A ∈
Mn(F) the matrix ϕ(A) commutes with ϕ(0) and ϕ(I), so it has the form

ϕ(A) = S(A1 ⊕ A2 ⊕ A3)S
−1.

Since A0 = 0 and AI = A we have A2Il = Il and A30m−l−k = A3, so A2 = Il

and A3 = 0m−l−k. Writing ϕ0(A) := A1 we obtain the asserted form, since ϕ0

is obviously a semigroup homomorphism.

In the proof of our main result we need the following proposition which is

proved in [13].
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Proposition 3.2 Let F be a field and ϕ : M2(F) → M2(F) a semigroup

homomorphism, which is non-degenerate and has the properties ϕ(0) = 0 and

ϕ(I) = I. Then ϕ has the form

ϕ

([

a b
c d

])

= S

[

f(a) f(b)
f(c) f(d)

]

S−1,

where f : F → F is a field homomorphism and S ∈ M2(F) is an invertible

matrix.

The following proposition is a special case of Proposition 2.1 for n = 2.

Proposition 3.3 Let F be a field and ϕ : M2(F) → F a semigroup homomor-

phism. Then ϕ has the form

ϕ

([

a b
c d

])

= h(ad− bc),

where h : F → F is a homomorphism of the multiplicative semigroup (F, ·).

3.2 Main result

The main result of this chapter is the following:

Theorem 3.4 Let F be a field and ϕ : M2(F) → M3(F) a semigroup ho-

momorphism, which is non-degenerate and has the properties ϕ(0) = 0 and

ϕ(I) = I. If char F 6= 2 then ϕ has one of the following forms:

(a)

ϕ

([

a b
c d

])

= S





f(a) f(b) 0
f(c) f(d) 0
0 0 g(ad− bc)



S−1,

where f : F → F is a field homomorphism, g : F → F is a homomorphism of

the multiplicative semigroup (F, ·) with g(0) = 0, g(1) = 1 and S ∈ M3(F) is

an invertible matrix,
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(b)

ϕ

([

a b
c d

])

= S





h(a2) h(ab) h(b2)
h(2ac) h(ad+ bc) h(2bd)
h(c2) h(cd) h(d2)



S−1,

where h : F → F is a field homomorphism and S ∈ M3(F) is an invertible

matrix.

If char F = 2 then ϕ has one of the forms (a), (b) or

(c)

ϕ

([

a b
c d

])

= S





h(a2) 0 h(b2)
h(ac) h(ad+ bc) h(bd)
h(c2) 0 h(d2)



S−1,

where h : F → F is a field homomorphism and S ∈ M3(F) is an invertible

matrix.

Remark. If char F = 2, the cases (b) and (c) are essentially different: The

image of ϕ in the case (b) has exactly one non-trivial invariant subspace in

common, which has dimension 2. On the other hand, in the case (c) the image

of ϕ has an invariant subspace of dimension 1 in common.

Proof. Let us denote by Eij the matrix which has 1 in the i-th row and the

j-th column, and 0 elsewhere. We will divide the proof into several steps.

Step 1. Without loss of generality we may assume that ϕ(E12) = E13 and

ϕ(E21) = E31. Then ϕ(E11) = E11 and ϕ(E22) = E33.

Proof: Matrix E12 is nilpotent of order 2, so ϕ(E12) must be nilpotent of

order at most 2. Let us suppose that ϕ(E12) = 0. If A ∈ M2(F) is any non-

invertible matrix, it has rank at most 1 and we can write it as A = PE12Q.

So ϕ(A) = ϕ(P )ϕ(E12)ϕ(Q) = 0 and ϕ is degenerate. Thus ϕ(E12) must be

nonzero and we can write it as ϕ(E12) = xyT where x, y are two column vectors

in F3 and yTx = 0. Similarly we obtain ϕ(E21) = uvT where vTu = 0. Since
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E12E21E12 = E12, we have

xyTuvTxyT = xyT ,

so yTu · vTx = 1. With no loss of generality we may assume that yTu = vTx =

1. Let us choose a vector z ∈ F3 orthogonal to v and y, i. e. vTz = yTz = 0.

Then {x, z, u} is a basis of F3. In this basis ϕ(E12) has the matrix E13 and

ϕ(E21) has the matrix E31. So without loss of generality we may assume that

ϕ(E12) = E13 and ϕ(E21) = E31. Then

ϕ(E11) = ϕ(E12E21) = E13E31 = E11

and similarly ϕ(E22) = E33.

Step 2. ϕ(aI) has the form f(a)(E11 + E33) + g(a)E22 where f, g : F → F

are semigroup homomorphisms with f(0) = g(0) = 0 and f(1) = g(1) = 1.

Proof: Matrix aI commutes with E12 and E21, so ϕ(aI) commutes with

E13 and E31 and we obtain the asserted form.

Step 3. Homomorphism ϕ has the form

ϕ

([

a b
c d

])

=





f(a) ∗ f(b)
∗ ∗ ∗

f(c) ∗ f(d)



 .

Proof: If

A =

[

a b
c d

]

is an arbitrary matrix, we have

E11ϕ(A)E11 = ϕ(E11AE11) = ϕ(aE11) = ϕ(aI)E11 = f(a)E11,

so the element in the first row and the first column of ϕ(A) must be f(a). We

argue similarly for the other corners.
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Step 4. If A is upper-right (resp. upper-left, lower-right, lower-left) tri-

angular, then ϕ(A) is upper-right (resp. upper-left, lower-right, lower-left)

triangular. If A is diagonal, then ϕ(A) is diagonal. A similar result holds for

counter-diagonal A.

Proof: Let

A =

[

a b
0 d

]

.

Then

ϕ(A)E11 = ϕ(AE11) = ϕ(aE11) = f(a)E11

and

E33ϕ(A) = ϕ(E22A) = ϕ(dE22) = f(d)E33

so the first column of ϕ(A) must be [f(a), 0, 0]T and the last row must be

[0, 0, f(d)]. Thus ϕ(A) is upper-right triangular. Similarly we prove the other

cases.

Step 5. If f(a) 6= g(a) for some a ∈ F, then

ϕ

([

a b
c d

])

=





f(a) 0 f(b)
0 h(ad− bc) 0

f(c) 0 f(d)



 ,

where f : F → F is a field homomorphism, h : F → F is a semigroup homo-

morphism, so we are in the case (a) of the Theorem.

Proof: Matrix aI commutes with every A ∈ M2(F), so ϕ(aI) = f(a)(E11+

E33) + g(a)E22 commutes with ϕ(A). Since f(a) 6= g(a), ϕ(A) has the form




∗ 0 ∗
0 ∗ 0
∗ 0 ∗



 .

Thus

ϕ

([

a b
c d

])

=





f(a) 0 f(b)
0 s(a, b, c, d) 0

f(c) 0 f(d)



 .
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So homomorphism ϕ is a direct sum of two semigroup homomorphisms ϕ1 :

M2(F) → M2(F) and ϕ2 : M2(F) → F where

ϕ1

([

a b
c d

])

=

[

f(a) f(b)
f(c) f(d)

]

and

ϕ2

([

a b
c d

])

= s(a, b, c, d).

Now, f is a field homomorphism by Proposition 3.2 and s(a, b, c, d) has the

form h(ad − bc) by Proposition 3.3.

From now on we will assume that f(a) = g(a) for every a ∈ F. So ϕ(aI) =

f(a)I.

Step 6. If detA = 1, then detϕ(A) = 1. Furthermore, f(−1) = 1 and

ϕ(E12 − E21) = E13 − E22 + E31.

Proof: Let ϕ1 : M2(F) → F be the semigroup homomorphism ϕ1(A) =

detϕ(A). By Proposition 3.3 it has the form ϕ1(A) = h(detA). So, if detA = 1,

then detϕ(A) = 1. Now, det(−I) = 1, so detϕ(−I) = f(−1)3 = 1, thus

f(−1) = 1. By step 4 ϕ(E12 − E21) has the form E13 + uE22 + E31. By the

determinant condition we obtain u = −1.

From step 7 to step 14 we assume that char F 6= 2.

Step 7. Without loss of generality we may assume

ϕ(E11 + E12) = E11 + E12 + E13, ϕ(E11 + E21) = E11 + 2E21 + E31,

ϕ(E21 + E22) = E31 + E32 + E33, ϕ(E12 + E22) = E13 + 2E23 + E33.

Proof: Every matrix of rank one has the form A = PE12Q with P,Q

invertible. So its image has the form ϕ(A) = ϕ(P )E13ϕ(Q). Thus every
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matrix of rank 1 is sent to a matrix of rank 1. So the matrix ϕ(E11 +E12) has

rank 1. Since it is upper triangular, we have

ϕ(E11 + E12) = E11 + xE12 + E13.

Similarly

ϕ(E11 + E21) = E11 + yE21 + E31,

ϕ(E21 + E22) = E31 + zE32 + E33, ϕ(E12 + E22) = E13 + tE23 + E33.

Now,




1 x 1
y xy y
1 x 1



 = ϕ

([

1 0
1 0

] [

1 1
0 0

])

=

= ϕ

([

0 1
0 1

] [

0 0
1 1

])

=





1 z 1
t zt t
1 z 1



 ,

so x = z and y = t. Furthermore,

ϕ(0) = ϕ

([

1 1
0 0

] [

0 1
−1 0

] [

1 0
1 0

])

=





2 − xy 0 0
0 0 0
0 0 0



 ,

so xy = 2. Since char F 6= 2, both x and y are nonzero. If we take

ϕ′(A) =





1 0 0
0 x 0
0 0 1



ϕ(A)





1 0 0
0 1/x 0
0 0 1



 ,

we obtain

ϕ′(E11 + E12) = E11 + E12 + E13.

Homomorphism ϕ′ has all the properties we have proved for ϕ. So without

loss of generality we may assume x = 1 and thus y = 2. (Actually we have

multiplied the vector z from step 1 by a scalar, so we have chosen its length

which was arbitrary in step 1.)
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Step 8. ϕ(E11−E22) = E11−E22+E33 and ϕ(E12+E21) = E13+E22+E31.

Proof: We have

ϕ(E11 −E22) = E11 + vE22 + E33,

so

E11 + vE12 + E13 = (E11 + E12 + E13)(E11 + vE22 + E33) =

= ϕ((E11 + E12)(E11 −E22)) = ϕ((E11 + E12)(E21 − E12)) =

= (E11 + E12 + E13)(E13 − E22 + E31) = E11 − E12 + E13.

Thus v = −1. Now,

ϕ(E12 + E21) = ϕ((E21 −E12)(E11 − E22)) = E13 + E22 + E31.

Step 9.

ϕ

([

1 1
0 1

])

=





1 1 1
0 1 2
0 0 1



 and ϕ

([

1 0
1 1

])

=





1 0 0
2 1 0
1 1 1



 .

Proof: We have

ϕ

([

1 1
0 1

])

=





1 u 1
0 v w
0 0 1



 .

Since det

[

1 1
0 1

]

= 1, v must be 1. Furthermore,





1 1 1
2 2 2
1 1 1



 = ϕ

([

1 0
1 0

] [

1 1
0 0

])

=

= ϕ

([

1 1
0 1

] [

0 0
1 1

])

=





1 1 1
w w w
1 1 1



 ,
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so w = 2. Similarly we prove u = 1 and the other equality.

