


UNIVERZA V LJduBLJANI
FAKULTETA ZA ELEKTROTEHNIKDO

JANEZ JAMSEK

Spektrivisyih redov kardiovaskularmh
signalov nd osnovi transformacije z valch

DOKTORSKA DISERTACIJA

MENTORICA: DOC. DR. ANETA STEFANOVSKA

LJUBLJANA, 2005



O b‘.zﬂc?'/q‘/{.zcoé



UNIVERSITY OF LJUBLJANA
FACULTY OF ELECTRICAL ENGINEERING

JANEZ JAMSEK

High=order Spectra of Cardiovascular
Signals Based on llJavelet Transform

DISSERTATION

LauBLJANA, 2005




UNIVERSITY OF LuuBLJANA
FACULTY OF ELECTRICAL ENGINEERING

JANEZ JAMSEK

High=0rder Spectra of Cardiovascular
Signals Based on llavelet Transform

DISSERTATION

MENTOR: DOC. DR. ANETA STEFANOVSKA

LJuBLJANA, 2005




72’m7 /Jﬂﬁmtj




ACKNDODWLEDGEMENTS

I would like to thank my mentor, doc. dr. Aneta Stefanovska, for showing me the way into the world
of cardiovascular dynamics, and for all the invaluable expert knowledge, support, perfection
convergence, science intuition, and not to mention, for all the Saturdays, Sundays, and holidays spent

discussing cardiovascular matter.

This work would not be the same without the influence of Lancaster University, where professor
Peter V.E. McClintok, hosted me in his Nonlinear Group. I am grateful to him for all of his Cambridge

perfection that has influenced me. His supervision was, by all means, most pleasurable.

I have met many great scientists, but above all, I have met great people. Mitya D.G. Luchinsky
showed me that science can be a real pleasure, and that social life must not be neglected, but rather
accomplished in synchronization. “Start always from zero, rather than think twice about it, and there is
always a way around it”, is Mitya’s inheritance. To Igor A. Khovanov, whom knowing was productive
and problem-goal oriented. To Andriy Bandrivskyy, with whom we improvised a relaxation
oscillatory kind of sport events after serious studying hours. Many thanks for all his help and valuable

advice whenever needed, and to Stefano Beri, whom it was a pleasure to study and socialize.

To Alan Bernjak and Bojan Musizza, co-workers in the Group of Nonlinear Dynamics and Synergetic.

I’am grateful to Alenka Flander, for all her advices and help just when I needed it.

For all of their careful reading, I would like to thank Jozica Gracarin, Vesna Habinc, Bojan Ilich and

Marko Mlakar.

At last, 1 am grateful to my parents, Bernardka and Miroslav Jamsek for all of their kind support and

patience during my long studies.



RAZSIRJENI POVZETEK

SPEKTRI VISJIH REDOV KARDIOVASKULARNIH SIGNALOV NA

OSNOVI TRANSFORMAGCIJE Z VALCGKI

RAZSIRJENI POVZETEK

Ritmi so med najbolj oc¢itnimi lastnostmi Zivih sistemov. Pojavljajo se na vseh nivojih bioloskih
organizacij, od enoceli¢nih do vecceli¢nih organizmov, s periodami od dela sekunde do leta. Tako
sténa in dihalna funkcija kot circadianov ritem' v spanju in pri zavesti do kljuénih periodi¢nih
procesov za ohranjanje Cloveskega zivljenja. Kljub veliki navezavi s fiziologijo periodi¢ni pojavi niso
omejeni le na Zive sisteme. Primer so kemi¢ne reakcije, ki so jih prvi odkrili Bray leta 1921, Belousov

in Zabotinski leta 1959 oziroma leta 1964 in drugi.

KARDIOVASKULARNI SISTEM

Kardiovaskularni sistem je eden od osnovnih sistemov ¢loveskega organizma., Vsem celicam
organizma neprestano dovaja energijo in snovi, ki so potrebne za njihovo normalno delovanje, hkrati
pa iz celic odnasa snovi, ki nastanejo z metabolizmom. Sestavljata ga srce in oZilje (arterije, kapilare
in vene). Pretok, ki je enak celotnemu volumnu krvi (t,j. 4 1 — 6 | oziroma 7 % - 8 % telesne teze),
sklene pot pri spros¢enem, zdravem ¢loveku po ozilju povpreé¢no v eni minuti [55]. Tako dinamiko
kardiovaskularnega sistema preucujemo na ¢asovni osi okoli ene minute. Srce ima vlogo ¢rpalke, ki
+ poganja kri po sklenjenem krogu elasti¢nih zil. Plju¢a lahko gledamo kot generator pritiska [55]. Krvni
pretok, pritisk ter aktivnost plju¢ in srca dolo¢ajo dinamiko sistema krvnega obtoka. Raziskave so
pokazale [8, 9, 10, 110-112, 117], da izmerjeni signali krvnega pretoka vsebujejo deterministi¢no
dinamiko, kar pomeni, da je sistem krvnega obtoka izid kon¢nega Stevila podsistemov (avtonomnih
oscilatorjev), med katerimi ima vsak svojo znacilno frekvenco. Pri regulaciji krvnega pretoka in

pritiska sodeluje pet podsistemov: sréni, respiratorni, miogeni, nevrogeni in metaboli¢ni sistem.

Vsi ti sistemi so tudi pri zdravih ljudeh v mirovanju med seboj rahlo sklopljeni, zato njihove znacilne
frekvence niso stalne, temvec se spreminjajo s ¢asom, njihove amplitude pa so modulirane [6, 7, 110,

111]. Med posameznimi oscilatorji lahko nastanejo fazne sklopitve in sinhronizacija, ki se pokazejo v

"'L. circa = okoli: dies = dan.




obliki povezav med njihovimi frekvencami in fazami [9, 79, 94, 97, 113, 114]. Fazna sklopitev je torej
pojav doloenih relacij med fazami medsebojno delujoéih sistemov, medtem ko ni nujno, da med

amplitudami obstaja korelacija.

Sklopitve omogocajo izmenjavo informacije med procesi in so tako temelj za pravilno delovanje
sistema krvnega obtoka. Frekvenca in amplituda vsake opazovane oscilacije nam pri¢a o aktivnosti
oscilatorja in u¢inku vseh sklopitev. Dobro je raziskana frekven¢na modulacija srénega ritma v ritmu
dihanja, znana pod imenom respiratorna sinusna aritmija [18, 34]. Bivariatna analiza v Casovnem
prostoru, ki je bila pred kratkim razvita za analizo sinhronizacije ali posplodene sinhronizacije pri
kaotiénih in Sumnih oscilatorjih, je pokazala, da obstaja sinhronizacija srénega in respiratornega

oscilatorja [3, 23, 112, 117].

)

Slika 1: Reditev enacbe (1) v faznem prostoru za osnovni oscilator. Stabilni limitni cikel je r; = @; s fazo ¢ =

2nfit, Ceje g =0prit =0.

Sklopitve med podsistemi sistema krvnega obtoka obstajajo, narava njihovega delovanja pa je Se
nepojasnjena. Model kardiovaskularnega sistema lahko tako predstavimo s sistemom enacb petih
sklopljenih podsistemov, od katerih lahko vsak avtonomno oscilira [115, 116). Osnovna enota je

preprost oscilator z limitnim ciklom, ki ga je opisal Poincaré [128]

F

dx, .
—=ax(a —r)-2ax., 1
dt i I( i :) ﬂ:xz ()

2 1 i
—==axy(a,-1)+27x,
df 2 I

g 2 2 ; : ; ; - 3 < oa
kjer jer, = \}x; +x, . Oscilator vsebuje strukturno stabilnost in robustnost, ki ju dologata fiziolosko

razumevanje in analiza izmerjenih signalov. Spremenljivki stanja x| inx, opisujeta pretok in hitrost
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pretoka i-tega oscilatorja. Vsak oscilator je dolo¢en s frekvenco f in amplitudo a;, konstanta &; pa

doloca hitrost, s katero se vektor stanj priblizuje limitnemu ciklu, slika 1.

Ker podsistemov ne moremo obravnavati loeno, je proucevanje njihove narave in lastnosti
posameznih medsebojnih sklopitev oscilatorjev zelo tezko. Zanima nas narava in pomen faznih zvez
med posameznimi avtonomnimi oscilatorji, ki lahko v primeru nelinearne sklopitve povzro¢ijo novo
odvisno komponento pri modulirani frekvenci, ki je vsota osnovnih frekvenc sklopljenih oscilatorjev.
Sklopitve so torej kljuénega pomena za razumevanje kardiovaskularnega in morda tudi celotnega

¢loveskega sistema.

Bioloski signali so obi¢ajno pomesani s Sumom. Za izlo¢itev informacije o faznih, frekvencnih in

amplitudnih sklopitvah uporabljamo zapletene transformacije, ki poudarijo njihovo vsebino.

METODA

Bispektralna analiza spada v skupino tehnik, zasnovanih na statistiki vi§jih redov, ki se lahko
uporabljajo za analiziranje neGaussovih signalov, za pridobivanje fazne informacije, zmanjsevanje
Gaussovega Suma neznanih spektralnih oblik ter odkrivanje in dolo¢evanje nelinearnosti signalov [60,
68, 69]. V slede¢em besedilu razsirjamo bispektralno analizo za doloanje uporabnih lastnosti iz
nestacionarnih podatkov in demonstriramo spremenjeno tehniko z uporabo na testnih signalih

sklopljenih oscilatorjev.

Bispekter vsebuje statistiko tretjega reda. Ocenjevanje spektrov je osnovano na konvencionalnem
Fourierevem tipu direktnega pristopa z izratunom momentov tretjega reda, ki so v primeru statistike

tretjega reda enaki kumulantom tretjega reda [60, 66-69].

Klasi¢no oceno bispektra dobimo kot povpreéje ocenjenih momentov tretjega reda za vsak segment,
na katere je razdeljen signal, in sicer zaradi zagotovitve statisti¢ne stabilnosti [67]. Moment tretjega
reda je enak trojnemu produktu diskretne Fouriereve transformiranke pri diskretnih frekvencah £, / in
k+1[69]

Bk,))= X(H)X(DHX (k+1). )

Bispekter B(k, [) je kompleksor, dolo¢ata ga amplituda 4 in faza ¢




B(k,])=|B(k,D|e’"*" = 4e”. 3)

Za vsako bifrekvenco (&, /) ga lahko predstavimo kot tocko v kompleksnem prostoru R[B(k, /)] proti
3[B(k, 1)], kar dolo¢a vektor. Njegova amplituda (dolzina) je imenovana tudi biamplituda. Faza, ki se
v primeru bispektra imenuje bifaza, je dolotena s kotom med vektorjem in pozitivno realno osjo.

Algoritem za izra¢un ocene bispektra je podrobno opisan v [39].

Kot je podrobno obravnavano v [39], bispekter meri razmerje med osnovnimi oscilatornimi
komponentami opazovanega signala. Se posebno bispekter dolo¢a razmerje med oscilacijami osnovnih
dveh frekvenc k in / ter harmoni¢ni komponenti pri frekvenci &k + 1. Te tri frekvence tvorijo tako
imenovano trojico (k, /, k + [). Za vsako trojico podaja bispekter B(k, [) vrednost, ki vsebuje
informacijo o fazi in jakosti sklopitve. Velika amplituda bispektra pri bifrekvenci (k, /) nakazuje vsaj
frekvencno sklopitev v trojici frekvenc &, /, in k + /. Mocne sklopitve nakazujejo, da imata lahko
oscilatorni komponenti pri k in / skupnega povzro€itelja. Tak$ni komponenti lahko povzrocita

nastanek nove komponente pri sestavljeni frekvenci k + /, ¢e je prisotna kvadrati¢na nelinearnost.

Klasi¢na bispektralna metoda je primerna za $tudijo stacionarnih signalov, katerih frekvenéna vsebina
se ¢asovno ohranja. Da bi vsebovali ¢asovno odvisnost v bispektralni analizi, analogno kot v primeru
kratko¢asovne Fouriereve transformacije (KCFT), premikamo ¢asovno okno w(n) dolzine M preko

signala x(») in raCunamo diskretno Fourierevo transformiranko za vsako pozicijo okna [81]

M-1 _
X(k,n)= B Zx(n)w(n —7)e /2mkIM (4)
M n=0

kjer pomeni 7 ¢asovni premik. Izbira dolzine okna M je kompromis med doseganjem optimalne

frekvenéne lo¢ljivosti in detekcije asovne spremenljivosti. Trenutno bifazo izraéunamo kot
¢(k,],n) = ¢k (n) +¢! (n)‘-¢k+! (n) (5)

Ce sta dve frekvenéni komponenti k in / frekvenéno in fazno sklopljeni, .= ¢ + @, potem velja, da
je bifaza enaka 0 (2r) radianov. V naSem primeru je fazna sklopitev manj stroga, ker so lahko odvisne
frekvenéne komponente fazno zamaknjene. Za fazno sklopitev smatramo, ¢e je bifaza konstantna (ni
nujno enaka 0 radianom) za vsaj nekaj period nizje frekventne komponente bifrekvence. Isto¢asno

opazujemo trenutno biamplitudo, ki lahko podaja relativno jakost sklopitve
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A(k,1m) =| X (m) X, ()X ke (). (6)

Na ta nacin Zelimo opazovati prisotnost in trajanje sklopitev med oscilatorji.

Zaradi simetrije mo¢nostnega spektra pri frekvenci vzoréenja £/2 ima bispekter veliko simetrij v &, /
podro¢ju [77, 78]. V primeru realnih signalov ima bispekter 12 simetri¢nih podrodij. Bispekter je
potrebno izraCunati le za neredundantno ali glavno podro¢je. To je sestavljeno iz notranjega in
zunanjega trikotnika, v katerih ima bispekter razli¢ne lastnosti [32, 33, 105]. V tej nalogi se bomo

omejili na dolo¢anje bispektra v notranjem trikotniku.

Da lahko dobljene rezultate med seboj primerjamo, je potrebno izvesti normalizacijo. Bispekter
normaliziramo z vrednostjo povprecnega bispektra preko celega podrodja notranjega trikotnika [25,
69]. Kriti¢na vrednost za oceno bispektra in biamplitude je normalizirana na 1. Oceno jemljemo za
veljavno, Ce je viSja od povpretne vrednosti bispektra na podrocju notranjega trikotnika. Kriti¢na
vrednost je tista vrednost, ki presega efekt razlivanja (Fouriereva transformacija), Sumno ozadje

(razli¢no od Gaussa) in zaokroZitvene napake.

ANALIZA SKLOPITEV

[lustracijo in preskus bispektralne metode ponazorimo na primeru generi¢nega modela medsebojnega

vplivanja sistemov, katerih osnovna enota je Poincaré oscilator [128]:

'x"l' =, _-x;qi - (Ury,l * g_r, 2
.]:}:' == ; +0)1x: +g_1',‘o' (7)

q, =a,( .‘t‘f +yf2 -a,).

Kjer sta x in y vektorja spremenljivk stanj oscilatorja, so ¢, a; ter @; konstante, gy(x) in g(») pa
vektorja sklopitve. Aktivnost posameznega sistema opiSemo z dvema spremenljivkama stanja x; in y;,

kjer i = 1,..., N dolo¢a podsistem.

Razli¢ne nacine medsebojnega vpliva med podsistemi, kot so linearna, kvadraticna sklopitev in
parametri¢na frekven¢na modulacija, proucujemo s signali, dobljenimi s predlaganim modelom. Za

bolj realisti¢ne razmere proucujemo signale z ali brez dodanega osredi3¢enega belega Gaussovega




$uma. V vseh primerih analiziramo spremenljivko x, prvega oscilatorja. Najprej izratunamo klasi¢ni
bispekter. Bifrekvence, kjer se pojavijo vrhovi zaradi moznih frekvenénih interakeij, prouujemo

naprej z izracunom biamplitude in bifaze v odvisnosti od ¢asa.

Linearna sklopitev. V primeru linearne sklopitve med dvema oscilatorjema (i = 1, 2) je termin

sklopitve v modelu (7) enostranski in linearen
&y =% 8, =Th)Ys- (8)

V glavnem podro¢ju bispektra se nahaja le vrh pri samosklopitveni bifrekvenci prvega oscilatorja s
frekvenco f,. Bispektralna analiza namre¢ ugotavlja razmerje med osnovnima frekvenénima
komponentama oscilatorjev f; in f; ter modulacijsko komponento pri frekvenci f; + £, ki pa ni prisotna
v moénostnem spektru signala. Metoda kot taks$na je nezmozna ugotoviti prisotnost linearne sklopitve
med oscilatorjema. Bispektralna analiza je prvenstveno namenjena za ugotavljanje nelinearne
kvadrati¢ne sklopite in frekvenéne modulacije, ker imata obe za posledico frekvenéne komponente pri
vsoti in razliki karakteristicnih frekvenc vzajemno delujocih oscilatorjev. Da lahko ugotovimo
linearno sklopitev z bispektralno metodo, je potrebno metodo prilagoditi v smislu spremembe

frekvenénega razmerja
B, (k)= E{X(k)X(l)X‘(2k~l)l, 9
prav tako se ustrezno spremeni fazno razmerje
b (kD)= + & s — 9. (10)

Prilagojeni bispekter |B,| signala pokaze vrh, ki se nahaja na bifrekvenci (fi, £,). Ta je nase primarno
zanimanje. Vrh namiguje, da gre vsaj za linearno frekven¢no sklopitev med frekvencama f; in f5, kar
Jje zadosten razlog za nastop vrha. Fazno sklopitev ugotovimo Sele z izraGunom bifaze, ki je konstantna

v Casu trajanja linearne sklopitve.

