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Abstract

We prove that every Moulton plane of odd order—by duality every generalised André
plane—contains a unital. We conjecture that such unitals are non-classical, that is, they
are not isomorphic, as designs, to the Hermitian unital. We prove our conjecture for Moul-
ton planes which differ from PG(2, q2) by a relatively small number of point-line inci-
dences. Up to duality, our results extend previous analogous results—due to Barwick and
Grüning—concerning inherited unitals in Hall planes.
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Math. Subj. Class.: 51E20, 05B25

1 Introduction
A unital is a set of q3+1 points together with a family of subsets, each of size q+1, such that
every pair of distinct points are contained in exactly one subset of the family. Such subsets
are usually called blocks so that unitals are block-designs 2−(q3+1, q+1, 1). The classical
example of a unital arises from the unitary polarity in the Desarguesian projective plane
PG(2, q2) where the points are the absolute points, and the blocks are the non-absolute
lines of the unitary polarity. The name of “Hermitian unital” is commonly used for the
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classical example since the absolute points of the unitary polarity are the points of the
Hermitian curve defined over GF(q2).

A unital U is embedded in a projective plane Π of order q2, if its points are points of Π
and its blocks are intersections with lines. As usual, we adopt the term “chord” to indicate a
block of U . A line ` of Π is either a tangent or a (q+1)-secant to U according as |`∩U| = 1
or |` ∩ U| = q + 1, and in the latter case ` ∩ U is a chord. Examples of unitals embedded
in PG(2, q2) other than the Hermitian ones are known to exist.

A unital is classical if it is isomorphic, as a block-design, to a Hermitian unital. Clas-
sical unitals contain no O’Nan configurations, and it has been conjectured that any non-
classical unital embedded in PG(2, q2) must contain a O’Nan configuration.

In several families of non-desarguesian planes, the problem of constructing and charac-
terizing unitals has also been investigated; see [1, 2, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 22, 23, 24, 27, 28]. Apart from the examples of unitals arising from a unitary
polarity in a commutative semifield plane, the known examples are inherited unitals from
the Hermitian unital. In a non-desarguesian plane Π of order q2 arising from PG(2, q2)
by altering some of the point-line incidences, the adjective “inherited” is used for those
pointsets of PG(2, q2) which keep their intersection properties with lines when moving
from PG(2, q2) to Π.

In this paper we construct inherited unitals in Moulton planes of odd order q2, and,
by duality, in generalised André planes of the same order; see Theorem 3.1. We also
investigate the problem whether these unitals are classical; see Theorems 3.5 and 3.6. We
show that if such a plane differs from PG(2, q2) by a relatively small number of incidences
only, then the inherited unital is non-classical. Also, we exhibit non-classical inherited
unitals in case of many point-line incidence alterations. Such unitals appear to be of interest
in coding theory; see [25].

What emerges from our work leads us to conjecture that the inherited unitals con-
structed in our paper are all non-classical. It should be noticed that our results extend
previous analogous results due to Barwick and Grüning concerning inherited unitals in
Hall planes which are very special André planes; see [8, 16] and Remark 3.4. The methods
used in [8] are mostly geometric and involve Baer subplanes and blocking sets. In this
paper, we adopt a more algebraic approach that allows us to exploit results on the number
of solutions of systems of polynomial equations over a finite field.

2 Two new results on the Hermitian unital
We establish and prove two theorems on Hermitian unitals that will play a role in our study
on unitals in Moulton planes.

Up to a change of the homogeneous coordinate system (X1, X2, X3) in PG(2, q2), the
points of the classical unital U are those satisfying the equation

Xq+1
1 +Xq+1

2 +Xq+1
3 = 0. (2.1)

In the affine plane AG(2, q2) arising from PG(2, q2) with respect to the line X3 = 0, we
use the coordinates (X,Y ) where X = X1/X3 and Y = X2/X3). Then the points of U
in AG(2, q2) are the solutions of the equation

Xq+1 + Y q+1 + 1 = 0. (2.2)

Since GF(q2) is the quadratic extension of GF(q) by adjunction of a root i of the poly-
nomial X2 − s with a non-square element s of GF(q), every element u of GF(q2) can
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uniquely be written as u = u1 + iu2 with u1, u2 ∈ GF(q). Then uq = u1 − iu2 and
‖u‖ = uq+1 = u21 − su22. Therefore, the points P (x, y) ∈ U lying in AG(2, q2) are those
satisfying the equation

x21 − sx22 + y21 − sy22 + 1 = 0. (2.3)

For a subset T ⊆ GF(q) \ {0}, let St denote the set of points { (x, y) | ‖x‖ = t ∈ T }.
Hence the pointset St ∩ U comprises all points P (x, y) such that both x21 − sx22 = t and
(2.3) hold. Therefore, a point P (x, y) ∈ AG(2, q2) is in St ∩U if and only if P1(x1, x2) ∈
AG(2, q) lies on the non-degenerate conic C1 : X2 − sY 2 − t = 0 while P2(y1, y2) ∈
AG(2, q) does lie on the conic C2 : X2 − sY 2 + 1 + t = 0. This shows that St ∩ U has
size (q + 1)2 apart from the case t = −1 when it consists of the q + 1 points of U lying on
the X-axis.

