

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 14 (2018) 251–265 https://doi.org/10.26493/1855-3974.1285.f3c (Also available at http://amc-journal.eu)

Inherited unitals in Moulton planes*

Gábor Korchmáros, Angelo Sonnino

Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy

Tamás Szőnyi

ELTE Eötvös Loránd University, Institute of Mathematics and MTA-ELTE Geometric and Algebraic Combinatorics Research Group H-1117 Budapest, Pázmány P. s. 1/c, Hungary

Received 11 January 2017, accepted 24 July 2017, published online 4 September 2017

Abstract

We prove that every Moulton plane of odd order—by duality every generalised André plane—contains a unital. We conjecture that such unitals are non-classical, that is, they are not isomorphic, as designs, to the Hermitian unital. We prove our conjecture for Moulton planes which differ from $PG(2, q^2)$ by a relatively small number of point-line incidences. Up to duality, our results extend previous analogous results—due to Barwick and Grüning—concerning inherited unitals in Hall planes.

Keywords: Unitals, Moulton planes. Math. Subj. Class.: 51E20, 05B25

1 Introduction

A unital is a set of q^3+1 points together with a family of subsets, each of size q+1, such that every pair of distinct points are contained in exactly one subset of the family. Such subsets are usually called blocks so that unitals are block-designs $2-(q^3+1, q+1, 1)$. The classical example of a unital arises from the unitary polarity in the Desarguesian projective plane $PG(2, q^2)$ where the points are the absolute points, and the blocks are the non-absolute lines of the unitary polarity. The name of "Hermitian unital" is commonly used for the

^{*}This research was carried out within the activities of the GNSAGA of the Italian INdAM.

E-mail address: gabor.korchmaros@unibas.it (Gábor Korchmáros), angelo.sonnino@unibas.it (Angelo Sonnino), szonyi@cs.elte.hu (Tamás Szőnyi)

classical example since the absolute points of the unitary polarity are the points of the Hermitian curve defined over $GF(q^2)$.

A unital \mathcal{U} is *embedded* in a projective plane Π of order q^2 , if its points are points of Π and its blocks are intersections with lines. As usual, we adopt the term "chord" to indicate a block of \mathcal{U} . A line ℓ of Π is either a tangent or a (q+1)-secant to \mathcal{U} according as $|\ell \cap \mathcal{U}| = 1$ or $|\ell \cap \mathcal{U}| = q + 1$, and in the latter case $\ell \cap \mathcal{U}$ is a chord. Examples of unitals embedded in PG $(2, q^2)$ other than the Hermitian ones are known to exist.

A unital is *classical* if it is isomorphic, as a block-design, to a Hermitian unital. Classical unitals contain no O'Nan configurations, and it has been conjectured that any nonclassical unital embedded in $PG(2, q^2)$ must contain a O'Nan configuration.

In several families of non-desarguesian planes, the problem of constructing and characterizing unitals has also been investigated; see [1, 2, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 27, 28]. Apart from the examples of unitals arising from a unitary polarity in a commutative semifield plane, the known examples are inherited unitals from the Hermitian unital. In a non-desarguesian plane II of order q^2 arising from $PG(2, q^2)$ by altering some of the point-line incidences, the adjective "inherited" is used for those pointsets of $PG(2, q^2)$ which keep their intersection properties with lines when moving from $PG(2, q^2)$ to II.

In this paper we construct inherited unitals in Moulton planes of odd order q^2 , and, by duality, in generalised André planes of the same order; see Theorem 3.1. We also investigate the problem whether these unitals are classical; see Theorems 3.5 and 3.6. We show that if such a plane differs from $PG(2, q^2)$ by a relatively small number of incidences only, then the inherited unital is non-classical. Also, we exhibit non-classical inherited unitals in case of many point-line incidence alterations. Such unitals appear to be of interest in coding theory; see [25].

What emerges from our work leads us to conjecture that the inherited unitals constructed in our paper are all non-classical. It should be noticed that our results extend previous analogous results due to Barwick and Grüning concerning inherited unitals in Hall planes which are very special André planes; see [8, 16] and Remark 3.4. The methods used in [8] are mostly geometric and involve Baer subplanes and blocking sets. In this paper, we adopt a more algebraic approach that allows us to exploit results on the number of solutions of systems of polynomial equations over a finite field.

2 Two new results on the Hermitian unital

We establish and prove two theorems on Hermitian unitals that will play a role in our study on unitals in Moulton planes.

Up to a change of the homogeneous coordinate system (X_1, X_2, X_3) in PG $(2, q^2)$, the points of the classical unital \mathcal{U} are those satisfying the equation

$$X_1^{q+1} + X_2^{q+1} + X_3^{q+1} = 0. (2.1)$$

In the affine plane AG(2, q^2) arising from PG(2, q^2) with respect to the line $X_3 = 0$, we use the coordinates (X, Y) where $X = X_1/X_3$ and $Y = X_2/X_3$). Then the points of \mathcal{U} in AG(2, q^2) are the solutions of the equation

$$X^{q+1} + Y^{q+1} + 1 = 0. (2.2)$$

Since $GF(q^2)$ is the quadratic extension of GF(q) by adjunction of a root *i* of the polynomial $X^2 - s$ with a non-square element *s* of GF(q), every element *u* of $GF(q^2)$ can

uniquely be written as $u = u_1 + iu_2$ with $u_1, u_2 \in GF(q)$. Then $u^q = u_1 - iu_2$ and $||u|| = u^{q+1} = u_1^2 - su_2^2$. Therefore, the points $P(x, y) \in \mathcal{U}$ lying in AG(2, q²) are those satisfying the equation

$$x_1^2 - sx_2^2 + y_1^2 - sy_2^2 + 1 = 0. (2.3)$$

For a subset $T \subseteq GF(q) \setminus \{0\}$, let S_t denote the set of points $\{(x, y) \mid ||x|| = t \in T\}$. Hence the pointset $S_t \cap \mathcal{U}$ comprises all points P(x, y) such that both $x_1^2 - sx_2^2 = t$ and (2.3) hold. Therefore, a point $P(x, y) \in AG(2, q^2)$ is in $S_t \cap \mathcal{U}$ if and only if $P_1(x_1, x_2) \in AG(2, q)$ lies on the non-degenerate conic $C_1 : X^2 - sY^2 - t = 0$ while $P_2(y_1, y_2) \in AG(2, q)$ does lie on the conic $C_2 : X^2 - sY^2 + 1 + t = 0$. This shows that $S_t \cap \mathcal{U}$ has size $(q + 1)^2$ apart from the case t = -1 when it consists of the q + 1 points of \mathcal{U} lying on the X-axis.