Kvadrati¢na sklopitev. Predpostavimo, da sta dva Poincaré oscilatorja sklopljena nelinearno;

sklopitveni ¢len v modelu (7) ustrezno spremenimo

8y =]?2(xl—x2)23gy1 =7?2(y1_}"1)2- (11)
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Tako dobljeni signal je prikazan na sliki 2 (a). Kvadrati¢na nelinearna sklopitev povzroci nastop visjih
harmonskih komponent poleg karakteristi¢nih frekvenc [69], kot je prikazano na sliki 2 (b). Bispekter,
slika 2 (c) in (d), prikazuje znacilen razpored vrhov. Ko je kvadrati¢éna sklopitev prisotna, je
biamplituda razli¢na od ni¢ in bifaza konstantna, slika 2 (e). Moc¢nejsa ko je sklopitev, visja je
biamplituda, slika 2 (f). Rezultati so enaki kot v primeru brez Suma, iz ¢esar lahko sklepamo, da je

metoda robustna na Sum.

& m @ B % (c)
: i &
=i . . | o)
i il 21 dndd
9’9 -1/ | u ma 0-t— i A e ]
" | =! e e O
0 150 Time () 13 15 f, (Hz) 0,05~ 0,05 , (Hz)
ug fl. f]-:f,z fl fl+f2 2 [1_12 f1+f2 | (b) 0,86+ I : I .I. , ,; " ﬁ (d)
5 N1+ A 5 |
E fz _LJ/ EN 0,48F NP - S
= \ o024 - - b
'a": " " - ‘05| i i H "
0 250 gz 250 2.5 005 f (Hz) 062 08 L1 134

¢ mod 27 (rad)

/ |

=]
o

50 Time (s) 1150
= 7
32
<
=0

by
(=}

Time (8)

Slika 2: Rezultati v primeru kvadrati¢ne sklopitve z dodanim $umom. (a) Testni signal x,p, spremenljivka x,
prvega oscilatorja s karakteristi¢no frekvenco f; = 1,1 Hz. Karakteristi¢na frekvenca drugega oscilatorja je f; =
0,24 Hz. Oscilatorja sta sklopljena enosmerno kvadrati¢no s tremi razliénimi stopnjami jakosti sklopitve: 7, =
0,0 (1); 0,05 (2); in 0,1 (3). Vsaka sklopitev traja 400 s in je vzortena z vzoréno frekvenco f;= 10 Hz. Za vsak
primer je prikazan signal za prvih 15 s. (b) Mo¢nostni spekter. (c¢) Bispekter |B| izracunan iz K = 33 segmentov, s
66 % prekrivanjem in z uporabo Blackmanovega okna za zmanj$anje razlivanja in (d) njegov nivojni prikaz. Del
bispektra nad £, > 1,0 Hz je odrezan, ker trojica (1,1 Hz, 1,1 Hz, 1,1 Hz) povzroci visok vrh, ki je fizi¢no
nepomemben. (e) Bifaza ¢ in (f) biamplituda 4 za bifrekvenco (1,1 Hz, 0,24 Hz) z 0,3 s ¢asovnim korakom in

100 s dolgim oknom za oceno diskretne Fouriereve transformiranke in uporabo okna Blackman.

Frekvenéna modulacija. Z bispektrom Zelimo ugotoviti tudi parametri¢no frekvenéno modulacijo in
jo razlikovati od kvadrati¢ne. Parametri¢na modulacija povzro¢i nastanek frekvencnih komponent pri

vsoti in razliki karakteristiéne frekvence prvega oscilatorja in frekvence modulacije drugega

uli




oscilatorja. Obe komponenti bi bili lahko tudi posledica nelinearne kvadrati¢ne sklopitve. Ena¢bo

prvega oscilatorja modela (7) ustrezno spremenimo

JiTI =-X4q, - (o, + X, )+ &(1),
nh==nq, +x(@, +1,5,), (12)

q, =O:L(\(x12 "'yl2 —a,).

Bispekter se razlikuje od tistega v primeru kvadrati¢ne sklopitve. Pri bifrekvenci (f;, £;) dobimo vrh,
¢eprav komponente drugega oscilatorja f; (ena komponenta trojice) ni prisotne v moénostnem spektru
signala, je vrednost razliéna od ni¢ zaradi Suma. Bifaza ne kaZe razdobja konstantne bifaze. V primeru
mo¢nejSe modulacije je ta manj spremenljiva in ni pogostih faznih 2n skokov, kar je samo dodatna

indikacija, da gre za primer modulacije.

SRCNDO-RESPIRATORNA SKLOPITEV

V raziskavi je sodelovalo Sest moskih starih od 25 - 27 let, brez evidence o sréni bolezni. Pred
zatetkom meritve je vsak lezal spros¢eno 15 minut. En nabor meritev je bil izmerjen v normalnem
sproS¢enem stanju pri spontanem dihanju ter nadaljnja dva do trije nabori meritev pri razlicnem
enakomernem dihanju (poCasnejSem/hitrejSem od spontanega). Meritve so trajale 20 minut pri
spontanem in 12 minut pri enakomernem dihanju. Merili smo krvni pretok na Stirih razli¢nih mestih s
podobnimi lastnostmi krvozilnega sistema: na obeh rokah (levo in desno zapestje) in obeh nogah
(levem in desnem gleznju) z vzoréno frekvenco 40 Hz. Isto¢asno smo merili tudi elektri¢no aktivnost
srca (EKG) in dihanja z vzoréno frekvenco 400 Hz. Pri vsaki meritvi je tako nastala podatkovna
datoteka, ki je vsebuje 7 signalov. Tehnika zajema podatkov je opisana v [112]. Vse skupaj je bilo

zajetih 22 podatkovnih datotek.

Signale krvnega pretoka smo predhodno obdelali. Odstranili smo zelo nizke in zelo visoke frekvence z
uporabo oken z drse¢im povpre¢jem; dolzine 200 s za trend in 0,2 s za visoke frekvence, hkrati pa
smo jih prevzor€ili na 10 Hz. Tako smo se izognili problemom prekrivanja [81]. Signale smo
normalizirali med ni¢ in ena in jim odstranili srednjo vrednost. Dologili smo karakteristi¢no sréno f; in
dihalno £, frekvenco ter komponente pri njunih harmonié¢nih pozicijah. Slika 3 levo prikazuje ¢asovni
potek tako obdelanih signalov za primer enakomernega dihanja, pocasnejSega kot v primeru

spontanega dihanja, in desno detekcijo frekvencnih komponent v moénostnem spektru.

o
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Sledil je izratun normaliziranega bispektra kot povprecje preko ve¢ segmentov, ki smo jim vsakokrat
odsteli povpre¢no vrednost signala. Za ugotavljanje nelinearne kvadrati¢ne sklopitve smo za vsak

signal obdelali 8 vrhov, kot so nasteti v preglednici 1.
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Slika 3: Signal krvnega pretoka h(r), merjen istocasno na tirih razli¢nih mestih. Vsakemu je odstranjen trend in
visoke frekvence ter je prevzoréen, normaliziran in osredi3¢en. Signali so dolgi 521 s in prevzoréeni na vzoréno
frekvenco f;= 10 Hz. (a) Signal, izmerjen na desnem zapestju b,(¢) in njegov moc¢nostni spekter; (b) levo zapestje
by(f) in njegov mocnostni spekter; (c) desni gleZzenj b () in njegov mocnostni spekter; (d) levi gleZenj by(?) in

njegov mocnostni spekter.

Za vsak vrh smo izracunali bifazo in biamplitudo. Frekven¢no lo¢ljivost smo nastavili tako, da je bila
vsaj 1/10 najnizje dihalne frekvence. Uporabili smo okno, dolgo 100 s za izraun bispektra,
biamplitude in bifaze. Uporabljeno okno dolo¢a tudi ¢asovno locljivost. Za izkljucitev ugotovitve
nakljucnih sklopitev smo se osredotocili na tiste, ki so trajale vsaj 10 period pocasnejSe - dihalne
frekvence, to je priblizno 100 s ali krajSe. Ker je hkratna frekven¢na in ¢asovna lo¢ljivost izkljuéujoca
po Heisenbergovem principu nedolocenosti [43], je izbor moznosti omejen in potreben je kompromis.
Okno smo premikali vzdolz ¢asovne vrste s korakom 0,1 s = (1/£). Kriti¢no vrednost za oceno
biamplitude smo postavili v vseh primerih na 2, to je dvakrat vec kot je povpre¢na vrednost bispektra

v tako imenovanem notranjem trikotniku bifrekvenéne domene.




Da bi lahko sklepali na kvadrati¢no sklopitev, smo dolo¢ili potrebne pogoje: (i) Konstantna bifaza vsaj
10 period pocasnejse sklopitvene komponente; (ii) Isto¢asno prisoten plato bifaze za vseh Sest (osem)
vrhov; (iii) V ¢asu sklopitve ni nobenih faznih skokov in bifazne spremembe so znotraj intervala ©t

radianov (Sum); (iv) Biamplituda mora biti nad dolo¢eno kriti¢no vrednostjo.

Preglednica 1: Vrhovi in pripadajoce bifrekvence v bispektru kot posledica nelinearne kvadrati¢ne sklopitve med

dvema oscilatorjema s karakteristitnima frekvencama f; in f5.

Vrh Bifrekvenca
I (.
2 (h-£2,.12)
3 (h-12212)
4 (1, 22)
5 s fi-12)
6 hth fi- )
7 (.12
8 (i, /)
(a) Eﬂ ’ —— (b)
464 -
= 0,98 & &
& g o,s?) o |
3 _|
: » ¥
0,11

0,01 0,01 087 098 1,00 f
. Jf1 (Hz)

Slika 4: (a) Bispekter |B| signala b,, izratunan iz K = 33 segmentov, 87 % prekrivanjem in Blackmanovim

oknom za zmanj3evanje razlivanja. (b) Nivojni prikaz dela bispektra f}, /> < 1,4 Hz, ki nas zanima.

Primer tipi¢nega bispektra za celotno frekvencno podroéje prikazuje slika 4 (a). Razvidnih je ve¢
vrhov. Podrogje naSega interesa je sréno-respiratorna sklopitev, podro¢je okoli bifrekvence (fi, /), ki
je podrobnejSe prikazano na sliki 4 (b). Pri nizjih frekvencah so razvidne sklopitve, ki so lahko
posledica sklopitev med miogenim in nevrogenim oscilatorjem. Teh v tem delu ne obravnavamo.
Natanc¢na analiza pokaze, da se v bispektru nahajajo vsi vrhovi, nasteti v preglednici 1. Izra¢un bifaz
in biamplitud za vse vrhove pa razkrije, da so v doloenem asovnem intervalu T, izpolnjeni vsi

pogoji za nelinearno kvadrati¢no sklopitev. Primer vrhov, biamplitud in bifaz za vrhova ena in dva
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prikazuje slika 5. Povzetek analize vseh signalov, v katerih je bila ugotovljena nelinearna sklopitev, pa
je podan v preglednici 2. Ceprav so bili signali izmerjeni na Sestih osebah, so v preglednici 2 podatki
samo za pet oseb. Tudi pri Sesti osebi smo ugotovili nelinearne sklopitve, vendar niso izpolnjevale
zahtevanega Casa trajanja. Samo za en primer spontanega dihanja so bili izpolnjeni vsi pogoji za

nastop nelinearne sklopitve. Pri spontanem dihanju so epizode sklopitev kratke in fazni preskoki

pogoste;jsi.
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Slika 5: Analiza krvnega pretok signala b,(¢), izraCunanega iz K = 33 segmentov, 87 % prekrivanjem, z 0,1 s
¢asovnim korakom in 100 s dolgim oknom za izraun diskretne Fouriereve transformiranke z uporabo
Blackmanovega okna za zmanj$evanje razlivanja za vrhova (a) 1 in (b) 2; levi stolpec, bispekter |By,| s

pripadajo¢im nivojnim prikazom; sredinski, biamplituda Ay,; in desni, bifaza ¢,.

Vprasanje, ali kardiovaskularni sistem vsebuje deterministi¢no dinamiko, je bilo Ze predmet Stevilnih
raziskav [6, 8, 109, 110, 112]. Stevilni rezultati potrjujejo, da je sistem, ki regulira krvni pretok,
deterministicen. Ali so rezultati bispektralne analize posledica deterministiCne ali stohati¢ne
komponente v signalih krvnega pretoka, preverimo z uporabo surogatov [102, 106]. V ta namen
uporabimo metodo surogatov nakljuéne faze [44, 102, 106, 123, 124]. Tako dobljeni signali imajo
podobne spektralne lastnosti kot originalni signali krvnega pretoka, to je enako povpre¢no vrednost,
enako varianco, enako avtokorelacijsko funkcijo in poslediéno enak moénostni spekter s to razliko, da
ni faznih povezav, oziroma so rezultat linearnega Gaussovega procesa. Z bispektralno analizo ne
ugotovimo nelinearnih sklopitev v surogatih signalov krvnih pretokov. Zaklju¢imo lahko, da so fazne

informacije vsebovane v kardiovaskularnem signalu krvnega pretoka deterministi¢ne narave.

Aktivnost srca se izraza v vsaki krvni Zili in je prisotna tudi v mikrocirkulaciji kapilarnega omreZja.

Periferni krvni pretok regulirata zunanji (centralni) in notranji (lokalni) mehanizem in mora tako




odrazati aktivnost obeh [6, 7, 9, 108, 110]. Signali krvnega pretoka odraZajo centralne in lokalne
mehanizme regulacije v kardiovaskularnem sistemu. Signali, zajeti na razli¢nih, med seboj precej
oddaljenih mestih, so lahko zelo podobni. Ceprav odraZajo pretok v kapilarni mrezi, vsi vsebujejo
informacijo o prostorsko invariantni periodi¢ni aktivnosti centralno generiranih srénih in dihalnih
signalov. Jakost periodi¢nih komponent v perifernem krvnem pretoku se spreminja s premerom Zil in

gostote omreZja, to je z lokalno upornostjo pretoka.

Preglednica 2: Nelinearna kvadrati¢na sklopitev zaznana v signalih krvnega pretoka. Za vsako meritev so bili
isto¢asno izmerjeni krvni pretoki na itirih razli¢nih mestih, kanali a-d. T, je interval, v katerem z bispektralno
analizo ugotovimo, da sta sréni oscilator f;, in respiratorni oscilator f, lahko nelinearno sklopljena. Produkt 7, x

Jres dolo¢a trajanje sklopitve. Za ¢asa T, smo izraCunali najvisjo biamplitudo za vrh 1, ki je nadega osnovnega

zanimanja, najvecjo spremembo bifaze A¢, njeno povprecno vrednost g; in standardno deviacijo .

A o
Oseba | Dihanje | Kanal e | T | To Tofies | (arb. ag | ® %

(Hz) | (Hz) | (5) ) (rad) | (raq) | (rad)

units)
1 enakomerno a 1,08 | 0,11 | 1057 11,6 190 1,11 8,92 | 0,20
1 enakomerno d 1,00 | 023 | 56,8 13,1 62 | 092 10,93 [ 029
1 T — b 097 | 034 189 6.4 50| 084] 047] 028
2 spontano a 1,16 | 0,14 82,0 11,5 352 1,87 | 32,68 | 0,47
2 shakomerno c 1,05 | 0,10 895 9,0 122 1,48 4,05 0,34
2 I YE— a 098 | 0,11 956 10,5 383 | 147 322 042
3 S T— d 1,08 | 0,13 565 7.3 334 [ 129 221 048
3 ahiakoniedho ¢ 1LI0| 026 524 13,6 52| 046 | 496 0,10
4 P d 1.01 | 0,10 | 1056 10,6 407 | 247 058 0,18
4 enakomerno d 099 | 0,11 ] 956 10,5 219 [ 2,19 | -6,51 | 0,76
5 Siakoneine d 1,20 0,10 | 575 5.8 1009 | 2,05] 5388] 0,67

Ceprav so bili izmerjeni signali krvnega pretoka zajeti na razli¢nih, med seboj oddaljenih mestih
(kanal a-d), vsi odrazajo enake karakteristi¢ne sréne in respiratorne frekvence. Z bispektralno analizo
signalov krvnega pretoka smo za vsako meritev dobili enake rezultate za vse signale, istocasno
izmerjene na razli¢nih mestih (kanal a-d) in tako potrdili, da se informacija o faznem razmerju

ohranja, kar je v skladu s predhodnimi raziskavami.

Bispekter, definiran kot (2), je poseben primer kriznega spektra, ko so vsi trije signali enaki.
Imenujemo ga tudi avto bispekter. Poleg signalov krvnega pretoka smo isto¢asno merili tudi signal
EKG, signal dihanja in signal krvnega pritiska. Z uporabo kriznega bispektra preverimo sréno-

respiratorno sklopitev z uporabo bivariatnih podatkov. Krizni bispekter definiramo kot [69]

Al
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By (k1) = X()Y()Y" (k +1), (13)

kjer sta X in Y diskretni Fourierevi transformiranki dveh razli¢nih signalov x(¢) in y(¢) pri diskretnih
frekvencah £, / in k+l. Izracunali smo kriZzne spektre B, (kjer ¢ pomeni krizni, e signal e(7) in b
signal b(1)), za primer, ko je x(¢) signal EKG e(¢) in y(¢) signal krvnega pretoka b,(¢). Signal EKG nam
primarno govori o sréni elektriéni aktivnosti. Fazo prve, sréne komponente f,, v trojici (i, £, /i + £)
dobimo tako neposredno iz EKG signala, dihalno komponento £, in komponento pri harmonski poziciji
fi+f pa iz signala krvnega pretoka. Na podoben nacin kot (13) definiramo $e krizni bispekter Bxyx(k,
/) in ga izraCunamo za dva razlicna primera: (i) By, Kjer je x(¢) signal krvnega pretoka b,(7) in y(7)
signal dihanja r(r). Signal (1) najbolj direktno opisuje aktivnost respiratornega oscilatorja (ii) Bepmp,

kjer je x(z) signal krvnega pritiska p() in y(f) signal dihanja r(r).