Step 10. Mapping f : F → F has the form f(a) = (h(a))2, where h : F → F

is a semigroup homomorphism.

Proof: We have

ϕ(aE11 + E22) = f(a)E11 + h(a)E22 + E33,

where h : F → F is a semigroup homomorphism. Now,

f(a)I = ϕ(aI) = ϕ((aE11 + E22)(E12 + E21)(aE11 + E22)(E12 + E21)) =

= (f(a)E11 + h(a)E22 + E33)(E13 + E22 + E31)·

·(f(a)E11 + h(a)E22 + E33)(E13 + E22 + E31) =

= f(a)E11 + h(a)2E22 + f(a)E33.

So f(a) = h(a)2 = h(a2).

Step 11. ϕ(aE11 + bE22) = h(a2)E11 + h(ab)E22 + h(b2)E33 and ϕ(aE12 +

bE21) = h(a2)E13 + h(ab)E22 + h(b2)E31.

Proof: If b 6= 0, we have

ϕ(aE11 + bE22) = ϕ(bI(
a

b
E11 + E22)) =

f(b)f(
a

b
)E11 + f(b)h(

a

b
)E22 + f(b)E33 = h(a2)E11 + h(ab)E22 + h(b2)E33

and

ϕ(aE12+bE21) = ϕ((aE11+bE22)(E12+E21)) = h(a2)E13+h(ab)E22+h(b
2)E31.

Step 12. Mapping h : F → F is a field homomorphism.

Proof: We have to prove that h is additive.




h(a2) h(a(a+ b)) h((a + b)2)
0 0 0
0 0 0



 = ϕ

([

1 1
0 0

] [

a 0
0 a+ b

])

=
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= ϕ

([

1 1
0 0

] [

a 0
0 b

] [

1 1
0 1

])

=

=





h(a2) h(a2) + h(ab) h(a2) + 2h(ab) + h(b2)
0 0 0
0 0 0



 .

So h(a(a+ b)) = h(a2)+h(ab). If a 6= 0, it follows that h(a+ b) = h(a)+h(b).

Step 13.

ϕ

([

a b
0 d

])

=





h(a2) h(ab) h(b2)
0 h(ad) h(2bd)
0 0 h(d2)





and

ϕ

([

a 0
c d

])

=





h(a2) 0 0
h(2ac) h(ad) 0
h(c2) h(cd) h(d2)



 .

Proof: If b 6= 0, we have

ϕ

([

a b
0 d

])

= ϕ

([

1 0
0 d/b

] [

1 1
0 1

] [

a 0
0 b

])

=

=





1 0 0
0 h(d/b) 0
0 0 h(d2/b2)









1 1 1
0 1 2
0 0 1









h(a2) 0 0
0 h(ab) 0
0 0 h(b2)



 =

=





h(a2) h(ab) h(b2)
0 h(ad) h(2bd)
0 0 h(d2)



 .

Similarly we prove the other equality.

Step 14.

ϕ

([

a b
c d

])

=





h(a2) h(ab) h(b2)
h(2ac) h(ad+ bc) h(2bd)
h(c2) h(cd) h(d2)



 ,

so we are in case (b) of the Theorem.

Proof: If a 6= 0, we have

ϕ

([

a b
c d

])

= ϕ

([

a 0
c d− bc

a

] [

1 b
a

0 1

])

=
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=





h(a2) 0 0
h(2ac) h(ad− bc) 0
h(c2) h(cd− bc2

a
) h((d− bc

a
)2)









1 h( b
a
) h( b2

a2 )
0 1 h(2b

a
)

0 0 1



 =

=





h(a2) h(ab) h(b2)
h(2ac) h(ad+ bc) h(2bd)
h(c2) h(cd) h(d2)



 .

If a = 0 and d 6= 0, then

ϕ

([

0 b
c d

])

= ϕ

([

− bc
d

b
0 d

] [

1 0
c
d

1

])

=

=





h( b2c2

d2 ) h(− b2c
d

) h(b2)
0 h(−bc) h(2bd)
0 0 h(d2)









1 0 0
h(2c

d
) 1 0

h( c2

d2 ) h( c
d
) 1



 =

=





0 0 h(b2)
0 h(bc) h(2bd)

h(c2) h(cd) h(d2)



 .

The case a = d = 0 we have already proved in step 11.

Step 15. If char F = 2, then either

ϕ

([

a b
c d

])

=





h(a2) h(ab) h(b2)
0 h(ad+ bc) 0

h(c2) h(cd) h(d2)





or

ϕ

([

a b
c d

])

=





h(a2) 0 h(b2)
h(ac) h(ad + bc) h(bd)
h(c2) 0 h(d2)





or

ϕ

([

a b
c d

])

=





h(a2) 0 h(b2)
0 h(ad− bc) 0

h(c2) 0 h(d2)



 ,

where h : F → F is a field homomorphism, so we are in the cases (b), (c) or

(a) of the Theorem.

Proof: We do the same as in step 7 and obtain xy = 2 = 0. If x 6= 0, we

may assume with no loss of generality that x = 1 and then y = 0 = 2. Then
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everything is the same as in steps 8 - 14 and we obtain the first possibility. If

y 6= 0, then we may assume with no loss of generality that y = 1 and then

x = 0 = 2. In this case all the matrices in steps 8 - 14 are just transposed and

we obtain the second possibility. If both x and y are 0, we obtain

ϕ

([

1 1
0 1

])

=





1 0 1
0 1 0
0 0 1





as in step 9 and

ϕ

([

0 1
1 0

])

=





0 0 1
0 1 0
1 0 0





by the determinant condition. The semigroup M2(F) is generated by diagonal

matrices and the three matrices
[

1 1
0 1

]

,

[

0 1
1 0

]

and

[

0 1
0 0

]

as we saw in steps 13, 14. So we obtain

ϕ

([

a b
c d

])

=





f(a) 0 f(b)
0 h(ad− bc) 0

f(c) 0 f(d)



 .

Now ϕ(aI) = f(a)I gives that f(a) = h(a2). Since f is additive by Proposition

3.2 and char F = 2, we have

(h(a+ b))2 = h((a+ b)2) = f(a+ b) = f(a) + f(b) =

= h(a)2 + h(b)2 = (h(a) + h(b))2,

so h is additive as well.

3.3 Corollaries

A matrix semigroup homomorphism ϕ is reducible if the image of ϕ has a

nontrivial invariant subspace. We say that ϕ is completely reducible if every

invariant subspace of the image of ϕ has an invariant complement.
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Corollary 3.5 Let F be a field with char F 6= 2. Every non-degenerate semi-

group homomorphism ϕ : M2(F) → M3(F) is completely reducible.

Corollary 3.6 Let ϕ : M2(F) → M3(F) be an irreducible non-degenerate

semigroup homomorphism. Then char F 6= 2 and

ϕ

([

a b
c d

])

= S





h(a2) h(ab) h(b2)
h(2ac) h(ad+ bc) h(2bd)
h(c2) h(cd) h(d2)



S−1,

where h : F → F is a field homomorphism and S ∈ M3(F) is an invertible

matrix.

If F is the field of real numbers R, then the only nonzero field homomor-

phism of F is the identity (see [1], page 57). This implies

Corollary 3.7 Let ϕ : M2(R) → M3(R) be an irreducible non-degenerate

semigroup homomorphism. Then

ϕ

([

a b
c d

])

= S





a2 ab b2

2ac ad+ bc 2bd
c2 cd d2



S−1,

where S ∈ M3(R) is an invertible matrix.

If F is the field of complex numbers C we may be interested only in continu-

ous semigroup homomorphism ϕ : M2(F) → M3(F). Then semigroup or field

homomorphisms f, g, h : F → F in the Theorem 3.4 must be continuous. The

only continuous field homomorphisms of C are the identity and the complex

conjugation (see [1], page 53).

Corollary 3.8 Let ϕ : M2(C) → M3(C) be a continuous irreducible non-

degenerate semigroup homomorphism. Then ϕ has the form

ϕ

([

a b
c d

])

= S





h(a2) h(ab) h(b2)
h(2ac) h(ad+ bc) h(2bd)
h(c2) h(cd) h(d2)



S−1,
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where h : C → C is the identity or the complex conjugation and S ∈ M3(C)

is an invertible matrix.





Chapter 4

More on homomorphisms from
dimension two

In this chapter we study non-degenerate irreducible homomorphisms from the

multiplicative semigroup of all 2-by-2 matrices over an algebraically closed field

of characteristic zero to the semigroup of n-by-n matrices over the same field.

If such a homomorphism maps a cyclic unipotent to a cyclic unipotent, it is

the composition of a symmetric power, a field homomorphism used entrywise,

and a matrix conjugation. In the case n = 4 we characterize all non-degenerate

irreducible homomorphisms.

From now on we will assume that the field F has characteristic zero and

is algebraically closed. We have seen in chapter 3 that from dimension two

to three we get a different result in characteristic 2 from other characteristics.

The situation is similar when going from dimension two to higher dimensions:

the results will depend on whether the characteristic zero or finite and small.

We will also restrict ourselves to irreducible homomorphisms. We will often

use the following proposition which is a consequence of a theorem of Burnside.

It is proved in [32], page 27.

Proposition 4.1 Assume F is an algebraically closed field of characteristic

59
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zero. Let n ≥ 2 and S be a semigroup in Mn(F). If there exists a nonzero

linear functional f on Mn(F) which vanishes on S, then S is reducible.

4.1 Preserving rank 1

We first show that every irreducible non-degenerate ϕ : M2(F) → Mn(F)

maps rank 1 matrices to rank 1 matrices.

Proposition 4.2 Let n ≥ 2 and ϕ : M2(F) → Mn(F) be a semigroup ho-

momorphism, which is irreducible and non-degenerate. Then rank ϕ(A) = 1

whenever rank A = 1.

Proof. Since ϕ is irreducible, it maps 0 to 0 and the identity to the identity.

(see Lemma 3.1). So it maps invertible matrices to invertible matrices. It also

maps scalar matrices to scalar matrices, because ϕ(aI) commutes with every

matrix in the image of ϕ, which is irreducible. If the rank of a matrix A is

equal to the rank of B, then there exist invertible matrices P,Q such that

A = PBQ. So the rank of ϕ(A) is equal to the rank of ϕ(B). Thus it suffices

to show that the rank of

B = ϕ

([

0 1
0 0

])

is 1. First of all, B is nonzero, since ϕ is non-degenerate. The matrix B is

square-zero, so we have block decomposition

B = S





0 I 0
0 0 0
0 0 0



S−1

Here the first two blocks are of the same size k and the third block may be

absent. Let us write

ϕ

([

a b
c d

])

= S





A11 A12 A13

A21 A22 A23

A31 A32 A33



S−1.
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Now

S





0 A21 0
0 0 0
0 0 0



S−1 =

= S





0 I 0
0 0 0
0 0 0









A11 A12 A13

A21 A22 A23

A31 A32 A33









0 I 0
0 0 0
0 0 0



S−1 =

= ϕ

([

0 1
0 0

] [

a b
c d

] [

0 1
0 0

])

=

= ϕ

([

0 c
0 0

])

= ϕ(cI)S





0 I 0
0 0 0
0 0 0



S−1.