Lemma 2.1. Let ℓ be a non-vertical line in AG $(2, q^2)$. Then $|\ell \cap U \cap S_t| \in \{0, 1, 2, q+1\}$ for every $t \in T$. If q + 1 occurs then ℓ is either a horizontal line, or it passes through the origin.

Proof. The points P(x, 0) with ||x|| = t form a Baer subline. As \mathcal{U} is classical, $\ell \cap \mathcal{U}$ is a Baer subline of ℓ , and hence the projection of $\ell \cap \mathcal{U}$ on the X-axis from Y_{∞} is a Baer-subline, as well. Since two distinct Baer sublines have at most two common points, the first assertion follows. To prove the second one, we need some computation. If ℓ has equation Y = Xm + b, we have to count the roots x of the polynomial $f(X) = X^{q+1} + (Xm + b)^{q+1} + 1$ whose norm ||x|| is equal to t. If ||x|| = t, then $f(x) = bm^q x^q + b^q mx + t(1 + m^{q+1}) + b^{q+1} + 1$ and hence

$$xf(x) = b^{q}mx^{2} + (t(1+m^{q+1}) + b^{q+1} + 1)x + bm^{q}t.$$

If we have at least three such roots x then either m = 0 and $t + 1 = -b^{q+1}$, or b = 0 and $t(1 + m^{q+1}) = -1$.

Take any two distinct non-tangent lines ℓ_1 and ℓ_2 of \mathcal{U} . We are interested in the intersection of the projection of $\ell_1 \cap \mathcal{U}$ from P on ℓ_2 with $\ell_2 \cap \mathcal{U}$. For any point P outside both ℓ_1 and ℓ_2 , the projection of ℓ_1 to ℓ_2 from P takes the chord $\ell_1 \cap \mathcal{U}$ to a Baer subline of ℓ_2 . Since two Baer sublines of ℓ_2 intersect in 0, 1, 2 or q + 1 points, one may want to determine the size of the sets Σ_i (i = 0, 1, 2, q + 1) consisting of all points P for which this intersection number is equal to i. The points in Σ_i are called *elliptic*, *parabolic*, *hyperbolic*, or *full* with respect to the pair (ℓ_1, ℓ_2) , according as i = 0, i = 1, i = 2, or i = q + 1, respectively; see [21].

We go on to compute the size of $\Sigma_i \cap \mathcal{U}$. Since the linear collineation group $G \cong \operatorname{PGU}(3,q)$ of $\operatorname{PG}(2,q^2)$ preserving \mathcal{U} acts transitively on the points outside \mathcal{U} , we may assume that $Y_{\infty} = \ell_1 \cap \ell_2$. The stabiliser of Y_{∞} in G acts on the pencil with center in Y_{∞} as the general projective group $\operatorname{PGL}(2,q)$ on the projective line $\operatorname{PG}(1,q^2)$. Therefore, it has two orbits, one consisting of all tangents the other of all chords to \mathcal{U} through Y_{∞} . This allows us to assume without loss of generality that ℓ_1 is the line at infinity. Since ℓ_2 is not a tangent to \mathcal{U} , its equation is of the form X = c with $c^{q+1} + 1 \neq 0$. Therefore, $c^{q+1} + 1$ is either a non-zero square or a non-square element of $\operatorname{GF}(q)$. These two cases occur depending upon whether a linear collineation $\gamma \in \operatorname{PGL}(2,q)$ taking ℓ_1 to ℓ_2 is in the subgroup isomorphic to the special projective group $\operatorname{PSL}(2,q)$ or not. Accordingly, $\{\ell_1, \ell_2\}$ is called a *special* pair or a *general* pair. Further, since P is a point outside ℓ_1 and ℓ_2 , it is an affine point P = (a, b) with $a \neq c$.

Figure 1: The initial configuration.

Let P = (a, b) denote a point of \mathcal{U} , that is,

$$a^{q+1} + b^{q+1} + 1 = 0. (2.4)$$

Take a line r of equation Y = m(X-a) + b through P = (a, b). A necessary and sufficient condition for r to meet both ℓ_1 and ℓ_2 in \mathcal{U} is the existence of a solution $\tau \in GF(q^2)$ of the system consisting of (2.4) together with

$$c^{q+1} + \tau^{q+1} + 1 = 0, (2.5)$$

$$m^{q+1} + 1 = 0. (2.6)$$

In fact, $Q(c, \tau)$ with $\tau = m(c-a) + b$ is the point of r on ℓ_2 . Then (2.5) holds if and only if $Q \in \mathcal{U}$. Furthermore, (2.6) is the necessary and sufficient condition for the infinite point of r to be in \mathcal{U} ; see Figure 1.

The above discussion also shows how to count lines through P meeting both $\ell_1 \cap \mathcal{U}$ and $\ell_2 \cap \mathcal{U}$. Essentially, one has to find the number of solutions in the indeterminate τ of the system consisting of the equations (2.4), (2.5), and (2.6). Observe that (2.4), (2.5), (2.6) are equivalent to

$$a_1^2 - sa_2^2 + b_1^2 - sb_2^2 + 1 = 0, (2.7)$$

$$c_1^2 - sc_2^2 + \tau_1^2 - s\tau_2^2 + 1 = 0, (2.8)$$

$$b_1\tau_1 - sb_2\tau_2 + a_1c_1 - sa_2c_2 + 1 = 0.$$
(2.9)

From this the following result is obtained.

Proposition 2.2. The number of lines through P meeting both $\ell_1 \cap \mathcal{U}$ and $\ell_2 \cap \mathcal{U}$ equals the number of solutions (τ_1, τ_2) , with $\tau_1, \tau_2 \in GF(q)$, of the system consisting of (2.7), (2.8), (2.9).

In investigating the above system, two cases are distinguished according as (b_1, b_2) is (0, 0) or not.

In the former case, Equations (2.7) and (2.9) read $a_1^2 - sa_2^2 + 1 = 0$ and $a_1c_1 - sa_2c_2 + 1 = 0$. Geometrically in AG(2, q), the point $U = (a_1, a_2)$ is the intersection of the ellipse \mathcal{E} , with equation $X^2 - sY^2 + 1 = 0$, and the line v with equation $c_1X - sc_2Y + 1 = 0$. Since $c^{q+1} + 1 = c_1^2 - sc_2^2 + 1$ is a non-zero element of GF(q), v must be either a secant, or an external line to \mathcal{E} and this occurs according as $c_1^2 - sc_2^2 + 1$ is a non-zero square or non-square element in GF(q). In fact, from (2.7) and (2.9),

$$a_1 = \frac{sc_2a_2 - 1}{c_1}, \quad a_2 = \frac{-sc_2 \pm ic_1\sqrt{c_1^2 - sc_2^2 + 1}}{s(c_1^2 - sc_2^2)}.$$

Therefore, if P is on the X-axis, then P is elliptic in general, apart from the case where $c^{q+1}+1 = c_1^2 - sc_2^2 + 1$ is a non-square element in GF(q) and P is one of the two common points of C and v, namely P = P(a, 0) where

$$a = a_1 + ia_2 = \frac{-1 \pm \sqrt{1 + c^{q+1}}}{c^q}.$$

Further, in the exceptional case, P is a full point as for any $c_1, c_2 \in GF(q)$ with $c_1^2 - sc_2^2 + 1 \neq 0$, Equation (2.8) always has q + 1 solutions (τ_1, τ_2) with $\tau_1, \tau_2 \in GF(q)$.

