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Chris R. de Freitas: Vloga in pomen jamske mikroklime pri 
trajnostni rabi in upravljanju turističnih jam
Jamska mikroklima  pomembno vpliva na razvoj in obstoj  
favne in flore ter vpliva ter na  številne procese v jama�, kot 
npr. rasti kapnikov. Zato je razumevanje jamske mikroklime 
izjemno pomembno pri upravljanju turistični� jam. V članku 
predstavimo mikroklimatske  raziskave v jama� na Novi Ze-
landij, predvsem z vidika nji�ovega trajnostnega upravljanja. 
Predpostavljamo, da upravnik jame želi poznati, kateri so za 
jamsko okolje pomembni parametri, kakšne so nji�ove opti-
malne  vrednosti in kako ji� vzdrževati v tem območju. Upra-
vitelj za to potrebuje učinkovit sistem monitoringa, z vnaprej 
določenim naborom ključni� okoljski� kazalcev in nji�ovi� 
ciljni� vrednosti. Izbor monitoringa za�teva pred�odno pozna-
vanje jamski� klimatski� procesov.  Te in z njimi povezane 
prostorske in časovne spremembe parametrov, v največji meri 
določa advekcijski prenos toplote in vlage v jama�. Upravljanje 
jame ne pomeni zgolj določitev obremenilne sposobnosti jame, 
pač pa  izbor in uporaba takega  načina upravljanja, ki  trajnost-
no zagotavlja potrebno  stanje okolja.
Ključne besede: Trajnostno upravljanje, tok zraka v jama�, 
kondenzacija, ogljikov dioksid, temperatura, radon, upravlja-
nje jam.
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Abstract UDC  551.581:551.44
Chris R. de Freitas: The role and importance of cave microcli-
mate in the sustainable use and management of show caves
Cave microclimate is important in t�e study of cave flora and 
fauna, certain karst processes underground and �ydrogeologic 
aspects of speleot�ems; t�us an understanding of microclimat-
ic processes is especially important in t�e management of s�ow 
caves. Here, examples are drawn from researc� on New Zea-
land caves and examined in t�e context of sustainable cave use 
management practices. The work considers t�at t�e cave man-
ager is concerned, firstly, wit� defining t�e desired or optimal 
level or range of environmental conditions t�at s�ould prevail 
and, secondly, wit� maintaining t�em. To do t�is requires an 
appropriate and reliable monitoring system. It involves select-
ing key indicators to be monitored and setting target standards. 
Selection of an appropriate monitoring system, �owever, re-
lies on �aving a good understanding of t�e climate processes 
operating, essentially �ow t�ey work and �ow t�ey mig�t be 
appropriately managed. Unlike microclimates in t�e atmo-
sp�ere-land boundary layer, w�ic� are c�aracterized by verti-
cal exc�anges, processes determining climate in all but nearly 
closed caves are dominated by advection of �eat and moisture. 
It is t�is process t�at may give rise to distinct spatial and tem-
poral patterns of climates in caves. Thermoadynamic aspects of 
external air-cave air interaction are assessed to explain spatial 
as well as s�ort term and seasonal variations of t�ermal and 
moisture states of t�e cave atmosp�ere. The relevance of all t�is 
to cave management is discussed. It is argued t�at cave man-
agement is not simply a matter of determining usage levels or 
carrying capacity of caves; rat�er, it involves determining en-
vironmental management tec�niques t�at are appropriate to 
a particular cave condition or environmental state t�at s�ould 
prevail. 
Keywords: airflow, condensation, carbon dioxide, radon, cave 
management.
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Tens of millions of people visit s�ow caves (tourist caves) 
every year. Gillieson (1996) estimated t�e number of visi-
tors globally around t�e end of t�e twentiet� century to 
be over 20 million. At least five million people a year visit 
s�ow caves in t�e United States alone (Aley 2010). De-
spite t�is �uge audience, t�ere are few well documented 
studies of visitor impact management as regards cave mi-
croclimate, and even fewer dealing wit� appropriate t�e-
ory and management concepts along wit� descriptions of 
related environmental processes being managed.  

The approac� to managing s�ow caves depends on 
t�e type of cave, in particular w�et�er t�e cave or sec-
tion of a cave is a low energy, stable environment. Caves 
or sections of caves t�at are active, �ig� energy environ-
ments, suc� as t�ose wit� a large t�roug�put of water, are 
muc� less sensitive to internal �uman-induced c�ange. 
On t�e ot�er �and, t�ese caves are often quite sensitive 
to external c�anges in t�e waters�ed catc�ment t�at is t�e 
source of water flowing t�roug� t�e cave. Relict caves and 
t�ose parts of active caves t�at contain relict caverns and 
cave passage are usually low energy, stable environments 
t�at are potentially �ig�ly sensitive to c�ange by �uman 
beings. The presence in a cave of just a few people, or t�e 
addition of an enlarged entrance way, or a gate or door, 
can c�ange its energy and moisture regime. These affect 
t�e cave’s temperature and �umidity, but a range of ot�er 
impacts are associated wit� �uman presence, and t�eir ef-
fects are cumulative and often synergistic. The innate sen-
sitivity of some caves to �uman presence led Aley (1976, 

cited by Gillieson 1996) to remark “t�e carrying capac-
ity of a cave is zero.”  As far as s�ow caves are concerned, 
�owever, t�e presence of people is clearly not optional un-
less t�e cave is to be closed to commercial use.

The microclimate of a cave is a key component of 
t�e cave’s internal environment; t�us it is important in 
t�e study of cave flora and fauna and cave ecosystems 
generally, certain karst processes underground and �y-
drogeologic aspects of speleot�ems. An understanding 
of microclimate processes is especially important in t�e 
management of �eavily used s�ow caves. Processes de-
termining climate in all but nearly closed caves are pri-
marily a function of advection of �eat and moisture. It 
is t�is process of �eat and moisture transfer t�at may 
give rise to distinct spatial and temporal patterns of cli-
mates in caves. Here t�ermodynamic aspects of external 
air-cave air interaction are assessed to explain spatial as 
well as s�ort term and seasonal variations of t�ermal and 
moisture states of t�e cave atmosp�ere. The relevance of 
all t�is to cave management is explained. Examples are 
drawn from researc� on New Zealand caves, t�e Wait-
omo Glowworm Cave in particular, and examined in t�e 
context of sustainable management practices. It is argued 
t�at sustainable cave management is not simply a matter 
of determining usage levels or carrying capacity of caves; 
rat�er, it involves determining environmental manage-
ment tec�niques t�at are appropriate to a particular cave 
condition or environmental state t�at s�ould prevail. 