Z izratunom kriznih bispektrov ugotovimo, da je informacija o sklopitvi med srénim in respiratornim
oscilatorjem neodvisna od signala, oziroma da je prisotna tudi v drugih kardiovaskularnih signalih.
Krizne spektre smo izracunali tudi za primer surogatov signalov e(f), 7(f) in p(f) z nakljuéno fazo. V

tem primeru nismo ugotovili faznih sklopitev.

Nelinearna sklopitev ali linearna sklopitev mo¢no nelinearnih oscilatorjev. Nasa Studija je
zasnovana na predpostavki, da sta sréni in respiratorni proces opisana kot $ibki nelinearni oscilator in
da so sklopitve med njima Sibke [116]. Prikladno se je vprasati, kaj se zgodi, ¢e predpostavke niso
izpolnjene. Odgovor na to vprasanje smo poiskali na dva razli¢na nacina, z analiticno aproksimacijo in

digitalno simulacijo.

V analizi v prilogi B obravnavamo generiranje harmonikov paroma sklopljenih Sibko nelinearnih
oscilatorjev. Ta potrjuje, da pri $ibki sklopitvi nastopijo dodatne harmoniéne komponente pri 2, 2@,
@+ on 2ay £ 2@, 3y + @y, ki jih lahko poveZzemo s kvadrati¢no sklopitvijo. Ce gre za zadosti
nelinearen oscilator in zadosti moéno sklopitev, se lahko v principu pojavijo te in ostale kombinatorne
frekvence kot posledica efekta drugega reda tudi v primeru linearne sklopitve. Vendar pa nastop teh
kombinatornih frekvenc sam po sebi ni zadosten za izpolnitev pogojev za nastop nelinearne sklopitve
v bispektru. Za to pri $ibko do srednje moénih sklopitvah lahko vedno zanesljivo dolo¢imo, da gre za
nelinearno sklopitev. Ko so nelinearnosti posebno mo¢ne ne moremo vedno pri¢akovati, da bo

bispektralni pristop razkril zanesljivo informacijo o naravi sklopitve.

Analiza je dopolnjena z digitalno simulacijo, s katero ugotavljamo podro&je ekstremnih pogojev, kjer
pri¢akujemo, da bo bispektralni pristop neuspesen. Za generi¢en model izberemo van der Polov

oscilator z dodatno nelinearnostjo, vsiljen z drugim relaksacijskim van der Polovim oscilatorjem v




smislu aditivne sklopitve z dodanim Gaussovim Sumom. Analiziramo podroben nabor parametrov za
primera: (i) ko sta dva oscilatorja mo¢no nelinearna, vendar linearno sklopljena; in (ii) ko sta
nelinearna in nelinearno sklopljena. V najbolj ekstremnem primeru zelo moéne linearne sklopitve in
zelo mo¢ne dodane nelinearnosti ne moremo ve¢ razlikovati med mo¢no nelinearnostjo oscilatorjev in

mo¢no nelinearno sklopitvijo. V tem primeru bispektralna metoda odpove.

Kljub temu pa je ve¢ argumentov, ki podpirajo domnevo, da sta sréni in dihalni podsistem 3ibka
nelinearna oscilatorja, ki sta Sibko sklopljena. (i) Pri spontanem dihanju zdravih ljudi se pojavljajo le
obcasne in kratke epizode sinhronizacije [10, 99-101], kar nakazuje na relativno Sibke sklopitve. (ii)
Sinusna respiratorna aritmija je Sibka pri spontanem dihanju in le malo moc¢nej$a pri zelo nizkih
dihalnih frekvencah [23], kar ponovno podpira Sibko sklopljen opis. (iii) Sklopitve lahko vcasih
popolnoma izginejo, kot je to pri komi [112]. Brez sklopitev se dinamika drasti¢éno poenostavi s
popolno odsotnostjo sinhronizacije in modulacije. Dejstvo, da kljub majhni amplitudni spremenljivosti
zaradi notranjega Suma ni opaZene nobene spremembe naravnih frekvenc, nakazuje, da so sami
oscilatorji kve&jemu Sibko nelinearni. (iv) Ce bi bili oscilatorji moéno nelinearni in moéne sklopitve

(linearne), bi opazili veliko kombinatornih komponent okoli sréne frekvence.

Analizirano pretirano mo¢no sklopitveno podrodje je tako irelevantno za sréno-respiratorno sklopitev,

ki jo ugotavljamo v tem delu.

Razmerje do sinhronizacije. Dejstvo da lahko notranje sklopitve med oscilatorjema privedejo do
sinhronizacije kot tudi do modulacije, je imelo za posledico veliko Studij faznega razmerja med srénim
in respiratornim oscilatorjem [10, 24, 42, 46, 52, 71, 92, 95, 97, 100, 101, 113, 114, 118]. Prav
moznost sinhronizacije nas je motivirala, da smo razvili nova orodja za nadaljnje raziskovanje
sklopitev med sistemi: smer, jakost in Se posebej naravo sklopitev. Informacijo o sklopitvah lahko
dobimo s pomo¢jo bivariatnih podatkov (signal dihanja in EKG signal), z uporabo nedavno razvitih
metod za analizo sinhronizacije, ali s posploseno sinhronizacijo med kaoti¢nimi in/ali Sumnimi sistemi
(glej [72] in reference, ki so tam navedene). Tu nas zanima, ali se sinhronizacija pojavi ali ne, v
pogojih, ko jasno zaznamo sklopitev. Z uporabo sinhrograma ugotovimo obstoj frekvencne
modulacije, ne pa sinhronizacije v primeru enakomernega nizkofrekven¢nega dihanja. Bispektralna
analiza podaja drugac¢no informacijo kot jo dobimo iz sinhrograma. Razmerje do sinhronizacije v

sirsem smislu podrobneje podajamo v naslednjem poglavju.

Vsiljen oscilator. Z uporabo novih razvitih tehnik za analizo smeri sklopitve [72, 93, 94, 103] je bilo
pokazano [73, 117], da sta sréni in respiratorni sistem sklopljena obojesmerno. Vendar pa je vpliv

dihanja prevladujo¢ (vodilni sistem) pri vseh dihalnih frekvencah, spontanih ali enakomernih [73,
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117]. Sklopitev med srénim in respiratornim oscilatorjem lahko tako vidimo kot enosmerno:
respiratorni sistem vodi srénega. Poseben primer je enakomerno dihanje. Ceprav je med enakomernim
dihanjem dihalna frekvenca konstantna, se primer razlikuje od primera vsiljenega oscilatorja (kjer je
sréni oscilator vsiljen in respiratorni vodilo). Primer ponazorimo z generi¢nim modelom skoraj
periodi¢nega Poincaré oscilatorja, vsiljenega s periodi¢no 3ibko zunanjo silo. Sréno-respiratorna
sklopitev je bolj kompleksna kot vzeti primer, ki ne more povzro€iti frekvenénih komponent, ki jih
opazimo pri sréno-respiratorni sklopitvi. Eksperiment enakomernega dihanja lahko razumemo kot
sistem dveh sklopljenih oscilatorjev, ¢eprav je frekvenca enega vsiljena in konstantna (respiratorni

sistem) sklopitev med obema spontana.

RAZMERJE MED BISPEKTRI IN SINHRONIZACIJO

Sinhronizacija je osnovni pojav v fiziki, ki ga je v zaetku moderne dobe znanosti prvi¢ odkril
Huygens [37]. V klasi¢nem smislu pomeni sinhronizacija nastavitev frekvenc oscilatorjev zaradi
3ibkih medsebojnih vplivov [2, 4, 30]. Ne obstaja enotna definicija za sinhronizacijo. Najbolj osnovni
sta frekven¢na in fazna sinhronizacija. Ti dve definiciji sta bili generalizirani na pojav sinhronizacije
dveh ali ve¢ oscilatorjev, ki so periodiéni, Sumi ali kaoti¢nih oscilatorji [79, 90, 91, 96]. V najbolj
enostavnem primeru dveh periodi¢nih oscilatorjev je fazna sinhronizacija definirana kot sklopitev faz

[79]

‘ng‘ﬁi —-mg, —5‘ <const.,

(14)

kjer sta n in m celi Stevili, ki opisujeta sklopitveno razmerje, ¢ in ¢, fazi oscilatorjev in d nek zacetni
fazni premik. Enacba (14) v oZjem smislu velja samo za kvaziperiodi¢ne oscilatorje. Za periodi¢ne
oscilatorje je pogoj za fazno sklopitev ekvivalenten pogoju za frekvenéno sklopitev nf; = mf, kjer sta

/i in f; karakteristi¢ni frekvenci oscilatorjev.

Kadar opazujemo sinhronizacijo v prisotnosti Suma, sinhronizacijo kaoti¢nih sistemov ali oscilatorjev
z moduliranimi lastnimi frekvencami, fazna in frekvencéna sklopitev nista ve¢ ekvivalentni [101].
Kadar je Sum mocan, lahko pride do faznih preskokov in vidi se le teznja k sinhronizaciji. Fazno
sinhronizacijo lahko razumemo kot pojav vrha v porazdelitvi cikli¢ne relativne faze

k< = ¢n,m mOd 2z (] 5)

n,m




in si jo razlagamo kot obstoj preferentne stabilne vrednosti fazne razlike ¢, med dvema
oscilatorjema. V takih primerih ne moremo enoumno odgovoriti na vprasanje o sinhronizaciji sistema,
nanjo lahko gledamo le v statisti¢cnem smislu.

Pri kardiovaskularnem sistemu s ¢asovno spremenljivimi karakteristicnimi frekvencami se lahko
fazna sinhronizacija pojavi, za frekvence pa ni nujno, da so povezane. Drzimo se zapisa (14) za fazno

sinhronizacijo, v besedilu uporabljamo skrajSano sinhronizacija.

Ze odprto vprasanje razmerja bispektrov do sinhronizacije podrobnejse obdelamo na primeru signalov
podgan med splosno anestezijo. Signali so bili Ze obdelani z metodami za analizo sinhronizacije [63].
Iz signalov smo izbrali in analizirali z bispektri dva signala, za katera dobimo v sinhrogramu zelo

jasno izrazeno epizodo sinhronizacije.

Za podgane med splo$no anestezijo smo merili elektri¢no aktivnost srca (EKG), dihanje, EEG in
temperaturo. Izmerjenih je bilo 21 podgan, tezkih 250 g, vedina jih je bilo samcev. Prvih 11 smo
uporabili za testiranje in umerjanje merilnih naprav ter za doloCanje kvalitete signalov. Z meritvijo
smo zaceli 4-7 minut po vbrizgu anestetika in koncali, ko so se podgane zaele spontano gibati.
Meritve so trajale ~70 min, vzoréna frekvenca je bila 1000 Hz. Med meritvijo so podgane leZale na

trebuhu v Faradayevi kletki [63, 64].
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Slika 6: 10 s detrendiranega, prevzoréenega, normaliziranega in osredid¢enega signala (a) EKG e(¢) in (c) dihanja
r(t) signala rat20 med splodno anestezijo, ~72 min dolg, vzoréen s f;= 50 Hz in njuna mo¢nostna spektra (b) in
(d). Vrh pri 6 Hz v mo¢nostnem spektru e(r) nastopi, ko se podgana za¢ne zbujati iz anestezije, strm prehod v

trenutni sréni frekvenci okoli 40 minute, slika 7 (a).

Za obe podgani smo izracunali krizne bispektre B, kjer pomeni c krizni, e signal e() in r signal r(z).
Signale EKG in dihanja smo predhodno obdelali. Odstranili smo zelo nizke in zelo visoke frekvence z

uporabo oken z drsedim povpre¢jem; dolzine 200 s za trend in 0,04 s za visoke frekvence, hkrati pa

U
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smo jih prevzor€ili na 50 Hz. Tako smo se izognili problemom prekrivanja [81]. Signale smo
normalizirali med ni¢ in ena in jim odstranili srednjo vrednost. Primer tako obdelanih signalov EKG
e(f) in dihanja () in njunih mo¢nostnih spektrov za podgano rat20 je prikazan na sliki 6. Za oba
signala smo najprej izratunali trenutno sréno in respiratorno frekvenco ter njuno razmerje in
sinhrogram, ki so za podgano rat20 prikazani na sliki 7. Sledil je izradun kriznih bispektrov in za prve

§tiri vrhove iz preglednice 1 $e izraun biamplitude in bifaze.
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Slika 7: (a) Trenutna sréna (b) dihalna frekvenca in (¢) njuno frekven¢no razmerje za podgano rat20 med sploino

anestezijo. (d) Sréno-respiratorni sinhrogram za podgano rat20.

Frekvencno loéljivost smo nastavili na 1/20 najniZje respiratorne frekvence, ki je bila okoli 1 Hz
(potrebno je 20 s dolgo okno). Opazovali smo sklopitve, ki so trajale vsaj 10 period niZje sklopitvene
frekvence, 10 krat (1/ f5) = 10 s. Glede na Heisenbergov princip nedoloc¢enosti [43] smo zadovoljili
potrebo po frekvencni lo¢ljivosti in izbrali 20 s dolgo okno za izracun bispektra, biamplitude in bifaze.
Okno smo premikali vzdolz ¢asovne vrste s korakom 0,1 s. Kriti¢no vrednost smo za vse primere
postavili na 2, to je dvakratno vrednost povpreéne vrednosti bispektra na podroéju notranjega

trikotnika.

Krizni bispektri razkrijejo nastanek in trajanje sinhronizacije, kot je prikazano na sliki 8. Ugotovimo
tudi pojav nelinearnih sklopitev. Relacijo do sinhronizacije dopolnimo 3e z generi¢nim modelom.
Pojav sinhronizacije lahko spremlja modulacija. V poglavju ,,Analiza sklopitev” smo pokazali primer
modulacije brez sinhronizacije. 1z sinhrograma tezko ugotovimo prisotnost modulacije, mozno je le v

primeru, da je ta zelo mo¢na. Z generiénim modelom pa ugotavljamo zmoZnosti bispektralne analize v
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primeru, da istoasno nastopita sinhronizacija in modulacija. Uporabimo skoraj periodi¢ni vsiljen
Poincaré oscilator, ki ga periodi¢no vodi Sibka zunanja sila z dodano frekvenéno modulacijo. Njuno
frekvenéno razmerje namenoma vzamemo za celostevilsko; tako dobimo s sinhrogramom

sinhronizacijo tudi, ko med njima ni sklopitve.

£ 10 20 30 40 Time (min) 6317 10 20 30 40 Time (min) 5317

Slika 8: Bifaza ¢ in biamplituda 4 za vrh 1 (4,3 Hz, 1,05 Hz), izraCunani z 0,1 ¢asovnim korakom in 20 s dolgim

oknom za oceno diskretne Fourierove transformiranke in uporabo Blackmanovega okna.

Pri mocni sinhronizaciji sta uspes$na oba, sinhrogramom in bispekter. V bispektru opazujemo vrh 1 in
obdobje konstantne bifaze, ¢e je biamplituda nad kriti¢no vrednostjo. Sibka sinhronizacija je tezko
zaznavna s sihrogramom, v bispektru pa je bifaza manj konstantna z veé faznimi preskoki. Ce
sinhronizacije ni, potem ni vodoravnih ¢rt v sinhrogramu, v bispektru pa vrha 1. Sinhrogram nas lahko
zavede v primeru, da sklopitve med sistemoma ni, je pa njuno frekvenéno razmerje konstantno. V
primeru sinhronizacije se lahko pojavi tudi nelinearna sklopitev, to pa ne velja nujno tudi v obratni
smeri. Med njima ni enostavne povezave. Samo prisotnost modulacije lahko ugotovimo z bispektrom,
zavede pa nas lahko hkratna prisotnost modulacije in linearne sklopitve. V tem primeru je potrebno
analizirati ve¢ vrhov. Pomagamo si lahko z opazovanjem poteka faz frekven¢nih komponent v trojici.

Skupni nastop mo¢ne nelinearne sklopitve in mo¢ne modulacije ni mogoce razloditi.

Bispektralna analiza je bolj obcutljiva na sklopitve med sistemi kot sinhrogram. Ugotovimo lahko tudi

nastanek sinhronizacije, vendar v splosnem ne podaja enake informacije kot sinhrogram.

SPEKTRI VIé-JlH REDOV NA OSNOVI TRANSFORMACLCIJE

Z VALCGKI

Fouriereva transformacija je zasnovana na predpostavki (a) periodi¢nosti signala in (b) neskonéno
dolgih ¢asovnih vrst [S7, 58]. Ker nobena od predpostavk ni strogo izpolnjena za izmerjene signale, je
dologitev posameznih frekvenc v sistemu, ki vsebuje moéne sklopitve, zelo zahtevna. Se tezje je v
nizkofrekvenénem podrodju, ki nas Se posebej zanima, saj je karakteristiéne frekvence 3e tezje lo¢iti.