In the latter case, either b_1 or b_2 is not zero. If $b_1 \neq 0$, retrieving τ_1 from (2.9) and putting it in (2.8) gives a quadratic equation in the indeterminate τ_2 , namely

$$(s^{2}b_{2}^{2} - sb_{1}^{2})\tau_{2}^{2} - 2sb_{2}(a_{1}c_{1} - sa_{2}c_{2} + 1)\tau_{2} + (a_{1}c_{1} - sa_{2}c_{2} + 1)^{2} + b_{1}^{2}(1 + c_{1}^{2} - sc_{2}^{2}) = 0, \quad (2.10)$$

whose discriminant is $\Delta_1 = sb_1^2 \Delta$ with

$$\Delta = (b_1^2 - sb_2^2)(1 + c_1^2 - sc_2^2) + (a_1c_1 - sa_2c_2 + 1)^2$$

which can also be written by (2.7) as

$$\Delta = -(1 + c_1^2 - sc_2^2)(a_1^2 - sa_2^2 + 1) + (a_1c_1 - sa_2c_2 + 1)^2.$$

For $b_2 \neq 0$, retrieving τ_2 from (2.9) and putting it in (2.8) gives the following quadratic equation in the indeterminate τ_1 :

$$(-b_1^2 + b_2^2)\tau_1^2 + 2a_1b_1c_1\tau_1 - a_1^2 - s^2a_2^2c_2^2 - b_2^2c_1^2 + sb_2^2c_2^2 + 2sa_2c_2 - b_2^2 - 1 = 0$$
 (2.11)

with discriminant $\Delta_2 = s^3 b_2^2 \Delta$. Since Δ_1 and Δ_2 are simultaneously zero, or a square, or a non-square in GF(q), each of the equations (2.10) and (2.11) has 2, 1 or zero solutions in GF(q), depending upon whether Δ is a square element, zero, or a non-square element of GF(q), respectively. This leads to the study of the zeroes of the polynomial

$$F(X,Y,Z) = -(1+c_1^2 - sc_2^2)(X^2 - sY^2 + 1) + (c_1X - sc_2Y + 1)^2 - Z^2.$$
(2.12)

Geometrically, F(X, Y, Z) = 0 is the equation of a quadric \mathcal{Q} in AG(3, q). Actually, \mathcal{Q}

	P(a,0)		$P(a,b), \ b eq 0$	
	$1 + \ c\ \in \Box$	$1 + \ c\ \in \square$	$1 + \ c\ \in \Box$	$1 + \ c\ \in \not\!$
$N_{\mathcal{E}}$	q+1	q-1	$\frac{-3 - 9q + q^2 + q^3}{2}$	$\frac{-3 - 5q - q^2 + q^3}{2}$
$N_{\mathcal{P}}$	0	0	2q - 1	0
$N_{\mathcal{H}}$	0	0	$\frac{(q-1)^2}{2}(q+1)$	$\frac{(q+1)^2}{2}(q-1)$
$N_{\mathcal{F}}$	0	2	0	0

Table 1: Elliptic, parabolic, hyperbolic and full points.

is a cone. In fact, the system $F_X = F_Y = F_Z = 0$ has a (unique) solution $(c_1, c_2, 0)$ and hence the point $V(c_1, c_2, 0)$ is the vertex of \mathscr{Q} . In particular, the intersection of \mathscr{Q} with the plane Z = 0 splits into two lines over GF(q) or its quadratic extension $GF(q^2)$, and this occurs according as the infinite points of the conic with equation

$$-(1+c_1^2-sc_2^2)(X^2-sY^2)+(c_1X-sc_2Y)^2=0$$

lie in PG(2, q) or in $PG(2, q^2) \setminus PG(2, q)$. By a direct computation, this condition only depends on c^{q+1} , namely whether $1 + c^{q+1}$ is a square or a non-square element of GF(q). Therefore, \mathscr{Q} contains either 2q-1 or 1 points in the plane Z = 0, and this occurs according as the pair $\{\ell_1, \ell_2\}$ is special or general. Also, in the former case there are exactly 2q - 1 parabolic points P but in the latter case no point P is parabolic. Therefore, the following result holds.

Theorem 2.3. Let ℓ_1, ℓ_2 be any two distinct non-tangent lines of the classical unital \mathcal{U} in $PG(2, q^2)$ whose common point is off \mathcal{U} . The number $N_{\mathcal{E}}, N_{\mathcal{P}}, N_{\mathcal{H}}, N_{\mathcal{S}}$, of elliptic, parabolic, hyperbolic and full points of \mathcal{U} with respect to the pair $\{\ell_1, \ell_2\}$ is given in Table 1.

We state a corollary of Theorem 2.3 that will be used in Section 3. For i = 1, 2 let Λ_i be a subset of $\ell_i \cap \mathcal{U}$ such that $|\Lambda_1| = |\Lambda_2| = \lambda$.

Theorem 2.4. If

$$\lambda > \sqrt{\frac{(q+1)(q+3)}{2}} \tag{2.13}$$

there exists a non-degenerate quadrangle $A_1B_1A_2B_2$ with vertices $A_i, B_i \in \Lambda_i$ for i = 1, 2 such that its diagonal point $A_1B_2 \cap B_1A_2$ lies in \mathcal{U} .

Proof. We prove the existence of a hyperbolic point D in \mathcal{U} such that the projection of Λ_1 from D on ℓ_2 share two points with Λ_2 . From Theorem 2.3, we have at least $\frac{1}{2}(q-1)^2(q+1)$ hyperbolic points in \mathcal{U} . We omit those hyperbolic points projecting $\overline{\Lambda}_1 = (\ell_1 \cap \mathcal{U}) \setminus \Lambda_1$ to a pointset of ℓ_2 meeting $\ell_2 \cap \mathcal{U}$ nontrivially. The number of such hyperbolic points is

 $\overline{\lambda}(q-1)(q+1)$ with $\overline{\lambda} = q+1-\lambda$. Similarly we omit all hyperbolic points projecting $\overline{\Lambda}_2 = (\ell_2 \cap \mathcal{U}) \setminus \Lambda_2$ to a pointset of ℓ_1 meeting $\ell_1 \cap \mathcal{U}$ nontrivially. Therefore, the total number of omitted hyperbolic points is $2\overline{\lambda}(q^2-1)-\overline{\lambda}^2(q-1)=(q-1)\overline{\lambda}(2q+2-\overline{\lambda}(q-1))$. From Theorem 2.3, this number is smaller than the total number of hyperbolic points as far as (2.13) holds.

