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Abstract

The number of independent sets is equivalent to the partition function of the hard-
core lattice gas model with nearest-neighbor exclusion and unit activity. In this article,
we mainly study the number of independent sets i(Hn) on the Tower of Hanoi graph Hn

at stage n, and derive the recursion relations for the numbers of independent sets. Upper
and lower bounds for the asymptotic growth constant µ on the Towers of Hanoi graphs
are derived in terms of the numbers at a certain stage, where µ = limv→∞

ln i(G)
v(G) and

v(G) is the number of vertices in a graph G. Furthermore, we also consider the number of
independent sets on the Sierpiński graphs which contain the Towers of Hanoi graphs as a
special case.
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1 Introduction
Counting sets satisfying a fixed property in graphs ranges among the classical tasks of
combinatorics. There is a vast amount of literatures on this kind of combinatorial problems
for various classes of graphs, especially for Sierpiński graphs, by different authors. We
note that the set counting problems such as the number of independent sets and the number
of matchings have been studied in the past [2, 4, 9, 10, 11, 26, 35, 36].

On one hand, all these graph invariants reflect the structure of a graph in some way,
and therefore, some of them are even of interest in theoretical chemistry for the study of
molecular graphs (see [32, 38]). For example, the number of independent sets is called
∗Project supported by the National Natural Science Foundation of China (11401192) and Hunan Provincial

Innovation Foundation for Postgraduate (CX2015B162).
†Corresponding Author.
E-mail address: hydeng@hunnu.edu.cn (Hanyuan Deng)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



248 Ars Math. Contemp. 12 (2017) 247–260

Merrifield-Simmons index, the number of matchings is known as Hosoya index in chem-
istry. It was shown that both correlate well with physicochemical properties of the corre-
sponding molecules (see [23, 30]).

On the other hand, the number of independent sets is equivalent to the partition function
of the hard-core lattice gas model with nearest-neighbor exclusion and unit activity. The
lattice gas with repulsive pair interaction is an important model in statistical mechanics
[3, 13, 16, 33]. For the special case with hard-core nearest-neighbor exclusion such that
each site can be occupied by at most one particle and no pair of adjacent sites can be simul-
taneously occupied, the partition function of the lattice gas coincides with the independence
polynomial in combinatorics [14, 34]. This model is a problem of interest in mathematics
[39, 15, 24]. The growth of the number of independent sets in the m × n grid graph is of
interest in statistical physics (see [1]). It is known that the number of independent sets in
the m × n grid graph grows with αmn, where α = 1.503048082 · · · is the so-called hard
square entropy constant. The bound for this constant was successively improved by Weber
[40], Engel [9] and Calkin and Wilf [4].

The number of independent sets and its bounds had been considered on various graphs
[27, 29, 41]. It is of interest to consider independent sets on self-similar fractal lattices
which have scaling invariance rather than translational invariance [35]. The recursion rela-
tions for the numbers of independent sets on the Sierpiński gasket were derived by Chang,
Chen and Yan [6]. A special type of self-similar graph that has been of interest is the Hanoi
graph, which has been extensively studied in several contexts [5, 7, 8, 12, 17, 18, 19, 20,
22, 25, 28, 31]. This graph, which is also known as the Tower of Hanoi graph, came from
the well known Tower of Hanoi puzzle, as the graph is associated to the allowed moves in
this puzzle. We shall derive the recursion relations for the numbers of independent sets on
the Towers of Hanoi graphs. Upper and lower bounds for the asymptotic growth constant µ
on the Tower of Hanoi graphs are derived in terms of the numbers at a certain stage, where
µ = limv→∞

ln i(G)
v(G) , i(G) and v(G) are the number of independent sets and the number

of vertices in a graph G, respectively. Furthermore, we also consider the Sierpiński graphs
which include the Towers of Hanoi graphs as a special case.

2 Preliminaries
We recall some basic definitions about graphs. A graph G = (V,E) with vertex set V and
edge set E is always supposed to be undirected, without loops or multiple edges. Vertices
x and y are adjacent if xy is an edge in E. Let v(G) = |V | be the number of vertices and
e(G) = |E| the number of edges in G. An independent set is a subset of the vertices such
that any two of them are not adjacent. When the number i(G) of independent sets in G
grows exponentially with v(G) as v(G) → ∞, let us define a constant µ describing this
exponential growth:

µ = lim
v(G)→∞

ln i(G)

v(G)
.