Princip nedolo¢enosti Fouriereve transformacije omejuje zmoZznosti lo¢evanja harmoni¢nih
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komponent v frekvenénem podro¢ju bispektra [20, 69]. To lahko povzroéi tezave pri ugotavljanju
nelinearne kvadrati¢ne sklopitve, ko je frekvenéni par blizu skupaj. Da lahko zagotovimo dobro
lo¢ljivost nizkih frekvenc, potrebujemo daljSe odseke za izraéun diskretnih Fourierevih
transformirank. To hkrati zniZa Stevilo odsekov in poslab3sa oceno bispektralnih mer. Dalj$i signali pa

vodijo v nestacionarnost in varianca postane e vecja [69].

Pomagamo si lahko s transformacijo z valcki (TV), ki je v nekem smislu posplosena Fouriereva
transformacija [43] z dodano &asovno lo¢ljivostjo na bolj osnoven nacin, kot je to dovoljeno s KCFT
[81]. TV je ze bila uspesno uporabljena za obdelavo kardiovaskularnih signalov [3, 5]. PosploSitev
bispektra na TV lahko omogoci ugotavljanje zacasnih sprememb v faznih sklopitvah ali kratkotrajne
sklopitve. Prav tako pri¢akujemo, da bo uspesna pri loCevanju Sirokih in sovpadajo¢ih vrhovih na

racun povecane ¢asovne lo¢ljivosti.

VT preslika signal iz ¢asovnega prostora v prostor ¢as-skala. Signal g(f) razstavi na druzino v
splosnem neortogonalnih funkcij ¥, ki jih dobimo s premikanjem in skaliranjem osnovnega valtka

yAu). Valéna transformiranka W(s, 1), ki jo je prvi vpeljal Morlet [28], je definirana kot [43]
@ o T—1
W, (s.0= [ (— gz (16)

Osnovni valéek mora biti omejen tako v casovnem kot v frekvencnem prostoru. Za analizo
kardiovaskularnih signalov je najbolj primeren Morletov valcek, ki je Gaussova funkcija, modulirana s

sinusnim valom [6, 8]. Poenostavljena oblika v ¢asovnem prostoru je

u?

-1/4 _—j2afgu "3

vw)y=n"e e, 17)
Razmerje med skalo s in frekvenco f je f = fi/s, kjer s f; dolo€imo Stevilo period sinusa v oknu.
Frekvencna loéljivost se tako spreminja s skalo (frekvenco) - pri nizkih je bolj$a kot pri visokih,
medtem ko je ¢asovna lo¢ljivost boljsa pri visokih kot pri nizkih frekvencah.
Valéni bispekter WB definiramo analogno v skladu s Fourierevo definicijo bispektra kot
WB(s,.5,) = [W, (s, W, (5,70, (s,7)d, (18)
5

kjer velja
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—f—=c, (19)

Valéni bispekter meri vrednost fazne sklopitve, ki nastopi med valénimi transformirankami pri skalah

s1, > in s signala g(f) na intervalu 7, tako da je pravilo vsote skal (frekvenc) (19) izpolnjeno.

Valéni bispekter WB je kompleksor, dolo¢ata ga amplituda 4 in faza ¢
WB(s,,s,) =|WB(s,.s5,)|e’"* ) = 4e’. (20)

Za vsako biskalo (s, s7) ga lahko predstavimo kot to¢ko v kompleksnem prostoru $R[WB(sy, s,)] proti
I[WB(s), 57)], kar doloca vektor. Njegova amplituda (dolzina) je biamplituda, bifaza pa je dolocena s
kotom med vektorjem in pozitivno realno osjo. Trenutno bifazo izratunamo analogno kot v primeru

()

#(s1,5,.0) =@, () +4, (1) -9, (1) @1

Ce sta dve skalni komponenti s, in s, skalno in fazno sklopljeni, ¢, = ¢ + @, potem velja, da je bifaza
enaka 0 (27) radianov. V naSem primeru je fazna sklopitev manj stroga, ker so lahko odvisne skalne
komponente fazno zamaknjene. Za fazno sklopitev smatramo, ¢e je bifaza konstantna (ni nujno enaka
0 radianom) za vsaj nekaj period viSje skalne komponente biskale (s), ;). Isto¢asno opazujemo

trenutno biamplitudo, ki lahko podaja relativno jakost sklopitve
A(sy,8,.0) = [WB(s,,5,,0) (22)

V skladu s Fourierevo definicijo kriznega bispektra lahko definiramo analogno krizni val¢ni bispekter

kot

WB. . (5),5,) = .[Wf (5., (SE,Z')WA,‘(s,r)dr. (23)
;

Da lahko zadostimo frekvenénemu pogoju vsote (19) pri visokih frekvencah, je potrebna visja

frekvenéna locljivost. Dosezemo jo tako, da Morletov valéek spremenimo
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i
u

w(u)=a,  c, e 2t o 2d (24)

Faktor d doloca eksponentno upadanje Morletovega valCka. Vedji kot je poCasneje upada Gaussova
funkcija in boljsa je frekvenéna locljivost ob hkratnem zmanjSanju casovne locljivosti. Ustrezno
frekvencéno locljivost pri visokih frekvencah lahko zagotovimo tudi s faktorjem a,, s katerim
dosezemo, da Sirina okna ne upada hiperboli¢no, temve¢ pocasneje. Za visje frekvence lahko
uporabimo tudi konstantno Sirino val¢ka. S konstanto ¢, doseZemo normalizacijo, da transformacija
ohranja energijo (mo¢). Za analizo kardiovaskularnih signalov izberemo f; = 1, da je razmerje med

frekvenco in skalo f= 1/s, in lazje interpretacije valcnih bispektrov.

Na sliki 9 (a) in (b) je prikazan valéni bispekter za testni primer nelinearne kvadrati¢ne sklopitve med

dvema Poincaré oscilatorjema z dodanim Gaussovim Sumom, signal x,p, slika 2 (a).
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2 é }(c)
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Slika 9: Rezultati za kvadrati¢éno sklopitev v prisotnosti aditivnega Gaussovega Suma, testni signal x,p, dobljen z
val¢nim bispektrom. (a) Valéni bispekter |WB)|, izratunan iz K = 33 segmentov, 66 % prekrivanjem, Tal=8s,
G.' = 0,001 in z uporabo Morletovega valtka s konstantno dolzino Tyr = 40 s za izralun visokih frekvenc in (b)
njegov nivojski prikaz. Del val¢nega bispektra nad f; > 1,0 Hz je odrezan, ker trojica (1,1 Hz, 1,1 Hz, 1,1 Hz)
povzrodi visok vrh, ki je fizicno nepomemben. (c) Bifaza ¢ in (d) biamplituda A za bifrekvenco (1,1 Hz, 0,24

Hz), z 0,1 s ¢asovnim korakom.

Oba bispektra, valéni in Fourierev, podajata enako informacijo o sklopitvi. Razlika je vidna v obliki
vrhov, ki so v primeru valénega bispektra $irsi. To je pri¢akovati, saj je frekvenéna lo¢ljivost za visoke
frekvence nizja kot pri bispektru na osnovi Fouriereve transformacije. Hkrati je opazna vedja ¢asovna

lo¢ljivost valénega bispektra predvsem iz Casovnega poteka bifaze, slika 9 (c) in (d).

? Dolzina Morletvega osnovnega valtka, s =1 s.
* Vrednost Gaussove funkcije na robu Morletovega valtka.

(b




PRIMERJAVA FOURIEREVEGA IN VALENEGA BISPEKTRA

Vpeljano metodo val¢nega bispektra uporabimo na signalih krvnega pretoka, ki smo jih Ze analizirali z
uporabo Fourierevega bispektra na osnovi KCFT. Parametri valéne bispektralne transformacije so

nastavljeni na tipske vrednosti, ugotovljene na podlagi testnih signalov.

Val¢ni bispekter za celotno frekvenéno podrocje signala krvnega pretoka b, je prikazan sliki 10 (a).
Razvidnih je ve¢ vrhov. Podrodje naSega interesa je sréno-respiratorna sklopitev, podro¢je okoli
bifrekvence (f}, f5), ki je podrobnejse prikazano na sliki 10 (b). Natanéna analiza pokaze, da se v
bispektru nahajajo vsi vrhovi, nasteti v preglednici 1. Izracun bifaz in biamplitud za vse vrhove pa
razkrije, da so v Casovnem intervalu od 77,1 s do 170,4 s izpolnjeni vsi pogoji za nelinearno
kvadrati¢no sklopitev, katere dolzina je T, = 93,3. Primer vrhov, biamplitud in bifaz za vrhova | in 2

prikazuje slika 11.
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Slika 10: (a) Valéni bispekter |WB| signala b,, izra¢unan iz K = 33 segmentov, 87 % prekrivanjem, T,, = 8 s, G, =
0,001 in z uporabo Morletovega valéka s konstantno dolzino Ty = 80 s za izraéun visokih frekvenc. (b) Nivojni

prikaz dela bispektra f}, /> < 1,4 Hz, ki nas zanima.

Primerjava rezultatov, dobljenih z valénim bispektrom, s tistimi, dobljenimi s Fourierevim bispektrom,
razkrije, da z obema metodama ugotovimo enako pozicijo vrhov v bispektru. Vrhovi, dobjeni z
valénim bispektrom, so $irsi kot v primeru Fourierevega bispektra. Casovni poteki biamplitud so zelo
podobni. Pojavlja se enako Stevilo izstopajo¢ih vrhov v enakih ¢asovnih trenutkih. IzraGun krizno-
korelacijskega koeficienta za biamplitudi prvega vrha obeh metod je enak 0,95. Podobno velja za
¢asovni potek bifaz. Opazimo lahko, da so spremembe bifaze veliko bolj izrazite v primeru valjénega
bispektra. Ceprav si po obliki ¢asovni poteki bifaz niso tako podobni, kot velja za biamplitude, pa se

pojavljajo platoji s konstantno bifazo v enakih ¢asovnih trenutkih. Z obema metodama ugotovimo
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prisotnost kvadrati¢ne sklopitve. V primeru valénega bispektra je za 2,3 s krajsa, kar je 2,4 odstotna

razlika.
8;
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Slika 11: Analiza krvnega pretok signala b,(¢), izratunanega iz K = 33 segmentov, 87 % prekrivanjem, z 0,1 s
¢asovnim korakom, T, = 8 s, G, = 0,001 in z uporabo Morletovega valtka s konstantno dolZzino Ty = 80 s za
izra¢un visokih frekvenc, za vrhova (a) 1 in (b) 2; levi stolpec, bispekter |By,| s pripadajo¢im nivojnim prikazom;

sredinski, biamplituda Ay,; in desni, bifaza g@,,.

Ce povzamemo, dobimo z obema metodama zelo podobne rezultate. Iz Sirine vrhov v bispektru lahko
sklepamo, da je frekvenéna locljivost Fourierevega bispektra visja, medtem ko ¢asovna lo€ljivost
val¢nega bispektra visja, saj bolje zazna hitre bifazne spremembe. Valéna metoda ne da opazno boljsih
rezultatov. To velja za primer analize sréno-respiratorno sklopitve, in sicr pri dolo¢enih pogojih, po
katerih sklepamo na nelinearno sklopitev. V tem primeru je izbrano okno za izraun Fourierevega
bispektra ravno tisto, ki zadovolji potrebni frekvenéni lo¢ljivosti in hkratni ¢asovni lo€ljivosti.

Posledi¢no ne dobimo znatnih razlik med rezultati obeh metod.

Razliko si oglejmo na primeru generi¢nega testnega signala dveh kvadrati¢no sklopljenih Poincaré

oscilatorjev z dodanim Gaussovim Sumom, i = 1, 2, kjer sta f; = 1,1 Hz in f; = 0,24 Hz:

X, ==x,q; — oY, +1,(x, _x:)2 +&(1),
Y =-0q, + 0%, +1,(y, _}’z)za
J’cz ==X4, — 0, );, (25)

Vo ==)ad, T 0%,

g, =a,(Jx' +y; —a).
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Slika 12: Rezultati, dobljeni s Fourierevim (¢)-(f) in valénim (g)-(h) bispektrom za primer prekinjajode se
kvadrati¢ne sklopitve dveh Poincaré oscilatorjev z dodanim Gaussovim Sumom. (a) Testni signal xj,
spremenljivka x, prvega oscilatorja s karakteristiCno frekvenco f; = 1,1 Hz. Karakteristi¢na frekvenca drugega
oscilatorja je f; = 0,24 Hz. Oscilatorja sta sklopljena enosmerno kvadrati¢no z dvema razli¢nima jakostima
sklopitve: 7, - 0,0 (1); in 0,2 (2). Sklopitev (2) je prisotna vsakih 20 s in traja 20 s. Signal je dolg 1200 s in
vzorcen z vzoréno frekvenco f; = 10 Hz. Za vsak primer je prikazan signal za prvih 15 s. (b) Mo¢nostni spekter.
(c) Bifaza ¢ in (d) biamplituda A4 za bifrekvenco (1,1 Hz, 0,24 Hz) izratunani s 100 s dolgim oknom za oceno
diskretne Fouriereve transformiranke. (e) Bifaza ¢ in (f) biamplituda 4 za bifrekvenco (1,1 Hz, 0,24 Hz)
izratunani s 130 s dolgim oknom za oceno diskretne Fouriereve transformiranke. V obeh primerih z 0,1 s
tasovnim korakom, K = 33 segmenti, s 66 % prekrivanjem in z uporabo okna Blackman. (g) Bifaza ¢ in (h)
biamplituda 4 za bifrekvenco (1,1 Hz, 0,24 Hz), izratunani z valénim bispektrom s K = 33 segmenti, z 0,1 s
&asovnim korakom, 66 % prekrivanjem, G, = 0,01, 7,, = 8 s in z uporabo Morletovega valtka s konstantno

dolzino Tyr = 20 s za izracun visokih frekvenc.

Tako dobljeni generi¢ni signal x,,(7) je prikazan na sliki 12 (a) s pripadajo¢im mo¢nostnim spektrom,
slika 12 (b), za dve jakosti sklopitev: 7, = 0; in 7, = 0,2, ki se izmenjujeta vsakih 20 s. Dodatni vrhovi,
poleg karakteristi¢nih za kvadrati¢no sklopitev, so posledica analize celotnega signala naenkrat. Zaradi
diskretnih sprememb sklopitve pride do bogate harmonske vsebine signala. Opazujemo le vrh pri
bifrekvenci (1,1 Hz, 0,24 Hz). V prvem primeru uporabimo 100 s dolgo okno za izratun Fourierevega
bispektra. 1z poteka bifaze, slika 12 (e), bi lahko napa¢no sklenili, da ni fazne sklopitve, saj le-ta ni

konstantna, temve¢ nara$Ca s ¢asom. V drugem primeru uporabimo 130 s dolgo okno za izracun
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Fourierevega bispektra. Iz poteka biamplitude in bifaze, slika 12 (e) in (f), bi lahko sklenili, da sta
oscilatorja ves cas sklopljena, saj je biamplituda nad kriticno vrednostjo, bifaza pa brez faznih

preskokov, t.j. znotraj © rad intervala.

Sele z uporabo valénega bispektra razkrijemo pravo naravo sklopitve, slika 12 (g) in (h). Biamplituda
kaze prisotnost sklopitve na vsakih 20 s, prav v teh intervalih pa je tudi bifaza konstantna, sicer pa

monotono narasca.

Glavna razlika med val¢nim in Fourierevim bispektrom je prav ¢asovna in frekvenéna locljivost. Po
Heisenbergovem principu nedoloCenosti [43] sta hkratni natancni doloditvi frekvence in Casa

vzajemno si izklju¢ujoci
At Af= 1/(4n), (26)

kjer je Ar casovni interval in Af frekvené¢ni pas. Enacaj velja le v primeru, ko je okno Gaussovo.
Medtem ko sta frekvenéna in ¢asovna loéljivost pri KCFT dologeni z izbranim oknom (njegovo
dolzino) in se ne spreminjata, se pri valénem bispektru frekvenéna in ¢asovna lo¢ljivost spreminjata s
skalo. Razmerje med frekvenco in frekvenéno locljivostjo je konstantno. Visoke frekvence se
spreminjajo hitreje in nizke poCasneje, valéni bispekter WB ima visoko frekvenéno lo¢ljivost nizkih
frekvenc in visoko ¢asovno locljivost visokih frekvenc, zato je zmozen zaznati kratkotrajne fazne
sklopitve. Prav z uporabo Morletovega val¢ka dosezemo optimalno razmerje med frekvenéno in fazno
lo¢ljivostjo. Fourierev bispekter s povpre¢jem izlo¢i veéino ¢asovno povezane informacije. Vendar pa
moramo biti pazljivi pri uporabi VT, saj je lahko pri visokih frekvencah ¢asovna loéljivost previsoka,
frekven¢na pa prenizka. Tako bodo bispektralne ocene obéutljive na Sum, po drugi strani pa to pelje k

slabi/nepravilni dolo¢itvi karakteristi¢nih frekvenc.

Pri Fourierevem bispektru je frekvenéni korak dolocen s Sirino okna, pri valénem bispektru pa je
poljuben, saj je valtna transformacija zvezna, kar je velika prednost. To ima za posledico
prevzoréenje, ki pa se nas, &e ne i§¢emo inverzne transformacije, ne dotika. Ce izberemo f; = 1, je
interpretacija valénega bispektra enaka kot v primeru Fourierevega. Prav tako je enostavna

normalizacija na energijo (mo¢). Prednosti sta $e manj3a statisti¢na napaka in racunska zahtevnost.