INTRODUCTION

CONCEPTUAL FRAMEWORK

Thoug� widely used in management t�eory, t�e con-
cept of “carrying capacity” �angs on t�e assumption t�at 
t�ere is an upper limit to use t�at an area or resource can 
stand. However, t�is rarely applies in t�e case of s�ow 
caves, as t�e resource base is not fixed and t�e pattern of 
suc� factors as timing and intensity of use are constantly 
c�anging. Also, impacts are not linear; for example, t�e 
effect of a group of 15 people may be more t�an t�ree 
times t�e impact of a group of five. Furt�ermore, as Gil-
lieson (1996) points out, t�e concept of maximum usage 
does not take into account t�e possible irreversibility of 
many ecosystem c�anges. For instance, cave fauna are 
frequently obligate species and �abitat specialists t�at are 
vulnerable to minor c�anges of lig�t, moisture and �eat, 
and populations may not recover from a s�ort term or 
longer term stress. Rat�er t�an being a matter of usage 

levels or carrying capacity, it is more one of determining 
environmental management tec�niques t�at are appro-
priate for a given cave. The real issue, t�erefore, is one of 
visitor impact management.

The cave manager is concerned, firstly, wit� defin-
ing t�e desired or optimal level or range of environmen-
tal conditions t�at s�ould prevail and, secondly, wit� 
maintaining t�em. To do t�is requires an appropriate 
and reliable monitoring system. It involves selecting key 
indicators to be monitored and setting target standards; 
for example, a given range of temperature and �umid-
ity, a maximum allowable vapour pressure deficit (i.e. 
maximum rates of cave drying), or a maximum carbon 
dioxide level for particular cave conditions, concentra-
tions above w�ic� may lead to corrosion and irreversible 
damage of calcite features of t�e cave. Criteria s�ould 
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THE WAITOMO GLOWWORM CAVE AS A MANAGEMENT MODEL

The Waitomo Glowworm Cave (WGWC) is located in 
t�e Waitomo district of t�e Nort� Island of New Zea-
land. It �as a long �istory as a commercial s�ow cave, 
first opening to tourists in 1889, wit� electric lig�ting 
being installed as early as 1926 (Wilde 1986). Today t�e 
WGWC is a premier tourist attraction and t�e most vis-
ited cave in Australasia (de Freitas 1998; de Freitas & 
Sc�mekal 2003). The cave is a particularly good candi-
date for a case study of sustainable management, as it is 
potentially more sensitive to bot� internal and external 
�uman impact t�an most ot�er caves. This is because of 
its small size, its morp�ology, t�e large numbers of visi-
tors and t�e presence of cave fauna crucial to its tourist 
appeal. 

Given t�at cave management is for t�e most part 
visitor impact management, it is notable t�at more peo-
ple visit t�e WGWC t�an any ot�er cave in Australia or 
New Zealand. In recent times annual visitor numbers 
average just below 500,000. The next most visited cave 
is t�e muc� larger Lucas Cave t�at is part of t�e Jenolan 
Caves in New Sout� Wales in Australia, w�ic� �as an 
annual visitor rate t�at is less t�an a quarter of t�at for 
t�e WGWC. Between 1979 and 1994 t�ere was a dou-
bling of t�e number of people visiting t�e WGWC eac� 
year (de Freitas 1990, 1996), alt�oug� numbers �ave 
fallen t�en stabilised over t�e past 15 years. However, 
from a management perspective it is important to note 
t�at visitor numbers are not evenly spread over an aver-
age visitor day or year. Twice as many people visit t�e 
WGWC during t�e �ig� sun �alf of t�e year, and most 
visitors converge on t�e cave between 10:00 and 17:00 
�ours. On some days visitor numbers �ave exceeded 
2,700, and in February, 1996 a record 66,593 people 

visited t�e WGWC, giving a staggering daily average of 
2,296 at its peak in t�e 1990s (de Freitas 1996). Clearly, 
wit� t�is level of usage t�ere is on-going potential for 
conflict to arise between t�e dual requirements of pro-
tecting and presenting t�e resource. Bot� t�e seasonal 
and daily peaks are �ig�ly relevant to cave management 
strategies.

The Waitomo region �as a mild, sub-temperate cli-
mate. Mean daily maximum and minimum temperatures 
for t�e warmest mont� (January) are 24°C and 13°C, 
w�ile, for t�e coldest mont� (July), mean daily maxi-
mum and minimum temperatures are 13°C and 3°C. 
Mean annual precipitation is 1530 mm, and alt�oug� 
rainfall is relatively frequent t�roug�out t�e year, winter 
is generally wetter (de Freitas & Sc�mekal 2003). 

The WGWC is made up of 1300 m of interconnect-
ed passageways wit� an estimated volume of approxi-
mately 4000 m3. The cave �as two entrances, an upper 
entrance and a lower entrance, 14 m vertically apart. 
The upper entrance is equipped wit� a solid door t�at, 
w�en closed, seals t�e opening, preventing airflow. A 
stream enters t�e cave at t�e lower entrance and leaves 
t�roug� a sump at t�e ot�er end of t�e cave. The Cat�e-
dral marks t�e central-cave area, w�ic� is a 40 m long 
and 13 m �ig� c�amber, t�e largest in t�e cave. The Or-
gan Loft Side Passage, w�ic� leads from t�e Cat�edral 
area to t�e Organ Loft c�amber, is a cul-de-sac passage. 
The lowest part of t�e cave is t�e Glowworm Grotto, 
w�ic� is part of t�e stream passage of t�e Waitomo Riv-
er. The Glowworm Grotto is a large c�amber approxi-
mately 30 m long and 10 m wide and �as t�e main dis-
plays of t�e glowworm (Arachnocampa luminosa) in t�e 
cave. From �ere t�e stream flows 180 m down t�roug� 

also take into account sensitivities of cave fauna t�at are 
often dependent on very specific environmental condi-
tions. C�anges in �eat, lig�ting, moisture and airflow 
may impact on populations directly or indirectly (suc� 
as on food supply) to suc� an extent t�at t�eir survival 
is t�reatened. By t�is monitoring, cave managers can 
assess t�e consequences of c�ange and modify manage-
ment strategies accordingly. Selection of an appropriate 
monitoring system, �owever, relies on �aving a good un-
derstanding of t�e climate processes operating. 

In t�e case of a commercial s�ow cave, t�e concept 
of “cave monitoring” embraces measurement, observation 
and recording in t�e broadest sense and includes p�ysical 
and biological (i.e. environmental) and social (i.e. visitor) 

variables. An essential part of identifying and selecting 
appropriate variables to be monitored is an understanding 
of p�ysical and biological processes t�at compose t�e cave 
system; basically, �ow it works and w�at upsets it. Key 
reference criteria are concerned wit� defining optimal 
conditions and maintaining t�em. Identifying relevant 
questions wit� correct answers is t�e key to informed and 
effective sustainable use and management of s�ow caves. 
These are: W�at to monitor? W�ere to monitor? How to 
monitor? The issues t�at arise are feasibility and cost of 
monitoring; c�oice and representativeness of key indica-
tors; replication and frequency of measurement; quality 
control; plan for data analysis; and management standards 
and indicators of impact.
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a passage and sump before resurging. A description of 
t�e WGWC, its p�ysical dimensions, location of moni-
toring sites and types of instruments used, along wit� 
ot�er information on t�e cave are given by de Freitas 
and Sc�mekal (2003, 2006). 