So the matrix A21 is scalar for every a, b, c, d ∈ F. Thus if k > 1, ϕ is reducible

(Proposition 4.1).

4.2 A technical lemma

Let us divide every n-by-n matrix into 3-by-3 block structure where the middle

block is (n− 2)-by-(n− 2). So












a b · · · c d
e ∗ · · · ∗ f
...

...
...

...
g ∗ · · · ∗ h
i j · · · k l













=





a x d
y T z
i w l





where T is a (n− 2)-by-(n− 2) matrix.

Lemma 4.3 Let n ≥ 3 and ϕ : M2(F) → Mn(F) be a semigroup homomor-

phism, which is irreducible and non-degenerate. Then it has the following form

with respect to the above decomposition:

• if a, b, c 6= 0 and d is arbitrary then

ϕ

([

a b
c d

])

=
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= S





f(a) xTG(a)EG(b) f(b)
G(c)EG(a)y G(c)EG(a)CG( b

a
) G(d)EG(b)y

f(c) xTG(c)EG(d) f(d)



S−1,

where

C = yxT + V EG(
ad

bc
− 1)V ;

• if b 6= 0 and a, d are arbitrary then

ϕ

([

a b
0 d

])

= S





f(a) xTG(a)EG(b) f(b)
0 G(d

b
)V G(b)EG(a)E G(d)EG(b)y

0 0 f(d)



S−1;

• otherwise

ϕ

([

a 0
0 d

])

= S





f(a) 0 0
0 EG(a)EG(d) 0
0 0 f(d)



S−1;

where f : F → F and G : F → Mn−2(F) are semigroup homomorphisms,

x, y ∈ Fn−2 are nonzero vectors, E, V ∈ Mn−2(F) are matrices with E2 = I

and the spectrum of V equal to {1}, and S ∈ Mn(F) is an invertible matrix.

Proof. Let us denote by Eij the matrix which has 1 in the i-th row and the

j-th column, and 0 elsewhere. We will divide the proof into several steps.

Step 1. Without loss of generality we may assume that ϕ(E12) = E1n and

ϕ(E21) = En1. Then ϕ(E11) = E11 and ϕ(E22) = Enn.

Proof: The matrix E12 is nilpotent of rank 1, so ϕ(E12) must be nilpotent of

rank 1. So ϕ(E12) = uvT where u, v are two column vectors in Fn and vTu = 0.

Similarly we obtain ϕ(E21) = ztT where tT z = 0. Since E12E21E12 = E12, we

have

uvT ztTuvT = uvT ,

so vT z ·tTu = 1. With no loss of generality we may assume that vTz = tTu = 1.

Let us choose linearly independent vectors w1, ...wn−2 ∈ Fn orthogonal to v and



4.2. A technical lemma 63

t, i. e. vTwi = tTwi = 0 for every i. Then {u, w1, ...wn−2, z} is a basis of Fn.

In this basis ϕ(E12) has the matrix E1n and ϕ(E21) has the matrix En1. So

without loss of generality we may assume that ϕ(E12) = E1n and ϕ(E21) = En1.

Then

ϕ(E11) = ϕ(E12E21) = E1nEn1 = E11

and similarly ϕ(E22) = Enn.

Step 2. ϕmaps aI to f(a)I where f : F → F is a semigroup homomorphism

with f(0) = 0 and f(1) = 1.

Proof: The matrix aI commutes with every matrix in M2(F), so ϕ(aI)

commutes with every matrix in the image of ϕ. But the image of ϕ is ir-

reducible, so ϕ(aI) is a scalar matrix of the form f(a)I. The mapping f is

obviously a semigroup homomorphism.

Step 3. The homomorphism ϕ has the form

ϕ

([

a b
c d

])

=





f(a) ∗ f(b)
∗ ∗ ∗

f(c) ∗ f(d)



 .

Proof: If

A =

[

a b
c d

]

is an arbitrary matrix, we have

E11ϕ(A)E11 = ϕ(E11AE11) = ϕ(aE11) = ϕ(aI)E11 = f(a)E11,

so the element in the first row and the first column of ϕ(A) must be f(a). We

argue similarly for the other corners.

Step 4. If A is upper-right (resp. upper-left, lower-right, lower-left) trian-

gular, then ϕ(A) is block upper-right (resp. upper-left, lower-right, lower-left)

triangular with respect to the defined decomposition. If A is diagonal, then

ϕ(A) is block diagonal.
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Proof: Let

A =

[

a b
0 d

]

,

Then

ϕ(A)E11 = ϕ(AE11) = ϕ(aE11) = f(a)E11

and

Ennϕ(A) = ϕ(E22A) = ϕ(dE22) = f(d)Enn

so the first column of ϕ(A) must be [f(a), 0, ..., 0]T and the last row must be

[0, 0, ..., f(d)]. Thus ϕ(A) is block upper-right triangular. Similarly we prove

the other cases.

Step 5.

ϕ

([

1 1
0 0

])

=





1 xT 1
0 0 0
0 0 0



 , ϕ

([

0 1
0 1

])

=





0 0 1
0 0 y
0 0 1



 ,

ϕ

([

0 0
1 1

])

=





0 0 0
0 0 0
1 xT 1



 , ϕ

([

1 0
1 0

])

=





1 0 0
y 0 0
1 0 0



 .

Proof: The matrix

ϕ

([

1 1
0 0

])

has rank 1. Since it is upper triangular, we have

ϕ

([

1 1
0 0

])

=





1 xT 1
0 0 0
0 0 0



 .

Similarly

ϕ

([

0 1
0 1

])

=





0 0 1
0 0 y
0 0 1



 ,

ϕ

([

0 0
1 1

])

=





0 0 0
0 0 0
1 zT 1



 , ϕ

([

1 0
1 0

])

=





1 0 0
t 0 0
1 0 0



 .
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Now




1 xT 1
y yxT y
1 xT 1



 = ϕ

([

1 0
1 0

] [

1 1
0 0

])

=

= ϕ

([

0 1
0 1

] [

0 0
1 1

])

=





1 zT 1
t tzT t
1 zT 1



 ,

so x = z and y = t.

Step 6.

ϕ

([

1 1
0 1

])

=





1 xT 1
0 V y
0 0 1





where the spectrum of V is {1},

ϕ

([

0 1
1 0

])

=





0 0 1
0 E 0
1 0 0





where E2 = I, and

ϕ

([

1 0
0 a

])

=





1 0 0
0 G(a) 0
0 0 f(a)





where G : F → Mn−2(F) is semigroup homomorphism.

Proof: The matrix

ϕ

([

1 1
0 1

])

has the form




1 uT 1
0 V w
0 0 1





by step 4. Since

E11

[

1 1
0 1

]

=

[

1 1
0 0

]

we have u = x and similarly v = y. Because the matrix

[

1 1
0 1

]

is similar

to its square, also V is similar to its square, and since it is also invertible, its
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spectrum is equal to {1}. ϕ

([

0 1
1 0

])

and ϕ

([

1 0
0 a

])

have the asserted

form by step 4. From

[

0 1
1 0

]2

= I it follows that E2 = I and from

[

1 0
0 a

] [

1 0
0 b

]

=

[

1 0
0 ab

]

follows the multiplicativity of G.

Step 7.

ϕ

([

a 0
0 c

])

=





f(a) 0 0
0 EG(a)EG(c) 0
0 0 f(c)



 .

If b 6= 0 then

ϕ

([

a b
0 c

])

=





f(a) xTG(a)EG(b) f(b)
0 G( c

b
)V G(b)EG(a)E G(c)EG(b)y

0 0 f(c)





and

ϕ

([

a 0
b c

])

=





f(a) 0 0
G(b)EG(a)y G(b)EG(a)V EG( c

b
) 0

f(b) xTG(b)EG(c) f(c)





Proof: From
[

a 0
0 c

]

=

[

0 1
1 0

] [

1 0
0 a

] [

0 1
1 0

] [

1 0
0 c

]

we obtain the first equality. Since
[

a b
0 c

]

=

[

1 0
0 c

b

] [

1 1
0 1

] [

1 0
0 b

] [

0 1
1 0

] [

1 0
0 a

] [

0 1
1 0

]

we have

ϕ

([

a b
0 c

])

=





f(a) xTG(b)EG(a)E f(b)
0 G( c

b
)V G(b)EG(a)E f(b)G( c

b
)y

0 0 f(c)





Since

[

1 1
0 0

]

=

[

1 1
0 0

] [

0 1
1 0

]

we have xTE = xT and similarly Ey = y. So

xTG(b)EG(a)E = xTEG(a)EG(b) = xTG(a)EG(b)
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and

f(b)G(
c

b
)y = EG(b)EG(b)G(

c

b
)y = EG(b)EG(c)y = G(c)EG(b)y.

Similarly we obtain the third equality.

Step 8. If a, b, c 6= 0 then

ϕ

([

a b
c d

])

=

=





f(a) xTG(a)EG(b) f(b)
G(c)EG(a)y G(c)EG(a)(yxT + V EG(ad

bc
− 1)V )G( b

a
) G(d)EG(b)y

f(c) xTG(c)EG(d) f(d)





Furthermore, vectors x, y 6= 0.

Proof: From
[

a b
0 0

]

=

[

1 0
0 0

] [

a b
c d

]

we obtain the first row. Similarly we obtain the last row and the first and the

last column. From the equality

[

a b
c d

]

=

[

a 0
c d− bc

a

] [

1 b
a

0 1

]

we see that the middle block is equal to

G(c)EG(a)yxTG(
b

a
) +G(c)EG(a)V EG(

d

c
− b

a
)G(

a

b
)V G(

b

a
) =

G(c)EG(a)(yxT + V EG(
ad

bc
− 1)V )G(

b

a
).

Now, if x = 0 then the first row of ϕ(A) is equal to [f(a), 0, ..., 0, f(b)] for every

A ∈ M2(F). So the image of ϕ is a matrix semigroup where every element has

0 on the second place in the first row. Thus it is reducible (Proposition 4.1).

So x 6= 0 and similarly y 6= 0. This completes the proof.
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4.3 Case n = 4

Theorem 4.4 Let ϕ : M2(F) → M4(F) be a semigroup homomorphism,

which is irreducible and non-degenerate. Then it has one of the following

forms:

(a)

ϕ

([

a b
c d

])

= Sĝ









a3 a2b ab2 b3

3a2c a2d+ 2abc 2abd+ b2c 3b2d
3ac2 2acd+ bc2 ad2 + 2bcd 3bd2

c3 c2d cd2 d3









S−1 =

= Sĝ(Sym3A)S−1,

where g : F → F is a field homomorphism and S ∈ M4(F) is an invertible

matrix,

(b)

ϕ

([

a b
c d

])

= S









g(a)h(a) g(a)h(b) g(b)h(a) g(b)h(b)
g(a)h(c) g(a)h(d) g(b)h(c) g(b)h(d)
g(c)h(a) g(c)h(b) g(d)h(a) g(d)h(b)
g(c)h(c) g(c)h(d) g(d)h(c) g(d)h(d)









S−1 =

= S(ĝ(A) ⊗ ĥ(A))S−1,

where g, h : F → F are field homomorphisms with g 6= h and S ∈ M4(F) is an

invertible matrix.