Med VT in KCFT obstaja e tako imenovana modificirana kratkoasovna Fouriereva transformacija
ali selektivna diskretna Fouriereva transformacija (SDFT), ki sta jo prvi¢ predstavili Keselbrenerjeva
in Akselrodova [47]. Podobno kot KCFT je ¢asovno odvisna Fouriereva transformacija. Casovno-
frekvenéno obéutljivost dosezemo z uporabo okna specifi¢ne dolzine okoli analizirane podatkovne

tocke za izraCun vsake spektralne komponente posebej. Za vsako frekvenéno komponento izvedemo




diskretno Fourierevo transformacijo. DolZina okna je obratno sorazmerna frekvenci izratuna, podobno
kot kréenje in raztegovanje osnovnega val¢ka pri VT, kar pomeni, da so nizke frekvence ocenjene z

dobro frekvenéno lo¢ljivostjo in visoke z dobro ¢asovno locljivostjo.

Zaradi uporabe pravokotnih oken pri izratunu diskretne Fouriereve transformiranke pride do pojava
razlivanja. Da ga omilimo, uporabimo okna za glajenje, kot so na primer Hammingovo, Hanningovo

ali Blackmanovo [47].

Obe, SDFT in VT, sta primerni za generalizacijo bispektralne analize, saj omogocata izbiro med dobro
frekvenéno in ¢asovno locljivostjo. Medtem ko uporaba Morletovega valcka omogoca optimalno
&asovno-frekvenéno lo¢ljivost, pa se ji lahko s SDFT s primerno izbiro parametrov le priblizamo. Se

vedno pa ima VT prednost, da je zvezna, medtem ko SDFT ni.

OSTALE MOZNOSTI UPORABE VALENE BISPEKTRALNE METODE

Za proucevanje kardiovaskularnega sistema nismo nujno vezani samo na kardiovaskularne signale.
Informacija o sklopitvah nevrogenega kardiovaskularnega podsistema je vsebovana tudi v mozganskih
valovih. Ce ugotovimo, da nastopi sinhronizacija med posameznimi centri v moZzganih, lahko
sklepamo, da so ti centri med seboj sklopljeni. V vecini primerov je sinhronizacija povezana z
obnasanjem specifi¢nih struktur, frekvenc in stanja obnasanja. Na splo$no nizkofrekvencne oscilacije
izvirajo iz vedjih struktur kot visokofrekvenéne. Pod doloCenimi pogoji, kot je primer splo3ne
anestezije, lahko opazimo pri merjenju signala elektroencefalograma (EEG) sinhronizacijo kot
organizirane, razlo¢ljive vzorce. Ti vzorci so odvisni od povzrocitelja anestezije in globine anestezije
[107]. Delta mozganski valovi so najpocasnej$i izmed mozganskih valovanj (0-4 periode na sekundo).
Povezani so z globokim spanjem brez sanj, s stanjem transa, povecanjem imunskih funkeij, hipnozo in
je zato pri¢akovati, da se pojavijo med anestezijo. Prostorska homogenost v EEG signalu med

anestezijo se pogosto ugotavlja na osnovi spektralnih metod [21, 86, 122].

Merjenje kvadrati¢ne fazne sklopitve med komponentami EEG signala je prvi uvedel G. Dumermuth z
uporabo bispektralne analize leta 1969 [51]. Stevilne EEG $tudije, ki so uporabljale matemati¢na
orodja spektrov vi§jih redov, so bile od tedaj objavljene [12, 27, 53, 65]. Za merjenje globine
anestezije in stopnje sprostitve [84, 88, 98] se pogosto uporablja tako imenovani bispektralni indeks
(BIS) [89]. Ta kompleksni parameter je sestavljen iz komponent pridobljenih na osnovi razliénih

analiz in samo ena je povezana z bispektrom. Na splo$no stacionarnosti v signalih EEG ne moremo
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pri¢akovati, zato se za analizo uporabljajo predvsem Casovnofrekvenéne porazdelitve, TV, ¢asovno
spremenljive avtoregresijske metode na osnovi gibajocih se povpreéjih (ARMA) in druge, ki ponujajo
zadostno ¢asovno in frekven¢no locljivost. Razvita je bila tudi ¢asovno spremenljiva bispektralna
metoda [5, 69, 98]. Medtem ko se ti pristopi osredotoajo na Casovnofrekvenéni prostor (spektri
drugega reda) ali na obliko v frekven¢no-frekvenénem prostoru (spektri tretjega reda), pa je na§ namen
izlo¢iti Casovno sklopitveno informacijo iz frekvenéno-frekvenéne domene bispektra, to je

biamplitudo in bifazo.

Nedavno je bila opravljena analiza EEG signalov podgan med splosno anestezijo z izratunom
sinhronizacijskih indeksov [63, 64]. Analiza je pokazala, da imajo ti signali ve¢ ¢asovno spremenljivih
frekvenénih komponent. Najbolj dominantne so v delta frekvenénem podro¢ju (0-4 Hz). Podoben
vzorec je bil opazen pri vseh izmerjenih podganah. Na zaCetku je dominantna ena, pocasi
spreminjajoéa se frekvenéna komponenta okoli centralne frekvence 2 Hz. Okoli nje so viSje
frekvenéne komponente, ki na zacetku niso razlo¢ljive. Ko se zaénejo podgane spontano premikati in
spontano dihati, dominantna frekvenéna komponenta v EEG signalu izgine. Sinhronizacijski indeksi
so bili izraCunani za primer (a) valovi delta iz EEG in EKG, (b) valovi delta iz EEG in dihanje in (c)
EKG in dihanje. Samo za zadnji primer je bila sinhronizacija o€itna. V vseh primerih se je pojavljal
splosni vzorec, na zacetku sinhronizacija 2:1 ali 3:1, ki kasneje preide v 4:1 ali 5:1 in se kasneje vrne
nazaj v 3:1 ali 2:1 sinhronizacijo. Na koncu signalov ni sinhronizacije, kar povezujemo s prehodom v
manj globoko anestezijo. Izratunane so bile tudi smeri in jakosti sklopitev oscilatorjev. Medtem ko
lahko vidimo, da na zaletku respiratorni oscilator vodi oscilacije, ki izhajajo iz delta valovanja iz
EEG, pa ne moremo nicesar zakljuciti o smeri sklopitve in jakosti med srénim oscilatorjem in valovi

delta iz EEG signala.

Globina anestezije je povezana s sinhronizacijo med srénim in respiratornim oscilatorjem [63, 64].
Globino anestezije lahko dobimo iz signala EEG, ta pa je povezana z bispektrom. V tem poglavju
analiziramo signal EEG podgane rat20, Zze obravnavane v poglavju ,,Razmerje med bispektri in
sinhronizacijo”, z metodo valénih bispektrov za ponazoritev zmoznosti metode. Zelimo ugotoviti, ali
lahko z izradunom valénega bispektra, biamplitude in bifaze izvleCemo enako informacijo iz

univariatnega signala EEG, kot jo da bivariatna sinhronizacija EKG in dihalnega signala.

Signal EEG smo najprej obdelali, tako da smo odstranili zelo nizke in zelo visoke frekvence z uporabo
oken z drsefim povpredjem; dolzine 200 s za trend in 0,04 s za visoke frekvence in ga hkrati
prevzoréili na 50 Hz. Signal smo dalje normalizirali med ni¢ in ena in mu odstranili srednjo vrednost.

Signal EEG podgane rat20 in njegov mo¢nostni spekter sta prikazana na sliki 13 (a-b).




Za jasnejSo interpretacijo smo ~63 min dolg EEG signal podgane rat20 razdelili na $tiri odseke a, b, ¢
in d, glede na dobljeni sinhrogram med srénim in respiratornim oscilatorjem za podgano rat20, slika
13 (c). Vsak odsek je doloCen tako, da se v tem ¢asu v sinhrogramu pojavi samo en sinhronizacijski

pojav, to je sinhronizacija ali brez sinhronizacije.
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Slika 13: (a) 10 s detrendiranega, prevzortenega, normaliziranega in osredis¢enega EEG(/) signala in njegov
mo¢nostni spekter (b) za podgano rat20 med splo3no anestezijo, ~63 min dolg in prevzorgen na f; = 50 Hz (c)

Sréno-respiratorni sinhrogram za podgano rat20, razdeljen na 4 odseke a-d.
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Slika 14: Primer rezultatov za podgano rat20 med splo3no anestezijo. (a) Valéni bispekter |WB,| EEG signala
podgane za odsek c izratunan iz K = 33 segmentov, 81 % prekrivanjem, G, = 0.001, 7, = 8 s, z uporabo
Morletovega valéka s konstantno dolzino Ty = 20 s za izratun visokih frekvenc in (b) njegov nivojski prikaz.
(c) Bifaza ¢ in (d) biamplituda 4 za bifrekvenco (1,4 Hz, 1,4 Hz), izratunana iz K = 33 segmentov, z 81 %
prekrivanjem, G, = 0.001, 7,, = 8 s, 0,1 s ¢asovnim korakom in z uporabo Morletovega val¢ka s konstantno

dolzino Tyr = 80 s za izratun visokih frekvenc.

Pri izradunu valénih bispektrov za visoke frekvence smo uporabili okno dolzine 20 s, za oceno bifaz in
biamplitud za bifrekvenco, kjer se pojavi najvisji vrh v valénem bispektru, pa dolzine 80 s. S tem smo

zagotovili visokofrekvenéno lo€ljivost za visoke frekvence, kjer je kompleksen EEG signal
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koncentriran, okoli 1 Hz. Frekvenco smo povecevali s korakom 0,02 Hz, da smo ohranili frekven¢no
pravilo vsote (19), okno pa premikali vzdolZ serije s korakom 0,1 s. Kriti¢na vrednost biamplitude je

bila 2. Opazovali smo samo sklopitve med valovi delta iz EEG signala podgane.

V posameznih odsekih zaznamo z valénim bispektrom fazne sklopitve. Primer bispektra, biamplitude
in bifaze za odsek ¢ signala EEG podgane rat20 so prikazani na sliki 14. Ce upo$tevamo potrebne
pogoje za nastop nelinearne sklopitve, vendar samo za vrh samosklopitve, dobimo fazne

samosklopitve, zbrane v preglednici 3.

Preglednica 3: Fazne sklopitve ugotovljene v EEG signalu podgane rat20. 7, je ¢asovni interval, za katerega z
valéno bispektralno analizo ugotovimo, da je so valovi delta iz EEG signala fazno samosklopljeni pri bifrekvenci
(1, /1). Produkt T, x f; pove, koliko period valov delta iz EEG signala je trajala fazna sklopitev. V &asu trajanja

Ty smo izratunali Se najve¢jo biamplitudo vrha Ay, ter najvetjo spremembo bifaze Ag, njeno povpreéno

vrednost 5 in standardno deviacijo ;.

Amax _
QOdsek !l % /i T Toexfy (del. A ¢ %
(min) | (min) | (Hz) | () (rad) | (rad) | (rad)
enot)
a 2,67 3,55 1,1 49 57 753 1,16 324 0,23
a 5,87 6,33 11 28 33 494 | 0,24 3,59 | 0,05
a 7.45 8,17 1,1 43 50 1224 | 0,81 -8,14 | 0,29
a 8,22 10,83 | 157 183 1894 | 2,53 -9,62 | 0,69
a 12,38 13,03 1,1 39 45 535 0,58 -6,05 | 0,12
b 18,83 19,50 1.3 40 67 922 1,31 -1,77 | 0,34
b 23,83 | 2431 1,3 29 48 3249 1,33 | -3944 | 0,30
¢ 35,00 | 36,17 1,4 70 141 2931 2,43 8.45 | 0,62
c 36,42 | 36,75 1,4 20 40 839 | 0,99 364 | 0,23
c 36,92 | 3745 1,4 32 65 617 1,09 7,92 | 0,34
d 40,67 | 41,53 1,6 52 130 558 1,02 4,50 | 031

Najveé faznih sklopitev se nahaja v odseku a in c. Te sklopitve so najmocnejSe in trajajo najdaljsi Cas
Tp. Ce zdruzimo vse biamplitude posameznih odsekov, potem izstopata dva vrhova. V Casu, ko
nastopita vrhova je bifaza znotraj m intervala. Cas nastopa in trajanje faznih sklopitev sta prikazana na
sliki 15. Ta dva dogodka zaznamo tudi v sinhrogramu sréno-respiratorne sklopitve, slika 13 (c), ko se
pojavi in ko izgine sinhronizacija 4:1. V vmesnem &asu sinhrogram ne pokaze nobene sinhronizacije, z

valénim bispektrom pa zaznamo kratkotrajne fazne sklopitve, ki ne morejo sinhronizirati sklopljenih

oscilatorjev, saj se bifaza spreminja uniformno.
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Slika 15: Fazne sklopitve Ty, ki izstopajo po amplitudi biamplitude (1000 del. enot in ve¢) v preglednici 3.
Prikazan je ¢as njihovega nastopa in trajanje. Prvi in zadnji T, sovpada z nastopom in izginotjem fazne

sinhronizacije med srénim in respiratornim oscilatorjem, slika 13 (c).

Na podoben nacin kot smo analizirali sréno-respiratorno sklopitev bi lahko analizirali tudi sklopitev
med srénim oscilatorjem in valovi delta iz EEG signala in respiratornim oscilatorjem in valovi delta iz
EEG signala, kar pa ni predmet tega dela. Val¢ni bispekter se je izkazal kot obetavno orodje za analizo

EEG signalov med anestezijo.
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ZAKLJUGCEK

Osnovna motivacija dela je bil razvoj orodja za proucevanje medsebojnega vpliva podsistemov

kardiovaskularnega sistema. Z orodjem, ki bi bilo obcutljivo na ¢asovno spremenljivo vsebino, Zelimo
povedati moznosti razkrivanja narave in pomena sklopitev. Sklopitve omogocajo izmenjavo
informacije med procesi in so tako temelj za pravilno delovanje sistema krvnega obtoka. Frekvenca in
amplituda vsake opazovane oscilacije nam pricata o aktivnosti oscilatorja in ucinku vseh sklopitev.
Sklopitve so torej klju¢nega pomena za razumevanje kardiovaskularnega in morda tudi celotnega
¢loveskega sistema. Bolezensko stanje vodi v fizioloSke spremembe, ki se odrazajo v spremembah
dinamiénih lastnosti kardiovaskularnega sistema. Poznavanje sklopitev pomeni moZnost zaznavanja

bolezenskega stanja v njegovem zacetnem stadiju, ko je potreben minimalni zdravniski poseg.

Razvito ¢asovno obéutljivo bispektralno metodo omogoca dolocitev narave sklopitev med
sklopljenimi oscilatorjimi. Prednosti so: (i) moznost hkratnega opazovanja celotnega frekvenénega
podrogja; (ii) ugotavljanje sklopitev dveh ali ve¢ medsebojno sklopljenih oscilatorjev; (iii) dolo¢anje
jakosti sklopitve; (iv) doloCanje narave sklopitve: linearna, nelinearna kvadrati¢na ali parametri¢na v

eni od frekvenc; (v) metoda je primerna za analizo Sumnih signalov.

Ucinek sklopitev med srénim in respiratornim oscilatorjem je prej epizodiCen kot stalen in
nespremenljiv. Frekvencne in fazne sklopitve se izmenjujejo. Nelinearne sklopitve obstajajo tako med
spontanim kot enakomernim dihanjem. Sklopitve med oscilatorji so Sibke. Bispektralna in krizna
bispektralna analiza sta pokazali, da je informacija o sklopitvi med srénim in respiratornim procesom
lastna procesoma in prostorsko invariantna. Oba procesa sta centralnega izvora. Njuno fazno razmerje
lahko opazujemo v signalu EKG, signalu krvnega pretoka in signalu krvnega pritiska, izmerjenih na
razli¢nih med seboj oddaljenih mestih. Nelinearna narava sklopitev med srénim in respiratornim je
vrojena in postane bolj izrazita, ko je frekvenca dihanja konstantna. Bispektralna analiza je torej
sposobna dolo€evati frekvenéne in fazne sklopitve med CV procesi in s tem primerna za razumevanje

kardiovaskularnih signalov.

V primerjavi s sinhrogramom je bolj ob&utljiva na sklopitve in manj ob¢utljiva na Sum. Zazna fazne
sklopitve, vendar na drugaéen nacin kot jih podaja sinhrogram. Med sklopitveno informacijo, dobljeno

s sinhrogramom in z bispektrom, ne moremo dolo¢iti enostavne povezave.




Valéna bispektralna metoda signalov krvnega pretoka ne da opazno boljsih rezultatov kot Fourierova
bispektralna metoda. To velja pri analizi sréno-respiratorno sklopitve pri dologenih pogojih, po katerih

sklepamo na nelinearno sklopitev.

Za obdelavo signalov sta primernejSa valéni in krizno valéni bispekter kot bispekter na osnovi
Fouriereve transformacije. Omogocata ugotavljanje kratko¢asovnih faznih sklopitev, optimalno
¢asovno in frekvenéno locljivost, enostavno povezavo med skalo in frekvenco, neposredno
interpretacijo, normalizacijo na energijo (mo¢), manj$o statisti¢cno napako, poljuben frekvenéni korak

in sta raCunsko manj potratna.

Iz dobljenih rezultatov valéne bispektralne analize signala EEG podgane med anestezijo lahko
sklepamo, da so sréni in respiratorni kardiovaskularni oscilator in valovi delta iz EEG signala med
anestezijo sklopljeni. Anestezija lahko vpliva na valove delta iz EEG signala tako, da ti vodijo sréni in

respiratorni sistem v sinhronizacijo.

Valéni bispekter lahko omogodi povezavo med teoretiénim kardiovaskularnim modelom in

eksperimentalnimi meritvami.