Lemma 2.1. Let ` be a non-vertical line in AG(2, q2). Then |`∩U ∩St| ∈ {0, 1, 2, q+ 1}
for every t ∈ T . If q + 1 occurs then ` is either a horizontal line, or it passes through the
origin.

Proof. The points P (x, 0) with ‖x‖ = t form a Baer subline. As U is classical, ` ∩ U is a
Baer subline of `, and hence the projection of `∩U on theX-axis from Y∞ is a Baer-subline,
as well. Since two distinct Baer sublines have at most two common points, the first assertion
follows. To prove the second one, we need some computation. If ` has equation Y = Xm+
b, we have to count the roots x of the polynomial f(X) = Xq+1+(Xm+b)q+1+1 whose
norm ‖x‖ is equal to t. If ‖x‖ = t, then f(x) = bmqxq + bqmx+ t(1 +mq+1) + bq+1 + 1
and hence

xf(x) = bqmx2 + (t(1 +mq+1) + bq+1 + 1)x+ bmqt.

If we have at least three such roots x then either m = 0 and t + 1 = −bq+1, or b = 0 and
t(1 +mq+1) = −1.

Take any two distinct non-tangent lines `1 and `2 of U . We are interested in the inter-
section of the projection of `1 ∩ U from P on `2 with `2 ∩ U . For any point P outside
both `1 and `2, the projection of `1 to `2 from P takes the chord `1 ∩ U to a Baer subline
of `2. Since two Baer sublines of `2 intersect in 0, 1, 2 or q + 1 points, one may want to
determine the size of the sets Σi (i = 0, 1, 2, q+1) consisting of all points P for which this
intersection number is equal to i. The points in Σi are called elliptic, parabolic, hyperbolic,
or full with respect to the pair (`1, `2), according as i = 0, i = 1, i = 2, or i = q + 1,
respectively; see [21].

We go on to compute the size of Σi ∩ U . Since the linear collineation group G ∼=
PGU(3, q) of PG(2, q2) preserving U acts transitively on the points outside U , we may
assume that Y∞ = `1 ∩ `2. The stabiliser of Y∞ in G acts on the pencil with center in
Y∞ as the general projective group PGL(2, q) on the projective line PG(1, q2). Therefore,
it has two orbits, one consisting of all tangents the other of all chords to U through Y∞.
This allows us to assume without loss of generality that `1 is the line at infinity. Since `2
is not a tangent to U , its equation is of the form X = c with cq+1 + 1 6= 0. Therefore,
cq+1 + 1 is either a non-zero square or a non-square element of GF(q). These two cases
occur depending upon whether a linear collineation γ ∈ PGL(2, q) taking `1 to `2 is in
the subgroup isomorphic to the special projective group PSL(2, q) or not. Accordingly,
{`1, `2} is called a special pair or a general pair. Further, since P is a point outside `1 and
`2, it is an affine point P = (a, b) with a 6= c.
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Figure 1: The initial configuration.

Let P = (a, b) denote a point of U , that is,

aq+1 + bq+1 + 1 = 0. (2.4)

Take a line r of equation Y = m(X−a)+b through P = (a, b). A necessary and sufficient
condition for r to meet both `1 and `2 in U is the existence of a solution τ ∈ GF(q2) of the
system consisting of (2.4) together with

cq+1 + τ q+1 + 1 = 0, (2.5)

mq+1 + 1 = 0. (2.6)

In fact, Q(c, τ) with τ = m(c− a) + b is the point of r on `2. Then (2.5) holds if and only
if Q ∈ U . Furthermore, (2.6) is the necessary and sufficient condition for the infinite point
of r to be in U ; see Figure 1.

The above discussion also shows how to count lines through P meeting both `1 ∩ U
and `2 ∩ U . Essentially, one has to find the number of solutions in the indeterminate τ of
the system consisting of the equations (2.4), (2.5), and (2.6). Observe that (2.4), (2.5), (2.6)
are equivalent to

a21 − sa22 + b21 − sb22 + 1 = 0, (2.7)

c21 − sc22 + τ21 − sτ22 + 1 = 0, (2.8)
b1τ1 − sb2τ2 + a1c1 − sa2c2 + 1 = 0. (2.9)

From this the following result is obtained.

