Scientific paper Refractive Index, Molar Refraction and Comparative Refractive Index Study of Propylene Carbonate Binary Liquid Mixtures Dnyaneshwar Shamrao Wankhede* School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606, (Maharashtra State), India. * Corresponding author: E-mail: dswchem@yahoo.co.in Received: 04-07-2011 Abstract Refractive indices (n) have been experimentally determined for the binary liquid-liquid mixtures of Propylene carbonate (PC) (1) with benzene, ethylbenzene, o-xylene and p-xylene (2) at 298.15, 303.15 and 308.15 K over the entire mole fraction range. The experimental values of n are utilised to calculate deviation in refractive index (An), molar refraction (R) and deviation in molar refraction (AR). A comparative study of Arago-Biot (A-B), Newton (NW), Eyring and John (E-J) equations for determining refractive index of a liquid has been carried out to test their validity for all the binary mixtures over the entire composition range at 298.15 K. Comparison of various mixing relations is represented in terms of average deviation (AVD). The An and AR values have been fitted to Redlich-Kister equation at 298.15 K and standard deviations have been calculated. The results are discussed in terms of intermolecular interactions present amongst the components. Keywords: Refractive index; propylene carbonate; deviation in refractive index; molar refraction 1. Introduction Refractive index measurement is an essential part of the thermodynamic studies of liquid-liquid mixtures, used to explain the intermolecular interactions present amongst the mixing components. Refractive index along with density measurement of liquid mixtures is important for the determination of composition of binary mixtures usually non-ideal mixtures where direct experimental measurements are performed over the entire composition range. Refractive index measurement along with other parameters such as density, melting point, boiling point and other analytical data are very useful for common substances which include oils, waxes, sugar syrups etc. Deviation in refractive index is used to explain the nature of solute-solvent interactions. In continuation to our research work on thermody-namic properties of binary liquid-liquid mixtures of PC with polar, nonpolar, applicable solvents1-6' we represent here refractive indices (n), deviation in refractive index (An), molar refraction (R) and deviation in molar refraction (AR) values for four binary mixtures of PC (1) with benzene, ethylbenzene, o-xylene, and p-xylene (2) at 298.15, 303.15 and 308.15 K over the entire mole fraction range. Theoretical values of refractive index is calculated using different mixing rules such as Arago-Biot (A-B)7, Newton (NW), and Eyring-John (E-J)8 equations at 298.15 K to test the validity of the experimental results. The comparison of estimated refractive index (ncal) values using different mixing rules with those of experimental one (nobs) is represented in the form of average deviation (AVD). The deviation in refractive index (An) and deviation in molar refraction (AR) values have been fitted to Redlich-Kister equation at 298.15 K and standard deviations have been calculated. The results obtained are discussed in terms of intermolecular interactions present amongst the components. 