IZVIRNI PRISPEVKI K ZNANOSTI

IZVIRNI PRISPEVKI K ZNANOSTI

Pomembnejsi izvirni prispevki k znanosti:

1. Ugotavljanje sklopljenih nelinearnih oscilatorjev z uporabo ¢asovno ob¢utljivih bispektralnih

cenilk za biamplitudo in bifazo.

Vpeljali smo casovno obcutljivi bispektralni cenilki - biamplitudo (6) in bifazo (5) - za
razkrivanje faznih sklopitev v univariatnih podatkih (poglavje 3, strani od 13 do 16). Pokazali
smo, da je vpeljana metoda primerna za proucevanje sklopljenih nelinearnih oscilatorjev.
Sposobna je meriti jakost fazne sklopitve z bispektralno cenilko - biamplitudo, katere vrednost
je proporcionalna vrednosti koeficienta medsebojne sklopitve ¢ (2.6) sklopljenih nelinearnih
oscilatorjev (poglavje 2, strani od 7 do 12) in razkriti naravo sklopitve, t.j., ali je sklopitev

dodana linearna, kvadrati¢na ali parametri¢na v eni od frekvenc (poglavje 4, strani od 17 do 28).

2. Potrditev hipoteze o sklopitvi med srénim in respiratornim oscilatorjem v c¢loveskem

kardiovaskularnem sistemu.

Prvi smo uporabili vpeljano ¢asovno bispektralno metodo na signalih krvnega pretoka za
proucevanje narave sréno-respiratorne sklopitve. Kljub omejeni moZnosti za razkrivanje metode
med linearno in nelinearno sklopitvijo v ekstremnih razmerah je metoda uporabna, dokler
sklopitve ne postanejo preve¢ zapletene, upostevajo¢ fiziolosko poznavanje kardiovaskularnega
sistema (poglavje 5, strani od 29 do 56). Sklopitve med srénim in respiratornim oscilatorjem so
epizodi¢ne, prej kot stalne in nespremenljive. Frekven¢ne in fazne sklopitve se izmenjujejo.
Nelinearne sklopitve obstajajo tako med spontanim kot enakomernim dihanjem. IzrazitejSe so
pri enakomernem dihanju. Sklopitve med oscilatorji so Sibke (poglavji 5 in 6, strani od 28 do 37
in od 57 do 76 ). Informacija o sklopitvi med srénim in respiratornim procesom je lastna
procesoma in prostorsko, znotraj CVS, invariantna. Oba procesa sta centralnega izvora. Njuno
fazno razmerje lahko opazujemo v signalu EKG, signalu krvnega pretoka in signalu krvnega

pritiska, izmerjenih na razli¢nih med seboj oddaljenih mestih (poglavje 5, strani od 37 do 46).

3. Posplositev bispektralnih cenilk na transformacijo z val€ki

Bispektralni cenilki - biamplitudo (22) in bifazo (21) - smo posplosili na transformacijo z
valcki. Metoda je primernejSa za ugotavljanje kratkocasovnih sklopitev. Omogoca za nas

optimalno ¢asovno in frekvenéno locljivost. Valéni bispekter lahko omogo¢i povezavo med
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teoreti¢nim kardiovaskularnim modelom in eksperimentalnimi meritvami (poglavji 7 in 8, strani

od 77 do 106).

4. Ugotovitev sklopitve med srénim in respiratornim sistemom ter delta valovi signala EEG z

uporabo posploSenih bispektralnih znacilk.

Delta valovi iz EEG signala podgane med splosno anestezijo razkrivajo fiziolosko razmerje med
srénim in respiratornim sistemom in delta valovi iz EEG signala. Srcno-respiratorna
sinhronizacija je lahko posledica vodenja delta valov iz EEG signala podgane med sploSno

anestezijo (poglavje 9, strani od 107 do 114).
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ABSTRACT l

Bispectral analysis, a technique based on high-order statistics, is extended to encompass time
dependence for the case of coupled noisy nonlinear oscillators. It is applicable to univariate, as well as
to multivariate, data obtained respectively from one or more of the oscillators. It is demonstrated for a
generic model of interacting systems, whose basic units are Poincaré oscillators. Their frequency and
phase relationships are explored for different coupling strengths, both with and without Gaussian
noise. The distinctions between additive linear, quadratic, and parametric (frequency modulated)

interactions in presence of noise are illustrated.

Bispectral analysis has been used to study the nature of the coupling between cardiac and respiratory
activity. Univariate blood flow signals recorded simultaneously on both legs and arms were analysed.
Coupling between cardiac and respiratory activity was also checked by use of bivariate data and
computation of the cross-bispectrum between ECG and respiratory signals and surrogate data of blood
flow signals. Measurements were made on six healthy males, aged 25-27 years, during spontaneous
breathing and during paced respiration, at frequencies, both lower and higher than that of spontaneous

respiration.

It was confirmed that the dynamics of blood flow can be usefully considered in terms of coupled
oscillators, and demonstrated that interactions between the cardiac and respiratory processes are weak
and time-varying, and that they can be nonlinear. Nonlinear coupling was revealed to exist during both
spontaneous and paced respiration. Relation of bispectral analysis to synchronization is outlined in the
example of cardiovascular ECG and respiration signals of rats undergoing anaesthesia. Bispectrum
proves to be more sensitive to interactions than the synchrogram. It detects the phase synchronization,

and nevertheless, yields different information from that which can be resolved from a synchrogram.

Wavelet transform was incorporated into bispectrum and adopted to analyse cardiovascular signals
using a Morlet wavelet as a mother wavelet. A time dependant biphase/biamplitude estimate, with
higher frequency resolution at low frequencies, and higher time resolution at higher frequencies, was
obtained. Its advantages, compared to Fourier based bispectrum, are discussed and demonstrated for a
generic model of interacting systems, whose basic units are Poincaré oscillators, in the application of
CV blood flow signals, and in the application of EEG signal of rat undergoing anaesthesia. The
wavelet bispectrum may provide a link between theoretical CVS models and experimental

measurements.
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NOMENCLATURE

a oscillator’s amplitude

f. multiplication factor for additional Morlet mother wavelet stretching
A biamplitude

b(t) blood flow signal

B(k, ) = 4" discrete bispectrum

Bk, D) adapted discrete bispectrum

Bk, D) cross-bispectrum

c,ceC complex conjugation

G normalization constant

C reconstruction constant

d exponential decay of Gaussian function of Morlet wavelet
D noise intensity

F oscillator’s characteristic (cyclic) frequency

A sampling frequency

Af frequency step

F forcing amplitude

G. Gaussian function of Morlet wavelet edge value
H;; coupling term

J unit imaginary

k discrete frequency (in bins)

(k, 1, k+0) triplet

K number of data segments

/ discrete frequency (in bins)

L L - L area for bispectrum frequency averaging
L number of samples for time averaging

M discrete Fourier transform window size

Miy(k, ) third-order moment

n discrete time

N, number of periods entering the windowed signal
Ny number of samples in the interval T: {T, - T/2 <t < Ty + T/2}
0 percentage of segments overlapping

p(t) blood pressure signal

P(k) discrete power spectrum




r limit cycle radius

1) respiration signal

s(1) surrogate data

! continuous time

At time step

Tur fixed Morlet wave length for high frequencies
Y 45 Morlet mother wavelet length

Ty Time duration of quadratic coupling

w(n) window

W(s, 1) wavelets transform

WB wavelet bispectrum

WB, cross-wavelet bispectrum

X state vector

x(n) discrete signal

X(k) discrete Fourier transform

a oscillator’s limit cycle approaching rate

£ coupling coefficient

M coupling coefficient

n coupling coefficient

M frequency modulation strength coeficient

v phase difference between interacting oscillators
&D zero-mean white Gaussian noise

b constant = 3.141592...

¢ biphase

o initial biphase

0] angular frequency; @ = 2xf

Q observed frequency of interacting oscillator

Notation convention. For conciseness the notation B(f, f;) is often used in this thesis to denote the
discrete bispectrum at the discrete bifrequency (&, /) which corresponds most closely to the normalised
bifrequency (f, f2). If the frequencies f;, /> fall exactly on discrete frequency bins, then (k = Mf,, [ =
Mf). If they fall in between the discrete bins then (k ~ Mf,, [ ~ Mf>).




ACRONYMS AND ABBREVIATIONS

BIS Bispectral Index

CV CardioVascular

CVS CardioVascular System

DFT Discrete Fourier Transform
EEG ElectroEncephaloGram

ECG ElectroCardioGram

FT Fourier Transform

FB Fourier Bispectrum

HOS High-Order Statistics

IT Inner Triangle

RSA Respiratory Sinus Arrhythmia
SDFT Selective Discrete Fourier Transform
STFT Short time Fourier Transform
WB Wavelet Bispectum

WT Wavelet Transform

W —
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1 INTRODUCTION

Most real systems are nonlinear and complex. In general, they may be regarded as a set of interacting

subsystems; given their nonlinearity, the interactions can also be expected to be nonlinear.

Phase relationships between a pair of interacting oscillators can be obtained from bivariate data (i.e.,
where the coordinate of each oscillator can be measured separately) by use of the methods recently
developed for analysis of synchronization, or generalized synchronization, between chaotic and/or
noisy systems. Not only can the interactions be detected [79], but their strength and direction can also
be determined [72, 93, 94, 103]. The next logical step in studying the interactions among coupled
oscillators must be to determine the nature of the couplings; the methods developed for

synchronization analysis do not provide us with the means to answer this question.

Studies of higher order spectra, or polyspectra, offer a promising way forward in digital signal
processing. The approach is applicable to interacting systems, quite generally, regardless of whether or
not they are mutually synchronized. Following the pioneering work of Brillinger and Rosenblatt [11],
increasing applications of polyspectra have appeared in a diversity of fields, such as:
telecommunications, radar, sonar, speech, biomedical, geophysics, imaging systems, surface gravity
waves, acoustics, econometrics, seismology, nondestructive testing, oceanography, plasma physics
and seismology. An extensive overview can be found in [120]. The use of bispectrum as a means of
investigating the presence of second-order nonlinearity in interacting harmonic oscillators has been of

particular interest during the last few years [20, 25, 48, 68, 74, 85].

Systems are usually taken to be stationary. For real systems, however, the mutual interaction among
subsystems often results in time-variability of their characteristic frequencies. Frequency and phase
couplings can occur temporally, and the strength of coupling between pairs of individual oscillators
may change with time. In studying such systems, bispectral analysis for stationary signals, based on

time averages, is no longer sufficient. Rather, the time evolution of bispectral estimates is required.

Priestley and Gabr [80] were probably the first to introduce the time-dependent bispectrum for
harmonic oscillators. Most of the subsequent work has been related to the time-frequency
representation and is based on high-order cumulants [5, 26]. The parametric approach has been used to
obtain approximate expressions for the evolutionary bispectrum [87]. Furthermore, Perry and Amin

have proposed a recursion method for estimating the time-dependent bispectrum [76]. Dandawaté and




Giannakis have defined estimators for cyclic and time-varying moments, and cumulants of
cyclostationary signals [16]. Schack et al. [98] have recently introduced a time-varying spectral
method for estimating the bispectrum and bicoherence: the estimates are obtained by filtering in the
frequency domain and then obtaining a complex time-frequency signal by inverse Fourier transform.

Their assumption is, however, that the interacting oscillators are harmonic.

Millingen et al. [61, 62] introduced the wavelet bicoherence, and were the first to demonstrate the use
of bispectra for studying interactions among nonlinear oscillators. They used the method to detect
periodic and chaotic interactions between two coupled van der Pol oscillators, but without

concentrating on time-phase relationships in particular.

It has long been known that the heart of a healthy human subject in repose does not beat regularly. The
rhythmic variation in the heart rate occurring at the frequency of respiration is known as respiratory
sinus arrhythmia (RSA), which can be seen in [3, 18, 23, 34, 117] and references therein; it is not the
only arrhythmia [112]. In fact, at least five characteristic frequencies can be seen in blood flow signals,
at ~1 Hz, 0.3 Hz, 0.1 Hz, 0.04 Hz and 0.01 Hz. The first two components correspond to the cardiac
and respiratory oscillators respectively. The component at ~0.1 Hz is often attributed to intrinsic
myogenic activity. The other two correspond respectively to neural and endothelial related metabolic

activity. The wavelet transforms of such signals have been discussed in detail [6, 7, 111].

The cardiac and respiratory systems can be perceived from the nonlinear dynamics point of view as
coupled autonomous oscillators, each with its own characteristic frequency [112, 115, 116]. It is
respiratory sinus arrhythmia - the rhythmic fluctuations of electrocardiographic R-R intervals, or the
rhythmic modulation of the instantaneous cardiac frequency - that provides the most obvious
manifestation of their coupling. Although the interaction between the cardiac and respiratory rhythms
has been known to exist since the early works by Hales [29] and Ludwig [56], the underlying
physiological mechanisms are not completely understood. In his recent review, Eckberg [23] discusses
several possible mechanisms for respiratory gating, of both central and peripheral origin: central,
secondary to efferent respiratory motoneurone activity; and peripheral, secondary to afferent neural
activity from pulmonary and thoracic stretch receptors. He presents a wide range of evidence
favouring the influence of respiration on R-R interval fluctuations (as well as on the fluctuations in
systolic blood pressure that are strongly correlated to the R-R fluctuations), rather than the influence of
peripheral baroreceptor physiology as an origin of modulation. As the physiological mechanisms of
cardio-respiratory coupling are not fully understood, even less is known about the nature of this

coupling, e.g., whether it is linear, quadratic, or of an even higher-order.
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In addition to the modulation, a mutual adjustment of the cardiac and respiratory rhythms may occur,
leading to their synchronization: in a conscious healthy subject at rest, the cardiac and respiratory
systems have been shown to synchronize for short periods of time [10, 99-101]. The state of the
system is characterized by the interactions and couplings between the oscillatory physiological
processes. For instance, in anaesthesia, the cardiac and respiratory systems synchronize for more

extended periods of time [114]. It has also been shown that during anaesthesia, RSA is reduced [1,

83].

Not only CV signals are relevant for studying CVS. Neural CV subsystem coupling information is
incorporated in the brain waves. Bispectral index (BIS) is a processed electroencephalogram (EEG)
parameter that purports to measure the level of hypnosis in anaesthetized patients. The BIS was
formulated retrospectively using a large database of EEG recordings and clinical correlative data. It
incorporates parameters derived by high-order spectra, and is one of the most widely applied cases of
high-order spectra [89] use. The EEG measures electrical activity in the brain, i.e., brainwaves of
different frequencies and short-lived evoked potentials that occur when the brain responds to sensory
input. Quantification of nonlinear quadratic phase-coupling between EEG signal components has been
established since G. Dumermuth’s pioneered investigations using bispectral analysis in 1969 [51]. A
number of EEG studies have been published using the mathematical tools of high-order spectra
analysis EEG [12, 27, 53, 65]. Recently the depth of anaesthesia was found to be related to

synchronization states between the cardiac and respiratory oscillators [63, 64].

The interactions can be detected by analysis of the recorded time series, and their strength and
direction can also be determined [72, 73, 93, 94, 103]. The next logical step in studying interactions

among the coupled oscillators must be to determine the nature of the couplings from the time series.

A long-term aim is therefore to develop a coupled oscillator model that can provide a description of
the system, quantify the couplings and relate their values to its different states of health or disease. We
may thus aim for improved techniques of early diagnosis, better assessment of the efficacy of

treatment for a range of cardiovascular diseases, and perhaps quantification of depth of anaesthesia.

The thesis is organised as follows: Chapters 2 provides a brief overview of the human cardiovascular
system, viewed from a point as a dynamical system, and outlines cardio-respiratory interaction;
Chapter 3 briefly describes bispectral analysis and introduces our development of a new approach [40]
that introduces time dependence to the bispectral analysis of univariate data, while focusing on the
time-phase relationships between two (or more) interacting systems. Chapter 4 presents our

demonstration/testing of the aforementioned technique on a well-characterized simple model.




Examples of different kinds of interaction among the subsystems, e.g., additive linear or quadratic, or
parametric frequency modulation, both with, and without, the consideration of zero-mean white
Gaussian noise. Chapter 5 gives application of the new technique to univariate cardiovascular (CV)
blood flow signals, which reflect the activities of both the local and central mechanisms of
cardiovascular regulation [41]. We summarise how measurements are made, discuss how the resultant
data are analysed, and present the results. In 5.8 Discussion, it is shown that the cardiac and
respiratory processes can be nonlinearly phase coupled. Chapter 6 establishes the relation between
bispectral analysis and synchronization. Chapter 7 introduces the time-frequency variant resolution in
the bispectrum, using wavelet transform. Chapter 8 compares bispectrum based on Fourier transform,
and bispectrum based on wavelet transform. Chapter 9 displays these new potentials of usage, using
the case of an electroencephalogram signal. Chapter 10 provides an overview of the main results of the

work, and outlines areas where more work is required. Chapter 11 presents drawn conclusions.

Appendix A details the normalization techniques used for comparison of the different measurements.
Appendix B provides an analysis of harmonic generation by a pair of weakly-coupled weakly-

nonlinear oscillators.
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2 CARDIOVASCULAR SYSTEM

2.1 Background

2.2 Coupled oscillators

Rhythms are among the most conspicuous properties of living systems. They occur at all levels of

biological organization, from unicellular to multicellular organisms, with periods ranging from
fractions of a second to years, Tab. 2.1. In humans, the cardiac and respiratory functions and the
circadian rhythms of a sleep and wakefulness point to the key role of periodic processes in the
maintainance of life. In spite of their close association with physiology, however, periodic phenomena

are by no means restricted to living systems. Oscillatory chemical reaction was discovered by Bray in

1921, the reaction of Bray, Belousov and Zhabotinsky reaction in 1959, respectively 1964 and others. |||

Tab. 2.1: A list of the main biological rhythms, classified according to increasing period.