To state the other new result on the classical unital a couple of *ad hoc* notation in $AG(2,q^2)$ will be useful: For a non-vertical line ℓ with equation Y = Xm + b, $\bar{\ell}$ denotes the non-vertical line with equation $Y = Xm^q + b$. Given a point P(a, b) outside \mathcal{U} , two lines ℓ_1 and ℓ_2 are said to be a *good line-pair* whenever the lines $\bar{\ell}_1$ and $\bar{\ell}_2$ meet in a point of \mathcal{U} . Our goal is to show that if $a \neq 0$ then there exist many good pairs.

For i = 1, 2, write the equations of ℓ_i in the form $Y = (X - a)m_i + b$. Then $\bar{\ell}_i$ has equation $Y = Xm_i^q - am_i + b$. Hence $\bar{P}(x, y) = \bar{\ell}_1 \cap \bar{\ell}_2$ where

$$x = \frac{a(m_1 - m_2)}{m_1^q - m_2^q},$$

and hence

$$y = \frac{a(m_1 - m_2)}{m_1^q - m_2^q} m_1^q - am_1 + b_2$$

Note that

$$||x|| = x^{q+1} = a^{q+1} \left(\frac{1}{(m_1 - m_2)^{q-1}}\right)^{q+1} = \frac{||a||}{(m_1 - m_2)^{q^2 - 1}} = ||a|| \neq 0.$$

The condition for $\overline{P}(x, y)$ to lie in \mathcal{U} is

$$x^{q+1} + y^{q+1} + 1 = a^{q+1} + a^{q+1} \left(\frac{(m_1 - m_2)}{(m_1 - m_2)^q} m_1^q - m_1 + \frac{b}{a}\right)^{q+1} + 1 = 0.$$

Let

$$\xi = -\frac{a^{q+1}+1}{a^{q+1}} \in \mathrm{GF}(q).$$

Then the last equation reads

$$\left(\frac{(m_1 - m_2)}{(m_1 - m_2)^q}m_1^q - m_1 + \frac{b}{a}\right)^{q+1} = \xi.$$
(2.14)

Henceforth we assume that

$$\|a\| \neq -1.$$

With

$$m_1 = \alpha + i\beta, \quad m_2 = \gamma + i\delta, \quad \frac{b}{a} = u + iv,$$

(2.14) reads

$$\left(\frac{(\alpha-\gamma)+i(\beta-\delta)}{(\alpha-\gamma)-i(\beta-\delta)}(\alpha-i\beta)-(\alpha+i\beta)+u+iv\right)^{q+1}=\xi,$$

whence

$$(u\alpha - u\gamma - sv\beta + sv\delta)^2 - s(2\beta\gamma - 2\alpha\delta - u(\beta - \delta) + v(\alpha - \gamma))^2 - \xi((\alpha - \gamma)^2 - s(\beta - \delta)^2) = 0,$$

that is,

$$(u(\alpha - \gamma) - sv(\beta - \delta))^2 - s(2\beta\gamma - 2\alpha\delta - u(\beta - \delta) + v(\alpha - \gamma))^2 - \xi((\alpha - \gamma)^2 - s(\beta - \delta)^2) = 0.$$
(2.15)

With

$$\gamma = \alpha - \overline{\gamma}, \qquad \delta = \beta - \overline{\delta},$$

Equation (2.15) becomes

$$(u\overline{\gamma} - sv\overline{\delta})^2 - s(-2\beta\overline{\gamma} - 2\alpha\overline{\delta} - u\overline{\delta} + v\overline{\gamma})^2 - \xi(\overline{\gamma}^2 - s\overline{\delta}^2) = 0, \qquad (2.16)$$

which can be viewed as a quadratic form in $\overline{\gamma}$ and $\overline{\delta}$:

$$F(\overline{\gamma},\overline{\delta}) = (u^2 - v^2 s + 4v\beta s - 4\beta^2 s - \xi)\overline{\gamma}^2 + 2(-2u\beta s + 2v\alpha s - 4\alpha\beta s)\overline{\gamma}\overline{\delta} + (-u^2 s - 4u\alpha s + v^2 s^2 - 4\alpha^2 s + s\xi)\overline{\delta}^2 \quad (2.17)$$

with discriminant

$$\begin{split} \Delta &= -u^4 s + 2u^2 v^2 s^2 + 2u^2 s\xi - v^4 s^3 - 2v^2 s^2 \xi - s\xi^2 \\ &+ \left(-4u^3 s + 4uv^2 s^2 + 4us\xi \right) \alpha + \left(-4u^2 vs^2 + 4v^3 s^3 + 4vs^2 \xi \right) \beta \\ &- 8uvs^2 \alpha \beta + \left(-4u^2 s + 4s\xi \right) \alpha^2 + \left(-4v^2 s^3 - 4s^2 \xi \right) \beta^2. \end{split}$$

Note that $\overline{P}(x,y) \in \mathcal{U}$ if and only if $\Delta = \lambda^2$ for some $\lambda \in \mathrm{GF}(q)$. This leads us to consider the quadric \mathcal{Q} in $\mathrm{AG}(3,q)$ of equation

$$a_{00} + a_{01}X + a_{02}Y + a_{12}XY + a_{11}X^2 + a_{22}Y^2 - Z^2 = 0,$$

where

$$\begin{split} a_{00} &= -u^4 s + 2u^2 v^2 s^2 + 2u^2 s\xi - v^4 s^3 - 2v^2 s^2 \xi - s\xi^2, \\ a_{01} &= -4u^3 s + 4uv^2 s^2 + 4us\xi, \\ a_{02} &= -4u^2 v s^2 + 4v^3 s^3 + 4v s^2 \xi, \\ a_{12} &= -8uv s^2, \\ a_{11} &= -4u^2 s + 4s\xi, \\ a_{22} &= -4v^2 s^3 - 4s^2 \xi. \end{split}$$

The above coefficients are related by the following equations:

(i)
$$a_{00} - \frac{1}{2}(\frac{1}{2}a_{01}u - \frac{1}{2}a_{02}v) = s\xi(u^2 - sv^2 - \xi);$$