We will see that the limit exists for the Towers of Hanoi graphs and some other Sierpiński
graphs considered in this paper.

There are many different approaches to construct self-similar graphs. A construction
that is specifically geared to be used in the context of enumeration was described in [35], it
is no restated and we will also make use of it here. Some examples can be seen in [37].

The Tower of Hanoi graph (or the Hanoi graph), invented in 1883 by the French math-
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Figure 1: The Towers of Hanoi graphs H0, H1, H2 and the construction of Hn.

ematician Edouard Lucas, has become a classic example in the analysis of algorithms and
discrete mathematical structures. There exists an abundant literature on the properties of
the Hanoi graph, which includes the study of shortest paths, average eccentricity, to name
a few, see [21] and references therein. The Hanoi graph Hn is derived from the Tower of
Hanoi puzzle with n discs. The vertices of the graph Hn in this sequence correspond to
all possible configurations of the game Tower with n + 1 disks and three rods, whereas
the edges describe transitions between configurations, see [17], and these graphs are finite
Schreier graphs of the Hanoi tower group in [12]. Note that the Tower of Hanoi graph can
be constructed by the following recursive-modular method. For n = 0, H0 is the complete
graph K3 (also called a 3-clique or triangle). For n ≥ 1, Hn is obtained from three copies
of Hn−1 joined by three new edges, each one connecting a pair of vertices from two differ-
ent replicas of Hn−1, as show in Figure 1. From the construction rule, we can find that the
number of vertices of Hn is 3n+1 while the number of edges is 3n+2−3

2 .

3 The number of independent sets on Hn

In this section, we will derive the asymptotic growth constant for the number of independent
sets on the Tower of Hanoi graph Hn in detail.

For the Tower of Hanoi graph Hn, in is its number of independent sets, fn is its num-
ber of independent sets such that all three outmost vertices are not in the vertex subset,
gn is its number of independent sets such that only one specified vertex of three outmost
vertices is in the vertex subset, hn is its number of independent sets such that exact two
specified vertices of the three outmost vertices are in the vertex subset, pn is its number
of independent sets such that all three outmost vertices are in the vertex subset. They are
illustrated in Figures 2–5, where only the outmost vertices are shown and a solid circle is
in the independent set and an open circle is not. Because of rotational symmetry, there are
three possible gn and three possible hn such that

in = fn + 3gn + 3hn + pn

and f0 = g0 = 1, h0 = p0 = 0, i0 = f0 + 3g0 + 3h0 + p0 = 4.
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Lemma 3.1. For any nonnegative integer n, we have

fn+1 =f3n + 6f2ngn + 3f2nhn + 9fng
2
n + 6fngnhn + 2g3n,

gn+1 =f2ngn + 2f2nhn + f2npn + 4fng
2
n + 8fngnhn + 2fngnpn + 2fnh

2
n + 3g3n

+ 4g2nhn,

hn+1 =fng
2
n + 4fngnhn + 2fngnpn + 3fnh

2
n + 2fnhnpn + 2g3n + 7g2nhn + 2g2npn

+ 4gnh
2
n,

pn+1 =g3n + 6g2nhn + 3g2npn + 9gnh
2
n + 6gnhnpn + 2h3n.

Proof. Note that the number fn+1 consists of (i) one configuration where all three Hn be-
long to the class that enumerated by fn; (ii) six configurations where one of theHn belongs
to the class that enumerated by gn and the other two belong to the class that enumerated
by fn; (iii) three configurations where one of the Hn belongs to the class that enumerated
by hn and the other two belong to the class that enumerated by fn; (iv) nine configurations
where one of the Hn belongs to the class that enumerated by fn and the other two belong
to the class that enumerated by gn; (v) six configurations where all three Hn belong to
the class that enumerated by fn, gn and hn, respectively; (vi) two configurations where all
three Hn belong to the class that enumerated by gn as illustrated in Figure 2. And

fn+1 = f3n + 6f2ngn + 3f2nhn + 9fng
2
n + 6fngnhn + 2g3n

is verified by adding these configurations.
Similarly, the expressions of gn+1, hn+1 and pn+1 can be obtained with appropriate

configurations of its three Hn as illustrated in Figures 3–5.

fn+1 = + ×6 + ×6 + ×3 + ×3 + ×2 + ×6

Figure 2: Illustration for the expression of fn+1. The multiplication of three on the right-
hand-side corresponds to the three possible orientations of Hn+1, the multiplication of
two on the right-hand-side corresponds to reflection symmetry with respect to the central
vertical axis and the multiplication of six on the right-hand-side corresponds to the six
possible of considering both orientations and reflection symmetry.