Proposition 2.2. The number of lines through P meeting both `1∩U and `2∩U equals the
number of solutions (τ1, τ2), with τ1, τ2 ∈ GF(q), of the system consisting of (2.7), (2.8),
(2.9).
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In investigating the above system, two cases are distinguished according as (b1, b2) is
(0, 0) or not.

In the former case, Equations (2.7) and (2.9) read a21−sa22 +1 = 0 and a1c1−sa2c2 +
1 = 0. Geometrically in AG(2, q), the point U = (a1, a2) is the intersection of the ellipse
E , with equation X2 − sY 2 + 1 = 0, and the line v with equation c1X − sc2Y + 1 = 0.
Since cq+1 + 1 = c21 − sc22 + 1 is a non-zero element of GF(q), v must be either a secant,
or an external line to E and this occurs according as c21 − sc22 + 1 is a non-zero square or
non-square element in GF(q). In fact, from (2.7) and (2.9),

a1 =
sc2a2 − 1

c1
, a2 =

−sc2 ± ic1
√
c21 − sc22 + 1

s(c21 − sc22)
.

Therefore, if P is on the X-axis, then P is elliptic in general, apart from the case where
cq+1 +1 = c21−sc22 +1 is a non-square element in GF(q) and P is one of the two common
points of C and v, namely P = P (a, 0) where

a = a1 + ia2 =
−1±

√
1 + cq+1

cq
.

Further, in the exceptional case, P is a full point as for any c1, c2 ∈ GF(q) with c21− sc22 +
1 6= 0, Equation (2.8) always has q + 1 solutions (τ1, τ2) with τ1, τ2 ∈ GF(q).

In the latter case, either b1 or b2 is not zero. If b1 6= 0, retrieving τ1 from (2.9) and
putting it in (2.8) gives a quadratic equation in the indeterminate τ2, namely

(s2b22 − sb21)τ22 − 2sb2(a1c1 − sa2c2 + 1)τ2 +

(a1c1 − sa2c2 + 1)2 + b21(1 + c21 − sc22) = 0, (2.10)

whose discriminant is ∆1 = sb21∆ with

∆ = (b21 − sb22)(1 + c21 − sc22) + (a1c1 − sa2c2 + 1)2

which can also be written by (2.7) as

∆ = −(1 + c21 − sc22)(a21 − sa22 + 1) + (a1c1 − sa2c2 + 1)2.

For b2 6= 0, retrieving τ2 from (2.9) and putting it in (2.8) gives the following quadratic
equation in the indeterminate τ1:

(−b21 + b22)τ21 + 2a1b1c1τ1 −
a21 − s2a22c22 − b22c21 + sb22c

2
2 + 2sa2c2 − b22 − 1 = 0 (2.11)

with discriminant ∆2 = s3b22∆. Since ∆1 and ∆2 are simultaneously zero, or a square, or
a non-square in GF(q), each of the equations (2.10) and (2.11) has 2, 1 or zero solutions in
GF(q), depending upon whether ∆ is a square element, zero, or a non-square element of
GF(q), respectively. This leads to the study of the zeroes of the polynomial

F (X,Y, Z) = −(1 + c21 − sc22)(X2 − sY 2 + 1) + (c1X − sc2Y + 1)2 − Z2. (2.12)

Geometrically, F (X,Y, Z) = 0 is the equation of a quadric Q in AG(3, q). Actually, Q
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Table 1: Elliptic, parabolic, hyperbolic and full points.

P (a, 0) P (a, b), b 6= 0

1 + ‖c‖ ∈ � 1 + ‖c‖ ∈ 6� 1 + ‖c‖ ∈ � 1 + ‖c‖ ∈ 6�

NE q + 1 q − 1
−3− 9q + q2 + q3

2

−3− 5q − q2 + q3

2

NP 0 0 2q − 1 0

NH 0 0
(q − 1)2

2
(q + 1)

(q + 1)2

2
(q − 1)

NF 0 2 0 0

is a cone. In fact, the system FX = FY = FZ = 0 has a (unique) solution (c1, c2, 0) and
hence the point V (c1, c2, 0) is the vertex of Q. In particular, the intersection of Q with the
plane Z = 0 splits into two lines over GF(q) or its quadratic extension GF(q2), and this
occurs according as the infinite points of the conic with equation

−(1 + c21 − sc22)(X2 − sY 2) + (c1X − sc2Y )2 = 0

lie in PG(2, q) or in PG(2, q2) \ PG(2, q). By a direct computation, this condition only
depends on cq+1, namely whether 1 + cq+1 is a square or a non-square element of GF(q).
Therefore, Q contains either 2q−1 or 1 points in the planeZ = 0, and this occurs according
as the pair {`1, `2} is special or general. Also, in the former case there are exactly 2q − 1
parabolic points P but in the latter case no point P is parabolic. Therefore, the following
result holds.