(ii) $\frac{1}{2}a_{01} - \frac{1}{2}(a_{11}u - \frac{1}{2}a_{12}v) = 0;$

(iii)
$$\frac{1}{2}a_{02} - \frac{1}{2}(\frac{1}{2}a_{12}u - a_{22}v) = 0.$$

Therefore, the determinant D of the 4×4 matrix associated with Q is equal to $-s\xi(u^2 - sv^2 - \xi)$ multiplied by the determinant of the cofactor of a_{00} . The latter determinant $a_{11}a_{22} - \frac{1}{4}a_{12}^2$ is equal to

$$D_0 = s^3 \xi (u^2 - sv^2 - \xi) = s^3 (a^{q+1} + b^{q+1} + 1)(a^{q+1} + 1).$$
 (2.18)

It turns out that

$$D = -(s^2\xi(u^2 - sv^2 - \xi))^2.$$

Observe that $\xi = 0$ if and only if $a^{q+1} = -1$, while

$$u^{2} - sv^{2} - \xi = \frac{b^{q+1}}{a^{q+1}} + \frac{a^{q+1} + 1}{a^{q+1}} = \frac{a^{q+1} + b^{q+1} + 1}{a^{q+1}}$$

vanishes only for $P(a, b) \in \mathcal{U}$. Therefore, \mathcal{Q} is non-degenerate. More precisely, the quadric \mathcal{Q} is either elliptic or hyperbolic according as $q \equiv -1 \pmod{4}$ or $q \equiv 1 \pmod{4}$. The plane at infinity cuts out from \mathcal{Q} a conic \mathcal{C} with homogeneous equation $a_{11}X^2 + a_{12}XY + a_{22}Y^2 - Z^2 = 0$. Observe that \mathcal{C} is non-degenerate by $D_0 \neq 0$. Thus, the number of points of \mathcal{Q} in AG(3, q) is $q^2 \pm q$ with $q \equiv \pm 1 \pmod{4}$. Furthermore, the point at infinity Z_{∞} on the Z-axis does not lie on \mathcal{Q} , and it is an external point or an internal point to \mathcal{C} according as $-D_0$ is a non-zero square or a non-square in GF(q). Therefore, the number of tangents to \mathcal{Q} through Z_{∞} in AG(3, q) is equal to q - 1 or q + 1 according as $-D_0$ is a (non-zero) square or a non-square in GF(q). From the above discussion, the numbers N_s and N_t of secants and tangents to \mathcal{Q} through Z_{∞} are those given in the following lemma:

Lemma 2.5. For $q \equiv -1 \pmod{4}$, either $N_t = q + 1$, $N_s = \frac{1}{2}(q-1)^2$, or $N_t = q - 1$, $N_s = \frac{1}{2}(q^2 - 2q - 1)$, according as D_0 is a (non-zero) square or a non-square in GF(q). For $q \equiv 1 \pmod{4}$, either $N_t = q - 1$, $N_s = \frac{1}{2}(q^2 + 1)$, or $N_t = q + 1$, $N_s = \frac{1}{2}(q^2 - 1)$, according as D_0 is a (non-zero) square or a non-square in GF(q).

Going back to the discriminant Δ , we see that Δ vanishes for $N_s + N_t$ ordered pairs (α, β) , that is, $N_s + N_t$ is the number of lines ℓ_1 through P(a, b) for which there exists a line ℓ_2 such that (ℓ_1, ℓ_2) is a good line-pair. For each ℓ_1 counted in N_t (resp. N_s), we have q - 1 (resp. 2(q - 1)) such lines ℓ_2 , since if (2.17) has a non-trivial solution $(\bar{\gamma}, \bar{\delta})$ in $GF(q) \times GF(q)$ then it has exactly q - 1 solutions, the multiples of $(\bar{\gamma}, \bar{\delta})$ by the non-zero elements of GF(q).

If we do not count the q + 1 tangents to \mathcal{U} through P(a, b), each of the lines through P(a, b) counted in N_s is in at least 2(q - 1) - (q + 1) = q - 3 good line-pairs. Therefore Lemma 2.5 has the following corollary.

Theorem 2.6. Let P(a, b) be a point of $AG(2, q^2)$ outside \mathcal{U} . If $a \neq 0$, $||a|| \neq -1$ and q > 3, then there exist at least two non-tangent lines ℓ_1, ℓ_2 of \mathcal{U} through P, such that the non-tangent lines $\overline{\ell_1}$ and $\overline{\ell_2}$ meet in a point of \mathcal{U} . Further, if q > 5 then ℓ_1 and ℓ_2 may be chosen among the lines through P(a, b) other than the horizontal lines and those passing through the origin.

3 Unitals in Moulton planes

Let T be a non-empty subset of the multiplicative group of GF(q). The (affine) *Moulton* plane $\mathfrak{M}_T(q^2)$ which is considered in our paper is the affine plane coordinatized by the left quasifield $GF(q^2)(+, \circ)$ where

$$x \circ y = \begin{cases} xy & \text{if } \|x\| \notin T, \\ xy^q & \text{if } \|x\| \in T, \end{cases}$$

with $||x|| = x^{q+1}$ being the norm of $x \in GF(q^2)$ over GF(q). Geometrically, $\mathfrak{M}_T(q^2)$ is constructed on $AG(2, q^2)$ by replacing the non-vertical lines with the graphs of the functions

$$Y = X \circ m + b. \tag{3.1}$$

This also shows that to the non-vertical line ℓ of equation Y = Xm + b there corresponds the line of equation $\tilde{\ell}$ of equation $Y = X \circ m + b$ in $\mathfrak{M}_T(q^2)$, and viceversa. It is useful to look at the partition of the points outside the Y-axis into q-1 subsets S_i , called stripes, where $P(x, y) \in S_i$ if and only if $||x|| = \omega^i$ with ω a fixed primitive element of GF(q). Such stripes were already defined in Section 2; here we just abbreviate the subscript ω^i by i. In fact, moving to $\mathfrak{M}_T(q^2)$ the point-line incidences $P \in \ell$ in AG(2, q^2) do not alter as long as $P \in S_i$ with $\omega^i \notin T$. The projective Moulton plane is the projective closure of $\mathfrak{M}_T(q^2)$ and it has the same points at infinity as AG(2, q^2). For a similar description of Moulton planes see also [3, 4, 26].

The dual of the Moulton plane is the André plane $\mathfrak{A}_T(q^2)$ coordinatized by the right quasifield $GF(q^2)(+,*)$ where

$$x * y = \begin{cases} xy & \text{if } \|x\| \notin T, \\ x^q y & \text{if } \|x\| \in T. \end{cases}$$

In this duality, the correspondence occurs between the point (u, v) of $\mathfrak{M}_T(q^2)$ and the line of equation Y = u * X - v, as well as between the line of equation $Y = X \circ m + b$ and the point (m, -b) of $\mathfrak{A}_T(q^2)$. The correspondence between points at infinity and lines through Y_{∞} , and viceversa, is the same as the canonical duality between $\mathrm{PG}(2, q^2)$ and its dual plane $\mathrm{PG}^*(2, q^2)$. If T consists of just one element, then the arising André planes are pairwise isomorphic and they are also known as Hall planes.