2. Experimental All the liquids used in the present study were of A. R. Grade. PC purchased from Merck (Purity >99% by mass) was refluxed over anhydrous calcium carbonate and distilled at atmospheric pressure9. Benzene, ethylbenzene, o-xylene and p-xylene all purchased from S. D. Fine Chemicals, were distilled at atmospheric pressure. All the liquids were double distilled. The middle fraction collected of all the liquids was stored over 4 Ä molecular sieves. The binary liquid mixtures were prepared by mixing known masses of pure liquids in airtight-stoppered bottles in order to minimize the evaporation losses. All measurements of mass were performed on a Mettler one pan balance which can be read up to the fifth decimal place with an accuracy of ±0.05 mg. The refractive indices were measured with a ther-mostated Abbe refractometer (Focus AR-201 85010) using the sodium D line. The refractometer was calibrated by means of glass test piece of known refractive index supplied by the manufacturer. The uncertainity in the refractive index measurement was ± 3 x 10-4. For all the measurements, the temperature was controlled by circulating the water through an ultra thermostat Julabo F-25 (made in Germany) which has an accuracy of ± 0.02 °C. 3. Results and Discussion The experimental values of refractive index (n) were utilised to calculate deviation in refractive indices (An) using following equation An (1) where nm is the refractive index values for the mixtures. x1( x2, np n2 are the mole fractions and refractive index values for the component (1) i.e PC and benzene, ethylben-zene, o-xylene and p-xylene (2) respectively. The molar refraction (R) values for all the binary mixtures at 298.15, 303.15, and 308.15 K were calculated using Lorentz-Lorenz equation10 R = Vm(n2 - 1)/(n2 + 2) (2) where nm & Vm is the refractive index & molar volume value for the binary mixtures respectively. The experimental n values along with calculated values of R at 298.15, 303.15 and 308.15 K are represented in Tables 1-4 for all the four binary mixtures of PC. Table 2: Refractive index (n) and molar refraction (R) values for the binary mixtures of PC (1) + ethylbenzene (2) at 298.15, 303.15 and 308.15 K. Propylene carbonate (1) + ethylbenzene (2) T = 298.15 K T = 303.15 K T = 308.15 K xl n R n R n R 0.0000 1.4932 35.79 1.4906 35.81 1.4886 35.88 0.0294 1.4913 35.16 1.4887 35.18 1.4867 35.24 0.0420 1.4905 34.89 1.4879 34.91 1.4859 34.97 0.0729 1.4885 34.26 1.4859 34.28 1.4839 34.33 0.0821 1.4879 34.07 1.4853 34.09 1.4833 34.15 0.1013 1.4866 33.69 1.4840 33.71 1.4820 33.76 0.2023 1.4795 31.79 1.4770 31.81 1.4750 31.85 0.3008 1.4723 30.11 1.4698 30.12 1.4678 30.15 0.4012 1.4647 28.54 1.4623 28.55 1.4603 28.58 0.5001 1.4571 27.13 1.4547 27.13 1.4528 27.16 0.6001 1.4494 25.82 1.4471 25.83 1.4453 25.85 0.7001 1.4419 24.63 1.4397 24.63 1.4380 24.66 0.8009 1.4346 23.53 1.4325 23.54 1.4309 23.57 0.8992 1.4279 22.56 1.4259 22.57 1.4244 22.61 1.0000 1.4223 21.68 1.4205 21.69 1.4191 21.72 Tab