Over t�e past 30 years t�e WGWC �as been t�e 
focus of a variety of detailed researc� projects and is 
probably one of t�e most closely studied s�ow caves 
in t�e world. Also, as t�e name implies, t�e cave fauna 
are t�e prime attraction at Waitomo, unlike most s�ow 
caves. It is different too in t�at t�e significance of t�e 
cave is not just local. The WGWC is a major tourist at-
traction, w�ic� �as played, and continues to play, a vi-
tal part in t�e development of t�e New Zealand’s tour-
ist industry. To large numbers of tourists from bot� 
New Zealand and overseas, a visit to t�e WGWC and 
caves nearby is a �ig� point of t�eir �oliday experi-
ence. The WGWC, along wit� t�e geot�ermal areas in 
and around Rotorua, �ave come to symbolise t�e Nort� 
Island New Zealand tourist encounter. For t�is reason, 
t�e value of t�e WGWC to New Zealand tourism ex-
tends beyond its great commercial importance. It is a 
natural resource of great significance for w�ic� t�e 
Government of New Zealand t�roug� its Department 
of Conservation �as a major custodial responsibility.  It 
is ironic, t�erefore, t�at t�ere are no laws in New Zea-
land set out specifically to protect caves from exploita-
tion. For new developments or uses of caves t�ere is a 
generalised Resource Management Act, but apart from 
t�at t�ere is a legislative vacuum in New Zealand as far 
as caves are concerned.  

The WGWC �as been used continuously as a tour-
ist cave for over 120 years, and over t�is time several les-
sons �ave been learned. Most notably, during t�e 1970s, 
it was recognised t�at conditions in t�e cave were rapid-
ly deteriorating. There was concern t�at many c�anges 
occurring would be irreversible, but, at t�at time, little 
was understood about t�e cave environment and fac-
tors t�at controlled conditions in t�e cave. The problem 
peaked in April 1979 w�en t�e cave �ad to be closed 
for four mont�s because only four percent of t�e glow-
worms �ad t�eir lig�ts on. On occasions suc� as t�is t�e 
cost to t�e region in lost revenue can be considerable. 
Later t�at year, in recognition of t�e fact t�at t�e micro-
climate of t�e cave is a fundamental element of a cave 
ecosystem, an intensive study of t�e microclimate of 
t�e WGWC began. This coincided wit� detailed in situ 
studies of glowworms and sedimentation processes in 
t�e stream t�at passes t�roug� t�e lower parts of t�e 
cave. The work resulted in a number of researc� papers 
appearing in t�e scientific literature, t�e results of w�ic� 
�ave been taken into account in setting out cave man-
agement guidelines. 

Several major decisions on cave management came 
from t�e early work, but t�e main recommendation was 
t�at t�e cave ecosystem, especially t�e cave air or micro-
climate, s�ould be carefully monitored. This monitor-
ing s�ould provide long term, �ig� quality data on t�e 
atmosp�eric and ot�er environmental processes t�at 
affect t�e cave ecosystem in general, and t�e �ealt� of 
t�e glowworm population in particular.  The Waitomo 
Caves Researc� Committee, reporting in 1982, emp�a-
sised t�e need to establis� sustainable resource man-
agement guidelines to protect t�e cave environment in 
terms of t�e glowworm ecology and speleot�ems, and at 
t�e same time, guarantee visitor safety (de Freitas 1990, 
1996). The protection mec�anism s�ould ensure t�at 
c�anges to t�e cave microclimate and low glowworm 
numbers experienced in t�e late 1970s are avoided in 
t�e future. 

Monitoring of conditions wit�in t�e WGWC began 
in earnest in 1983. Initially, monitoring was developed as 
a follow-on from detailed researc� instigated and super-
vised by t�e Waitomo Caves Scientific Researc� Group, 
w�ic� was establis�ed in 1974. A relatively large amount 
of microclimate data �as been collected since 1983 us-
ing standardised procedures. However, collection and 
assembly of data relied on cave guides and administra-
tive staff taking readings and maintaining instruments 
t�emselves. Gaps in t�e data and poor equipment main-
tenance reduced t�e quality of t�e data. Moreover, as t�e 
data set was assembled manually, processing and analy-
sis were difficult and time consuming. The accumulated 
microclimate data gat�ered in t�is way was transferred 
from paper records to a computer-compatible database 
and analyzed. The results s�owed t�at t�ere are many 
large gaps in t�e data record and t�at reliability of mea-
surements at certain times and for certain extended pe-
riods is suspect due mainly to lack of equipment mainte-
nance and instrument failure. 

In t�e latter part of 1993 a sc�eme was proposed 
for improving t�e quality and quantity of cave climate 
data. Continuous monitoring, employing remote auto-
mated systems using electronic sensors and data loggers, 
was recommended. Data loggers allow for t�e collection 
of large amounts of data from a variety of sensors at a 
relatively low cost. Also, problems of observer error are 
removed, and data are presented in a form amenable to 
computer analysis. By t�e start of 1994, a computerised 
electronic monitoring system was installed in t�e cave at 
four different sites to measure rock temperature at dif-
ferent dept�s below t�e rock surface, air temperature, 
�umidity and t�e speed and direction of air flow. Infor-
mation is accumulated continuously by data loggers as 
well as fed directly to monitors located in t�e cave super-
visor’s control room. 

CHRIS R. DE FREITAS
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Using a cave for tourism w�ile at t�e same time ensur-
ing t�e cave’s environment is not damaged or t�e resource 
depleted t�roug� microclimatic impacts is no minor 
c�allenge. That a cave may be little more t�an a place for 
sig�tseeing and adventure is a perception �eld by many 
tourists. However, for t�e cave manager, t�e cave s�ould 
be seen as a valuable environmental asset. Moreover, it 
s�ould be considered to be a non-renewable resource, 
as damage to cave features may take several �uman life-
times to recover, or never recover at all. To ensure a bal-
ance between preservation and use of cave resources, an 
appreciation of t�e precise nature of t�e cave resource is 
crucial. It is not sufficient to focus entirely on cave usage 
levels or carrying capacity; rat�er, t�e issue is more one of 
determining environmental management tec�niques t�at 
are appropriate to a particular cave in t�e lig�t of envi-
ronmental conditions wit�in t�e cave t�at prevailed prior 
to �uman use. The real issue, t�erefore, is one of visitor 
impact management.