In the following, we will estimate the value µ = limv→∞
ln i(Hn)
v(Hn)

of the asymptotic
growth constant for the Tower of Hanoi graph Hn. The values of fn, gn, hn, pn for small n
are listed in Table 1 by Lemma 3.1, and grow exponentially. For the Tower of Hanoi graph
Hn, define the ratios

αn =
gn
fn
, βn =

hn
gn
, γn =

pn
hn

where n is a positive integer. Their values for small n are listed in Table 2. From the
initial values of fn, gn, hn, pn, it is easy to see that fn > gn > hn > pn for all positive
integer n by induction. Alternatively, these inequalities can be obtained by an injection.
For instance, if one of the independent sets enumerated by gn is given, one can remove
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gn+1 = + ×2 + ×2 + ×2 + ×2 + ×2 + +

×2 + ×2 + + ×2 + ×2 + ×2 + ×2 + ×2

Figure 3: Illustration for the expression of gn+1. The multiplication of two on the right-
hand-side are corresponds to the reflection symmetry with respect to the central vertical
axis.

hn+1 = + ×2 + ×2 + ×2 + ×2 + ×2 + +

×2 + ×2 + + ×2 + ×2 + ×2 + ×2 + ×2

Figure 4: Illustration for the expression of hn+1. The multiplication of two on the right-
hand-side are corresponds to the reflection symmetry with respect to the central vertical
axis.

pn+1 = + ×6 + ×6 + ×3 + ×3 + ×2 + ×6

Figure 5: Illustration for the expression of pn+1. The multiplication of three on the right-
hand-side corresponds to the three possible orientations of Hn+1, the multiplication of
two on the right-hand-side corresponds to reflection symmetry with respect to the central
vertical axis and the multiplication of six on the right-hand-side corresponds to the six
possible of considering both orientations and reflection symmetry.

Table 1: The first few values of fn, gn, hn, pn and in on Hn.
n 0 1 2 3
fn 1 18 38284 342408411795232
gn 1 8 15840 141595222762112
hn 0 3 6546 58553484583728
pn 0 1 2702 24213460330512
in 4 52 108144 967067994163264

the corner vertex to obtain another independent set that are enumerated by fn such that
fn > gn is established. Similarly, other two inequalities can be established. It follows that
αn, βn, γn ∈ (0, 1).
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Table 2: The first few values of αn, βn, γn on Hn.
n 1 2 3
αn 0.444444444444444 0.413749869397137 0.413527290465016
βn 0.375 0.413257575757575 0.413527260606109
γn 0.333333333333333 0.412771157959058 0.413527230747269

Lemma 3.2. For any positive integer n, the ratios satisfy

αn > βn > γn.

When n increases, the ratio αn decreases monotonically while γn increases monotonically.
The three ratios in the large n limit are equal to each other

lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

γn.

Proof. By the definition of αn, βn, γn, we have

αn+1 = αn
Bn
An

, βn+1 = αn
Cn
Bn

, γn+1 = αn
Dn

Cn

for a positive integer n, where
An = 1 + 6αn + 3αnβn + 9α2

n + 6α2
nβn + 2α3

n,

Bn = 1 + 2βn + βnγn + 4αn + 8αnβn + 2αnβnγn + 2αnβ
2
n + 3α2

n + 4α2
nβn,

Cn = 1 + 4βn + 2βnγn + 3β2
n + 2β2

nγn + 2αn + 7αnβn + 2αnβnγn + 4αnβ
2
n,

Dn = 1 + 6βn + 3βnγn + 9β2
n + 6β2

nγn + 2β3
n.

In the following, we show that 1
3 ≤ γn < βn < αn ≤ 4

9 by induction on n. It is true
for n = 1, 2, 3, 4 from Table 2. Suppose that 1

3 ≤ γn < βn < αn ≤ 4
9 for n ≥ 4.