Theorem 2.3. Let `1, `2 be any two distinct non-tangent lines of the classical unital U
in PG(2, q2) whose common point is off U . The number NE , NP , NH, NS , of elliptic,
parabolic, hyperbolic and full points of U with respect to the pair {`1, `2} is given in
Table 1.

We state a corollary of Theorem 2.3 that will be used in Section 3. For i = 1, 2 let Λi

be a subset of `i ∩ U such that |Λ1| = |Λ2| = λ.

Theorem 2.4. If

λ >

√
(q + 1)(q + 3)

2
(2.13)

there exists a non-degenerate quadrangle A1B1A2B2 with vertices Ai, Bi ∈ Λi for i =
1, 2 such that its diagonal point A1B2 ∩B1A2 lies in U .

Proof. We prove the existence of a hyperbolic point D in U such that the projection of Λ1

fromD on `2 share two points with Λ2. From Theorem 2.3, we have at least 1
2 (q−1)2(q+1)

hyperbolic points in U . We omit those hyperbolic points projecting Λ1 = (`1 ∩ U) \ Λ1

to a pointset of `2 meeting `2 ∩ U nontrivially. The number of such hyperbolic points is
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λ̄(q − 1)(q + 1) with λ̄ = q + 1 − λ. Similarly we omit all hyperbolic points projecting
Λ2 = (`2 ∩ U) \ Λ2 to a pointset of `1 meeting `1 ∩ U nontrivially. Therefore, the total
number of omitted hyperbolic points is 2λ̄(q2−1)−λ̄2(q−1) = (q−1)λ̄(2q+2−λ̄(q−1)).
From Theorem 2.3, this number is smaller than the total number of hyperbolic points as far
as (2.13) holds.

To state the other new result on the classical unital a couple of ad hoc notation in
AG(2, q2) will be useful: For a non-vertical line ` with equation Y = Xm + b, ¯̀denotes
the non-vertical line with equation Y = Xmq + b. Given a point P (a, b) outside U , two
lines `1 and `2 are said to be a good line-pair whenever the lines ¯̀

1 and ¯̀
2 meet in a point

of U . Our goal is to show that if a 6= 0 then there exist many good pairs.
For i = 1, 2, write the equations of `i in the form Y = (X − a)mi + b. Then ¯̀

i has
equation Y = Xmq

i − ami + b. Hence P̄ (x, y) = ¯̀
1 ∩ ¯̀

2 where

x =
a(m1 −m2)

mq
1 −m

q
2

,

and hence

y =
a(m1 −m2)

mq
1 −m

q
2

mq
1 − am1 + b.

Note that

‖x‖ = xq+1 = aq+1

(
1

(m1 −m2)q−1

)q+1

=
‖a‖

(m1 −m2)q2−1
= ‖a‖ 6= 0.

The condition for P (x, y) to lie in U is

xq+1 + yq+1 + 1 = aq+1 + aq+1

(
(m1 −m2)

(m1 −m2)q
mq

1 −m1 +
b

a

)q+1

+ 1 = 0.

Let

ξ = −a
q+1 + 1

aq+1
∈ GF(q).

Then the last equation reads(
(m1 −m2)

(m1 −m2)q
mq

1 −m1 +
b

a

)q+1

= ξ. (2.14)

Henceforth we assume that
‖a‖ 6= −1.

With

m1 = α+ iβ, m2 = γ + iδ,
b

a
= u+ iv,

(2.14) reads (
(α− γ) + i(β − δ)
(α− γ)− i(β − δ)

(α− iβ)− (α+ iβ) + u+ iv

)q+1

= ξ,
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whence

(uα− uγ − svβ + svδ)2 − s(2βγ − 2αδ − u(β − δ) + v(α− γ))2

− ξ((α− γ)2 − s(β − δ)2) = 0,

that is,

(u(α− γ)− sv(β − δ))2 − s(2βγ − 2αδ − u(β − δ) + v(α− γ))2

− ξ((α− γ)2 − s(β − δ)2) = 0. (2.15)

With
γ = α− γ, δ = β − δ,

Equation (2.15) becomes

(uγ − svδ)2 − s(−2βγ − 2αδ − uδ + vγ)2 − ξ(γ2 − sδ2) = 0, (2.16)

which can be viewed as a quadratic form in γ and δ:

F (γ, δ) = (u2 − v2s+ 4vβs− 4β2s− ξ) γ2 + 2(−2uβs+ 2vαs− 4αβs) γδ

+ (−u2s− 4uαs+ v2s2 − 4α2s+ sξ) δ
2

(2.17)

with discriminant

∆ = −u4s+ 2u2v2s2 + 2u2sξ − v4s3 − 2v2s2ξ − sξ2

+ (−4u3s+ 4uv2s2 + 4usξ)α+ (−4u2vs2 + 4v3s3 + 4vs2ξ)β

− 8uvs2 αβ + (−4u2s+ 4sξ)α2 + (−4v2s3 − 4s2ξ)β2.

Note that P (x, y) ∈ U if and only if ∆ = λ2 for some λ ∈ GF(q). This leads us to
consider the quadric Q in AG(3, q) of equation

a00 + a01X + a02Y + a12XY + a11X
2 + a22Y

2 − Z2 = 0,

where

a00 = −u4s+ 2u2v2s2 + 2u2sξ − v4s3 − 2v2s2ξ − sξ2,
a01 = −4u3s+ 4uv2s2 + 4usξ,

a02 = −4u2vs2 + 4v3s3 + 4vs2ξ,

a12 = −8uvs2,

a11 = −4u2s+ 4sξ,

a22 = −4v2s3 − 4s2ξ.

The above coefficients are related by the following equations:

(i) a00 − 1
2 ( 1

2a01u−
1
2a02v) = sξ(u2 − sv2 − ξ);

(ii) 1
2a01 −

1
2 (a11u− 1

2a12v) = 0;
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(iii) 1
2a02 −

1
2 ( 1

2a12u− a22v) = 0.

Therefore, the determinant D of the 4× 4 matrix associated with Q is equal to −sξ(u2 −
sv2 − ξ) multiplied by the determinant of the cofactor of a00. The latter determinant
a11a22 − 1

4a
2
12 is equal to

D0 = s3ξ(u2 − sv2 − ξ) = s3(aq+1 + bq+1 + 1)(aq+1 + 1). (2.18)

It turns out that

D = −(s2ξ(u2 − sv2 − ξ))2.

Observe that ξ = 0 if and only if aq+1 = −1, while

u2 − sv2 − ξ =
bq+1

aq+1
+
aq+1 + 1

aq+1
=
aq+1 + bq+1 + 1

aq+1

vanishes only for P (a, b) ∈ U . Therefore,Q is non-degenerate. More precisely, the quadric
Q is either elliptic or hyperbolic according as q ≡ −1 (mod 4) or q ≡ 1 (mod 4). The
plane at infinity cuts out fromQ a conic C with homogeneous equation a11X2 +a12XY +
a22Y

2−Z2 = 0. Observe that C is non-degenerate byD0 6= 0. Thus, the number of points
ofQ inAG(3, q) is q2±q with q ≡ ±1 (mod 4). Furthermore, the point at infinity Z∞ on
the Z-axis does not lie on Q, and it is an external point or an internal point to C according
as −D0 is a non-zero square or a non-square in GF(q). Therefore, the number of tangents
to Q through Z∞ in AG(3, q) is equal to q − 1 or q + 1 according as −D0 is a (non-zero)
square or a non-square in GF(q). From the above discussion, the numbers Ns and Nt of
secants and tangents to Q through Z∞ are those given in the following lemma:

Lemma 2.5. For q ≡ −1 (mod 4), either Nt = q + 1, Ns = 1
2 (q − 1)2, or Nt = q −

1, Ns = 1
2 (q2−2q−1), according asD0 is a (non-zero) square or a non-square in GF(q).

For q ≡ 1 (mod 4), either Nt = q− 1, Ns = 1
2 (q2 + 1), or Nt = q+ 1, Ns = 1

2 (q2− 1),
according as D0 is a (non-zero) square or a non-square in GF(q).

Going back to the discriminant ∆, we see that ∆ vanishes for Ns + Nt ordered pairs
(α, β), that is, Ns + Nt is the number of lines `1 through P (a, b) for which there exists
a line `2 such that (`1, `2) is a good line-pair. For each `1 counted in Nt (resp. Ns), we
have q − 1 (resp. 2(q − 1)) such lines `2, since if (2.17) has a non-trivial solution (γ̄, δ̄) in
GF(q)×GF(q) then it has exactly q − 1 solutions, the multiples of (γ̄, δ̄) by the non-zero
elements of GF(q).