There are direct and indirect, external and internal 
impacts to consider. Indirect impacts are mainly t�ose 
caused by so-called surface effects in t�e vicinity of t�e 
cave resulting from agriculture, t�e construction of car 
parking areas, walking tracks, kiosks, toilets, �otels and 
motels, and may add to t�e direct underground im-
pacts by affecting sediment and impurities in runoff into 
streams, cave passages and caverns.

Direct impacts include breakage of speleot�ems. 
T�e t�reat of vandalism w�en t�e cave is closed often 

necessitates elaborate security structures and fixtures. 
Direct impacts t�at are particularly relevant to cave 
microclimate include: construction of access routes 
t�roug� caves and entrance modifications t�at alter 
cave airflow, and elevated air temperatures from t�e 
accumulated body �eat from large numbers of visi-
tors. T�e build-up of carbon dioxide in t�e cave from 
�uman breat� can combine wit� moisture to corrode 
speleot�ems and bedrock. Dust accumulation in t�e 
cave can also be a problem. Cave dust is composed 
of lint from clot�es, �air, and flakes of dry skin t�at 
provide additional food sources for carbon dioxide-
producing bacteria and from microbial activity in 
general. Similarly, abandoned wooden walkways and 
railings provide food sources for microorganisms, 
resulting in decomposition and increased carbon di-
oxide emissions into t�e cave air (Cigna 2005, Russell 
& MacLean 2008). Cave lig�ting may �eat up and dry 
t�e ambient air, in�ibiting speleot�em growt�. Broad 
spectrum emission lig�ting commonly leads to t�e 
growt� of “lampenflora” (algae and mosses) on clastic 
sediments, speleot�ems and cave walls; narrow spec-
trum and relatively cool LED lig�ts reduce lampenflo-
ra growt� and �eat output.  Many of t�ese impacts are 
cumulative and often lead to irreversible degradation 
to t�e cave ecosystem. Fig. 1 s�ows t�e key parameters 
and processes affecting caves suc� as t�e WGWC and 
t�e associated impacts.

IMPACTS

Fig. 1: Key parameters 
and processes affecting 
show caves such as the 
Waitomo Glowworm 
Cave, New zealand.
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Airflow
Airflow in t�e WGWC �as been studied in detail by de 
Freitas et al. (1982) and s�own to be t�e key component 
of a cave’s microclimate (de Freitas & Littlejo�n 1987). 
The speed and direction of flow is determined by t�e 
difference between t�e density of t�e outside and inside 
air (de Freitas et al. 1982). Since air density is mainly 
a function of air temperature for caves wit� a small 
vertical extent, temperature can be used as t�e main 
indicator of airflow (de Freitas et al. 1982). W�en t�e 
outside air is cooler and t�us denser t�an t�e cave air, 
t�e warmer cave air rises and flows towards and t�en 
t�roug� t�e upper entrance and is replaced by cold air 
at t�e lower entrance. This upward flow is referred to as 
“winter” flow (colder air outside t�e cave), alt�oug� it 
can occur at any time of year. W�en cave air is cooler 
and denser t�an t�e air outside t�e cave, it flows down 
t�roug� t�e cave and out t�e lower entrance (de Freitas 
et al. 1982). This downward flow is referred to as “sum-
mer” flow (warmer air outside t�e cave), alt�oug� it can 
occur at any time during any day of t�e year, depending 
on t�e climate regime of t�e region in w�ic� t�e cave 
is located. In transitional times w�en t�e temperature 
gradient inside and outside t�e cave is small, t�ere is 
little or no airflow. 

Air exc�ange wit� t�e outside is a major control on 
cave environmental conditions. It determines t�e extent 
to w�ic� t�e �eat and moisture state of t�e cave environ-
ment is similar to surrounding rock or t�at of t�e outside 
air. Air flow in caves s�ould be measured using ultrasonic 
(acoustic) anemometers, w�ic� can reliably sense t�e very 
low rates of air movement t�at can occur in caves. Also, 
t�e absence of moving parts make ultrasonic anemome-
ters better suited to �ars� cave conditions t�an alternative 
met�ods suc� as cup or �ot-wire anemometers.

Air temperature and humidity 
The t�ermal and moisture state of t�e cave air is crucial in 
determining t�e condition of t�e cave environment. A key 
precept of cave climatology is t�at t�e cave atmosp�ere 
is a result of t�e degree to w�ic� t�e effects of advection 
of �eat and moisture from outside t�e cave are modified 
by internal �eat and moisture transfer processes. In t�e 
absence of advection, cave air adopts t�e t�ermal and 
moisture c�aracteristics of t�e surrounding rock, as in a 
completely closed cave. Alternatively, air moving t�roug� 
t�e cave adopts a particular c�ange or “decay” profile as it 
moves towards a t�ermal and moisture equilibrium wit� 
t�e surrounding cave rock. Clearly, modification of natu-
ral cave entrances or adding new ones, suc� as mig�t be 
required for visitor access, will affect air exc�ange wit� 

t�e outside, leading to unnatural and per�aps damaging 
warming, cooling or drying of cave surfaces.

The results of earlier work (de Freitas & Littlejo�n 
1987) s�ow t�at �eat and mass (moisture) transfer mod-
els can be used to approximate longitudinal profiles 
of temperature and moisture in a cave and �elp iden-
tify and explain c�anges occurring. The �eat and mass 
transfer processes t�at determine spatial and temporal 
patterns of temperature and moisture conditions in a 
cave are: (i) external air temperature, relative �umid-
ity and specific �umidity (or dewpoint temperature); 
(ii) sensible and latent �eat transfer to and from t�e air 
moving t�roug� t�e cave and t�e cave surfaces; and (iii) 
vapour flux between t�e cave air and cave surfaces. Sea-
sonal patterns s�ow t�at for an air parcel moving up-
wards t�roug� t�e cave (“winter flow”), bot� cave air 
temperature (T) and specific �umidity of t�e cave air (q) 
increase wit� distance into t�e cave from t�e lower en-
trance. This results from a continuous transfer of �eat 
and moisture to t�e air as it flows t�roug� t�e cave; t�e 
negative latent �eat flux leads to a cooling of t�e air and 
rock surfaces. Ultimately, t�e air is modified toward a 
t�ermal and moisture equilibrium wit� t�e cave envi-
ronment. The increase in T wit� distance increases t�e 
moisture �olding capacity of t�e air, t�ereby maintain-
ing t�e vapour gradient. For t�is reason, evaporation 
and t�us cave drying can occur even w�en t�e air ap-
pears to be at its saturation point, as t�e saturation spe-
cific �umidity is continually increasing. For downward 
airflow conditions (“summer flow”) in t�e case of t�e 
WGWC, T decreases from t�e upper entrance into t�e 
cave as a result of t�e sensible �eat transfer from t�e air 
to t�e cave environment. For “summer flow” conditions 
t�e latent (evaporative) �eat flux can result in eit�er 
cooling of t�e air and rock due to evaporation, or warm-
ing from �eat liberated during condensation. The cave 
atmosp�ere responds rapidly to c�anges in external air 
temperature and �umidity as a result of t�e interaction 
between t�e cave and outside atmosp�ere. For upward 
airflow conditions, t�e diurnal pattern of T and q wit�in 
t�e cave follows t�e diurnal pattern of t�e outside air, 
and bot� T and q are �ig�er t�an outside over t�e full 
diurnal cycle. The amplitude of t�e diurnal variation of 
T and q decreases wit� distance into t�e cave as a result 
of t�e transfer of �eat and moisture from t�e cave sur-
faces to t�e moving air.