Remark: If in case (b) hold g = h then ϕ is reducible, since A ⊗ A ∼=
(A∨A)⊕ (A∧A). But if g(a) 6= h(a) for at least one a, then ϕ is irreducible,

because ϕ

([

1 0
0 a

])

is similar to









1 0 0 0
0 h(a) 0 0
0 0 g(a) 0
0 0 0 g(a)h(a)
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which has four distinct eigenvalues, so if ϕ were reducible, the possible invariant

subspace would be standard, i. e. S−1ϕ

([

a b
c d

])

S would have a constant

zero block.

Proof. Suppose that ϕ has the form of Lemma 4.3. Since the spectrum of

the matrix V is equal to {1} we have two possibilities: either V is similar to
[

1 2
0 1

]

or V = I . In the first case we may assume without loss of generality

that V =

[

1 2
0 1

]

.

Case 1. V =

[

1 2
0 1

]

.

Since
[

1 1
0 1

] [

1 0
0 2

]

=

[

1 0
0 2

] [

1 1
0 1

]2

for the middle parts of their images under ϕ holds V G(2) = G(2)V 2. So G(2)

is of the form

G(2) =

[

α β
0 2α

]

where α is nonzero. But
[

α β
0 2α

]

=

[

1 β/α
0 1

] [

α 0
0 2α

] [

1 β/α
0 1

]−1

and

[

1 β/α
0 1

]

commutes with V , so we may assume with no loss of generality

that

G(2) =

[

α 0
0 2α

]

.

The matrix

[

2 0
0 1

]

commutes with

[

1 0
0 2

]

and is similar to

[

1 0
0 2

]

, so

EG(2)E, the middle part of its image under ϕ, commutes with G(2) and is

similar to G(2), thus is either equal to

[

α 0
0 2α

]

or equal to

[

2α 0
0 α

]

. The

first case is impossible since

EG(2)EG(2) =

[

α2 0
0 4α2

]



70 4. MORE ON HOMOMORPHISMS FROM DIMENSION TWO

and that should be equal to f(2)I. Thus

EG(2)E =

[

2α 0
0 α

]

.

So E is of the form

E =

[

0 β
1/β 0

]

and f(2) = 2α2. Let us look again at the equality

[

1 1
0 1

] [

1 0
0 2

]

=

[

1 0
0 2

] [

1 1
0 1

]2

.

Writing xT = [x1, x2] and yT = [y1, y2] we have









1 αx1 2αx2 2α2

0 α 4α 2α2y1

0 0 2α 2α2y2

0 0 0 2α2









=









1 2x1 2x1 + 2x2 2 + x1y1 + x2y2

0 α 4α 2αy1 + 2αy2

0 0 2α 4αy2

0 0 0 2α2









so α = 2, x1 = x2 and y1 = y2. (y2 = 0 is impossible since y is eigenvector of

E.) Without loss of generality we may assume x1 = 1. Because

2 + x1y1 + x2y2 = f(2) = 8

we have y1 = 3. The vector y is an eigenvector of E, so β = 1.

The matrix

[

1 0
0 a

]

commutes with

[

1 0
0 2

]

, so G(a) is of the form

G(a) =

[

g(a) 0
0 h(a)

]

.

where g, h : F → F are semigroup homomorphisms and g(a)h(a) = f(a). So

ϕ

([

a b
0 0

])

=









f(a) h(a)g(b) g(a)h(b) f(b)
0 0 0 0
0 0 0 0
0 0 0 0
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Since

[

a b
0 0

] [

1 1
0 1

]

=

[

a a+ b
0 0

]

, we have









f(a) h(a)g(b) g(a)h(b) f(b)
0 0 0 0
0 0 0 0
0 0 0 0

















1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1









=

=









f(a) h(a)g(a+ b) g(a)h(a+ b) f(a+ b)
0 0 0 0
0 0 0 0
0 0 0 0









,

so f(a) + h(a)g(b) = h(a)(g(a) + g(b)) = h(a)g(a + b). If a 6= 0, we have

g(a) + g(b) = g(a+ b), so g is additive. Furthermore,

f(a) + 2h(a)g(b) + g(a)h(b) = g(a)h(a+ b),

so h(a) + 2h(a)g(b/a) + h(b) = h(a+ b). If also b 6= 0, we can interchange the

role of a and b, and obtain h(b)+2h(b)g(a/b)+h(a) = h(a+b). Subtracting the

second equality from the first, we see that h(a)/h(b) = g(a/b)2, so h(a) = g(a2)

and f(a) = g(a3).

Now, if a, b, c 6= 0, we have

G(c)EG(a)(yxT + V EG(
ad

bc
− 1)V )G(

b

a
) =

=

[

g(a2d+ 2abc) g(2abd+ b2c)
g(2acd+ bc2) g(ad2 + 2bcd)

]

so for all a, b, c, d

ϕ

([

a b
c d

])

= ĝ









a3 a2b ab2 b3

3a2c a2d+ 2abc 2abd + b2c 3b2d
3ac2 2acd+ bc2 ad2 + 2bcd 3bd2

c3 c2d cd2 d3









and we are in case (a) of the theorem.

Case 2. V = I.
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The mapping G : F → M2(F) is a semigroup homomorphism, so we have

three possibilities:

(i) G(a) = g(a)I for every a ∈ F where g : F → F is a semigroup homomor-

phism. In this case we may assume without loss of generality that xT = [1, 0].

But then the first row of

ϕ

([

a b
c d

])

is equal to [f(a), g(ab), 0, f(b)], thus ϕ is reducible (Proposition 4.1), so this

case is impossible.

(ii) G(a) is similar to

g(a)

[

1 h(a)
0 1

]

for every a ∈ F where g : F → F is a semigroup homomorphism and h : F → F

satisfies h(ab) = h(a) + h(b) with h(a) 6= 0 for at least one a ∈ F. We may

assume without loss of generality that

G(a) = g(a)

[

1 h(a)
0 1

]

.

Let us choose an a with h(a) 6= 0. The matrix

[

a 0
0 1

]

commutes with

[

1 0
0 a

]

and is similar to

[

1 0
0 a

]

, so

EG(a)E = g(a)

[

1 −h(a)
0 1

]

.

Thus E is of the form

E = ±
[

1 β
0 −1

]

.

If E =

[

1 β
0 −1

]

then yT = [y1, 0] and the first column of ϕ

([

a b
c d

])

is

equal to [f(a), ∗, 0, f(c)]; if E =

[

−1 −β
0 1

]

then xT = [0, x2] and the first

row of ϕ

([

a b
c d

])

is equal to [f(a), 0, ∗, f(b)]; in both cases ϕ is reducible.
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(iii) G(a) is similar to

[

h(a) 0
0 g(a)

]

for every a ∈ F where g, h : F → F

are semigroup homomorphisms and h(a) 6= g(a) for at least one a ∈ F. We

may assume without loss of generality that G(a) =

[

h(a) 0
0 g(a)

]

. Let us

choose an a with h(a) 6= g(a). If h(a) = −g(a), take
√
a instead of a, so that

h(a) 6= ±g(a). The same way as in case (a) we obtain that E is of the form

E =

[

0 β
1/β 0

]

This matrix is diagonally similar to

[

0 1
1 0

]

, so we may assume without loss

of generality that β = 1. Since xT = xTE and Ey = y we may assume without

loss of generality that xT = [1, 1] and yT = [y1, y1]. Now,

ϕ

([

a b
0 0

])

=









f(a) h(a)g(b) g(a)h(b) f(b)
0 0 0 0
0 0 0 0
0 0 0 0









and








f(a) h(a)g(b) g(a)h(b) f(b)
0 0 0 0
0 0 0 0
0 0 0 0

















1 1 1 1
0 1 0 y1

0 0 1 y1

0 0 0 1









=









f(a) h(a)g(a+ b) g(a)h(a+ b) f(a+ b)
0 0 0 0
0 0 0 0
0 0 0 0









,

so h(a)(g(a) + g(b)) = h(a)g(a + b) and g(a)(h(a) + h(b)) = g(a)h(a + b) If

a 6= 0, we have g(a) + g(b) = g(a+ b) and h(a) + h(b) = h(a + b), so g and h

are additive. From f(2) = g(2)h(2) = 4 = 2 + 2y1 it follows y1 = 1. Again, if

a, b, c 6= 0, we have

G(c)EG(a)(yxT + V EG(
ad

bc
− 1)V )G(

b

a
) =

[

g(a)h(d) g(b)h(c)
g(c)h(b) g(d)h(a)

]
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so for all a, b, c, d

ϕ

([

a b
c d

])

=









g(a)h(a) g(a)h(b) g(b)h(a) g(b)h(b)
g(a)h(c) g(a)h(d) g(b)h(c) g(b)h(d)
g(c)h(a) g(c)h(b) g(d)h(a) g(d)h(b)
g(c)h(c) g(c)h(d) g(d)h(c) g(d)h(d)









and we are in the case (b) of the theorem.

The only continuous field homomorphisms of complex numbers are the

identity and the conjugation (see [1], page 53). So we have the following

corollary.

Corollary 4.5 Let ϕ : M2(C) → M4(C) be a semigroup homomorphism,

which is irreducible, non-degenerate and continuous. Then

ϕ(A) = Sĝ(Sym3A)S−1,

where g : C → C is the identity or complex conjugation and S ∈ M4(C) is an

invertible matrix, or

ϕ

([

a b
c d

])

= S









aā ab̄ bā bb̄
ac̄ ad̄ bc̄ bd̄
cā cb̄ dā db̄
cc̄ cd̄ dc̄ dd̄









S−1,

where S ∈ M4(C) is an invertible matrix.

Proof. If ϕ is continuous, then so are the field homomorphisms g and h. Case

(a) of the theorem gives us the first possibility. If we are in the case (b) of the

theorem, then g is the identity and h is complex conjugation or the other way

around. But the matrices








aā ab̄ bā bb̄
ac̄ ad̄ bc̄ bd̄
cā cb̄ dā db̄
cc̄ cd̄ dc̄ dd̄









and









āa āb b̄a b̄b
āc ād b̄c b̄d
c̄a c̄b d̄a d̄b
c̄c c̄d d̄c d̄d









are simultaneously similar for all a, b, c, d, so we obtain the second possibil-

ity.
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4.4 Preserving cyclic unipotent

A matrix A ∈ Mn(F) is unipotent if its spectrum is equal to {1}. A matrix

A ∈ Mn(F) is cyclic if it has a cyclic vector, i. e. a vector x ∈ Fn for which

the set {x,Ax,A2x, ..., An−1x} spans all Fn. Every cyclic unipotent in Mn(F)

is similar to the matrix

















1 1 0 · · · 0 0

0 1 1
. . . 0 0

0 0 1
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 1 1

0 0 0 · · · 0 1

















.

Theorem 4.6 Let n ≥ 3 and ϕ : M2(F) → Mn(F) be a semigroup homomor-

phism, which is irreducible, non-degenerate and maps a cyclic unipotent to a

cyclic unipotent. Then

ϕ(A) = Sĝ(Symn−1A)S−1,

where g : F → F is a field homomorphism and S ∈ Mn(F) is an invertible

matrix.