If we do not count the q + 1 tangents to U through P (a, b), each of the lines through
P (a, b) counted in Ns is in at least 2(q − 1)− (q + 1) = q − 3 good line-pairs. Therefore
Lemma 2.5 has the following corollary.

Theorem 2.6. Let P (a, b) be a point of AG(2, q2) outside U . If a 6= 0, ‖a‖ 6= −1 and
q > 3, then there exist at least two non-tangent lines `1, `2 of U through P , such that the
non-tangent lines ¯̀

1 and ¯̀
2 meet in a point of U . Further, if q > 5 then `1 and `2 may be

chosen among the lines through P (a, b) other than the horizontal lines and those passing
through the origin.
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3 Unitals in Moulton planes
Let T be a non-empty subset of the multiplicative group of GF(q). The (affine) Moulton
plane MT (q2) which is considered in our paper is the affine plane coordinatized by the left
quasifield GF(q2)(+, ◦) where

x ◦ y =

{
xy if ‖x‖ 6∈ T ,
xyq if ‖x‖ ∈ T ,

with ‖x‖ = xq+1 being the norm of x ∈ GF(q2) over GF(q). Geometrically, MT (q2) is
constructed on AG(2, q2) by replacing the non-vertical lines with the graphs of the func-
tions

Y = X ◦m+ b. (3.1)

This also shows that to the non-vertical line ` of equation Y = Xm+ b there corresponds
the line of equation ˜̀ of equation Y = X ◦m + b in MT (q2), and viceversa. It is useful
to look at the partition of the points outside the Y -axis into q− 1 subsets Si, called stripes,
where P (x, y) ∈ Si if and only if ‖x‖ = ωi with ω a fixed primitive element of GF(q).
Such stripes were already defined in Section 2; here we just abbreviate the subscript ωi by
i. In fact, moving to MT (q2) the point-line incidences P ∈ ` in AG(2, q2) do not alter as
long as P ∈ Si with ωi 6∈ T . The projective Moulton plane is the projective closure of
MT (q2) and it has the same points at infinity as AG(2, q2). For a similar description of
Moulton planes see also [3, 4, 26].

The dual of the Moulton plane is the André plane AT (q2) coordinatized by the right
quasifield GF(q2)(+, ∗) where

x ∗ y =

{
xy if ‖x‖ 6∈ T ,
xqy if ‖x‖ ∈ T .

In this duality, the correspondence occurs between the point (u, v) of MT (q2) and the line
of equation Y = u ∗ X − v, as well as between the line of equation Y = X ◦ m + b
and the point (m,−b) of AT (q2). The correspondence between points at infinity and lines
through Y∞, and viceversa, is the same as the canonical duality between PG(2, q2) and its
dual plane PG∗(2, q2). If T consists of just one element, then the arising André planes are
pairwise isomorphic and they are also known as Hall planes.

Let U be the classical unital in PG(2, q2) given in its canonical form (2.1). We prove
that U is an inherited unital in the Moulton plane, that is, the point-set of U is a unital in
MT (q2) as well.

Theorem 3.1. Let U be the classical unital in PG(2, q2) given in its canonical form (2.1).
Then, for any T , U is a unital in the projective Moulton plane MT (q2) as well.

Proof. In the very special case T = {−1}, the proof is straightforward. It is enough to
show that if a non-vertical line ` of equation Y = Xm+ b meets U in a point P (x, y) with
‖x‖ = −1 then y = 0 and x = −b/mwith (−b/m)q+1 = 1. In fact, the corresponding line
˜̀ in MT (q2) has the same property: if P (x, y) ∈ ˜̀∩ U then y = 0 and x = (−b/mq)q+1.
Since (−b/m)q+1 = (−b/mq)q+1, the assertion follows for T = {−1}.

In the general case, it suffices to exhibit a bijective map from ` ∩ U to ˜̀∩ U for every
line ` of AG(2, q2). We may limit ourselves to non-vertical lines with non zero slopes. Let
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Y = Xm + b be the equation of such a line ` and take any point P (x, y) lying in ` ∩ U .
Then m 6= 0 and x = (y − b)m−1. Define the map ϕ : ` 7→ ˜̀by

ϕ(P ) =

{
P ((y − b)m−1, y) for ‖x‖ 6∈ T,
P ((y − b)m−q, y) for ‖x‖ ∈ T.

Obviously, ϕ(P ) = P whenever ‖x‖ 6∈ T .
Since ϕ is bijective, it suffices to show that P ∈ U yields ϕ(P ) ∈ U , and the converse

also holds. P (x, y) = ((y − b)m−1, y) ∈ U if and only if

((y − b)m−1)q+1 + yq+1 − 1 = (y − b)q+1(m−1)q+1 + yq+1 − 1 = 0.