Let εn = αn − γn. Then εn > αn − βn, εn > βn − γn and εn ∈ (0, 19 ). Now,

αn − αn+1 =αn − αn
Bn
An

=
αn(An −Bn)

An

=
αn
An

[(2 + 6αn + 4αnβn + 2α2
n + βn)(αn − βn)

+ (2αnβn + βn)(βn − γn)] > 0,

αn+1 − βn+1 =
αn(B

2
n −AnCn)
AnBn

> 0,

where

B2
n−AnCn =(10α2

nβn + 5α2
n + αnβn + 4αn + β2

n + 1)(αn − βn)2+(4α2
nβ

2
n + 2αnβ

2
n

+ 6αnβn + 2βn)(αn − βn)(αn − γn) + (4α3
nβn + 10α2

nβn + 2αnβ
2
n

+ 2αnβn + β2
n)(βn − γn)(αn − βn)+(2αnβ

2
n + β2

n)(αn − γn)(βn − γn)
+ (4α2

nβ
2
n + 2αnβ

2
n)(βn − γn)2 > 0,
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AnBn =10αn + 2βn + 23αnβn + βnγn + 8αnβ
2
n + 88α2

nβn + 133α3
nβn + 70α4

nβn

+ 8α5
nβn + 36α2

n + 56α3
n + 35α4

n + 6α5
n + 48α2

nβ
2
n + 6α2

nβ
3
n + 78α3

nβ
2
n

+ 12α3
nβ

3
n + 12α3

nβ
2
nγn + 28α4

nβ
2
n + 12α2

nβ
2
nγn + 8αnβnγn + 3αnβ

2
nγn

+ 21α2
nβnγn + 20α3

nβnγn + 4α4
nβnγn + 1

>4α4
nβn + 8α3

nβ
2
n + 20α3

nβn + 5α3
n + 8α2

nβ
2
n + 9α2

nβn + 4α2
n + 3αnβ

2
n

+ 2αnβn + αn.

Then

αn+1 − βn+1 =
αn(B

2
n −AnCn)
AnBn

<
ε2n

AnBn
[4α4

nβn + 8α3
nβ

2
n + 20α3

nβn + 5α3
n + 8α2

nβ
2
n + 9α2

nβn + 4α2
n

+ 3αnβ
2
n + 2αnβn + αn]

<ε2n,

since εn > αn − βn and εn > βn − γn.

Similarly, we have βn+1 − γn+1 =
αn(C

2
n−BnDn)
BnCn

> 0, where

C2
n −BnDn =[(10β3

n + 4β2
nγ

2
n + 4β2

n + 4βn + 1)(αn − βn) + (2β3
n + 9β2

n

+ 2βn)(αn − γn) + (2αnβ
2
n + αnβn)(βn − γn)](αn − βn)

+ [(4αnβ
3
n + 10β3

n)(αn − βn) + (4αnβ
3
n + 2β3

n)(αn − γn)
+ (2αnβ

2
n + β2

n)(βn − γn)](βn − γn) > 0,

BnCn =16α3
nβ

3
n + 8α3

nβ
2
nγn + 40α3

nβ
2
n + 6α3

nβnγn + 29α3
nβn + 6α3

n + 8α2
nβ

4
n

+ 20α2
nβ

3
nγn + 58α2

nβ
3
n + 4α2

nβ
2
nγ

2
n + 44α2

nβ
2
nγn + 101α2

nβ
2
n + 18α2

nβnγn

+ 60α2
nβn + 11α2

n + 4αnβ
4
nγn + 6αnβ

4
n + 4αnβ

3
nγ

2
n + 30αnβ

3
nγn + 40αnβ

3
n

+ 6αnβ
2
nγ

2
n + 43αnβ

2
nγn + 64αnβ

2
n + 14αnβnγn + 35αnβn + 6αn + 2β3

nγ
2
n

+ 7β3
nγn + 6β3

n + 2β2
nγ

2
n + 10β2

nγn + 11β2
n + 3βnγn + 6βn + 1.

Thus, we have

βn+1 − γn+1 =
αn(C

2
n −BnDn)

BnCn

<
ε2n

BnCn
[8α2

nβ
3
n + 4α2

nβ
2
n + α2

nβn + 24αnβ
3
n + 4αnβ

2
nγ

2
n + 14αnβ

2
n

+ 6αnβn + αn] < ε2n.
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And

γn+1 − γn =
1

Cn
(αnDn − γnCn)

=
1

Cn
[(1 + 4βn + 2β2

n + 2β2
nγn)(αn − γn) + (2αn + 7αnβn + 2βnγn

+ 2αnβnγn + 2αnβ
2
n)(βn − γn) + 3βnγn(αn − βn)] > 0.