Proof. Without loss of generality we may assume that

ϕ

([

1 1
0 1

])

=

















1 1 0 · · · 0 0

0 1 1
. . . 0 0

0 0 1
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 1 1

0 0 0 · · · 0 1

















.

Denoting

ϕ

([

1 0
0 2

])

= [xij ]
n
i,j=1
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and using the equality
[

1 1
0 1

] [

1 0
0 2

]

=

[

1 0
0 2

] [

1 1
0 1

]2

, (4.1)

we obtain

xi+1,j = xi,j−2 + 2xi,j−1

for all i, j = 1, 2, ..., n, where xkl = 0 if k or l is less than 1 or grater than n.

It follows that ϕ

([

1 0
0 2

])

is upper-triangular and xi+1,i+1 = 2xii. So

ϕ

([

1 0
0 2

])

= α













1 ∗ ∗ · · · ∗
0 2 ∗ · · · ∗
0 0 4

. . . ∗
...

...
. . .

. . .
...

0 0 0 · · · 2n−1













.

We may now apply a simultaneous similarity with an upper-triangular matrix,

so that

ϕ

([

1 0
0 2

])

is diagonal. This will change ϕ

([

1 1
0 1

])

, but it will still remain upper-

triangular. We again apply a simultaneous similarity with a diagonal matrix,

so that for

ϕ

([

1 1
0 1

])

= [wij ]
n
i,j=1

the entries will satisfy wi,i+1 = i. This similarity will leave ϕ

([

1 0
0 2

])

diagonal. So without loss of generality we may assume that

ϕ

([

1 1
0 1

])

=





















1 1 w13 · · · w1,n−1 w1n

0 1 2
. . . w2,n−1 w2n

0 0 1
. . . w3,n−1 w3n

...
...

. . .
. . .

. . .
...

0 0 0
. . . 1 n− 1

0 0 0 · · · 0 1
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and

ϕ

([

1 0
0 2

])

= α













1 0 0 · · · 0
0 2 0 · · · 0

0 0 4
. . . 0

...
...

. . .
. . .

...
0 0 0 · · · 2n−1













.

Let us prove that wij =
(

j−1
i−1

)

by induction on j − i. This is true if j = i + 1.

From the equality (4.1) it follows that

2j−1wij = 2i−1

j
∑

k=i

wikwkj.

Thus we obtain using the inductive hypothesis that

(2j−i − 2)wij =

j−1
∑

k=i+1

wikwkj =

j−1
∑

k=i+1

(

k − 1

i− 1

)(

j − 1

k − 1

)

=

=

j−1
∑

k=i+1

(k − 1)! (j − 1)!

(i− 1)! (k − i)! (k − 1)! (j − k)!
=

=
(j − 1)!

(i− 1)! (j − i)!

j−1
∑

k=i+1

(j − i)!

(k − i)! (j − k)!
=

(

j − 1

i− 1

)

(2j−i − 2).

Now, E11 commutes with

[

1 0
0 2

]

, so ϕ(E11) is diagonal. Since

[

1 1
0 1

]

E11 =

E11 it follows that ϕ(E11) = E11. Similarly we prove ϕ(E22) = Enn. So the

conclusion of step 1 of Lemma 4.3 holds, and thus all the steps of Lemma 4.3

also hold. It means that α = 1 and f(2) = 2n−1.

From
[

0 1
1 0

] [

2 0
0 2

] [

1 0
0 2

]−1

=

[

1 0
0 2

] [

0 1
1 0

]

it follows that

ϕ

([

0 1
1 0

])













2n−1 0 0 · · · 0
0 2n−2 0 · · · 0

0 0 2n−3 . . . 0
...

...
. . .

. . .
...

0 0 0 · · · 1













=



78 4. MORE ON HOMOMORPHISMS FROM DIMENSION TWO

=













1 0 0 · · · 0
0 2 0 · · · 0

0 0 4
. . . 0

...
...

. . .
. . .

...
0 0 0 · · · 2n−1













ϕ

([

0 1
1 0

])

so that ϕ

([

0 1
1 0

])

is counter-diagonal. Since the last column of

ϕ

([

1 1
0 1

])

is an eigenvector of ϕ

([

0 1
1 0

])

at eigenvalue 1, we have

ϕ

([

0 1
1 0

])

=













0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
0 1 · · · 0 0
1 0 · · · 0 0













.

The matrix

[

1 0
0 a

]

commutes with

[

1 0
0 2

]

, so ϕ

([

1 0
0 a

])

is diagonal of

the form

ϕ

([

1 0
0 a

])

=















1 0 0 · · · 0
0 f1(a) 0 · · · 0

0 0 f2(a)
. . . 0

...
...

. . .
. . .

...
0 0 0 · · · fn−1(a)















where f1, ..., fn−1 : F → F are semigroup homomorphisms and fi(a)fn−i−1(a) =

fn−1(a) = f(a) for every i = 0, ..., n− 1 writing f0(a) = 1. So

ϕ

([

a b
0 0

])

=

=









fn−1(a) fn−2(a)f1(b) fn−3(a)f2(b) · · · f1(a)fn−2(b) fn−1(b)
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0









.
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Since
[

a b
0 0

] [

1 1
0 1

]

=

[

a a + b
0 0

]

,

we have
i
∑

k=1

(

i− 1

k − 1

)

fn−k(a)fk−1(b) = fn−i(a)fi−1(a + b)

for every i = 1, 2, ..., n. Dividing by fn−i(a) and using

fn−i(a) = fn−1(a)/fi−1(a),

it follows for a 6= 0 that

fi(a + b) =
i
∑

k=0

(

i

k

)

fi(a)fk(b/a)

for i = 0, 1, ..., n − 1. So f1 is additive. Let us prove that fi(a) = f1(a
i) by

induction on i. Interchanging a and b we have

fi(a + b) =
i
∑

k=0

(

i

k

)

fi(b)fk(a/b)

for all a, b 6= 0. Summing to zero the first and the last term we obtain

i−1
∑

k=1

(

i

k

)

fi(a)fk(b/a) =
i−1
∑

k=1

(

i

k

)

fi(b)fk(a/b)

Dividing by fi(b) and writing c = a/b we have

fi(c)

i−1
∑

k=1

(

i

k

)

fk(1/c) = fi(c)

i−1
∑

k=1

(

i

k

)

fk
1 (1/c) =

i−1
∑

k=1

(

i

k

)

fk(c) =

i−1
∑

k=1

(

i

k

)

fk
1 (c) = f1(c

i)
i−1
∑

k=1

(

i

k

)

f i−k
1 (1/c) = f1(c

i)
i−1
∑

k=1

(

i

k

)

fk
1 (1/c)

so fi(c) = f1(c
i) for all c ∈ F except possibly for those c for which f1(1/c) is

zero of the polynomial

p(x) =
i−1
∑

k=1

(

i

k

)

xk.
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But the set of zeros of this polynomial is finite and fi is multiplicative, so

fi(c) = f1(c
i) for all c ∈ F.

Writing f1 = g we have

ϕ

([

1 0
0 a

])

=















1 0 0 · · · 0
0 g(a) 0 · · · 0

0 0 g(a2)
. . . 0

...
...

. . .
. . .

...
0 0 0 · · · g(an−1)















.

So we have

ϕ(A) = Symn−1A

for A =

[

1 1
0 1

]

, A =

[

1 0
0 0

]

, A =

[

0 1
1 0

]

, and A =

[

1 0
0 a

]

where 0 6= a ∈
F. But these matrices generate Mn(F) as a semigroup, so

ϕ(A) = Symn−1A

holds for every A ∈ M2(F).



Chapter 5

Homomorphisms from a
dimension to one dimension
higher

In this chapter we prove that every non-degenerate homomorphism from the

multiplicative semigroup of all n-by-n matrices over an algebraically closed

field of characteristic zero to the semigroup of (n + 1)-by-(n + 1) matrices

over the same field when n ≥ 3 is reducible and that every non-degenerate

homomorphism from the multiplicative semigroup of all 3-by-3 matrices over

an algebraically closed field of characteristic zero to the semigroup of 5-by-5

matrices over the same field is reducible.

5.1 Singular matrices

We first look where an non-degenerate irreducible homomorphism sends sin-

gular matrices.

Proposition 5.1 Let ϕ : Mn(F) → Mm(F) a semigroup homomorphism,

which sends 0 to 0 and identity to identity. Let

k = min{rankA;ϕ(A) 6= 0}.

81
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Then
(

n

k

)

≤ m.

If rank A = rank B then rank ϕ(A) = rank ϕ(B).

Proof. A semigroup homomorphism which sends I to I, maps invertible

matrices to invertible matrices. If rank A = rank B, then there exist such

invertible matrices P,Q that A = PBQ. So ϕ(A) = ϕ(P )ϕ(B)ϕ(Q) and rank

ϕ(A) = rank ϕ(B).

Let E1, E2, ..., Et be t =
(

n

k

)

distinct diagonal idempotents of rank k. Then

rank ϕ(E1) = rank ϕ(E2) = ... = rank ϕ(Et) ≥ 1. Since EiEj for i 6= j has rank

less than k, we have ϕ(Ei)ϕ(Ej) = 0, and ϕ(E1), ϕ(E2), ..., ϕ(Et) are disjoint

idempotents. We conclude that t(rank ϕ(E1)) ≤ m, implying
(

n

k

)

≤ m.

Proposition 5.2 Assume that n ≥ 3 and m < 2n. Let ϕ : Mn(F) → Mm(F)

be a semigroup homomorphism, which is non-degenerate and sends 0 to 0 and

identity to identity. Suppose that rank A = 1 implies rank ϕ(A) = 1. Then

rank A = 2 implies rank ϕ(A) = 2.

Proof. Denote by Eij the matrix which has 1 in the i-th row and the j-th

column, and 0 elsewhere. Matrices ϕ(E11), ϕ(E22), ...ϕ(Enn) ∈ Mm(F) are

disjoint commuting idempotents of rank 1. Let

P2 = E11 + E22, P3 = E11 + E33, ..., Pn = E11 + Enn.

Rank ϕ(P2) cannot be 1. Suppose rank ϕ(P2) ≥ 3. Then ϕ(P2), ϕ(P3), ...,

ϕ(Pn) are commuting idempotents of equal rank with products ϕ(Pi)ϕ(Pj) =

ϕ(E11). So

rank (ϕ(P2) + ϕ(P3) + ...+ ϕ(Pn)) ≥ 2(n− 1) + 1 ≥ m.
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Now ϕ(E22 + E33) has products of rank 1 with ϕ(P2) and ϕ(P3), and it is

disjoint from ϕ(P4), ..., ϕ(Pn), so

rank (ϕ(P2) + ϕ(P3) + ...+ ϕ(Pn) + ϕ(E22 + E33)) =

= rank (ϕ(P2) + ϕ(P3) + ...+ ϕ(Pn)) + 1,

which is a contradiction. So rank ϕ(P2) = 2 and, finally, rank A = 2 implies

rank ϕ(A) = 2.

The next proposition is trivially true for n = 3 and m < 6. We prove it

also for larger n.

Proposition 5.3 Assume that n > 4 and m < 2n or that n = 4 and m ≤ 5.