le 1: Refractive index (n) and molar refraction (R) values for the binary mixtures of PC (1) + benzene (2) at 298.15, 303.15 and 308.15 K. Table 3: Refractive index (n) and molar refraction (R) values for the binary mixtures of PC (1) + o-xylene (2) at 298.15, 303.15 and 308.15 K. Propylene carbonate (1) + benzene (2) Propylene carbonate (1) + o-xylene (2) T = 298.15 K T = 303.15 K T = 308.15 K T = 298.15 K T = 303.15 K T = 308.15 K xl n R n R n R xl n R n R n R 0.0000 1.4981 26.21 1.4937 26.18 1.4919 26.24 0.0000 1.5052 35.97 1.5027 35.99 1.5006 35.99 0.0191 1.4971 26.13 1.4926 26.08 1.4907 26.12 0.0230 1.5019 35.31 1.5001 35.37 1.4982 35.40 0.0416 1.4958 26.02 1.4912 25.97 1.4893 26.00 0.0428 1.4992 34.82 1.4978 34.90 1.4964 34.96 0.0585 1.4947 25.94 1.4902 25.88 1.4882 25.91 0.0618 1.4966 34.35 1.4956 34.45 1.4945 34.53 0.0771 1.4935 25.85 1.4890 25.79 1.4870 25.81 0.0804 1.4942 33.79 1.4935 33.91 1.4924 34.00 0.1030 1.4918 25.72 1.4873 25.65 1.4853 25.68 0.1015 1.4915 33.36 1.4908 33.47 1.4902 33.59 0.1982 1.4853 25.26 1.4810 25.19 1.4789 25.20 0.2056 1.4790 31.06 1.4786 31.18 1.4785 31.34 0.2949 1.4784 24.80 1.4744 24.73 1.4722 24.74 0.2993 1.4692 29.43 1.4685 29.53 1.4680 29.65 0.3972 1.4708 24.33 1.4669 24.25 1.4648 24.26 0.3992 1.4595 27.96 1.4586 28.04 1.4580 28.15 0.4938 1.4632 23.88 1.4596 23.80 1.4576 23.81 0.4995 1.4510 26.64 1.4502 26.72 1.4495 26.82 0.5987 1.4547 23.40 1.4514 23.33 1.4495 23.34 0.5986 1.4434 25.54 1.4430 25.63 1.4425 25.72 0.7002 1.4460 22.92 1.4431 22.88 1.4412 22.88 0.7001 1.4367 24.45 1.4365 24.55 1.4362 24.64 0.7907 1.4379 22.50 1.4350 22.45 1.4330 22.44 0.8004 1.4307 23.52 1.4302 23.60 1.4300 23.69 0.9024 1.4275 21.96 1.4254 21.96 1.4239 21.97 0.8990 1.4252 22.61 1.4250 22.70 1.4240 22.75 1.0000 1.4223 21.68 1.4205 21.69 1.4191 21.72 1.0000 1.4223 21.68 1.4205 21.69 1.4191 21.72 n - x,n, - xn m 11 2 2 Table 4: Refractive index (n) and molar refraction (R) values for the binary mixtures of PC (1) + p-xylene (2) at 298.15, 303.15 and 308.15 K. Propylene carbonate (1) + p-xylene (2) T = 298.15 K T = 303.15 K T = 308.15 K x1 n R n R n R 0.0000 1.4933 36.03 1.4910 36.07 1.4878 36.06 0.0227 1.4915 35.40 1.4893 35.44 1.4862 35.43 0.0397 1.4900 34.93 1.4880 34.98 1.4850 34.98 0.0573 1.4885 34.46 1.4866 34.52 1.4837 34.52 0.0816 1.4865 33.84 1.4846 33.90 1.4819 33.91 0.0980 1.4851 33.44 1.4833 33.50 1.4806 33.51 0.2090 1.4765 31.01 1.4748 31.07 1.4724 31.08 0.3029 1.4695 29.28 1.4678 29.33 1.4656 29.34 0.3993 1.4625 27.75 1.4608 27.79 1.4588 27.81 0.5028 1.4551 26.33 1.4535 26.37 1.4516 26.39 0.5978 1.4485 25.20 1.4470 25.24 1.4452 25.27 0.7068 1.4412 24.09 1.4396 24.12 1.4382 24.16 0.8012 1.4350 23.25 1.4335 23.28 1.4322 23.33 0.8996 1.4289 22.50 1.4273 22.53 1.4259 22.56 1.0000 1.4223 21.68 1.4205 21.69 1.4191 21.72 Table 6: Deviation in refractive index (An) and deviation in molar refraction (AR) values for the binary mixtures of PC at 298.15, 303.15 and 308.15 K. Propylene carbonate (1) + ethylbenzene (2) T = 298.15 K T = 303.15 K T = 308.15 K x1 An AR An AR An AR 0.0000 0.0000 -0.00 0.0000 0.00 0.0000 -0.00 0.0294 0.0002 -0.22 0.0002 -0.22 0.0001 -0.22 0.0420 0.0003 -0.31 