So, we have (i) αn−αn+1 > 0, (ii) 0 < αn+1−βn+1 < ε2n, (iii) 0 < βn+1−γn+1 < ε2n
and (iv) γn+1 − γn > 0.

From (ii) and (iii), we can obtain that εn+1 = αn+1−γn+1 < 2ε2n <
2
81 for all positive

integer n by induction. It follows that for any positive integer m ≤ n,

εn < 2ε2n−1 < 2[2ε2n−2]
2 < · · · < 1

2
[2εm]2

n−m

.

Since εm ∈ (0, 19 ) for any positive integer m, we have that the values of αn, βn, γn are
close to each other when n becomes large.

Numerically, we can find

lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

γn = 0.4135272769487595999 · · ·

From the lemmas above, we get the bounds for the number of independent sets.

Theorem 3.3. For any positive integer m ≤ n,

f3
n−m

m (1 + 2γm)
3(3n−m−1)

2 (1 + γn)
3 < in < f3

n−m

m (1 + 2αm)
3(3n−m−1)

2 (1 + αn)
3

Proof. By Lemmas 3.1 and 3.2 and the definition of αn, βn, γn, we have

fn =f3n−1(1 + 6αn−1 + 3αn−1βn−1 + 9α2
n−1 + 6α2

n−1βn−1 + 2α3
n−1)

<f3n−1(1 + 6αn−1 + 12α2
n−1 + 8α3

n−1)

=[fn−1(1 + 2αn−1)]
3 < [f3n−2(1 + 2αn−2)

3]3(1 + 2αn−1)
3

<f3
2

n−2(1 + 2αn−2)
32+31

< · · · < f3
n−m

m (1 + 2αm)
3(3n−m−1)

2 .

And

in =fn + 3gn + 3hn + pn = fn(1 + 3αn + 3αnβn + αnβnγn)

<fn(1 + 3αn + 3α2
n + α3

n) = fn(1 + αn)
3 < f3

n−m

m (1 + 2αm)
3(3n−m−1)

2 (1 + αn)
3.

Similarly, the lower bound for in can be derived.

Theorem 3.4. The asymptotic growth constant for the number of independent sets in Hn

is bounded by

ln fm
3m+1

+
ln(1 + 2γm)

2× 3m
≤ µ ≤ ln fm

3m+1
+

ln(1 + 2αm)

2× 3m

where m is a positive integer.
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Proof. Note that the number of vertices of Hn is v(Hn) = 3n+1, by Theorem 3.3, we have

ln in
v(Hn)

<
ln fm
3m+1

+
ln(1 + 2αm)

2× 3m
− ln(1 + 2αm)

2× 3n
+

ln(1 + αn)

3n

and

ln in
v(Hn)

>
ln fm
3m+1

+
ln(1 + 2γm)

2× 3m
− ln(1 + 2γm)

2× 3n
+

ln(1 + γn)

3n

So, the bounds for µ = limv(Hn)→∞
ln in
v(Hn)

follow.

As m increases, the difference between the upper and lower bounder in Theorem 3.4
becomes small and the convergence is rapid. Numerically, the asymptotic growth constant
for the number of independent sets of the Tower of Hanoi graph Hn in the large n limit
is µ = 0.42433435855938823 · · · . In fact, the numerical value of µ can be obtained with
more than a hundred significant figures accurate when m is equal to seven.

4 The number of independent sets on graphs Sk,n

The Sierpiński graphs Sk,n were introduced by Klavz̆ar and Milutinović in 1997 in [25].
The graph Sk,0 is simply the complete graph on k vertices, Sk,n is constructed from Sk,n−1
by copying k times Sk,n−1 and adding exactly one edge between each pair of copies. For
the construction, one can easily derive that the total number of vertices and edges in Sk,n
are v(Sk,n) = kn+1 and e(Sk,n) = 1

2 (k
n+2 − k), respectively. In particularly, we can see

those graphs are exactly the graphs of the Tower of Hanoi problem for k = 3 and another
case as shown in Figure 6 for k = 4.

S4,0 S4,1 S4,2

S4,n−1 S4,n−1

S4,n−1 S4,n−1

S4,n

Figure 6: The graphs S4,0, S4,1, S4,2 and the construction of S4,n.

The method given in the previous section can be applied to enumeration the number
of independent sets on this Sierpiński graphs with k ≥ 4, but the items of the recursion
relations will become larger and larger with the increase of k.