Let ϕ : Mn(F) → Mm(F) be a semigroup homomorphism, which is non-

degenerate and sends 0 to 0 and identity to identity. Then we have two possi-

bilities:

(a) if rank A = 1 then rank ϕ(A) = 1, and if rank A = 2 then rank ϕ(A) = 2,

or

(b) if rank A < n − 1 then ϕ(A) = 0, and if rank A = n − 1 then rank

ϕ(A) = 1.

Proof. Let

k = min{rankA;ϕ(A) 6= 0}.

Since ϕ is non-degenerate, 1 ≤ k ≤ n − 1. If n > 4, then m < 2n ≤
(

n

2

)

. If

n = 4, then m ≤ 5 <
(

4
2

)

. So by Proposition 5.1 k = 1 or k = n− 1.

Case (a): k = 1. The matrices E11, E22, ....Enn ∈ Mn(F) are idempotents

of rank 1, so ϕ(E11), ϕ(E22), ...ϕ(Enn) ∈ Mm(F) are disjoint commuting idem-

potents of the same rank, say l. Since they are disjoint, nl ≤ m, so l = 1.
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Thus rank A = 1 implies rank ϕ(A) = 1. Proposition 5.2 now gives us the

asserted result.

Case (b): k = n− 1. We have that rank A < n− 1 implies ϕ(A) = 0. Let

P1, P2, ....Pn ∈ Mn(F) be distinct diagonal idempotents of rank n − 1. Then

ϕ(P1), ϕ(P2), ....ϕ(Pn) ∈ Mm(F) are disjoint commuting idempotents with the

same rank, say l. Since they are disjoint, nl ≤ m, so l = 1. Thus rank

A = n− 1 implies rank ϕ(A) = 1.

5.2 Two possibilities

We will now explore the two possibilities which appear in Proposition 5.3. The

first one is that only 0 maps to 0.

Proposition 5.4 Assume that n ≥ 2 and m ≥ n. Let ϕ : Mn(F) → Mm(F)

be a semigroup homomorphism, which is non-degenerate and sends 0 to 0 and

identity to identity. Suppose that rank A = 1 implies rank ϕ(A) = 1 and that

rank A = 2 implies rank ϕ(A) = 2. Then

ϕ(A) = S

[

f̂(A) ∗
∗ ∗

]

S−1,

where f : F → F is a field homomorphism and S ∈ Mm(F) is an invertible

matrix.

Proof. Denote by Eij the matrix which has 1 in the i-th row and the j-th

column, and 0 elsewhere.

Matrices E11, E22, ..., Enn ∈ Mn(F) are disjoint commuting idempotents of

rank 1, so ϕ(E11), ϕ(E22), ...ϕ(Enn) ∈ Mm(F) are disjoint commuting idempo-

tents of rank 1. It follows that they are simultaneously similar to

E11, E22, ..., Enn ∈ Mm(F).
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Thus we may assume without loss of generality that

ϕ(Eii) = Eii.

Let δij be the Kronecker symbol, δij = 1 if i = j, and δij = 0 otherwise. We

have

δkiδjlϕ(Eij) = ϕ(δkiδjlEij) = ϕ(EkkEijEll) = Ekkϕ(Eij)Ell,

so

ϕ(Eij) =

[

tijEij 0
0 ∗

]

.

Since EijEji = Eij , we obtain tij 6= 0, and since ϕ(Eij) has rank 1, we have

∗ = 0. Thus

ϕ(Eij) = tijEij .

We may now apply a simultaneous similarity with a diagonal matrix

diag(1, t12, ..., t1n, 1, ..., 1)

to obtain ϕ(E1j) = E1j . Now

E1j = ϕ(E1j) = ϕ(E1iEij) = E1itijEij = tijE1j ,

so tij equals 1 for all i, j and therefore

ϕ(Eij) = Eij.

Let a be an element in F.

ϕ(aE11) = ϕ(E11aE11E11) = E11ϕ(aE11)E11,

so the only non-zero entry of ϕ(aE11) is at the (1, 1) position. So there exists

such mapping f : F → F that

ϕ(aE11) = f(a)E11.
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Mapping f is obviously multiplicative. Furthermore

ϕ(aEij) = ϕ(aEi1E11E1j) = Ei1ϕ(aE11)E1j = Ei1f(a)E11E1j = f(a)Eij

Now let A = [aij]
n

i,j=1 be a matrix in Mn(F). We have

Eiiϕ(A)Ejj = ϕ(EiiAEjj) = ϕ(aijEij) = f(aij)Eij ,

so the ij-th entry of ϕ(A) is f(aij) and

ϕ(A) =

[

f̂(A) ∗
∗ ∗

]

.

Further, the matrix

ϕ(E11 + E22) =

[

E11 + E22 ∗
∗ ∗

]

has rank 2; thus we may assume

ϕ(E11 + E22) =

[

E11 + E22 ∗
0 0

]

.

Let A = [aij ]
n

i,j=1 be a matrix in Mn(F), such that aij = 0 if i ≥ 3. Then

ϕ(A) = ϕ((E11 + E22)A) =

[

E11 + E22 ∗
0 0

] [

f̂(A) ∗
∗ ∗

]

=

[

f̂(A) ∗
0 0

]

.

Let us now prove that f is additive. For a, b ∈ F we have

f(a+ b)E11 = ϕ((a+ b)E11) = ϕ((aE11 + bE12)(E11 + E21)) =

=

[

f(a)E11 + f(b)E12 ∗
0 0

] [

E11 + E21 ∗
0 0

]

=

[

(f(a) + f(b))E11 ∗
0 0

]

,

so f(a+ b) = f(a) + f(b), and thus f̂ is multiplicative.

The second possibility is that only almost full rank matrices map to non-

zero matrices.
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Proposition 5.5 Assume that n ≥ 3 and m ≥ n. Let ϕ : Mn(F) → Mm(F)

be a semigroup homomorphism, which is non-degenerate and sends 0 to 0 and

identity to identity. Suppose that rank A < n − 1 implies ϕ(A) = 0 and that

rank A = n− 1 implies rank ϕ(A) = 1. Then

ϕ(A) = S

[

f̂(Cof(A)) ∗
∗ ∗

]

S−1,

where f : F → F is a homomorphism of the multiplicative semigroup (F, ·) and

S ∈ Mm(F) is an invertible matrix.

Proof. Denote by Eij the matrix which has 1 in the i-th row and the j-th

column, and 0 elsewhere. Introduce Pii = I − Eii ∈ Mn(F), and let Ii be the

identity matrix in Mi(F). Further, let Ni be the matrix in Mi(F), defined

by Ni = E12 + ... + Ei−1,i. Denote Pij = Ii−1 ⊕ NT
j−i+1 ⊕ In−j if i < j, and

Pij = Ij−1 ⊕Ni−j+1 ⊕ In−i if i > j.

The matrices P11, P22, ..., Pnn ∈ Mn(F) are disjoint commuting idempo-

tents of rank n − 1, so ϕ(E11), ϕ(E22), ..., ϕ(Enn) ∈ Mm(F) are disjoint

commuting idempotents of rank 1. So they are simultaneously similar to

E11, E22, ..., Enn ∈ Mm(F). Without loss of generality we may thus assume

that

ϕ(Pii) = Eii.

Observe that Pij = PikPkj and PikPlj has rank less than n − 1 if k 6= l. We

now have

δkiδjlϕ(Pij) = ϕ(δkiδjlPij) = ϕ(PkkPijPll) = Ekkϕ(Pij)Ell,

so

ϕ(Pij) =

[

tijEij 0
0 ∗

]

.
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The matrix ϕ(Pij) has rank 1, so tij 6= 0 and ∗ = 0. This implies

ϕ(Pij) = tijEij .

We may now apply a simultaneous similarity with a diagonal matrix

diag(1, t12, ..., t1n, 1, ..., 1)

to obtain ϕ(P1j) = E1j . Now

E1j = ϕ(P1j) = ϕ(P1iPij) = E1itijEij = tijE1j ,

so tij = 1 for all i, j and

ϕ(Pij) = Eij .

Let A ∈ Mn−1(F) be arbitrary matrix and A′ = 01 ⊕A ∈ Mn(F). Then

ϕ(A′) = ϕ(P11A
′P11) = E11ϕ(A′)E11,

so the only non-zero entry of ϕ(A′) is at the (1, 1) position. Thus we have a

multiplicative mapping ϕ′ : Mn−1(F) → F. By Proposition 2.1 there exists a

multiplicative mapping f : F → F such that

ϕ′(A) = f(detA)

and

ϕ(A′) = f(detA)E11 = f(detA′
11)E11.

Now let B ∈ Mn(F). We have

Eiiϕ(B)Ejj = ϕ(PiiBPjj) = ϕ(Pi1P1iBPj1P1j) = Ei1ϕ(P1iBPj1)E1j .

The matrix P1iBPj1 has the form of A′, so ϕ(P1iBPj1) = f(detBij)E11 and

Eiiϕ(B)Ejj = Ei1f(detBij)E11E1j = Eiif(detBij)Ejj.
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Thus the ij-th entry of ϕ(A) is f(detAij) and

ϕ(A) =

[

f̂(Cof(A)) ∗
∗ ∗

]

.

This ends the proof.

We will now give the proof of the Theorem 2.2.

Proof. (of the Theorem 2.2) Let n = 2. Since ϕ is non-degenerate, also

m = 2 and ϕ maps matrices of rank 1 to matrices of rank 1. By Proposition

5.4 we obtain the asserted form. Assume now that n ≥ 3 and let

k = min{rankA;ϕ(A) 6= 0}.

Then
(

n

k

)

≤ m by Proposition 5.1. Suppose that m < n. Then k = 0, which is

impossible or k = n, which gives us a degenerate homomorphism. Thus m is

equal to n. By Proposition 5.3 we have two possibilities:

(a) rank A = 1 implies rank ϕ(A) = 1 and rank A = 2 implies rank ϕ(A) = 2

or

(b) rank A < n−1 implies ϕ(A) = 0 and rank A = n−1 implies rank ϕ(A) = 1.

In case (a) we obtain by Proposition 5.4 a form

ϕ(A) = Sf̂(A)S−1,

where f : F → F is a field homomorphism and S ∈ Mm(F) is an invertible

matrix. In case (b) we obtain by Proposition 5.5 a form

ϕ(A) = Sf̂(Cof(A))S−1,

where f : F → F is a semigroup homomorphism and S ∈ Mm(F) is an

invertible matrix. It remains to prove that f is additive. To show this, we

observe that
[

a+ b 0
0 0

]

⊕ In−2 =

([

a b
0 0

]

⊕ In−2

)([

1 0
1 0

]

⊕ In−2

)
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so that

f(a+ b)E22 = ϕ

([

a + b 0
0 0

]

⊕ In−2

)

=

= ϕ

([

a b
0 0

]

⊕ In−2

)

ϕ

([

1 0
1 0

]

⊕ In−2

)

=

= (f(b)E21 + f(a)E22)(E12 + E22) = (f(a) + f(b))E22.

Thus we have f(a + b) = f(a) + f(b) for all a, b ∈ F and this ends the

proof.

5.3 Case m = n + 1

We will now prove the main theorem of this chapter. We will assume that

m = n + 1 and show that in this case either of the two possibilities of the

previous section gives us reducibility.

Theorem 5.6 Assume that n ≥ 3. Every non-degenerate semigroup homo-

morphism ϕ : Mn(F) → Mn+1(F) is reducible.