Unlike c�anges typical of air temperature and rela-
tive �umidity outside, cave temperature and relative 
�umidity can increase and decrease toget�er as a result 
of t�e advection of bot� �eat and moisture t�roug� t�e 
cave (de Freitas & Littlejo�n 1987). The seasonal and 
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s�ort term trends in cave climate s�ow t�at during win-
ter t�e cave experiences a net loss of �eat and moisture. 
This results in cooling of t�e cave rock and a depletion 
of t�e moisture wit�in t�e cave. In summer, net gains of 
�eat and moisture result in an increase in rock tempera-
ture and t�e addition of moisture to t�e cave in t�e form 
of condensation. The seasonal patterns, particularly spe-
cific �umidity, reflect a longer period of moisture loss 
t�an moisture gain.

Researc� on t�e WGWC �as s�own t�at manipu-
lation of t�e cave microclimate, suc� as for t�e benefit 
of cave fauna, may be possible (de Freitas 1996). For ex-
ample, air temperature and �umidity can be increased 
in winter by sealing off t�e upper entrance, t�ereby re-
stricting circulation of air t�roug� t�e cave. On t�e ot�er 
�and, keeping in mind t�at t�ere is strong cave drying 
during “winter flow”, �umidity levels could be raised and 
evaporation suppressed by increasing moisture in t�e 
cave available for evaporation, eit�er by regular wetting 
of pat�s and walls or by establis�ing pools in various 
parts of t�e cave. In summer, reduced warming of t�e 
cave would result from sealing t�e lower entrance. Clear-
ly, �owever, any manipulation of t�e climate would �ave 
to take into account ot�er effects on t�e cave ecosystem. 
Suc� “engineering” approac�es to cave management are 
not usually t�e preferred option.

Finally, it is essential t�at t�e psyc�rometric met�-
od of measuring air temperature and �umidity is em-
ployed w�en gat�ering cave climate data. This involves 
t�e use of ventilated “dry bulb” and “wet bulb” t�ermal 
sensors (t�ermometers). Measurements of t�e dry bulb 
temperature (air temperature) and wet bulb depression 
(dry bulb minus wet bulb temperature) are applied to a 
standard psyc�rometric formula to calculate any of t�e 
various expressions of �umidity, usually specific �umid-
ity or mixing ratio, alt�oug� vapour pressure and dew-
point temperature can be equally useful expressions of 
�umidity in cave microclimate researc�. In many cases, 
use of relative �umidity and absolute �umidity s�ould be 
avoided as t�ese expressions of �umidity are dependent 
on air temperature as well as t�e moisture content of t�e 
air. On t�e ot�er �and, w�en air wit� a given relative �u-
midity moves to anot�er environment wit� a different air 
temperature, t�e difference between t�e absolute �umid-
ity in t�e two conditions indicates t�e amount of water to 
be deposited or evaporated.

Hygrometric met�ods for measuring relative �u-
midity rely on moisture-sensitive materials (suc� as 
lit�ium c�loride or animal �air) and are t�us an indirect 
measurement of, or proxy for, t�e moisture content of 
t�e air. Measurement error in air approac�ing saturation 
(i.e. at �ig� levels of relative �umidity), suc� as exists in 
many caves, is usually bot� large and non-linear.

Carbon dioxide
The concentration of carbon dioxide (CO2) in cave air 
is determined by t�e balance between t�e rate of input 
of CO2 to t�e cave and losses (sinks) of CO2. Sources of 
carbon dioxide in s�ow caves suc� as t�e WGWC are:

1) respiration of people in t�e cave;
2)  outgassing from water flowing t�roug� t�e cave 

and from vadose waters;
3)  oxidation of organic material and respiration by 

micro-organisms;
4)  diffusion of soil gas t�roug� soil and rock into 

t�e cave. 
In t�e absence of air exc�ange wit� t�e outside en-

vironment, t�e concentration of CO2 in t�e cave air is a 
function solely of t�e rate of CO2 input from sources 1 
to 4 above. 

Sinks of carbon dioxide in caves are:
1)  airflow and air exc�ange wit� t�e outside (ven-

tilation); 
2) solution in undersaturated cave water; and
3) diffusion t�roug� (porous) cave walls. 
CO2 concentration in t�e cave air is normally great-

er t�an t�at outside, so ventilation is t�e major control 
on t�e concentration of CO2 in cave air. 

In s�ow caves, �umans are clearly t�e major cause 
of elevated concentrations of CO2, directly t�roug� res-
piration and, to a lesser extent, indirectly by promoting 
t�e activity of bacteria and ot�er micro-organisms t�at 
feed on organic matter including skin and �air s�ed from 
t�e �uman body. People ex�ale air t�at is slig�tly depleted 
in oxygen and enric�ed in CO2 (approximately 4% CO2). 
Concentrations depend on visitor numbers and ventila-
tion rates t�roug� t�e cave.  A single person ex�ales CO2 at 
approximately 17 l �r-1 (Marion 1979); t�us a tour group 
of 200 visitors expels about 3360 l �r-1. Concentrations of 
carbon dioxide of up to 5000 ppm �ave been recorded in 
t�e WGWC (de Freitas 1996; de Freitas & Banbury 1999). 
The allowable level t�at s�ould be specified in cave man-
agement guidelines is open to debate (Dragovitc� & Grose 
1990). Added to t�is is t�e concern t�at w�en carbon di-
oxide concentrations exceed about 2400 ppm in t�e Wait-
omo caves, water can combine wit� CO2, forming a weak 
acid, w�ic� can lead to corrosion of limestone features of 
t�e cave (McCabe 1977). For t�is reason, 2400 ppm is tak-
en as t�e maximum permissible level to w�ic� CO2 con-
centrations s�ould be allowed to rise in t�e Waitomo caves 
generally.  It is based on t�e work of McCabe (1977) and 
Kermode (1974, 1980) conducted in t�e Waitomo region. 
The reliability of t�is t�res�old value as a universal man-
agement guideline to prevent corrosion of speleot�ems re-
quires furt�er researc�. Since t�e work of McCabe (1977) 
and Kermode (1980), Baker and Genty (1998) �ave con-
sidered environmental pressures on conserving cave spe-
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leot�ems in t�e context of effects of c�anging surface land 
use and increased cave tourism. They make t�e point t�at 
t�e calcium ion concentration of t�e drip waters is im-
portant. W�en it is low, a small increase in cave air CO2 
can cause corrosion, w�ereas w�en it is �ig�, speleot�em 
growt� may be maintained at �ig�er CO2 concentrations 
in t�e air.