0.0002 -0.30 0.0002 -0.31 0.0729 0.0005 -0.50 0.0004 -0.50 0.0004 -0.52 0.0821 0.0005 -0.56 0.0005 -0.56 0.0004 -0.57 0.1013 0.0006 -0.67 0.0005 -0.67 0.0004 -0.69 0.2023 0.0006 -1.14 0.0006 -1.14 0.0005 -1.17 0.3008 0.0004 -1.43 0.0003 -1.44 0.0001 -1.47 0.4012 -0.0001 -1.59 -0.0002 -1.59 -0.0004 -1.62 0.5001 -0.0006 -1.60 -0.0008 -1.61 -0.0010 -1.64 0.6001 -0.0013 -1.50 -0.0014 -1.51 -0.0016 -1.53 0.7001 -0.0017 -1.28 -0.0018 -1.28 -0.0019 -1.30 0.8009 -0.0018 -0.96 -0.0020 -0.95 -0.0020 -0.97 0.8992 -0.0015 -0.54 -0.0017 -0.53 -0.0017 -0.54 1.0000 0.0000 -0.00 0.0000 0.00 0.0000 0.00 The AR values for all the binary mixtures, at all the said temperatures were calculated using following equation AR = Rm-x1R1-x2R2 (3) where Rm is the molar refraction values for the binary liquid mixtures. The calculated values of An and AR are represented in Tables 5-8. Table 5: Deviation in refractive index (An) and deviation in molar refraction (AR) values for the binary mixtures of PC at 298.15, 303.15 and 308.15 K. Propylene carbonate (1) + benzene (2) T = 298.15 K T = 303.15 K T = 308.15 K x1 n R n R n R 0.0000 0.0000 0.00 0.0000 -0.00 0.0000 -0.00 0.0191 0.0004 0.00 0.0003 -0.01 0.0002 -0.03 0.0416 0.0009 -0.00 0.0005 -0.02 0.0004 -0.05 0.0585 0.0010 -0.00 0.0008 -0.03 0.0006 -0.07 0.0771 0.0012 -0.01 0.0009 -0.05 0.0007 -0.08 0.1030 0.0015 -0.02 0.0011 -0.07 0.0009 -0.09 0.1982 0.0022 -0.05 0.0018 -0.10 0.0014 -0.14 0.2949 0.0027 -0.07 0.0023 -0.13 0.0018 -0.17 0.3972 0.0028 -0.08 0.0023 -0.15 0.0018 -0.19 0.4938 0.0025 -0.09 0.0020 -0.16 0.0016 -0.19 0.5987 0.0020 -0.10 0.0015 -0.16 0.0012 -0.19 0.7002 0.0010 -0.11 0.0007 -0.16 0.0003 -0.20 0.7907 -0.0003 -0.13 -0.0008 -0.18 -0.0013 -0.23 0.9024 -0.0022 -0.16 -0.0022 -0.17 -0.0023 -0.19 1.0000 0.0000 -0.00 0.0000 -0.00 0.0000 0.00 Table 7: Deviation in refractive index (An) and deviation in molar refraction (AR) values for the binary mixtures of PC at 298.15, 303.15 and 308.15 K. Propylene carbonate (1) + o-xylene (2) T = 298.15 K T = 303.15 K T = 308.15 K x1 An AR An AR An AR 0.0000 0.0000 -0.00 0.0000 0.01 0.0000 -0.00 0.0230 -0.0014 -0.33 -0.0007 -0.28 -0.0005 -0.27 0.0428 -0.0024 -0.53 -0.0014 -0.46 -0.0007 -0.41 0.0618 -0.0035 -0.74 -0.0020 -0.64 -0.0011 -0.58 0.0804 -0.0043 -1.03 -0.0026 -0.92 -0.0016 -0.85 0.1015 -0.0053 -1.16 -0.0036 -1.05 -0.0021 -0.95 0.2056 -0.0092 -1.98 -0.0072 -1.86 -0.0053 -1.72 0.2993 -0.0112 -2.27 -0.0096 -2.17 -0.0082 -2.07 0.3992 -0.0126 -2.31 -0.0113 -2.23 -0.0101 -2.14 0.4995 -0.0128 -2.19 -0.0114 -2.11 -0.0104 -2.04 0.5986 -0.0122 -1.88 -0.0105 -1.79 -0.0093 -1.73 0.7001 -0.0105 -1.52 -0.0086 -1.42 -0.0073 -1.36 0.8004 -0.0081 -1.01 -0.0067 -0.93 -0.0054 -0.88 0.8990 -0.0055 -0.51 -0.0038 -0.42 -0.0033 -0.41 1.0000 0.0000 -0.00 0.0000 0.01 0.0000 0.00 The calculated An and AR values were correlated by Redlich-Kister polynomial11 at 298.15 K as shown in equation m Ye = x1x2Z ai(x1 - x2): (4) i = 0 where m is no of coefficients. The coefficients ai in equation (4) were estimated by the least square fit method and the standard deviations o; were calculated by equation Table 8: Deviation in refractive indices (An) and deviation