Rhythm Period '
Neural rhythms 0.01 to 10 s (and more?)

Cardiac rhythms I's

Calcium oscillations | s to several minutes

Biochemical oscillations 1 minute to 20 minutes

Mitotic cycle 10 minutes to 24 h (or more)

Hormonal rhythms 10 minutes to several hours (also 24 hours)

Circadian rhythms 24 hours

Ovarian cycle 28 days (human) |
Annual rhythms | year

Epidemiology and ecological oscillations  years |

However, oscillatory behaviour does not always possess a simple periodic nature. Thus, both in
chemistry and biology, oscillations sometimes present complex patterns of bursting, in which
successive trains of high-frequency spikes are separated at regular intervals by phases of quiescence.
In the phase space, sustained oscillations correspond to the evolution towards a closed curve called a
limit cycle by Poincaré of it’s uniqueness and independence from initial conditions (Minorsky, 1962).
Time taken to travel along the closed curve represents the period of oscillations. When a single limit

cycle exists, the system always evolves towards the same closed curve characterized by a fixed




amplitude and period, for a given set of parameter values, regardless of the initial state of the system.
Moreover, sustained oscillations of limit cycle type can be viewed as a temporal dissipative structure

(Prigogine, 1968).

2.1 Background

The human cardiovascular or circulatory system is one of the basic systems that plays an essential role
in the maintenance of a constant internal body environment [3, 55]. It distributes matter and energy to
the cells and removes by-products of their metabolism. The cells extract matter and energy from the
blood which is pumped by the heart into the network of vessels. The lungs, where the blood becomes

oxygenated, are also part of the cardiovascular network.

The circulatory system can be divided into two parts: the pulmonary circulation, which moves blood
trough the lungs for exchange of oxygen and carbon dioxide and systemic circulation, which supplies
all other tissues. Both, the pulmonary and systemic circulation have a pump, an arterial system,
capillaries and a venous system. Arteries and arterioles function as a distribution system. Capillaries
serve to exchange diffusible substances between blood and tissue. Venules and veins serve as

collection and storage vessels that return the blood to the heart.

The heart of a relaxed, healthy subject, pumps an amount equivalent to the total amount of blood in the
body (i.e., 4-6 litres or 7-8 % of the body weight) in approximately one minute [55]. Thus, in
cardiovascular dynamics we consider the dynamics of blood distribution trough the cardiovascular
network on a time scale of approximately one minute. It can be characterised by the dynamics of the

blood flow and the blood pressure in the system, and the activity of the lungs and the heart pump.

The research has shown [8, 9, 10, 110-112, 117], that cardiovascular blood flow signals posses a
deterministic dynamic, meaning, that the cardiovascular system is a result of a final number of
subsystems (oscillators), each with its own characteristic frequency. Five subsystems take part in
blood flow regulation: cardiac, respiratory, myogenic, neural and endothelial metabolic system. They

all regulate blood flow that they have in common.

The function of the heart is manifested as electric potentials spread across the heart muscle, and as a

mechanical pump that rhythmically expels the blood into the arterial network approximately once per
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second (1 Hz') [55]. However, the period of the heart cycle is not constant but, rather, varies in time.
The lungs can be seen as a pressure generator [55]. The frequency of respiration also varies between
0.15 and 0.3 Hz consequently, the flow and the pressure change in an oscillatory fashion with time,
and do so on several different time scales. Peripheral blood flow depends from the systems that control
the blood vein diameter - the blood flow resistance. The smooth-muscle cells in the vessel walls
respond continually to the changes in intravascular pressure, which is known as the myogenic
response. This intrinsic rhythmic activity of the vessels, caused by the pacemaker cells in the smooth
muscles of their walls, is called myogenic activity. The vessels contractions respond to the changes in

the blood flow and blood pressure and are related to the characteristic frequency at approximately 0.1

Hz [50].

Beside the myogenic activity at least two more systems influence the veins resistance. The first one is
the neural control, provided by the autonomous nerve innervations of vessel. Having it’s origin in
some centres in the brainstem that are connected to other parts of the central nervous system, and
sensors throughout the whole network of vessels, it provides synchronization of the function of the
entire system. It’s characteristic frequency is approximately 0.04 Hz [45]. The second one corresponds
to metabolic activity. A number of substances, which are required for cellular metabolism or are
produced as metabolites, have an effect on the state of contraction of vascular musculature. The
rhythmic regulation of vessel resistance to the blood flow, initiated by concentrations of metabolic

substances, can be related to characteristic frequency at approximately 0.01 Hz [3, 8, 110].

2.2 Coupled oscillators

Cardiovascular subsystems do interact among them selves even at healthy human in rest, therefore
their characteristic frequencies are not constant but, rather, varie in time and their amplitudes are
modulated [3, 18, 23, 34, 117]. Each system can be regarded as an autonomous nonlinear oscillator
with its own characteristic frequency that can be detected in the power spectrum of the cardiovascular
blood flow signal. Phase couplings and synchronization can onset among separate oscillators. It has
been shown recently [9, 79, 94, 97, 113, 114] that cardiac and respiratory oscillations are
synchronized. Synchronization or adjusting in time onsets when two or more nonlinear oscillators are
coupled. It can be seen in form of their frequency or phase interactions. After Huygens the

synchronization is frequency adjustment of autonomous harmonic oscillators’ due to their weak

4 Characteristic frequencies differ from human to human. Given values are result of estimated characteristic
frequencies obtained by frequency analysis of blood flow signals for case of young, healthy male humans.
3 Oscillators can be chaotic or noisy.




interaction. Phase coupling is thus onset of some phase relations among interacting systems while it

doesn’t necessary exist any amplitude correlation.

The coupling effect on the interacting oscillator’s behaviour depends on coupling strength. While
weak couplings result in oscillator’s characteristic frequency varying, strong couplings can cause
qualitative changes in system behaviour named as phase transitions [13]. If there were no couplings
among cardiovascular oscillators sharp peaks would occur in power spectrum and the characteristic
frequency ratio would be proportional what is not the case for healthy human in rest where the ratio is
at most rational. Appearance of a resonance is a phenomenon, where the system breaks down and the

death occurs.

Couplings enable information exchange among processes and are basic for normal cardiovascular
system activity. Understanding of physiological nature of these couplings is of essential meaning for
the understanding of the whole system. Each detected oscillations frequency and amplitude describes
the oscillator’s activity and impact of all couplings. It is not possible to measure separate oscillator’s

activity, therefore various methods are used to analyse phase, frequency and amplitude couplings.

A subsystem of the cardiovascular system may be represented as an oscillator, described by a state

vector x which satisfies [115, 116]:

dx
— s B

where x is the nonlinear rate function and s denotes the parameter of the oscillator. A simple limit

cycle oscillator, as proposed by Poincaré [128],

%zaixl((a: _r:)_zj.lf:'XES (22)

(ix‘.
7:' =a:x;(ar -'";)""2’7:'3[{1

where

r=ax 4l (2.3)

can be used to describe a basic unit of the system. It possesses the structural stability and robustness

necessitated by physiological understanding and the analysis of measured time series. The state

variables x; and x), describe the flow and velocity of the flow contributed by the i-th oscillator.
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Five oscillators are assumed to contribute to the blood flow trough the cardiovascular system: cardiac,
respiratory, myogenic, neural and endothelial related metabolic activity. Each of them is characterized
by a frequency £ and amplitude a;. The constant ¢; determines the rate at which the state vector

approaches the limit cycle. In polar coordinates, with radius 7; and angle ¢ the state variables are

x| =r,cosd, and x; =r, sing,. (2.4)

The system (2.2) then becomes

dar,
_‘=a it =N
dr fr.r(a] ri)

il
dt

(2.5)
= 27f,.

The system has two steady-state solutions, where dri/dt = 0, at r;, = 0 and »; = a. The limit cycle
oscillations at r; = a is stable and globally attracting for all initial conditions, except the origin. In the
limit as # — oo the state of the oscillator on the limit cycle is essentially described by the angle ¢, the

phase. The periodic solution travels around with period 7; = 1/f, Fig. 2.1.

o\
K .

Fig. 2.1: The phase plane solutions of differential equations (2.2) for a basic oscillator. The asymptotically stable

limit cycle is r; = a; with phase ¢ = 2nft, if ¢ = 0 is taken at ¢ = 0.

However, the characteristic frequencies of the cardiovascular system vary in time [6, 7, 110, 111].

Therefore, besides the autonomous part, we suppose that there also exists a component resulting from

mutual interactions. Accordingly, we add a coupling term to differential equations (2.2) H,.J. s xé ),

J#i

dx‘ ) ! )
S i@, =) =23, + 5 H, (), @6)




dx' . _ o
_j=ar‘xé(ai —r[.)+27_zf[.x|' +£in,_;'(x;‘5x;.)a

where ¢; is a coupling coefficient. H, (x{,x;) represents all possible influences from the rest of the

system on the i-th oscillator.

In case of cardio-respiratory interaction, the coupling terms are not symmetrical, i.e., impact of

respiration on the heart differs from the impact of the heart on respiration.

If there is no coupling between the oscillators (¢; = (), each will oscillate at its own frequency and the
state vector in the four dimensional phase space approaches the so-called attracting invariant torus.
Analogously to the one-dimensional system discussed above, in the limit as f — oo, the original system
of four differential equations can be reduced to a two dimensional system describing the flow on a two
dimensional torus. The amplitudes of both oscillators define the torus, while the flow on a torus can be
described entirely in terms of the rate of change of phases of the first (¢) and second (¢,) oscillator. In

the uncoupled case,

d(¢‘ ¢2 =2n(f, - f), 2.7)

and so the phase difference increases at a constant rate, determinated by the differences between the

natural frequencies of both oscillators (f; and f).

If two oscillators are loosely coupled (e; << 0), so that each has only small effect on the other, the
invariant torus does not vanish, but is only slightly different. There states are close, [x'(7) - X)) ~
but remain different. Different types of synchronization may be expected, depending on the type of

coupling.

Synchronization is defined as phase locking or frequency entrainment [79]. In case of cardiovascular
system, with time-varying characteristic frequencies, phase synchronization may onset, while the

frequencies may or may not be entrained, we use a weaker condition for phase locking [79]
[ng - m¢, - 8 < const, (2.8)

where n and m are integers, ¢, ¢ are the phases of two oscillators and & is some phase shift. In case of

real systems, measured data contain some noise. It can be instrumental, numerical (resulting from
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quantization of analogue signals) or physiological (the effect of interactions with the rest of the system
on the measured quantity). For weak noise the phase difference @, = n¢ - m@, would be expected to

fluctuate in a random way around a constant value. In case of strong noise, phase slips would occur.




3 METHOD

3.1 Bispectral analysis

3.2 Time-phase bispectral analysis

3.3 Normalization

Bispectral analysis belongs to a group of techniques, based on high-order statistics (HOS) that may be
used to analyse non-Gaussian signals, to obtain phase information, to suppress Gaussian noise of
unknown spectral form, and to detect and characterize signal nonlinearities [60, 68, 69]. In what
follows we extend bispectral analysis to extract useful features from nonstationary data, and we

demonstrate the modified technique by application to test signals generated from coupled oscillators.

3.1 Bispectral analysis

The bispectrum involves third-order statistics. Spectral estimation is based on the conventional Fourier
type direct approach, through computation of the 3™-order moments which, in the case of 3rd order

statistics, are equivalent to 3"-order cumulants [60, 66-69].

The classical bispectrum estimate is obtained as an average of estimated 3"-order moments
(cumulants) M;(k,!) [69]:

" 1 & -

B(k,z)zgziw_{(k,!), (3.1)

i=1

where the 3"-order moment estimate A;"{ (k,l) is performed by a triple product of Discrete Fourier

Transforms (DFTs) at discrete frequencies &, / and k+/ [69]:
Mik,D)=X,(0)X, (DX (k+1), (3.2)

with i = 1...., K segments into which the signal is divided to try to obtain statistical stability of the

estimates [67]. Algorithm for bispectrum estimation is described in detail in [39].




The bispectrum B(k, /) is a complex quantity, defined by magnitude 4 and phase ¢
B(k,l)=|B(k,D]e’*"*" = 4e’* . (3.3)

Consequently, for each (k, /), its value can be represented as a point in a complex space, R[B(k, )]
versus 3[B(k, /)], thus defining a vector. Its magnitude (length) is known as the biamplitude. The
phase, which for the bispectrum is called the biphase, is determined by the angle between the vector

and the positive real axis.

As discussed in detail in [39], the bispectrum quantifies the relationships among the underlying
oscillatory components of the observed signals. Specifically, bispectral analysis examines the
relationships between the oscillations at two basic frequencies, k and / and a harmonic component at
the frequency k +1. This set of three frequencies is known as a triplet (k, /, k + /). The bispectrum B(k,

1), a quantity incorporating both phase and power information, can be calculated for each triplet.

A high bispectrum value at bifrequency (£, /) indicates that there is at least frequency coupling within
the triplet of frequencies k, /, and & + /. Strong coupling implies that the oscillatory components at k
and / may have a common generator. Such components may synthesize a new component at the

combinatorial frequency, k + /, if a quadratic non-linearity is present.

3.2 Time-phase bispectral analysis

The classical bispectral method is adequate for studying stationary signals whose frequency content is
preserved over time. We now wish to encompass time dependence within the bispectral analysis. In
analogy with the Short Time Fourier transform (STFT), we accomplish this by moving a time window

w(n) of length M across the signal x(n), calculating the DFT at each window position [81]
1 M_I I
X(k,n)= = Zx(n)w(n i (3.4)
L n=0

Here, k is the discrete frequency, » the discrete time and 7 the time shift. The choice of window length
M is a compromise between achieving optimal frequency resolution and optimal detection of the time-

variability. The instantaneous biphase is then calculated: from Egs. (3.2) and (3.3), it is




3 METHOD

P(k,l,n) =@ (n)+¢,(n)— @, (n). (3.5)

If the two frequency components k and / are frequency and phase coupled, @ = @ + @, it holds that
the biphase is 0 (27n) radians. For our purposes the phase coupling is less strict because dependent
frequency components can be phase-delayed. We consider phase coupling to exist if the biphase is
constant (but not necessarily = 0 radians) for at least several periods of the lowest frequency
component. Simultaneously, we observe the instantaneous biamplitude from which it is possible to

infer the relative strength of the interaction:
A(k,1m) =X, (m) X, (m) X"t (), (3.6)

We thus hope to be able to observe the presence and persistence of coupling among the oscillators.

3.3 Normalization

Just as the discrete power spectrum has a point of symmetry at the folding frequency f/2, the discrete
bispectrum has many symmetries in the £, / plane [77, 78]. For real signals, the bispectrum has 12
symmetry regions. Because of these, it is necessary to calculate the bispectrum only in the non-

redundant region, or principal domain, as shown in Fig. 3.1.
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Fig. 3.1: The principal domain of the discrete bispectrum of a band-limited signal can be divided into two
triangular regions, the inner triangle (1T) and the outer triangle. k and / are discrete frequencies, f; is the sampling

frequency.

The latter can be divided into two triangular regions in which the discrete bispectrum has different

properties: the inner triangle (IT), and the outer one [32, 33, 105]. In the current work it is the IT that




is of primary interest. Thus it is sufficient to calculate the bispectrum over the IT of the principal

domain defined in [25, 69]: 0 </ <k, k+l < f/M/2.

To be able to compare results a normalization procedure was performed. For each bispectrum and
biphase estimate, a bispectrum was first calculated for the whole IT using the same parameters, i.e.,
number of segments, segment length, percentage of segment overlap, type of tapering window, and
size of window for frequency averaging. The normalization value was calculated as the average

bispectrum estimate over the IT [40].

Normalization is parameter dependent. The more segments (short windows) for the bispectrum
calculation, the higher its average value over the IT becomes. It has local maxima, because the width
of the window directly affects the frequency resolution. The better the frequency resolution, the
smaller the leakage effect. Higher percentages of overlap result in a lower average value over the IT,

whereas the frequency averaging window increases the average value.

The normalized bispectrum also indicates the average level of quadratic nonlinear phase coupling and,

in a way, serves as an indicator of how non-Gaussian the signal is [31].

The critical values for the bispectrum and biamplitude estimates were normalized to 1. If the estimated
value is higher than the average value of bispectrum in the IT, then it is taken as valid. By critical
value is meant a value that exceeds the leakage affect, the noisy background (other than Gaussian),

and rounding errors.




4 ANALYSIS OF COUPLINGS

4 ANALYSIS OF COUPLINGS

4.1 Linear couplings

4.2 Linear couplings in presence of noise
4.3 Quadratic couplings
4.4 Quadratic couplings in the presence of noise

4.5 Frequency modulation in the presence of noise

To illustrate the essence of the method, and to test it, we use a generic model of interacting systems

whose basic unit is the Poincaré oscillator [128]:

x.." = _qua - w;y; + g-‘: :

.]:}: :my:qi +(fo1 +g_\-‘,‘ (4])

q: :a:(\ﬂxaz"-ylz _ai)‘

Here, x and y are vectors of the oscillator state variables, &, a; and @, are constants and g,(y) and g,(x)
are coupling vectors. The activity of each subsystem is described by the two state variables, x; and y;,

where i = 1,..., N denotes the subsystem.

The form of the coupling terms can be adjusted to study different kinds of interaction among the
subsystems, e.g., additive linear or quadratic, or parametric frequency modulation. Examples will be
considered both without, and with, a zero-mean white Gaussian noise to obtain more realistic

conditions.