The results of work by de Freitas and Banbury (1999) 
s�ow t�at rate of build-up of carbon dioxide in cave air 
under conditions of �ig� visitor usage is rapid, and t�at 
a rise in CO2 concentration of 800 ppm or more can oc-
cur in a relatively s�ort period of time (90 minutes). Dis-
persion of t�e CO2 enric�ed air is surprisingly efficient, 
spreading even to t�e most remote and poorly ventilated 
parts of t�e WGWC, even w�en flow-t�roug� ventilation 
of t�e cave was severely restricted by closing off t�e up-
per entrance of t�e cave. Dispersion is primarily upwards, 
suggesting t�at t�e process is t�ermally driven. The cause 
is t�e combined effect of respired air and metabolic �eat 
from t�e gat�ering of people warming t�e air wit�in t�e 
assembled group (de Freitas et al. 1985). The result is a 
t�ermal plume t�at moves and mixes by convection up-
wards. The role and efficiency of “c�imney effect” venti-
lation of t�e cave was demonstrated by t�e relatively fast 
decline in CO2 once t�e upper entrance was opened (de 
Freitas & Banbury 1999). Recovery rates were rapid, wit� 
about eig�ty percent recovery occurring wit�in one �our 
of t�e carbon dioxide source being removed. Full flus�-
ing occurs wit�in approximately two �ours (de Freitas & 
Banbury 1999).

It s�ould be noted t�at alt�oug� CO2 alone is denser 
t�an air, respired CO2 is well mixed and will not separate 
from an air parcel and settle to t�e floor of t�e cave. How-
ever, if CO2 enric�ed air enters t�e cave at floor level and 
its temperature is below t�at of t�e surrounding air, or its 
density is exactly t�e same (temperature and �umidity), 
t�en it is possible for t�e carbon dioxide enric�ed air to 
exist for some time as a layer at floor level until molecu-
lar diffusion or turbulence mixes t�e CO2 enric�ed air 
into t�e larger volume of air surrounding around it. This 
could be important in circumstances w�ere t�e source of 
CO2 in t�e cave is water (McCabe 1977), respiration by 
micro-organisms or diffusion of soil gas t�roug� soil and 
rock into t�e cave and vadose solutions entering cave, es-
pecially if accompanied by cool or stable ambient condi-
tions. An interesting account on CO2 “stratification” �as 
been provided by Badino (2009) in a paper titled “The 
Legend of Carbon Dioxide Heaviness”.

Previous recommendations for visitation rates at t�e 
WGWC �ave been based on t�e number of people in t�e 
cave per �our. Given t�at for some time it �as been recog-
nised t�at t�e Organ Loft (cul-de-sac passage) is a trap for 
CO2 and t�at concentrations increase rapidly wit� visitors 

present, tour groups t�at visit t�is area of t�e cave �ave 
been strictly controlled (de Freitas 1996). However, t�e 
results of t�is work s�ow t�at CO2 levels in t�e Organ 
Loft are not solely a response to CO2 emissions at t�at site 
alone. In fact, concentrations reflect CO2 emissions else-
w�ere in t�e cave and are cumulative (de Freitas & Ban-
bury 1999). This does not apply to certain ot�er locations; 
namely t�ose at lower levels, suc� as t�e all-important 
Glowworm Grotto. Clearly, t�e cave management impli-
cations of t�is are important.

Radon
Radon (Rn) is an odourless, colourless, inert, radioactive 
gas. There are several distinct isotopes of radon coming 
from t�e decay of different sources, but 222Rn wit� a �alf-
life of 3.825 days, is t�e most commonly occurring iso-
tope in t�e natural environment, including caves (Cigna 
2005; Gunn 2004; Gunn et al. 1991; Hyland & Gunn 
1992). 222Rn is released from t�e radioactive decay of 
uranium salts weat�ered from rock and may accumulate 
on dust and water droplets in air pockets wit� poor ven-
tilation. If t�is air is in�aled, t�e alp�a and beta radiation 
present may cause cell damage and increased risk of can-
cer. The risk depends on bot� t�e concentration of radon 
and total exposure time. The International Commission 
on Radiological Protection (ICRP) defines a “safe” level 
as under about t�ree times t�e normal background level 
to w�ic� an average person is exposed in normal daily 
living; t�at is, less t�an 1000 Bq m-3 (Becquerels per cu-
bic metre). Usually, prolonged exposure above t�is levelUsually, prolonged exposure above t�is level 
is required to elevate risks to �uman �ealt�, normally 
expressed as “working level �ours” (Gunn 2004). Radon 
build-up at any given site in a cave depends largely on 
ventilation rates. 

In t�e Waitomo area t�e single entrance Aranui cave 
�as t�e �ig�est concentrations (12000 Bq m-3), but t�ese 
are �ig�ly variable in space and time, falling at times to 
150 Bq m-3 (Robb 1999). These concentrations of ra-
don do not affect tourists w�ose exposure time is s�ort, 
but are potentially of significance for cave tour guides 
and ot�er cave workers. In t�e WGWC, concentrations 
ranged from 50 to 2000 Bq m-3 (Robb 1999). Manipula-
tion and control of cave ventilation along wit� minimis-
ing exposure times for cave workers are t�e key manage-
ment tools for radon in caves. 

Condensation
The condensation/evaporation process to and from cave 
rock plays a variety of roles in speleogenesis, but two of 
t�ese are particularly important. The first occurs w�ere 
water condensing onto cave rock surfaces t�at are made 
of a soluble rock mineral (calcite, dolomite, gypsum, �al-
ite, carnallite etc.) is undersaturated wit� respect to t�e 
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mineral, so t�at t�e potential exists for dissolution to oc-
cur. This process, called condensation corrosion (James 
2004), may create surface impressions on speleogen fea-
tures. Water from condensation can cause t�is because 
its c�emistry makes it aggressive. Carbon dioxide, water 
and calcium carbonate (limestone or calcite) react to 
give soluble calcium and carbonate ions (CO3

−) in water. 
Condensation water becomes considerably more corro-
sive if it contains substantial amounts of dissolved car-
bon dioxide. In s�ow caves visitors breat�e out warm air 
saturated wit� water vapour, toget�er wit� greater t�an 
4% by volume carbon dioxide, at a temperature usually 
muc� �ig�er t�an t�e cave air.  The moisture in t�is air 
containing �ig� concentrations of carbon dioxide mig�t 
condense as it comes into contact wit� t�e colder cave air 
and walls. 