To seek the number of independent sets on S4,n, we use the following definitions: (i)
Define f4,n as the number of independent sets such that all four outmost vertices are not in
the vertex sets. (ii) Define g4,n as the number of independent sets such that only one certain
outmost vertex are in the vertex sets. (iii) Define h4,n as the number of independent sets
such that exactly two certain outmost vertex are in the vertex sets. (iv) Define p4,n as the
number of independent sets such that exactly three certain outmost vertex are in the vertex
sets. (v) Define q4,n as the number of independent sets such that all four outmost vertex are
in the vertex sets.
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Table 3: The first few values of f4,n, g4,n, h4,n, p4,n, q4,n and i4,n on S4,n.
n 1 2 3

f4,n 163 13064274739 497661511371512614009322138806617451967507
g4,n 52 3951119257 150487045809089786329485928937399858428184
h4,n 15 1194624638 45505530112368879421817904248654649805971
p4,n 4 361093492 13760342318790991781550553074012255470504
q4,n 1 109115158 4160967243331065589513567798163834387921
i4,n 478 37589988721 1431845211800580068573889060142357640786006

Table 4: The first few values of α4,n, β4,n, γ4,n and δ4,n on S4,n.
n 1 2 3

α4,n 0.319018404907975 0.302436938592921 0.302388355077651
β4,n 0.288461538461538 0.302350944199809 0.302388354211550
γ4,n 0.266666666666666 0.302265230863252 0.302388353345449
δ4,n 0.25 0.302179796693760 0.302388352479348

The quantities f4,n, g4,n, h4,n, p4,n, q4,n of S4,n are lengthy and given in the appendix.
Some values of f4,n, g4,n, h4,n, p4,n, q4,n, i4,n are listed in Table 3. These numbers
grow exponentially, and have no integer factorizations. There are four equivalent g4,n, six
equivalent h4,n, and four equivalent pn. By definition, we have

i4,n = f4,n + 4g4,n + 6h4,n + 4p4,n + q4,n.

The initial values at stage zero are f4,0 = g4,0 = 1, h4,0 = p4,0 = q4,0 = 0 and i4,0 = 5.
Define ratios α4,n = g4,n/f4,n, β4,n = h4,n/g4,n,γ4,n = p4,n/h4,n, δ4,n = q4,n/p4,n.

As n increases, we find α4,n decrease monotonically while β4,n, γ4,n and δ4,n increase
monotonically with the relation α4,n > β4,n > γ4,n > δ4,n. The values of these ratios for
small n are listed in Table 4. Numerically, we can find

lim
n→∞

α4,n = lim
n→∞

β4,n = lim
n→∞

γ4,n = lim
n→∞

δ4,n = 0.30238835458805297767 · · ·

By a similar argument as the Tower of Hanoi graph Hn in the last section, the asymp-
totic growth constant for the number of independent sets on S4,n is bounded by

ln f4,m
4m+1

+
ln(1 + 2δ4,m)

2× 4m
≤ µ4 ≤

ln f4,m
4m+1

+
ln(1 + 2α4,m)

2× 4m

where µ4 = limv(S4,n)→∞
ln i4,n
v(S4,n)

and m is a positive integer.
Then, we can obtain the asymptotic growth constant for the number of independent sets

on the Sierpińsk graph S4,n in the large n limit is µ = 0.378737140730676994823835 · · · .

We can also continue verify a similarly bound for the asymptotic growth constant on
S5,n, in order to avoid verbosity, we are not to describe here. However, the recursion
relations of the number of independent sets for general k are difficult to obtain. From what
has been discussed above, we have the following conjecture for the Sierpiński graphs Sk,n
with positive integers k and m.
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Conjecture 4.1. The asymptotic growth constant for the number of independent sets on the
Sierpińsk graph S4,n is bounded by

ln fk,m
km+1

+
ln(1 + 2φk,m)

2× km
≤ µk ≤

ln fk,m
km+1

+
ln(1 + 2αk,m)

2× km

where the ratios are defined as αk,n = gk,n/fk,n, φk,n = wk,n/yk,n, fk,n is the number
of independent sets such that all k outmost vertices are not in the vertex subset, gk,n is the
number of independent sets such that one certain outmost vertex is in the vertex subset,
yk,n is number of independent sets such that all but one certain outmost vertex are in the
vertex subset, and wk,n is the number of independent sets such that all k outmost vertices
are in the vertex subset.