Let \mathcal{U} be the classical unital in $PG(2, q^2)$ given in its canonical form (2.1). We prove that \mathcal{U} is an inherited unital in the Moulton plane, that is, the point-set of \mathcal{U} is a unital in $\mathfrak{M}_T(q^2)$ as well.

Theorem 3.1. Let \mathcal{U} be the classical unital in $PG(2, q^2)$ given in its canonical form (2.1). *Then, for any* T, \mathcal{U} *is a unital in the projective Moulton plane* $\mathfrak{M}_T(q^2)$ *as well.*

Proof. In the very special case $T = \{-1\}$, the proof is straightforward. It is enough to show that if a non-vertical line ℓ of equation Y = Xm + b meets \mathcal{U} in a point P(x, y) with ||x|| = -1 then y = 0 and x = -b/m with $(-b/m)^{q+1} = 1$. In fact, the corresponding line ℓ in $\mathfrak{M}_T(q^2)$ has the same property: if $P(x, y) \in \ell \cap \mathcal{U}$ then y = 0 and $x = (-b/m^q)^{q+1}$. Since $(-b/m)^{q+1} = (-b/m^q)^{q+1}$, the assertion follows for $T = \{-1\}$.

In the general case, it suffices to exhibit a bijective map from $\ell \cap \mathcal{U}$ to $\ell \cap \mathcal{U}$ for every line ℓ of AG(2, q^2). We may limit ourselves to non-vertical lines with non zero slopes. Let

Y = Xm + b be the equation of such a line ℓ and take any point P(x, y) lying in $\ell \cap \mathcal{U}$. Then $m \neq 0$ and $x = (y - b)m^{-1}$. Define the map $\varphi \colon \ell \mapsto \tilde{\ell}$ by

$$\varphi(P) = \begin{cases} \overline{P}((y-b)m^{-1}, y) & \text{for } \|x\| \notin T, \\ \overline{P}((y-b)m^{-q}, y) & \text{for } \|x\| \in T. \end{cases}$$

Obviously, $\varphi(P) = P$ whenever $||x|| \notin T$.

Since φ is bijective, it suffices to show that $P \in \mathcal{U}$ yields $\varphi(P) \in \mathcal{U}$, and the converse also holds. $P(x, y) = ((y - b)m^{-1}, y) \in \mathcal{U}$ if and only if

$$((y-b)m^{-1})^{q+1} + y^{q+1} - 1 = (y-b)^{q+1}(m^{-1})^{q+1} + y^{q+1} - 1 = 0$$

By $(m^q)^{q+1} = m^{q+1}$, the latter equation is equivalent to

$$((y-b)^{q+1}(m^{-q})^{q+1} + y^{q+1} - 1 = ((y-b)m^{-q})^{q+1} + y^{q+1} - 1 = 0,$$

whence the claim follows.

Theorem 3.1 and its proof also show that if ℓ is a tangent to \mathcal{U} in AG $(2, q^2)$ then the corresponding line $\tilde{\ell}$ is a tangent to \mathcal{U} in the projective Moulton plane, and the converse also holds. In particular, the tangent to \mathcal{U} at a point outside the X-axis is the line ℓ of equation $Y = X(-cd^{-1})^q - d^{-q}$ with tangency point P(c, d). Therefore, the corresponding line $\tilde{\ell}$ of equation $Y = X \circ (-cd^{-1})^q - d^{-q}$ is a tangent to \mathcal{U} at the point $\varphi(P) = \bar{P}(\bar{c}, d)$ with $\bar{c} = c$ or $\bar{c} = c(cd^{-1})^{q-1}$ according as $\|c\| \notin T$ or $\|c\| \in T$. Since $\|\bar{c}\| = \|c\|$, the tangency points of ℓ and $\tilde{\ell}$ lie in the same stripe. The tangents of \mathcal{U} with tangency point at infinity contain the origin and each of them has equation $Y = X \circ m$ are the tangents of \mathcal{U} in the projective Moulton plane.

Now look at dual plane of the projective Moulton plane $\mathfrak{M}_T(q^2)$ which is the projective André plane $\mathfrak{A}_T(q^2)$. In this duality, the tangent line $\tilde{\ell}$ of \mathcal{U} with equation $Y = X \circ (-cd^{-1})^q - d^{-q}$ corresponds to the point $P^*(u^*, v^*) \in \mathfrak{A}_T(q^2)$ where $u^* = -(-cd^{-1})^q$ and $v^* = d^{-q}$. Since $((-cd^{-1})^q)^{q+1} + (d^{-q})^{q+1} + 1 = 0$, we have $u^{*q+1} + v^{*q+1} + 1 = 0$. Similarly, the tangent line $\tilde{\ell}$ of \mathcal{U} with equation $Y = X \circ m$, $m^{q+1} + 1 = 0$, corresponds to the point $P^*(u^*, v^*) \in \mathfrak{A}_T(q^2)$ where $u^* = u$ and $v^* = 0$. Therefore $u^{*q+1} + v^{*q+1} + 1 = 0$. In terms of PG^{*}(2, q^2), the Desarguesian plane which gives rise to the projective André plane $\mathfrak{A}_T(q^2)$, the points $P^*(u^*, v^*)$ lie on the classical unital \mathcal{U}^* given in its canonical form. This shows that \mathcal{U}^* can be viewed as an inherited unital in the projective André plane $\mathfrak{A}_T(q^2)$.

Remark 3.2. If $T = \{-1\}$ then the unique stripe where incidence are altered meets \mathcal{U} in q+1 points lying on the X-axis. The unital \mathcal{U}^* in the Hall plane is the Grüning unital [16] while for $T = \{i\}$ with $\omega^i \neq -1$, \mathcal{U}^* in the Hall plane is the Barwick unital [7].

A O'Nan configuration of a unital consists of four blocks b_1 , b_2 , b_3 and b_4 intersecting in six points P_1 , P_2 , P_3 , P_4 , P_5 and P_6 as in Figure 2. As mentioned in the introduction, the Hermitian unital contains no O'Nan configuration. This fundamental result due to O'Nan dates back to 1972, see [22] and [9, Section 4.2].

Lemma 3.3. If $T = \{-1\}$ then the unital \mathcal{U} of $\mathfrak{M}_T(q^2)$ is non-classical.

Figure 2: O'Nan configuration of four blocks and six points.