in molar refraction (AR) values for the binary mixtures of PC at 298.15, 303.15 and 308.15 K. Arago-Biot equation (A-B) n = ni^i + n2^2 (6) Propylene carbonate (1) + p-xylene (2) T = 298.15 K T = 303.15 K T = 308.15 K x1 An AR An AR An AR 0.0000 0.0000 0.00 0.0000 0.00 0.0000 0.03 0.0227 -0.0002 -0.30 -0.0001 -0.30 0.0000 -0.27 0.0397 -0.0005 -0.53 -0.0002 -0.51 -0.0001 -0.48 0.0573 -0.0007 -0.75 -0.0004 -0.72 -0.0002 -0.69 0.0816 -0.0010 -1.02 -0.0006 -0.99 -0.0003 -0.95 0.0980 -0.0012 -1.18 -0.0008 -1.16 -0.0005 -1.12 0.2090 -0.0020 -2.02 -0.0015 -1.99 -0.0010 -1.95 0.3029 -0.0023 -2.40 -0.0018 -2.38 -0.0014 -2.34 0.3993 -0.0024 -2.55 -0.0020 -2.53 -0.0016 -2.49 0.5028 -0.0025 -2.49 -0.0021 -2.47 -0.0017 -2.42 0.5978 -0.0024 -2.25 -0.0019 -2.27 -0.0015 -2.19 0.7068 -0.0019 -1.80 -0.0016 -1.78 -0.0010 -1.73 0.8012 -0.0014 -1.28 -0.0010 -1.26 -0.0006 -1.21 0.8996 -0.0005 -0.62 -0.0003 -0.60 -0.0001 -0.56 1.0000 0.0000 -0.00 0.0000 0.00 0.0000 0.04 O = P (YEeXpt-YECaI)2/(D-N)] 0.5 (5) where D and N are the number of data points and parameters respectively. Regression results for An and AR values of binary mixtures at 298.15 K are as shown in Table 9. Table 9: Adjustable parameters a, of the Redlich-Kister (Eq. (4)) and standard deviations a, (Eq. (5)) of deviation in refractive index (An) and deviation in molar refraction (AR) values of the binary mixtures of PC at 298.15 K. Property O Propylene carbonate (1) + Benzene (2) 0.0105 -0.0156 -0.0144 0.0005 0.0475 0.0924 0.1938 0.0212 An AR Propylene carbonate (1) + ethylbenzene (2) -0.0026 -0.0131 -0.0030 0.0001 0.0047 0.0092 0.0189 0.0021 An AR Propylene carbonate (1) + o-xylene (2) -0.0509 0.0030 -0.0090 0.0002 0.0617 0.1228 0.2637 0.0275 An AR Propylene carbonate (1) + p-xylene (2) -0.0100 0.0029 -0.0003 0.0001 0.0455 0.0884 0.1046 0.0204 An AR Different refractive index mixing rules such as Lo-rentz-Lorenz, Gladstone-Dale, Arago-Biot, Weiner, Heller etc are most frequently employed to test the validity of the experimental results. In present case, we have used Arago-Biot equation (A-B), Newton equation (NW), Eyring and John (E-J) equation for the comparison purpose. Newton equation (NW) n2- 1 = (n12- 1)^1 + (n22- 1)^ Eyring and John equation (E-J) n = n1^12 + 2 (n1n2)1/2 ^2 + n2^22 (7) (8) The comparison of the experimental refractive index (nobs) with the calculated one (ncal) with different mixing relations is represented in terms of average deviation (AVD) at 298.15, 303.15 and 308.15 K using following equation AVD = [(nobs- n.)/n,] (9) The average deviation values obtained by comparison of the experimental refractive index values with those calculated by using different mixing rules at 298.15 K is represented in Table 10. Table 10. Average deviations in the refractive index for different mixing ret ations for binary mixtures of PC (1) with aromatic hydrocarbons (2) at 298.15 K. System/M ixing Arago-Biot Newton Eyring-John relations (A-B) (NW) (E-J) T = 298.15 K Benzene 0.0004 0.0023 0.0026 Ethylbenzene -0.0024 -0.0025 -0.0023 o-xyIene -0.0069 -0.0071 -0.0069 p-xyIene -0.0031 -0.0032 -0.0030 T = 303.15 K Benzene 0.0002 0.0000 0.0003 Ethylbenzene -0.0024 -0.0025 -0.0023 o-xyIene -0.0060 -0.0062 -0.0060 p-xyIene -0.0028 -0.0027 -0.0028 T = 308.15 K Benzene 0.0000 -0.0001 0.0001 EthyIbenzene -0.0025 -0.0026 -0.0024 o-xyIene -0.0054 -0.0056 -0.0053 p-xyIene -0.0026 -0.0027 -0.0025 From perusal of Tables 1-4, it can be observed that, the n values decrease both with increasing mole fraction of PC and with increasing temperatures while the R values are found to be decreasing for all the mixtures with increasing mole fraction of PC. A closer look at Tables 5-8 reveals that the An are positive for benzene becoming slightly negative towards the end (i.e. 0.8-1.0 moles of PC). The values decrease with increasing temperature. For o- and p-xylenes the values are found to be negative and the negative values are a a a 0 1 2 increasing with increasing temperature. For ethylbenzene mixtures a slight varying trend is observed. The values are positive up to 0.4 moles of PC and then becoming negative, thus showing sigmoidal shape. Figure 1 shows the graphical representation of An values for all the four binary liquid mixtures at 298.15 K. The An values follow the order of benzene > ethylbenzene > p-xylene > o-xylene upto 0.75 mole fractions of PC. After 0.80 mole fraction of PC this order is slightly changed for the binary mixtures becoming benzene > p-xylene > ethylbenzene > o-xylene at 0.80 and p-xylene > ethylbenzene > benzene > o-xylene at 0.90 mole fraction of PC. 0.004 -0.014 J- Fig.1: Deviation in refractive indices (An) with of mole fractions x1, for PC (1) + benzene, ethylbenzene, o-xylene and p-xylene (2) at 298.15 K. The negative values of An observed in case of o- and p-xylene mixtures indicate the presence of strong intermolecular interactions amongst the mixing components. Whereas the positive values for benzene mixtures indicate weaker interactions are present. In case of ethylbenzene, increasing the mole fractions of PC is increasing the interaction amongst the components. The alkyl group present in all the three mixtures might be playing a role because of their donating inductive effect because of which these interactions are observed. Also it can be revealed from Tables 5-8, that the AR values are negative for all the four binary mixtures. The deviation in molar refraction, AR, gives more information than An about the mixture phenomenon because it takes into account the electronic perturbation of molecular orbitals during the liquid mixing process12 and R is also directly related to the dispersion forces. The positive values of AR indicate that the dispersion forces are higher in the mixtures than in the pure liquids13 whereas negative values of those indicate the presence of interactions amongst the mixture components. Figure 2 shows the graphical representation of AR values for all the binary mixtures at 298.15 K. The negative values of AR follows the trend benzene > ethylbenzene > o-xylene > p-xylene almost over the entire range of mole fractions of PC. Molefi actio»* of PC 0.2 OA 0.6 0.8 * S 1 / * Benzene m—' Ethylbenzene —A— o-xylene ——p-xylene Fig.2: Deviation in molar refraction (AR) with mole fractions x1, for PC (1) + benzene, ethylbenzene, o-xylene