Appendix: Recursion relation for S4,n

We give the recursive relation for the Siepiński graph S4,n here. Since the subscript is
k = 4 for all the quantities throughout this section, we will use the simplified notation
fn+1 to denote f4,n+1 and similar notations for other quantities. For any non-negative in-
teger n, we have

fn+1 = f4n+12f3ngn+12f3nhn+48f2ng
2
n+4f3npn+84f2ngnhn+72fng

3
n+24f2ngnpn+

30f2nh
2
n + 156fng

2
nhn + 30g4n + 12f2nhnpn + 36fng

2
npn + 84fngnh

2
n + 60g3nhn +

24fngnhnpn + 8g3npn + 8fnh
3
n + 24g2nh

2
n,

gn+1 = f3ngn+3f3nhn+9f2ng
2
n+3f3npn+33f2ngnhn+24fng

3
n+f

3
nqn+24f2ngnpn+

21f2nh
2
n+96fng

2
nhn+18g4n+6f2ngnqn+21f2nhnpn+51fng

2
npn+93fngnh

2
n+69g3nhn+

3f2nhnqn+9fng
2
nqn+3f2np

2
n+66fngnhnpn+24g3npn+21fnh

3
n+66g2nh

2
n+6fngnhnqn+

2g3nqn + 6fngnp
2
n + 12fnh

2
npn + 24g2nhnpn + 14gnh

3
n,

hn+1 = f2ng
2
n+6f2ngnhn+6fng

3
n+6f2ngnpn+8f2nh

2
n+38fng

2
nhn+8g4n+2f2ngnqn+

14f2nhnpn + 30fng
2
npn + 64fngnh

2
n + 50g3nhn + 4f2nhnqn + 8fng

2
nqn + 5f2np

2
n +

80fngnhnpn + 30g3npn + 26fnh
3
n + 87g2nh

2
n + 2f2npnqn + 16fngnhnqn + 6g3nqn +

18fngnp
2
n + 34fnh

2
npn + 72g2nhnpn + 44gnh

3
n + 4fngnpnqn + 4fnh

2
nqn + 8g2nhnqn +

8fnhnp
2
n + 8g2np

2
n + 28gnh

2
npn + 4h4n,

pn+1 = fng
3
n + 9fng

2
nhn + 3g4n + 9fng

2
npn + 24fngnh

2
n + 27g3nhn + 3fng

2
nqn +

42fngnhnpn + 22g3npn + 18fnh
3
n + 75g2nh

2
n + 12fngnhnqn + 6g3nqn + 15fngnp

2
n +

39fnh
2
npn + 99g2nhnpn + 69gnh

3
n + 6fngnpnqn + 9fnh

2
nqn + 21g2nhnqn + 21fnhnp

2
n +

24g2np
2
n+96gnh

2
npn+15h4n+6fnhnpnqn+6g2npnqn+12gnh

2
nqn+2fnp

3
n+24gnhnp

2
n+

14h3npn,

qn+1 = g4n+12g3nhn+12g3npn+48g2nh
2
n+4g3nqn+84g2nhnpn+72gnh

3
n+24g2nhnqn+

30g2np
2
n + 156gnh

2
npn + 30h4n + 12g2npnqn + 36gnh

2
nqn + 84gnhnp

2
n + 60h3npn +

24gnhnpnqn + 8h3nqn + 8gnp
3
n + 24h2np

2
n.

There are always 729 = 36 terms in these equations.
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[16] J. R. Heringa, H. W. J. Blöte and E. Luijten, High-dimensional lattice gases, J. Phys.
A 33 (2000), 2929–2941, doi:10.1088/0305-4470/33/15/302, http://dx.doi.org/10.
1088/0305-4470/33/15/302.

[17] A. M. Hinz, The Tower of Hanoi, Enseign. Math. (2) 35 (1989), 289–321.



H. Chen et al.: Independent sets on the Towers of Hanoi graphs 259

[18] A. M. Hinz, Pascal’s triangle and the Tower of Hanoi, Amer. Math. Monthly 99 (1992), 538–
544, doi:10.2307/2324061, http://dx.doi.org/10.2307/2324061.

[19] A. M. Hinz, Shortest paths between regular states of the Tower of Hanoi, Inform. Sci. 63
(1992), 173–181, doi:10.1016/0020-0255(92)90067-I, http://dx.doi.org/10.1016/
0020-0255(92)90067-I.
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