By (mq)q+1 = mq+1, the latter equation is equivalent to

((y − b)q+1(m−q)q+1 + yq+1 − 1 = ((y − b)m−q)q+1 + yq+1 − 1 = 0,

whence the claim follows.

Theorem 3.1 and its proof also show that if ` is a tangent to U in AG(2, q2) then the
corresponding line ˜̀is a tangent to U in the projective Moulton plane, and the converse also
holds. In particular, the tangent to U at a point outside the X-axis is the line ` of equation
Y = X(−cd−1)q − d−q with tangency point P (c, d). Therefore, the corresponding line
˜̀ of equation Y = X ◦ (−cd−1)q − d−q is a tangent to U at the point ϕ(P ) = P̄ (c̄, d)
with c̄ = c or c̄ = c(cd−1)q−1 according as ‖c‖ 6∈ T or ‖c‖ ∈ T . Since ‖c̄‖ = ‖c‖, the
tangency points of ` and ˜̀ lie in the same stripe. The tangents of U with tangency point at
infinity contain the origin and each of them has equation Y = Xm with mq+1 + 1 = 0.
By the proof of Theorem 3.1, the corresponding lines Y = X ◦m are the tangents of U in
the projective Moulton plane.

Now look at dual plane of the projective Moulton plane MT (q2) which is the projective
André plane AT (q2). In this duality, the tangent line ˜̀ of U with equation Y = X ◦
(−cd−1)q − d−q corresponds to the point P ∗(u∗, v∗) ∈ AT (q2) where u∗ = −(−cd−1)q

and v∗ = d−q . Since ((−cd−1)q)
q+1

+(d−q)
q+1

+1 = 0, we have u∗q+1+v∗q+1+1 = 0.
Similarly, the tangent line ˜̀of U with equation Y = X ◦m, mq+1 + 1 = 0, corresponds to
the point P ∗(u∗, v∗) ∈ AT (q2) where u∗ = u and v∗ = 0. Therefore u∗q+1+v∗q+1+1 =
0. In terms of PG∗(2, q2), the Desarguesian plane which gives rise to the projective André
plane AT (q2), the points P ∗(u∗, v∗) lie on the classical unital U∗ given in its canonical
form. This shows that U∗ can be viewed as an inherited unital in the projective André
plane AT (q2).

Remark 3.2. If T = {−1} then the unique stripe where incidence are altered meets U in
q+ 1 points lying on the X-axis. The unital U∗ in the Hall plane is the Grüning unital [16]
while for T = {i} with ωi 6= −1, U∗ in the Hall plane is the Barwick unital [7].

A O’Nan configuration of a unital consists of four blocks b1, b2, b3 and b4 intersecting
in six points P1, P2, P3, P4, P5 and P6 as in Figure 2. As mentioned in the introduction, the
Hermitian unital contains no O’Nan configuration. This fundamental result due to O’Nan
dates back to 1972, see [22] and [9, Section 4.2].

Lemma 3.3. If T = {−1} then the unital U of MT (q2) is non-classical.
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Figure 2: O’Nan configuration of four blocks and six points.

Proof. We show that the unital U in MT (q2) with T = {−1} contains a O’Nan configura-
tion. Take α ∈ GF(q2) such that ‖α‖ = −1. The line `1 of equation Y = X − α meets
U in Q(α, 0) and q more points. Take m ∈ GF(q2) such that mq−1 = −1. The line `2 of
equation Y = Xm + αm meets U in R (−α, 0) and q more points. Further, the common
point of `1 and `2 is

S =

(
−α(m+ 1)

(m− 1)
,
−2αm

(m− 1)

)
.

Since∥∥∥∥−α(m+ 1)

(m− 1)

∥∥∥∥ = −αq+1 (m+ 1)q+1

(m− 1)q+1
=

− mq+1 +mq +m+ 1

mq+1 −mq −m+ 1
= −−m

2 −m+m+ 1

−m2 +m−m+ 1
= −1,

the point S is outside U . Further, in the Moulton plane MT (q2) with T = {−1}, the
corresponding lines ˜̀

1 and ˜̀
2 meet in Q(α, 0) which is a point of U .