Proof. We show that the unital \mathcal{U} in $\mathfrak{M}_T(q^2)$ with $T = \{-1\}$ contains a O'Nan configuration. Take $\alpha \in \operatorname{GF}(q^2)$ such that $\|\alpha\| = -1$. The line ℓ_1 of equation $Y = X - \alpha$ meets \mathcal{U} in $Q(\alpha, 0)$ and q more points. Take $m \in \operatorname{GF}(q^2)$ such that $m^{q-1} = -1$. The line ℓ_2 of equation $Y = Xm + \alpha m$ meets \mathcal{U} in $R(-\alpha, 0)$ and q more points. Further, the common point of ℓ_1 and ℓ_2 is

$$S = \left(\frac{-\alpha(m+1)}{(m-1)}, \frac{-2\alpha m}{(m-1)}\right)$$

Since

J

$$\left\| \frac{-\alpha(m+1)}{(m-1)} \right\| = -\alpha^{q+1} \frac{(m+1)^{q+1}}{(m-1)^{q+1}} = -\frac{m^{q+1}+m^q+m+1}{m^{q+1}-m^q-m+1} = -\frac{-m^2-m+m+1}{-m^2+m-m+1} = -1,$$

the point S is outside \mathcal{U} . Further, in the Moulton plane $\mathfrak{M}_T(q^2)$ with $T = \{-1\}$, the corresponding lines $\tilde{\ell}_1$ and $\tilde{\ell}_2$ meet in $Q(\alpha, 0)$ which is a point of \mathcal{U} .

To show that \mathcal{U} is not a classical unital in our Moulton plane $\mathfrak{M}_T(q^2)$, it suffices to exhibit a O'Nan configuration $\{P_0, P_1, P_2, P_3, P_4, P_5\}$ lying in \mathcal{U} . The idea is to start off with $P_0 = Q(\alpha, 0)$, and to find four more affine points $P_1, P_2 \in \tilde{\ell}_1$ and $P_3, P_4 \in \tilde{\ell}_2$ each lying in \mathcal{U} , so that \mathcal{U} also contains one of the two diagonal points P_5 of the quadrangle $P_1P_2P_3P_4$ that are different from P_0 . First we show that $P_1 \in \ell_1$. Let $P_1 = P_1(x_1, y_1)$. Then, $||x_1|| \neq -1$. In fact, otherwise, we would have $y_1^{q+1} = 0$ and hence $y_1 = 0$, contradicting $P_0 \neq P_1$. Similarly, $P_2 \in \ell_1$ and $P_3, P_4 \in \ell_2$. Now we use a counting argument in $\mathrm{PG}(2, q^2)$ to show that the quadrangle $P_1P_2P_3P_4$ can be chosen in such a way that $P_5 \in \mathcal{U}$. Since $S = \ell_1 \cap \ell_2$ is outside \mathcal{U} , the lines of \mathcal{U} joining a point of $\bar{\ell}_1$ with a point of $\bar{\ell}_2$ cover $(q+1)^2(q-1)$ points of \mathcal{U} other than those lying in $\bar{\ell}_1 \cup \bar{\ell}_2$. From $(q+1)^2(q-1) > q^3 + 1 - 2q$, there exists a quadrangle $P_1P_2P_3P_4$ in $\mathrm{PG}(2,q^2)$ such that

$$P_1, P_2 \in \ell_1 \cap \mathcal{U}, P_3, P_4 \in \ell_2 \cap \mathcal{U}, P_5 = P_1 P_3 \cap P_2 P_4 \in \mathcal{U}.$$

Since $(q+1)^2(q-1) > q^3 + 1 - 2q + (q+1)$ we may also assume that either $P_5 \in \ell_{\infty} \cap \mathcal{U}$, or $P_5 = (x_5, y_5)$ with $||x_5|| \neq -1$. In particular, P_5 is not on the X-axis.

If $P_1, P_2 \neq Q$ and $P_3, P_4 \neq R$ then P_5 remains a diagonal point of the quadrangle $P_1P_2P_3P_4$ in $\mathfrak{M}_T(q^2)$, and we are done.

Otherwise, take the cyclic subgroup G of PGU(3,q) of order q + 1 fixing the point S and preserving each line through S. Since $|G| \ge 4$, G contains an element g such that $Q \notin \{g(P_1), g(P_2)\}$ and $R \notin \{g(P_3), g(P_4)\}$. Then g takes the quadrangle $P_1P_2P_3P_4$ to another one, whose vertices are different from both Q and R. The image $g(P_5)$ is on the line r through S and P_5 . Since $r \cap \mathcal{U}$ has at most one point on the X-axis, there exists at most one $g \in G$ such that $g(P_5)$ lies on the X-axis. Therefore, if $|G| \ge 5$, some $g \in G$ also takes P_5 either to a point of infinity or a point (x'_5, y'_5) with $||x'_5|| \neq -1$. In the Moulton plane $\mathfrak{M}_T(q^2)$, the O'Nan configuration $P_0, g(P_1), g(P_2), g(P_3), g(P_4), g(P_5)$ arising from the quadrangle $g(P_1)g(P_2)g(P_3)g(P_4)$ lying in \mathcal{U} has also two diagonal points, namely P_0 and $g(P_5)$, belonging to \mathcal{U} .

Remark 3.4. Lemma 3.3 can also be obtained from Grüning's work. In fact, if $T = \{-1\}$ then \mathcal{U} is isomorphic to its dual, see [16, Theorem 4.2], and the dual of \mathcal{U} contains some O'Nan configuration, see [16, Lemma 5.4c].

We conjecture that Lemma 3.3 holds true for any T. Theorem 3.5 proves this as long as T is small enough. On the other end, Theorem 3.6 provides Moulton planes with large T for which the conjecture holds.

Theorem 3.5. *If* q > 5 *and*

$$|T| < \frac{1}{2} \left((q+1) - \sqrt{\frac{1}{2}(q+1)(q+3)} \right),$$
(3.2)

then \mathcal{U} in the Moulton plane $\mathfrak{M}_T(q^2)$ is a non-classical unital.

Proof. As in the proof of Lemma 3.3, we show the existence of a O'Nan-configuration $\{P_0, P_1, P_2, P_3, P_4, P_5\}$ lying in \mathcal{U} . For a point $P(a, b) \in AG(2, q^2)$ with $a \neq 0$ and $||a|| \in T \setminus \{-1\}$, Theorem 2.6 ensures the existence of two non-vertical lines ℓ_1 and ℓ_2 through P such that

- (i) neither ℓ_1 nor ℓ_2 is horizontal or passes through the origin,
- (ii) $P_0 = \overline{\ell}_1 \cap \overline{\ell}_2 \in \mathcal{U}.$

From Lemma 2.1, there exist at least q + 1 - 2|T| points P(x, y) lying on $\ell_1 \cap \mathcal{U}$ such that $||x|| \notin T$, and the same holds for $\ell_2 \cap \mathcal{U}$. Therefore, Theorem 2.4 applies with $\lambda = q+1-2|T|$ showing that if (3.2) is assumed, then the unital \mathcal{U} in $\mathfrak{M}_T(q^2)$ contains a O'Nan configuration.