Proof. Suppose ϕ : Mn(F) → Mn+1(F) is an irreducible non-degenerate

semigroup homomorphism. An irreducible semigroup homomorphism maps 0

to 0, I to I and invertible matrices to invertible matrices. By Proposition 5.3

we have two possibilities:

(a) rank A = 1 implies rank ϕ(A) = 1 and rank A = 2 implies rank ϕ(A) = 2

or

(b) rank A < n−1 implies ϕ(A) = 0 and rank A = n−1 implies rank ϕ(A) = 1.

In case (a)

ϕ(A) = S

[

f̂(A) ∗
∗ ∗

]

S−1,
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where f : F → F is a field homomorphism and S ∈ Mn+1(F) is an invertible

matrix. So for arbitrary A ∈ Mn(F) we now have

ϕ(A) =

[

f̂(A) ϕ12(A)
ϕ21(A) ϕ22(A)

]

.

If also B ∈ Mn(F), then

ϕ(AB) =

[

f̂(AB) ϕ12(AB)
ϕ21(AB) ϕ22(AB)

]

=

[

f̂(A) ϕ12(A)
ϕ21(A) ϕ22(A)

] [

f̂(B) ϕ12(B)
ϕ21(B) ϕ22(B)

]

=

=

[

f̂(A)f̂(B) + ϕ12(A)ϕ21(B) ∗
∗ ∗

]

.

So ϕ12(A)ϕ21(B) = 0 for all A,B ∈ Mn(F). If ϕ12(A) 6= 0 for some A ∈
Mn(F), we have a nonzero linear functional, which is zero on the image of ϕ.

So ϕ is reducible Proposition 4.1. If ϕ12(A) = 0 for every A ∈ Mn(F), ϕ is

reducible by the same argument.

In case (b)

ϕ(A) = S

[

f̂(Cof(A)) ∗
∗ ∗

]

S−1,

where f : F → F is a semigroup homomorphism and S ∈ Mn+1(F) is an

invertible matrix.

We consider the images under ϕ of the permutation matrices. Denote by

Ri the transposition matrix Ii−1 ⊕ (E12 + E21) ⊕ In−i−1 for i = 1, 2, ..., n− 1.

If j < i or j > i + 1, we have PjjRi = PjjRiPjj, so Ejjϕ(Ri) = Ejjϕ(Ri)Ejj,

thus the only non-zero element in the j-th row of ϕ(Ri) is in the j-th position.

The same holds for the j-th column. On the other hand, PiiRi = Pi(i+1), so

Eiiϕ(Ri) = Ei(i+1), thus the only non-zero element in the i-th row of ϕ(Ri) is

in the (i+ 1)-st position and vice versa. The same holds for the i-th and the

(i+ 1)-st column. We have thus seen that

ϕ(Ri) = S

[

f̂(Cof(Ri)) 0
0 ∗

]

S−1.
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The entry in the last row and column must be ±1, since Ri is an involution.

Since the matrices Ri generate the whole group of permutation matrices, we

have for every permutation matrix P

ϕ(P ) = S

[

f̂(Cof(P )) 0
0 ±1

]

S−1.

Now let A = A′ ⊕ In−2, where

A′ =

[

a b
c d

]

∈ M2(F).

So

ϕ(A) = S

[

f̂

([

d c
b a

])

⊕ f(ad− bc)In−2 ∗
∗ ∗

]

S−1,

Multiplying A by P33, ...Pnn on the left or on the right side we obtain

ϕ(A)n+1,i = 0 and ϕ(A)i,n+1 = 0

for i = 3, ..., n Thus

ϕ(A) = S







f̂

([

d c
b a

])

0 ∗
0 f(ad− bc)In−2 0
∗ 0 ∗






S−1.

Let C1,2,(n+1) be a compression to the first, second and last rows and columns

of a matrix. Define

ψ(A′) = C1,2,(n+1)

(

S−1ϕ(A′ ⊕ In−2)S
)

.

It is obvious that ψ is multiplicative and we have just seen that

ψ

([

a b
c d

])

=

[

f̂

([

d c
b a

])

∗
∗ ∗

]

.

By Theorem 3.4 we have two possibilities:
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(i)

ψ

([

a b
c d

])

=

[

f̂

([

d c
b a

])

0

0 ∗

]

and f is additive. In this case we have

ϕ(A) = S







f̂

([

d c
b a

])

0 0

0 f(ad− bc)In−2 0
0 0 ∗






S−1 =

= S

[

f̂(Cof(A)) 0
0 ∗

]

S−1,

for A = A′ ⊕ In−2. The same holds for permutation matrices. Since matrices

of the form A = A′ ⊕ In−2 and permutation matrices generate the complete

Mn(F), we obtain

ϕ(A) = S

[

f̂(Cof(A)) 0
0 ∗

]

S−1,

for all A ∈ Mn(F), and consequently ϕ is reducible.

(ii)

ψ

([

a b
c d

])

= ĝ









d2 c2 dc
b2 a2 ba
2db 2ca da+ cb







 ,

where f(x) = g(x2) and g is additive. In this case we have

ϕ(A) = Sĝ

















d2 c2 0 dc
b2 a2 0 ba
0 0 (ad− bc)2In−2 0

2db 2ca 0 da+ cb

















S−1

for A = A′ ⊕ In−2. Now let

A =





1 1 0
0 1 0
0 0 1



⊕ In−3

and B = R2AR2, so

B =





1 0 1
0 1 0
0 0 1



⊕ In−3,
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We have

AB = BA =





1 1 1
0 1 0
0 0 1



⊕ In−3,

but on the other hand

ϕ(A) = S













1 0 0 0 0
1 1 0 0 1
0 0 1 0 0
0 0 0 In−3 0
2 0 0 0 1













S−1,

ϕ(B) = S













1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 In−3 0
0 0 0 0 ±1

























1 0 0 0 0
1 1 0 0 1
0 0 1 0 0
0 0 0 In−3 0
2 0 0 0 1













·

·













1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 In−3 0
0 0 0 0 ±1













S−1 = S













1 0 0 0 0
0 1 0 0 0
1 0 1 0 ±1
0 0 0 In−3 0
±2 0 0 0 1













S−1,

so

ϕ(A)ϕ(B) = S













1 0 0 0 0
1 ± 2 1 0 0 1

1 0 1 0 ±1
0 0 0 In−3 0

2 ± 2 0 0 0 1













S−1

and

ϕ(B)ϕ(A) = S













1 0 0 0 0
1 1 0 0 1

1 ± 2 0 1 0 ±1
0 0 0 In−3 0

2 ± 2 0 0 0 1













S−1.

This is a contradiction, so that the possibility (ii) cannot occur.

Remark: Case (a) in the proof is general: If n ≥ 3, m > n and ϕ :

Mn(F) → Mm(F) ia a non-degenerate semigroup homomorphism such that
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rank A = 1 implies rank ϕ(A) = 1 and rank A = 2 implies rank ϕ(A) = 2,

then ϕ is reducible.

5.4 Case n = 3 and m = 4, 5

We will now explore the case n = 3 a little further.

Theorem 5.7 Assume that m = 4 or m = 5. Every non-degenerate semi-

group homomorphism ϕ : M3(F) → Mm(F) is reducible.

Proof. If m = 4, this is a special case of Theorem 5.6, so let m = 5.

Suppose ϕ : M3(F) → M5(F) is an irreducible non-degenerate semigroup

homomorphism. Again we have two possibilities:

(a) rank A = 1 implies rank ϕ(A) = 1 and rank A = 2 implies rank ϕ(A) = 2

or

(b) rank A = 1 implies ϕ(A) = 0 and rank A = 2 implies rank ϕ(A) = 1.

In case (a) the same proof as in Theorem 5.6 works.

In case (b)

ϕ(A) = S

[

f̂(Cof(A)) ∗
∗ ∗

]

S−1,

where f : F → F is a semigroup homomorphism and S ∈ M5(F) is an invertible

matrix. Similarly as in Theorem 5.6 we prove, that if P is a permutation

matrix, then

ϕ(P ) = S

[

f̂(Cof(P )) 0
0 ∗

]

S−1, (5.1)

and if

A =





a b 0
c d 0
0 0 1



 ,
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then

ϕ(A) = S







f̂

([

d c
b a

])

0 ∗
0 f(ad− bc) 0
∗ 0 ∗






S−1.

Let C1,2,4,5 be a compression to the first, second and fourth and fifth rows and

columns of a matrix. Define ψ : M2(F) → M4(F)

ψ(A′) = C1,2,4,5

(

S−1ϕ(A′ ⊕ I1)S
)

.

It is obvious that ψ is multiplicative and we have just seen that

ψ

([

a b
c d

])

=

[

f̂

([

d c
b a

])

∗
∗ ∗

]

.

The map ψ may be irreducible or reducible. If it is irreducible it has one of the

forms (a) or (b) of Theorem 4.4. If it is reducible, its image has an irreducible

invariant subspace of dimension at least two, so this irreducible subspace is of

dimension two or three. Thus we have four possibilities to explore:

(i)

ψ

([

a b
c d

])

= ĝ

















d3 c3 c2d cd2

b3 a3 a2b ab2

3b2d 3a2c a2d+ 2abc 2abd+ b2c
3bd2 3ac2 2acd+ bc2 ad2 + 2bcd

















,

where f(x) = g(x2) and g is additive. In this case we have

ϕ(A) = Sĝ

























d3 c3 0 c2d cd2

b3 a3 0 a2b ab2

0 0 (ad− bc)3 0 0
3b2d 3a2c 0 a2d+ 2abc 2abd+ b2c
3bd2 3ac2 0 2acd+ bc2 ad2 + 2bcd

























S−1

for A = A′ ⊕ I1. Furthermore, we have

ϕ(R1) = S













0 1 0 0 0
1 0 0 0 0
0 0 −1 0 0
0 0 0 0 1
0 0 0 1 0













S−1,
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and, using (5.1), it follows that

ϕ(R2) = S













−1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 e1 e2
0 0 0 e3 e4













S−1,

where the lower-right corner E =

[

e1 e2
e3 e4

]

is an involution similar to

[

0 1
1 0

]

and the product

[

0 1
1 0

]

E is of order three or one. In particular, e1 + e4 = 0

and e2 + e3 6= 0, so that e1 + e2 + e3 + e4 6= 0. Now let

A =





1 1 0
0 1 0
0 0 1





and

B = R2AR2 =





1 0 1
0 1 0
0 0 1



 .

The matrices A and B commute, but

ϕ(A) = S













1 0 0 0 0
1 1 0 1 1
0 0 1 0 0
3 0 0 1 2
3 0 0 0 1













S−1,

ϕ(B) = S

















1 0 0
0 1 0
−1 0 1









0 0
0 0
1 1



E

E

[

−3 0 0
−3 0 0

]

E

[

1 2
0 1

]

E













,

so the upper-left 3-by-3 corner of S−1ϕ(A)ϕ(B)S is equal to





1 0 0
1 1 0
−1 0 1



+





0 0
1 1
0 0



E

[

−3 0 0
−3 0 0

]

=





1 0 0
1 − 3(e1 + e2 + e3 + e4) 1 0

−1 0 1
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and the upper-left 3-by-3 corner of S−1ϕ(B)ϕ(A)S is equal to




1 0 0
1 1 0
−1 0 1



+





0 0
0 0
1 1



E

[

3 0 0
3 0 0

]

=





1 0 0
1 1 0

−1 + 3(e1 + e2 + e3 + e4) 0 1





This is a contradiction, possibility (i) cannot occur.