To show that U is not a classical unital in our Moulton plane MT (q2), it suffices to
exhibit a O’Nan configuration {P0, P1, P2, P3, P4, P5} lying in U . The idea is to start off
with P0 = Q(α, 0), and to find four more affine points P1, P2 ∈ ˜̀

1 and P3, P4 ∈ ˜̀
2 each

lying in U , so that U also contains one of the two diagonal points P5 of the quadrangle
P1P2P3P4 that are different from P0. First we show that P1 ∈ `1. Let P1 = P1(x1, y1).
Then, ‖x1‖ 6= −1. In fact, otherwise, we would have yq+1

1 = 0 and hence y1 = 0,
contradicting P0 6= P1. Similarly, P2 ∈ `1 and P3, P4 ∈ `2. Now we use a counting
argument in PG(2, q2) to show that the quadrangle P1P2P3P4 can be chosen in such a
way that P5 ∈ U . Since S = `1 ∩ `2 is outside U , the lines of U joining a point of ¯̀

1 with
a point of ¯̀

2 cover (q + 1)2(q − 1) points of U other than those lying in ¯̀
1 ∪ ¯̀

2. From
(q+ 1)2(q− 1) > q3 + 1− 2q, there exists a quadrangle P1P2P3P4 in PG(2, q2) such that

P1, P2 ∈ `1 ∩ U , P3, P4 ∈ `2 ∩ U , P5 = P1P3 ∩ P2P4 ∈ U .
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Since (q+1)2(q−1) > q3 +1−2q+(q+1) we may also assume that either P5 ∈ `∞∩U ,
or P5 = (x5, y5) with ‖x5‖ 6= −1. In particular, P5 is not on the X-axis.

If P1, P2 6= Q and P3, P4 6= R then P5 remains a diagonal point of the quadrangle
P1P2P3P4 in MT (q2), and we are done.

Otherwise, take the cyclic subgroup G of PGU(3, q) of order q + 1 fixing the point
S and preserving each line through S. Since |G| ≥ 4, G contains an element g such that
Q 6∈ {g(P1), g(P2)} and R 6∈ {g(P3), g(P4)}. Then g takes the quadrangle P1P2P3P4 to
another one, whose vertices are different from bothQ andR. The image g(P5) is on the line
r through S and P5. Since r ∩ U has at most one point on the X-axis, there exists at most
one g ∈ G such that g(P5) lies on theX-axis. Therefore, if |G| ≥ 5, some g ∈ G also takes
P5 either to a point of infinity or a point (x′5, y

′
5) with ‖x′5‖ 6= −1. In the Moulton plane

MT (q2), the O’Nan configuration P0, g(P1), g(P2), g(P3), g(P4), g(P5) arising from the
quadrangle g(P1)g(P2)g(P3)g(P4) lying in U has also two diagonal points, namely P0 and
g(P5), belonging to U .

Remark 3.4. Lemma 3.3 can also be obtained from Grüning’s work. In fact, if T = {−1}
then U is isomorphic to its dual, see [16, Theorem 4.2], and the dual of U contains some
O’Nan configuration, see [16, Lemma 5.4c].

We conjecture that Lemma 3.3 holds true for any T . Theorem 3.5 proves this as long
as T is small enough. On the other end, Theorem 3.6 provides Moulton planes with large
T for which the conjecture holds.

Theorem 3.5. If q > 5 and

|T | < 1
2

(
(q + 1)−

√
1
2 (q + 1)(q + 3)

)
, (3.2)

then U in the Moulton plane MT (q2) is a non-classical unital.

Proof. As in the proof of Lemma 3.3, we show the existence of a O’Nan-configuration
{P0, P1, P2, P3, P4, P5} lying in U . For a point P (a, b) ∈ AG(2, q2) with a 6= 0 and
‖a‖ ∈ T \ {−1}, Theorem 2.6 ensures the existence of two non-vertical lines `1 and `2
through P such that

(i) neither `1 nor `2 is horizontal or passes through the origin,

(ii) P0 = ¯̀
1 ∩ ¯̀

2 ∈ U .

From Lemma 2.1, there exist at least q + 1 − 2|T | points P (x, y) lying on `1 ∩ U such
that ‖x‖ 6∈ T , and the same holds for `2 ∩ U . Therefore, Theorem 2.4 applies with λ =
q+1−2|T | showing that if (3.2) is assumed, then the unital U in MT (q2) contains a O’Nan
configuration.

Theorem 3.6. If q > 5, then there exists a T with |T | > q−4 such that U is a non-classical
unital in MT (q2).

Proof. From the proof of Theorem 3.5, some Moulton plane MT (q2) contains O’Nan con-
figurations lying in U . If {P0, P1, P2, P3, P4, P5} one of them, add each non-zero element
s ∈ GF(q) to T which satisfies the condition s 6= ‖xi‖ for Pi = Pi(xi, yi) with 1 ≤ i ≤ 5.
Then T expands and its size becomes at least q−4. In the resulting Moulton plane MT (q2),
the above hexagon {P0, P1, P2, P3, P4, P5} is still a O’Nan configuration lying in the uni-
tal U .
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