The second process occurs during times w�en 
conditions in t�e cave cause �ig� rates of evaporation 
of condensation water on cave rock surfaces. The 
removal of water and carbon dioxide from saturated 
solutions of calcium and �ydrogen carbonate ions causes 
precipitation of calcite.  This process produces soft un-This process produces soft un-
attractive microcrystalline, flaky deposits of calcite. This 
cycle of condensation and evaporation of condensate is 
believed to en�ance condensation corrosion (Tar�ule-
Lips & Ford 1998). 

Condensation in caves �as been addressed in t�e re-
searc� literature, suc� as by Cigna and Forti (1986) and 

more recently by Dublyansky and Dublyansky (2000), 
Dreybrodt et al. (2005), Auler and Smart (2004) and de 
Freitas and Sc�mekal (2003, 2006). The results are also 
relevant to aspects of tourist cave management. Ideally, 
t�ere would be no need to induce eit�er condensation or 
evaporation in a cave. Intuitively, one would t�ink t�at 
t�e best course would be to keep t�e system at equilibri-
um to avoid bot� drying-out and excessive moisturizing, 
bot� of w�ic� could be detrimental to t�e cave forma-
tions. However, for s�ow caves w�ere care and proper 
management is a concern, condensation/evaporation 
can be predicted or controlled by controlling ventila-
tion. Because cave rock surface temperatures do not vary 
muc�, condensation is essentially a function of cave air 
temperature and t�e processes t�at affect it; mainly, air 
exc�ange wit� t�e outside. 

The work on CO2 in t�e WGWC (de Freitas & Ban-
bury 1999), and later t�e relevance of t�is for condensa-
tion (de Freitas & Sc�mekal 2003, 2006), provide insig�t 
into t�e environmental effects of management-induced 
c�anges. There is need for more work on caves in ot�er 
climate regimes. Future researc� s�ould also aim to de-
velop an understanding of t�e role of condensation in 
t�e water and energy balance of caves. Ot�er work mig�t 
focus on spatial variation of condensation t�roug� large 
caves and factors t�at affect t�e geoc�emical composi-
tion of condensate.

MONITORING

Cave managers need to decide w�at is t�e desired or 
optimal level or range of environmental conditions t�at 
s�ould exist wit�in t�e cave. This requires an appropri-
ate and reliable monitoring system and identification of 
key indicators; for example, a given range of temperature 
and �umidity, a maximum allowable vapour pressure 
deficit (to indicate cave drying); or a maximum allow-
able carbon dioxide concentration. Management strat-
egies s�ould also take into account sensitivities of cave 
fauna, w�ic� are often vulnerable to minor c�anges of 
lig�t, moisture and �eat. Careful monitoring enables cave 
managers to assess t�e consequences of c�ange and mod-
ify management strategies accordingly. Cave monitoring 
s�ould include p�ysical, biological and social (visitor) 
variables. The purpose of environmental monitoring is 
to: a) assess t�e impact of �uman activity in t�e cave; b) 
expand knowledge of t�e cave resource by adding a long 
term dimension to t�e data collected during initial inten-
sive researc�; c) identify environmental seasons, cycles, 

c�anges and trends t�at may impact t�e cave or cave eco-
system; d) assess t�e impact on t�e cave of management 
practices suc� as cave microclimate control, desilting and 
lampenflora removal and e) assess t�e impact of �uman 
activity outside t�e cave, suc� as c�anges in land use or 
to t�e catc�ment. The purpose of visitor monitoring is to: 
a) provide an information/data base to assess t�e impact 
of people on t�e cave and glowworms; b) identify visi-
tor patterns; and c) provide information for auditing and 
planning.

An essential part of identifying and selecting appro-
priate variables to be monitored is an understanding of 
p�ysical and biological processes t�at comprise t�e cave 
system. Good management involves identifying optimal 
conditions and maintaining t�em. Identifying relevant 
questions wit� correct answers is t�e key to informed 
and effective sustainable use and management of s�ow 
caves. These are: W�at to monitor? W�ere to monitor? 
How to monitor? 
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The answer to t�e question of what to monitor 
�inges on an understanding of cave microclimate (cave 
and outside air and related processes) as t�e key ele-
ment. Clearly, from t�e foregoing discussion, t�ere is a 
need to understand and appreciate t�e processes operat-
ing, so decisions can be made on w�at to measure. These 
are cave air temperature;  outside air temperature;  cave 
air �umidity (specific �umidity); outside air �umidity 
(specific �umidity and relative �umidity); air flow rate; 
air flow direction (upwards and out t�roug� t�e top 
entrance, or downwards and out t�roug� t�e lower en-
trance); rock surface temperature; carbon dioxide; and, 
if necessary, radon.

The answer to t�e question of where to monitor de-
pends on t�e nature, size and morp�ology of t�e cave 
in question. In general, microclimate measurements are 
required at key (indicator) sites inside t�e cave and at 
least one or more sites outside t�e cave, depending on 
t�e size and vertical separation of t�e lowest and �ig�est 
entrances.

The answer to t�e question of how to monitor is 
important to ensure: a) continuous, reliable operation 
of instruments; and b) t�at appropriate microclimate 
variables are measured wit� t�e required level of ac-
curacy. These include t�e use of: a) automated systems 
using electronic sensors and data loggers; b) instru-
ments suited to �ars� (wet) cave conditions; and c) sen-
sors suited to t�e range of conditions encountered (i.e. 
appropriate sensitivity). Data s�ould be collected and 
stored in electronic form to enable: a) real-time display 
of conditions (data) being monitored; b) s�ort term 
diagnosis of conditions in t�e cave; and c) analysis of 
trends over many years.

Indicators of impact (as discussed earlier) include: 
a) c�ange in air temperature from establis�ed “natural” 
or “control” reference points; b) decrease or increase in 
�umidity, or increased vapour pressure deficit, from es-
tablis�ed “natural” or “control” reference points; and c) 
rise in carbon dioxide concentration above a maximum 
set operational level. The issues t�at arise in implement-
ing all of t�e above are feasibility and cost of monitor-
ing; c�oice and representativeness of key indicators; rep-
lication and frequency of measurement; quality control; 
plan for data analysis; and management standards and 
indicators of impact.

quality c�ecks and reviews s�ould follow t�e set-
ting up of long term monitoring programmes. Regular 
calibration is normal procedure and essential to establis� 
t�e on-going reliability of t�e data being collected. All 
of t�ese t�ings need to be taken into account in assess-
ments of t�e data record. How data are presented is also 
important, but may vary depending on w�et�er: a) data 
are being used by cave managers on an ongoing, regular, 

s�ort term basis to watc� conditions and, if necessary, 
make s�ort term operational adjustments; b) records are 
being used for longer term, retrospective analyses of cave 
microclimate variability, or for post mortems of ecologi-
cal crises t�at may occur; or c) data presentations are to 
be provided as appealing information displays for cave 
visitors.

management guidelines for the WGWC
Significant drying wit�in t�e WGWC can occur at any 
time of year; also, evaporation rates can vary consider-
ably over relatively s�ort periods of time, and between 
sites. A major cause of t�is is �ig� rates of air exc�ange 
between t�e cave and atmosp�ere outside, but ot�er fac-
tors may also play a part. Cave managers monitor condi-
tions t�roug�out t�e year and pay close attention to any 
signs of drying in t�e cave.