and p-xylene (2) at 298.15 K. The negative values of AR observed for all the mixtures show the presence of interactions in all the binary mixtures. A closer look at Table 3 indicates that all the four binary mixtures show good agreement with the values obtained by mixing rules. Slightly larger values are obtained in case of o-xylene mixtures. Benzene mixtures are showing least variation from the experimental values in case of all the four mixing rules. Deviations are significant up to three decimal places in all the four mixing relations. The systems are not showing much deviation and are near to ideal for testing using other mixing rules. 4. Conclusion Deviation in refractive index (An) and deviation in molar refraction (AR) values estimated for four binary mixtures of PC with benzene, ethylbenzene, o-xylene and p-xylene at 298.15, 303.15 and 308.15 K show the presence of strong intermolecular interactions amongst the mixture components. The four mixing rules can be applied successfully to these mixtures and show good agreement with the experimental values of refractive indices. A slightly larger deviation is observed in case o-xylene mixture compared to other three mixtures whereas benzene mixture show the least variation. 5. References 1. D. S. Wankhede, M. K. Lande, B. R. Arbad, J. Chem. Eng. Data 2005, 50, 261-263. 2. D. S. Wankhede, N. N. Wankhede, M. K. Lande, B. R. Arbad, J. Sol. Chem. 2005, 34, 233-243. 3. B. R. Arbad, M. K. Lande, N. N. Wankhede, D. S. Wankhede, J. Chem. Eng. Data 2006, 51, 68-72. 4. D. S. Wankhede, N. N. Wankhede, M. K. Lande, B. R. Ar-bad, Ind. J. Pure & Appl. Phys. 2006, 44, 909-916. 5. D. S. Wankhede, N. N. Wankhede, M. K. Lande, B. R. Ar-bad, Phys. Chem. Liqs. 2008, 46, 319-327. 6.D. S. Wankhede, N. N. Wankhede, M. K. Lande, B. R. Ar-bad, J. Mol. Liqs 2008, 138, 124-129. 7. D. F. T. Arago, J. B. Biot, Mem. Acad. Fr. 1806, 7. 8.H. Eyring, M. S. John, Significant liquid structures, 1969, John Wiley, NY. 9. G. Moumouzias, G. Ritzoulis, J. Chem. Eng. Data 1992, 37, 482-483. 10. S. Glasstone, Textbook of Physical Chemistry, 1949, D. Van Nostrand Company, London. 11. O. Redlich, A. T. Kister, Ind. Eng. Chem. 1948, 40, 345-348. 12. T. Aminabhavi, H. T. S. Phayde, R. S. Khinnavar, B. Gopala-krishna, K. C. Hansen, J. Chem. Eng. Data 1994, 39, 251260. 13. A. Pineiro, P. Brocos, A. Amigo, M. Pintos, R. Bravo, J. Chem. Thermodyn. 1999, 31, 931-942. Povzetek Binarnim mešanicam propilen karbonata (PC) (1) z benzenom, etilbenzenom, o-ksilenom in p-ksilenom (2) smo izmerili lomni količnik,n, v celotnem koncentracijskem območju (0 < x2 < 1) pri treh temperaturah (298.15, 303.15 in 308.15 K). Iz eksperimentalnih vrednosti za n smo izračunali presežni lomni količnik, An, molsko refrakcijo, R, in presežno molsko refrakcijo, AR. Pri 298.15 K smo za vse proučevane sisteme preverili veljavnost Argo-Biotove (A-B), Dale-Gladstonove (D-G), Newtonove (NW), Eyringove in Johnove (E-J) enačbe za določanje lomnega količnika. Presežne vrednosti (An in AR) smo pri 298.15 K ponazorili z Redlich-Kisterjevo enačbo. Odstopanja smo interpretirali z intermolekularnimi interakcijami med komponentami.