Theorem 3.6. If q > 5, then there exists a T with |T| > q-4 such that U is a non-classical unital in $\mathfrak{M}_T(q^2)$.

Proof. From the proof of Theorem 3.5, some Moulton plane $\mathfrak{M}_T(q^2)$ contains O'Nan configurations lying in \mathcal{U} . If $\{P_0, P_1, P_2, P_3, P_4, P_5\}$ one of them, add each non-zero element $s \in \mathrm{GF}(q)$ to T which satisfies the condition $s \neq ||x_i||$ for $P_i = P_i(x_i, y_i)$ with $1 \le i \le 5$. Then T expands and its size becomes at least q-4. In the resulting Moulton plane $\mathfrak{M}_T(q^2)$, the above hexagon $\{P_0, P_1, P_2, P_3, P_4, P_5\}$ is still a O'Nan configuration lying in the unital \mathcal{U} .

References

- V. Abatangelo, M. R. Enea, G. Korchmáros and B. Larato, Ovals and unitals in commutative twisted field planes, *Discrete Math.* 208/209 (1999), 3–8, doi:10.1016/s0012-365x(99) 00055-2.
- [2] V. Abatangelo, G. Korchmáros and B. Larato, Transitive parabolic unitals in translation planes of odd order, *Discrete Math.* 231 (2001), 3–10, doi:10.1016/s0012-365x(00)00301-0.
- [3] V. Abatangelo and B. Larato, Canonically inherited arcs in Moulton planes of odd order, Innov. Incidence Geom. 6/7 (2007/08), 3–21, http://www.iig.ugent.be/online/6/ volume-6-article-1-online.pdf.
- [4] V. Abatangelo and B. Larato, Complete arcs in Moulton planes of odd order, Ars Combin. 98 (2011), 521–527.
- [5] A. Barlotti and G. Lunardon, Una classe di unitals nei Δ-piani, *Riv. Mat. Univ. Parma (4)* 5 (1979), 781–785, http://www.rivmat.unipr.it/fulltext/1979-5s-5ss/1979-5ss-781.pdf.
- [6] S. G. Barwick, A characterization of the classical unital, *Geom. Dedicata* 52 (1994), 175–180, doi:10.1007/bf01263605.
- [7] S. G. Barwick, A class of Buekenhout unitals in the Hall plane, Bull. Belg. Math. Soc. Simon Stevin 3 (1996), 113–124, http://projecteuclid.org/euclid.bbms/ 1105540762.
- [8] S. G. Barwick, Unitals in the Hall plane, J. Geom. 58 (1997), 26–42, doi:10.1007/bf01222924.
- [9] S. G. Barwick and G. L. Ebert, Unitals in Projective Planes, Springer Monographs in Mathematics, Springer, New York, 2008, doi:10.1007/978-0-387-76366-8.
- [10] S. G. Barwick and D. J. Marshall, Unitals and replaceable t-nests, Australas. J. Combin.
 43 (2009), 115-126, https://ajc.maths.uq.edu.au/pdf/43/ajc_v43_p115. pdf.
- [11] S. G. Barwick and C. T. Quinn, Generalising a characterisation of Hermitian curves, *J. Geom.* 70 (2001), 1–7, doi:10.1007/pl00000978.
- [12] A. Beutelspacher, Embedding the complement of a Baer subplane or a unital in a finite projective plane, *Mitt. Math. Sem. Giessen* 163 (1984), 189–202.
- [13] F. Buekenhout, Existence of unitals in finite translation planes of order q^2 with a kernel of order q, *Geom. Dedicata* **5** (1976), 189–194, doi:10.1007/bf00145956.
- [14] M. J. de Resmini and N. Hamilton, Hyperovals and unitals in Figueroa planes, *European J. Combin.* 19 (1998), 215–220, doi:10.1006/eujc.1997.0166.
- [15] T. Grundhöfer, B. Krinn and M. Stroppel, Non-existence of isomorphisms between certain unitals, *Des. Codes Cryptogr.* **60** (2011), 197–201, doi:10.1007/s10623-010-9428-2.
- [16] K. Grüning, A class of unitals of order q which can be embedded in two different planes of order q², J. Geom. 29 (1987), 61–77, doi:10.1007/bf01234988.
- [17] A. M. W. Hui, H. F. Law, Y. K. Tai and P. P. W. Wong, Non-classical polar unitals in finite Dickson semifield planes, *J. Geom.* **104** (2013), 469–493, doi:10.1007/s00022-013-0174-2.
- [18] A. M. W. Hui, H. F. Law, Y. K. Tai and P. P. W. Wong, A note on unitary polarities in finite Dickson semifield planes, *J. Geom.* **106** (2015), 175–183, doi:10.1007/s00022-014-0254-y.
- [19] M. W. Hui and P. P. W. Wong, Non-classical polar unitals in finite Figueroa planes, J. Geom. 103 (2012), 263–273, doi:10.1007/s00022-012-0121-7.
- [20] N. L. Johnson and G. Lunardon, On the Bose-Barlotti Δ -planes, *Geom. Dedicata* **49** (1994), 173–182, doi:10.1007/bf01610619.

- [21] G. Korchmáros, A. Siciliano and T. Szőnyi, Embedding of classical polar unitals in PG(2, q²), J. Combin. Theory Ser. A (2017), doi:10.1016/j.jcta.2017.08.002.
- [22] M. E. O'Nan, Automorphisms of unitary block designs, J. Algebra 20 (1972), 495–511, doi: 10.1016/0021-8693(72)90070-1.
- [23] G. Rinaldi, Construction of unitals in the Hall planes, *Geom. Dedicata* 56 (1995), 249–255, doi:10.1007/bf01263565.
- [24] G. Rinaldi, Complete unital-derived arcs in the Hall planes, *Abh. Math. Sem. Univ. Hamburg* 71 (2001), 197–203, doi:10.1007/bf02941471.
- [25] A. Sonnino, Non-classical unitals may be code words, submitted.
- [26] A. Sonnino, Existence of canonically inherited arcs in Moulton planes of odd order, *Finite Fields Appl.* 33 (2015), 187–197, doi:10.1016/j.ffa.2014.11.011.
- [27] S. D. Stoichev and V. D. Tonchev, Unital designs in planes of order 16, *Discrete Appl. Math.* 102 (2000), 151–158, doi:10.1016/s0166-218x(99)00236-x.
- [28] K. L. Wantz, Unitals in the regular nearfield planes, J. Geom. 88 (2008), 169–177, doi:10.1007/ s00022-007-2021-9.