Guidelines for ventilation and microclimate con-
trol �ave been proposed based on studies of t�e cave 
microclimate. Various analyses indicate t�at t�ese 
guidelines are effective. The aim is to maintain optimal 
conditions in t�e cave for bot� glowworms and tour-
ists, but wit�out causing damage to p�ysical features of 
t�e cave itself or affecting sustainable use of t�e cave. To 
accomplis� t�is, several factors �ave to be controlled si-
multaneously. Rates of evaporation �ave to be kept low 
or even negative (i.e. condensation). At t�e same time, 
adequate ventilation is required to prevent t�e build-up 
of excessive CO2 levels wit�in t�e cave, but not at t�e 
expense of desiccation of t�e cave milieu or large tem-
perature variation inside. To a large extent t�is can be 
ac�ieved by carefully controlling air exc�ange wit� t�e 
outside. The 2400 ppm limit is t�e current CO2 t�res�-
old stated in t�e licence agreement under w�ic� t�e 
WGWC operates. 

Operational guidelines are summarised as follows:
Close door to upper entrance w�en:

a)  external air temperature is below 10°C, regard-
less of �umidity level outside; and

b)  external specific �umidity levels are low (t�is 
usually occurs in t�e cool period of t�e year, typ-
ically between 1700 and 1000 �ours).

Open door to upper entrance during:
a)  “summer” airflow conditions (i.e. w�en airflow 

is downward t�roug� t�e cave), t�us allowing 
for condensation in t�e cave as well as maximum 
ventilation at times usually associated wit� �ig� 
visitor numbers; and

b)  “winter” airflow conditions, w�en t�e cave--
to-outside-air t�ermal gradient is weakest; for 
example, from mid-morning to mid-afternoon, 
to permit ventilation wit�out excessive drying of 
t�e cave.
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It is important to keep in mind t�e dual effects of 
ventilation controls; namely, cave moisture and �eat on 
t�e one �and and carbon dioxide concentration on t�e 
ot�er. S�ould visitation rates increase during t�e cooler 
parts of t�e year, t�en door-closing routines need to be 
re-assessed. Reduced ventilation at t�ese times may con-
trol desiccation of t�e cave environment, but may also 
reduce ventilation to t�e point w�ere carbon dioxide 
concentrations rise to undesirable levels. W�en nig�ts 
are warm t�e cave does not recover from t�e CO2 build-
up t�e day before. Also, lack of ventilation over an ex-
tended period means CO2 (and radon) concentrations 
will increase.

To stabilise cave microclimate, in 1980 a recommen-
dation was made to t�e cave operators to seal t�e upper 
entrance and install an airtig�t door. As a result, t�e mi-
croclimate of t�e cave appears to �ave become more sta-
ble. However, subsequent data s�owed t�at t�e door may 
�ave been inadvertently left open at times w�en airflow 
t�roug� t�e cave is unwanted. The tour guides lead tour-
ist groups into t�e cave and rely on t�e last member of t�e 
group to s�ut t�e door. For a variety of reasons t�e door 
may often be left open. To ensure t�at t�e door remains 
s�ut w�en required, in 1995 it was recommended t�at an 
automatic door closing device be installed, but managed 
according to ventilation guidelines outlined above.

Disproportionately low minimum air tempera-
tures relative to corresponding maximum temperatures 
may s�ow up periodically. Likewise, elevated maximum 
air temperatures out of p�ase wit� minimum tempera-
tures may occur at times. These may be due to several 
factors, including: a) instrument malfunction; b) t�e 
t�ermal effect of increased visitor traffic; and c) t�e ef-
fect of increased rates of air exc�ange wit� t�e outside 
during periods of t�e day w�en t�e cave entrance door 
is left open. The occurrence of t�ese and possible effects 
on t�e cave environment need to be carefully watc�ed. 
Formal data-reporting procedures are in place (quarterly 
or �alf-yearly). Reports are regularly scrutinised by cave 
managers to c�eck for continuity of t�e data record and 
instrument performance. 

Adequate environmental monitoring is vitally im-
portant to t�e proper management of s�ow caves suc� 
as t�e WGWC, but measurement alone is not sufficient. 
Regular, detailed, formal scientific appraisals of data by 

qualified personnel are essential. Casual or informal as-
sessments and reliance on low cost options for monitor-
ing are �ard to justify for managing suc� an important 
national resource. An essential part of identifying and 
selecting appropriate variables to be monitored is an 
understanding of p�ysical and biological processes t�at 
compose t�e cave system. Key reference criteria can be 
used in defining optimal conditions and maintaining 
t�em. 

Conscientious cave management is concerned wit� 
identifying acceptable environmental conditions and 
maintaining t�em. It involves adopting appropriate indi-
cators, setting standards to be maintained, and monitor-
ing to allow comparison to t�at standard. If necessary, 
operators will modify management strategies if stan-
dards cannot be consistently met. The c�oice of indica-
tor-variables must take into account t�eir representative-
ness and t�e feasibility of monitoring t�em. In t�e case 
of t�e WGWC, t�e undertaking to continuously (�alf-
�ourly) monitor conditions in t�e cave using automated 
data collection systems �as proved to be wort�w�ile. 
However, t�e quality of microclimate and environmental 
data collected using automated systems must meet ac-
ceptable standards. This is of t�e utmost importance if 
t�e data are to be of value for future analysis of t�e cave 
environment and for assessing t�e effectiveness of cave 
management tec�niques. Frequent monitoring at a few 
representative sites is usually preferable to occasional 
monitoring at many sites. The monitoring system s�ould 
take into account t�e possibility of interference by visi-
tors or vandalism, and intrusiveness of t�e monitoring 
equipment. In many cases, t�e presence of equipment 
may be built into site interpretation and commentary 
used during tours of t�e cave. Monitoring of t�e same 
key variables at t�e same sites s�ould be maintained to 
give long term comparative data. Identification and anal-
ysis of many aspects of ecological well-being or c�ange 
can best be ac�ieved by considering medium to long 
term trends in environmental and associated data.  The 
information collected will ultimately contribute to a sub-
stantial database essential for overseeing t�e well being 
of t�e cave environment. In addition to being important 
for s�ort term monitoring of conditions, t�e data will 
provide a vital retrospective record s�ould conditions 
c�ange or problems arise in t�e future.  

THE CHALLENGE OF SUSTAINABILITy

Unlike New Zealand, Australia �as taken seriously t�e 
business of conserving limestone environments and 

managing tourism t�ere. To �eig�ten protection of t�e 
precious Jenolan Caves Reserve in New Sout� Wales, 
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