(ii)

ψ

([

a b
c d

])

=









g(d)h(d) g(c)h(c) g(c)h(d) g(d)h(c)
g(b)h(b) g(a)h(a) g(a)h(b) g(b)h(a)
g(b)h(d) g(a)h(c) g(a)h(d) g(b)h(c)
g(d)h(b) g(c)h(a) g(c)h(b) g(d)h(a)









S−1,

where f(x) = g(x)h(x) and g, h are additive. In this case we have

ϕ(A) =

S













g(d)h(d) g(c)h(c) 0 g(c)h(d) g(d)h(c)
g(b)h(b) g(a)h(a) 0 g(a)h(b) g(b)h(a)

0 0 g(ad− bc)h(ad − bc) 0 0
g(b)h(d) g(a)h(c) 0 g(a)h(d) g(b)h(c)
g(d)h(b) g(c)h(a) 0 g(c)h(b) g(d)h(a)













S−1

for A = A′ ⊕ I1. Again

ϕ(R2) = S













1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 e1 e2
0 0 0 e3 e4













S−1,

where lower-right corner E =

[

e1 e2
e3 e4

]

is involution similar to

[

0 1
1 0

]

, and

e1 + e2 + e3 + e4 6= 0. For

A =





1 1 0
0 1 0
0 0 1





and

B = R2AR2 =





1 0 1
0 1 0
0 0 1
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we have

ϕ(A) = S













1 0 0 0 0
1 1 0 1 1
0 0 1 0 0
1 0 0 1 0
1 0 0 0 1













S−1

and

ϕ(B) = S

















1 0 0
0 1 0
1 0 1









0 0
0 0
1 1



E

E

[

1 0 0
1 0 0

]

E

[

1 0
0 1

]

E













.

so the upper-left 3-by-3 corner of S−1ϕ(A)ϕ(B)S is equal to





1 0 0
1 + e1 + e2 + e3 + e4 1 0

1 0 1





and the upper-left 3-by-3 corner of S−1ϕ(B)ϕ(A)S is equal to





1 0 0
1 1 0

1 + e1 + e2 + e3 + e4 0 1



 .

Since A and B commute, this is a contradiction, possibility (ii) cannot occur.

(iii)

ψ

([

a b
c d

])

=

[

f̂

([

d c
b a

])

∗
0 ∗

]

and f is additive. In this case we have

ϕ(A) = S

[

f̂(Cof(A)) ∗
0 ∗

]

S−1

for A = A′ ⊕ I1. The same holds for permutation matrices. Since matrices of

the form A = A′ ⊕ I1 and permutation matrices generate complete M3(F), we

obtain

ϕ(A) = S

[

f̂(Cof(A)) ∗
0 ∗

]

S−1,
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for all A ∈ M3(F), and consequently ϕ is reducible.

(iv)

ψ

([

a b
c d

])

= ĝ

















d2 c2 dc ∗
b2 a2 ba ∗
2db 2ca da+ cb ∗
0 0 0 ∗

















,

where f(x) = g(x2) and g is additive. In this case we have

ϕ(A) = Sĝ

























d2 c2 0 dc ∗
b2 a2 0 ba ∗
0 0 (ad− bc)2 0 0

2db 2ca 0 da+ cb ∗
0 0 0 0 ∗

























S−1

for A = A′ ⊕ I1. Now

ϕ(R1) = S













0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 a
0 0 0 0 ±1













S−1.

If the last entry in the last row is equal to 1, then a = 0 and the lower-right

2-by-2 corner of every permutation matrix is equal to I2, and consequently ϕ

is reducible. So the last entry in the last row is equal to −1. We may now

apply a simultaneous similarity with a matrix of the form I + αE45 to obtain

a = 0 and without disturbing the first four columns. Further,

ϕ(R2) = S













1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 e1 e2
0 0 0 e3 e4













S−1,

where the lower-right corner

E =

[

e1 e2
e3 e4

]
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is an involution similar to

[

1 0
0 −1

]

and the product

[

1 0
0 −1

]

E is of order

three or one. So either E =

[

1 0
0 −1

]

or it has the form

E =

[

−1
2

b
3
4b

1
2

]

where b 6= 0. In the first case again ϕ is reducible, in the second case we may

apply a simultaneous similarity with a diagonal matrix of the form I4 ⊕ [β] to

obtain b = 1
2
. So

ϕ(R2) = S













1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 −1

2
1
2

0 0 0 3
2

1
2













S−1.

For

A =





1 1 0
0 1 0
0 0 1





and

B = R2AR2 =





1 0 1
0 1 0
0 0 1





we now have

ϕ(A) = S













1 0 0 0 x
1 1 0 1 y
0 0 1 0 0
2 0 0 1 z
0 0 0 0 1













S−1

and

ϕ(B) = S













1 0 0 3x
2

x
2

0 1 0 0 0
1 0 1 −1

2
+ 3y

2
1
2

+ y

2

−1 0 0 1 − 3z
4

−z
4

3 0 0 9z
4

1 + 3z
4













S−1.
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Since A and B commute, ϕ(A) and ϕ(B) must also commute. Thus we obtain

x = 0, y = 1
3

and z = 0. Now let

C = R1R2R1AR1R2R1 =





1 0 0
0 1 0
0 1 1



 .

The matrices A and C commute, but

ϕ(A) = S













1 0 0 0 0
1 1 0 1 1

3

0 0 1 0 0
2 0 0 1 0
0 0 0 0 1













S−1

and

ϕ(C) = S













1 0 0 0 0
0 1 1 −1 −1

3

0 0 1 0 0
0 0 −1 1 0
0 0 −3 0 1













S−1

do not commute. Again we get a contradiction and this ends the proof.

5.5 Case m = 6

In this concluding section we will give three examples of irreducible non-

degenerate homomorphisms, which go to the dimension 6. We have seen in

previous section that every non-degenerate homomorphism from dimension 3

to dimension 5 is reducible. But there exist an irreducible non-degenerate ho-

momorphism from dimension 4 to dimension 6, and two different irreducible

non-degenerate homomorphisms from dimension 3 to dimension 6.

Example: There exist two essentially different irreducible non-degenerate

semigroup homomorphisms ϕ : M3(F) → M6(F):

(a) Symmetric square:

ϕ(A) = Sym2A;
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explicitly

ϕ









a b c
d e f
g h i







 =

















a2 b2 c2 ab ac bc
d2 e2 f 2 de df ef
g2 h2 i2 gh gi hi
2ad 2be 2cf ae+ bd af + cd bf + ce
2ag 2bh 2ci ah+ bg ai+ cg bi + ch
2dg 2eh 2fi dh+ eg di+ fg ei+ fh

















.

(b) Symmetric square of exterior power:

ϕ(A) = Sym2(A ∧ A);

explicitly, we give it column by column:

ϕ









a b c
d e f
g h i







 = [ b1 b2 b3 b4 b5 b6 ]

where

b1 =

















b2d2 − 2abde+ a2e2

b2g2 − 2abgh+ a2h2

e2g2 − 2degh+ d2h2

2b2dg − 2abeg − 2abdh+ 2a2eh
2bdeg − 2ae2g − 2bd2h + 2adeh
2beg2 − 2bdgh− 2aegh+ 2adh2

















,

b2 =

















c2d2 − 2acdf + a2f 2

c2g2 − 2acgi+ a2i2

f 2g2 − 2dfgi+ d2i2

2c2dg − 2acfg − 2acdi+ 2a2fi
2cdfg − 2af 2g − 2cd2i+ 2adfi
2cfg2 − 2cdgi− 2afgi+ 2adi2

















,

b3 =

















c2e2 − 2bcef + b2f 2

c2h2 − 2bchi+ b2i2

f 2h2 − 2efhi+ e2i2

2c2eh− 2bcfh− 2bcei + 2b2fi
2cefh− 2bf 2h− 2ce2i+ 2befi
2cfh2 − 2cehi− 2bfhi+ 2bei2

















,
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b4 =

















bcd2 − acde− abdf + a2ef
bcg2 − acgh− abgi+ a2hi
efg2 − dfgh− degi+ d2hi

2bcdg − aceg − abfg − acdh+ a2fh− abdi+ a2ei
cdeg + bdfg − 2aefg − cd2h + adfh− bd2i+ adei
ceg2 + bfg2 − cdgh− afgh− bdgi− aegi+ 2adhi

















,

b5 =

















bcde− ace2 − b2df + abef
bcgh− ach2 − b2gi+ abhi
efgh− dfh2 − e2gi+ dehi

bceg − b2fg + bcdh− 2aceh+ abfh− b2di+ abei
ce2g − befg − cdeh+ 2bdfh− aefh− bdei+ ae2i
cegh+ bfgh− cdh2 − afh2 − 2begi+ bdhi+ aehi

















,

b6 =

















c2de− bcdf − acef + abf 2

c2gh− bcgi− achi+ abi2

f 2gh− efgi− dfhi+ dei2

c2eg − bcfg + c2dh− acfh− bcdi− acei+ 2abfi
cefg − bf 2g + cdfh− af 2h− 2cdei+ bdfi+ aefi
2cfgh− cegi− bfgi− cdhi− afhi+ bdi2 + aei2

















.

Example: There exists an irreducible non-degenerate semigroup homomor-

phism ϕ : M4(F) → M6(F), an exterior power:

ϕ(A) = A ∧A;

explicitly, we give it column by column:

ϕ

















a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

















= [ c1 c2 c3 c4 c5 c6 ]

where

[ c1 c2 ] =

















a11a22 − a12a21 a11a23 − a13a21

a11a32 − a12a31 a11a33 − a13a31

a11a42 − a12a41 a11a43 − a13a41

a21a32 − a22a31 a21a33 − a23a31

a21a42 − a22a41 a21a43 − a23a41

a31a42 − a32a41 a31a43 − a33a41

















,



5.5. Case m = 6 105

[ c3 c4 ] =

















a11a24 − a14a21 a12a23 − a13a22

a11a34 − a14a31 a12a33 − a13a32

a11a44 − a14a41 a12a43 − a13a42

a21a34 − a24a31 a22a33 − a23a32

a21a44 − a24a41 a22a43 − a23a42

a31a44 − a34a41 a32a43 − a33a42

















,

[ c5 c6 ] =

















a12a24 − a14a22 a13a24 − a14a23

a12a34 − a14a32 a13a34 − a14a33

a12a44 − a14a42 a13a44 − a14a43

a22a34 − a24a32 a23a34 − a24a33

a22a44 − a24a42 a23a44 − a24a43

a32a44 − a34a42 a33a44 − a34a43

















.
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[26] M. A. Naimark, A. I. Štern: Theory of Group Representations, Springer-

Verlag, New York, 1982

[27] J. Okninski: Semigroups of matrices, Series in Algebra, 6. World Sci-
entific Publishing Co., 1998
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Izjava

Izjavljam, da je to delo rezultat lastnega raziskovalnega dela.

Damjana Kokol Bukovšek
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