Different cases of interaction are demonstrated for signals generated by the proposed model. In each
case we analyse the x, variable of the first oscillator, recorded as a continuous time series. For the first
400 s, the inter-oscillator coupling strength was zero. It was then raised to a small constant value.
After a further 400 s, it was increased again. The first 15 s and corresponding power spectrum for each
coupling strength are shown in the figures for each test signal, in order to demonstrate the changes in
spectral content and behaviour caused by the coupling. For bispectral analysis the whole signal is
analysed as a single entity, but the transients caused by the changes in coupling strength are removed

prior to processing. First the classical bispectrum is estimated. Bifrequencies where peaks provide




evidence of possible frequency interactions are then further studied by calculation of the biphase and
biamplitude as functions of time. They were calculated using a window of length 100 s, moved across
the signal in 0.3 s steps. For this analysis the proposed normalization in Sec. 3.3 was not used. In all

cases bispectral estimates were calculated and then the values were multiplied by a constant 10°.

4.1 Linear couplings

Let us start with the simplest case of a linear interaction between coupled oscillators. We suppose the
model (4.1) to consists of only two oscillators, i = 1, 2. The parameters of the model are set to o3 = 1,

a, = 0.5 and o, a, = 1. The coupling term is unidirectional and linear

8. T1hX.8, =T, (4.2)
-‘E 0.5 @) 2 (d)
(a) -
§ WJWN" WNWWNWJ :
& h ) £ 100
£-05 g 14
< 0 150 Ilms@)_lso @ ool o
s f | —14 o _ f (H2)
25| b £, f £, fh) £, (Hz) o1 01 !
o J 2 A, 1 244,
AN DA, S 1.4

ﬁ =5 &l —L— ()
B ;O e o \{\(I—{z 3 B, 23 b ¢ .
a K 8% DN - .‘(:{\ R “i“’ g
2% .,:‘ 3;‘:’*;\::‘;“—\:- Q\‘.‘%&\\n‘%}& RO
22NN S &;. R ‘m Y
M

0 400 0 Time (s) 400 0 400 0.1 f, (i) 1 14

Fig. 4.1: Results in the absence of noise. (a) The test signal x;(¢), variable x, of the first oscillator with
characteristic frequency f; = 1.1 Hz. The characteristic frequency of the second oscillator is f;, = 0.24 Hz. The
oscillators are unidirectionally and linearly coupled with three different couplings strengths: 7, = 0.0 (1); 0.1 (2);
and 0.2 (3). Each coupling lasts for 400 s at sampling frequency f; = 10 Hz. Only the first 15 s are shown in each
case. (b) Its power spectrum and (c) synchrogram. (d) The bispectrum |B|, using K = 33 segments, 66 %

overlapping and the Blackman window to reduce leakage and (e) its contour view.

The test signal x;4(7) is the variable x,; of the first oscillator. It is presented in Fig. 4.1 (a) with the
corresponding power spectrum for three different coupling strengths: no coupling 7, = 0; and weak
couplings 7, = 0.1, 0.2. The peaks labelled as f; = 1.1 Hz and 5 = 0.24 Hz are the independent
harmonic components of the first and the second oscillator. These frequencies are deliberately chosen

to approximately have a non-integer ratio. There is also at least one peak present at the harmonically




4 ANALYSIS OF COUPLINGS

related position f; = 2f; - £, attributable to interaction between the two oscillators. It arises from the

nonlinearity of the first oscillator, but is caused by the forcing of the second oscillator.

The principal domain of the bispectrum for the test signal x,, Fig. 4.1 (d), shows one peak at the
bifrequency (1.1 Hz, 1.1 Hz), the so called self-coupling. No other peaks are present. Bispectral
analysis examines the relationships between oscillations at the two basic frequencies, f; and £, and a
modulation component at the frequency f; + f; which is absent from the power spectra in Fig. 4.1 (b).
Therefore no peak is present at bifrequency (1.1 Hz, 0.24 Hz). Thus the method as it stands is
incapable of detecting the presence of linear coupling between the oscillators by analysis of the test
signal x;a. Nonetheless, we still suggest the use of bispectral analysis to investigate the presence of

non-linearity, but based on an adapted way of calculating the bispectrum.

In general the bispectral method can be used to examine phase and frequency relationships at arbitrary
time. It is thus well suited for detecting the presence of quadratic couplings and frequency modulation,
since they both give rise to frequency components at the sum and difference of the interacting

frequency components.

To be able to detect linear couplings using the bispectral method, as proposed, it is necessary to
change the frequency relation. Study of coupled Poincaré oscillators demonstrates the presence of a
component at frequency 2k - / as a consequence of nonlinearity. This component was detected
numerically, and is not necessarily characteristic of all nonlinear oscillators. By modifying the

bispectral definition to

B, (k)= E|X (k)X (1) X" 2k -1} (43)
the biphase turns into

P, (kD)= + 0, =Py — . (4.4)

where index a is introduced and will be used in what follows to indicate that the values are obtained
using the adapted method. To obtain 0 radians in the case of phase coupling we have to correct the
adapted biphase expression (4.4) by subtracting ¢. = 2¢ - é. In the presence of a harmonically related

frequency component, and phase coupling, the biphase will then be 0 radians.

The adapted bispectrum |B,| for the signal x,, exhibits several peaks, as shown in Fig. 4.2 (a). It peaks
where f, = f;; a triple product (f;, f5, f3) of power at frequencies f; = f; = f, and also f; = 2f; - f; = f, raises
a high peak at the bifrequency (f, f). The self-coupling peak is physically meaningless, and it is




therefore cut from the adapted bispectrum. It can be used for additional checking, since it strongly

implies non-linearity [127].

The peak of primary interest is at bifrequency (1.1 Hz, 0.24 Hz). There is also a high peak positioned
at bifrequency (0.67 Hz, 0.24 Hz) lying on the line where the third frequency in the triplet is equal to
the frequency of the first oscillator and is therefore a consequence of the method. The small peaks
present in the adapted bispectrum are the result of leakage effects and numerical rounding error due to

the DFT calculation.
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Fig. 4.2: (a) Adapted bispectrum |B,|, calculated from the test signal x;, using K = 34 segments, 80 %
overlapping and the Blackman window and (b) its contour view. Regions of the adapted bispectrum above f; >
0.88 Hz and below f} < 0.3 Hz are cut, because the triplets (1.1 Hz, 1.1 Hz, 1.1 Hz) and (0.24 Hz, 0.24 Hz, 0.24
Hz) produce high peaks that are physically meaningless. (c) Adapted biphase @, and (d) biamplitude 4, for
bifrequency (1.1 Hz, 0.24 Hz), using a 0.3 s time step and a 100 s long Blackman window for estimating the
DFT.

The peak (1.1 Hz, 0.24 Hz) indicates that oscillations at those pairs of frequencies are at least linearly
frequency-coupled. Frequency coupling alone is sufficient for a peak in the bispectrum to occur.
Although the situation can in principle arise by coincidence, frequency and phase coupling together
strongly imply the existence of nonlinearities. To be able to distinguish between different possible

couplings we calculate the adapted biphase Fig. 4.2 (c).

During the first 400 s of test signal x;,, where no coupling is present, the adapted biphase changes
continuously between 0 and 2n radians. For the same time of observation it can be seen that the
adapted biamplitude is 0, Fig. 4.2 (d). During the second and third 400 s of the signal x, a constant
adapted biphase can be observed indicating the presence of linear coupling. The value of the adapted
biamplitude is higher in the case of stronger coupling. The coupling constant 7, can be obtained by

normalization, and we are thus able to define the relative strengths of different couplings.
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When the oscillators are coupled bidirectional the frequency content of each of them changes and
components 2f; and 2f; are generated. Both of these characteristic frequencies can be observed in the
time series of each oscillator. Two combinatorial components are also present in their spectra, 2, - f;
and £, - 2f,, assuming that f; > f5. In analysing bidirectional coupling the procedure described above
can be extended and two combinatorial components should be analysed in the same way.

Making use of the calculated instantaneous phases of both oscillatory components we also construct a
synchrogram (Fig 4.1 (c)), as proposed by Schifer ez al. (see Ref. [79] and the references therein), and

can immediately establish whether or not the coupling also results in synchronization.

The instantaneous phases can also be used to calculate the direction and strength of coupling, using the

methods recently introduced by Schreiber, Rosenblum et al. and Palus et al. [72, 93, 94, 103].

4.2 Linear couplings in presence of noise

We now test the method for the case where noise is added to the variable x; of the first oscillator:

X =-x9, -0y, +g, +5),
V=g tox +g,, (4.5)

q, =al(\}'x|2 +y12 -a).

Here, &) is zero-mean white Gaussian noise, (&(1)) = 0, (&(#), &0)) = D&t), and D = 0.08 is the noise

intensity. In this way we obtain a test signal x,5(?), Fig. 4.3 (a).

For nonzero coupling strength 7,, the component at frequency position f; can still be seen in the power
spectrum despite the noise Fig. 4.3 (b). The adapted biphase Fig. 4.3 (f) can clearly distinguish
between the presence and absence of coupling. When coupling is weaker, the adapted biamplitude

[Fig. 4.3 (g)] is lower and the adapted biphase is less constant.

The bispectrum for the signal x;s, shown in Fig. 4.4 (a), differs from that in the case of zero noise, Fig.
4.1 (d). Noise raises two additional peaks positioned at (1.1 Hz, 0.24 Hz) and (0.86 Hz, 0.24 Hz). The
former could be the result of interaction; the latter is due to the method: the sum of the frequencies in
this bifrequency pair gives the frequency of the first oscillator. Close inspection of the (1.1 Hz, 0.24
Hz) peak by calculation of the biphase gives Fig. 4.4 (c). When coupling is present the characteristic
frequency of the second oscillator appears in the power spectrum Fig. 4.3 (b). Two frequencies of high

amplitude result in a small peak even if no harmonics are present at the sum and/or difference




frequencies. The second peak is not of interest to us. It can easily be checked whether a phase coupling

exists among the bifrequencies from the time evolution of the biphase.
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Fig. 4.3: Results in the presence of additive Gaussian noise. (a) Test signal x,, variable x, of the first oscillator
with characteristic frequency f; = 1.1 Hz. The characteristic frequency of the second oscillator is £, = 0.24 Hz.
0.0 (1); 0.1
10 Hz. Only first 15 s are shown in

The oscillators are unidirectionally and linearly coupled with three different coupling strengths; 7, =
(2); and 0.2 (3). Each coupling lasts for 400 s at a sampling frequency f =
each case. (b) Its power spectrum and (c) synchrogram. (d) Adapted bispectrum |B,| using K = 33 segments, 66
% overlapping and the Blackman window and (e) its contour view. The parts of the |B,| above f;> 0.79 Hz and
below f; < 0.3 Hz are omitted because the triplets (1.1 Hz, 1.1 Hz, 1.1 Hz) and (0.24 Hz, 0.24 Hz, 0.24 Hz)

produce a high peak that is physically meaningless. (f) Adapted biphase ¢, and (g) adapted biamplitude 4, for

bifrequency (1.1 Hz, 0.24 Hz), using 0.3 s time step and 100 s long window for estimating the DFT using the
Blackman window.

In general, besides estimating bispectral values, one can also observe the time dependences of the
phase and amplitude for each frequency component, and their phase relationships. This applies
particularly to frequencies that form a bifrequency giving a high peak in the bispectrum or adapted
bispectrum. Synchrograms, Fig. 4.1 (¢) and 4.3 (c), are obtained by first calculating the instantaneous

phase of each oscillator, and then their phase difference [79]. The phase difference in this case is




4 ANALYSIS OF COUPLINGS

between two fixed frequencies. We do not calculate their instantaneous frequencies, although it is
possible to follow the frequency variation by calculating the phase difference at neighbouring
bifrequencies around the observed one and showing them simultaneously on the same plot. Examples
of the phase difference ¥'= ¢ - @ between the phases of the first ¢ and the second ¢ interacting
oscillators are shown in Fig. 4.4 (e) and (f). Bispectral relation to synchronization is discussed in detail

in Chapter 6.
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Fig. 4.4: Bispectrum |B|, calculated from the signal x,p presented in Fig. 4 (a), using K = 33 segments, 66 %
overlapping and Blackman window to reduce leakage and (b) its contour view. (¢) Biphase ¢ and (d) biamplitude
A for bifrequency (1.1 Hz, 0.24 Hz), using a 0.3 s time step and a 100 s long window for estimating the DFTs
using a Blackman window. (e) Phase difference ¥ between ¢, of the characteristic frequency component f; of
the first oscillator and ¢, of the characteristic frequency component f; of the second oscillator, for time step 1/f;
and (f) at each period of lowest frequency 1/£; in the bifrequency pair (1.1 Hz, 0.24 Hz), using interpolation and

100 s long window for estimating DFTs using Blackman window.




4.3 Quadratic couplings

We now assume that two Poincaré oscillators can interact with each other nonlinearly. A quadratic
nonlinear interaction generates higher harmonic components in addition to the characteristic
frequencies [69]. In order to study an example where the first f; = 1.1 Hz and second f; = 0.24 Hz
oscillators are quadratically coupled, we change the coupling terms in the model (3.1) to quadratic

ones

g, =m(x —x,)%,8, =m» ~»). (4.6)
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Fig. 4.5: Results for quadratic coupling in the absence of noise. (a) The test signal x,c, variable x, of the first
oscillator with characteristic frequency f; = 1.1 Hz. The characteristic frequency of the second oscillator is f; =
0.24 Hz. Oscillators are unidirectionally and quadratically coupled with three different couplings strengths: 7, =
0.0 (1); 0.05 (2); and 0.1 (3). Each coupling lasts for 400 s at sampling frequency f; = 10 Hz. Only the first 15 s
are shown in each case. (b) Its power spectrum. (¢) The bispectrum |B| using K = 33 segments, 66 % overlapping
and the Blackman window to reduce leakage and (d) its contour view. The part of the bispectrum above f; > 1,0

Hz is cut, because triplet (1.1 Hz, 1.1 Hz, 1.1 Hz) produces a high peak that is not physically significant.

Clearly, the test signal x)c presented in Fig. 4.5 (a) for three different coupling strengths (no coupling
7, = 0 (1); and weak couplings 7, = 0.05 (2), 7,= 0.1 (3)) has a richer harmonic structure. In addition
to the characteristic frequencies, it contains components with frequencies 2f;, 2, fi + f; and f; - f; Fig.
4.5 (b). Eq. (4.6) also indicates that, as well as having a particular harmonic structure, the components

of the signal x;¢ also have related phases, 2¢,, 2¢,, $ + ¢ and ¢, - ¢,.

We expect several peaks (three and not four, because the triplet (f}, /5, i + f2) has the same peak in the
bispectrum as the triplet (£}, £, fi- f5)) to arise in the bispectrum. The peak of principal interest is at
bifrequency (1.1 Hz, 0.24 Hz). As before, the self-coupling peaks are at (1.1 Hz, 1.1 Hz) and (0.24 Hz,
0.24 Hz) are of no interest, so they are cut from the bispectrum. Additional peaks appear at the
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bifrequencies (0.86 Hz, 0.24 Hz), (0.62 Hz, 0.48 Hz), (0.86 Hz, 0.48 Hz), (1.1 Hz, 0.48 Hz), (1.1 Hz,
0.86 Hz) and (1.34 Hz, 0.86 Hz). The triplet of harmonically related frequency components (f, £, f3)
would peak in the bispectrum when the power for all these frequencies differs from zero. The
components 0.48 Hz, 0.86 Hz, 1.34 Hz and 2.2 Hz resulting from quadratic couplings form such
triplets which peak in the bispectrum: (0.86 Hz, 0.24 Hz, 1.1 Hz), (0.86 Hz, 0.48 Hz, 1.34 Hz) and
(1.34 Hz, 0.86 Hz, 2.2 Hz). Besides these, there are also other peaks e.g., that at the bifrequency (0.62
Hz, 0.48 Hz) arising from the triplet (0.62 Hz, 0.48 Hz, 1.1 Hz); the sum/difference combination of
such frequencies always give the characteristic frequency, or one that results from quadratic coupling.
The existence of such peaks has no other meaning than as a strong indicator of second-order
nonlinearity. Consequently, the biphase for all peaks due to possible nonlinear mechanisms in the
bispectrum must have the same value, and same behaviour, as shown e.g., in Figs. 4.6 (a) and 4.6 (c).
The biphase is constant in the presence of quadratic coupling. From the biamplitude, the coupling

constant can be determined by normalization.
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Fig. 4.6: (a) The biphase ¢ and (b) biamplitude A for the test signal x,¢ for bifrequency (1.1 Hz, 0.24 Hz), using
0.3 s time step and 100 s long window for estimating DFT using Blackman window. (c) Biphase and (d)
biamplitude for the bifrequency (0.86 Hz, 0.24 Hz), with a 0.3 s time step and a 100 s long window for
estimating DFT using the Blackman window.

In the power spectrum there is a component at frequency 2f; - fo, even although linear coupling is
absent. It arises from nonlinearity in the Poincaré oscillator. The adapted bispectrum for the signal x;¢
shows a peak at bifrequency (1.1 Hz, 0.24 Hz), but the adapted biphase varies continuously: we may

therefore exclude the possibility of linear coupling being present.




4.4 Quadratic couplings in the presence of noise

As in the case of linear coupling (Sec. 4.2.) we add a noise term to the quadratic coupling g,; and

obtain the test signal x,p, presented in Fig. 4.7 (a).

Using the bispectral and adapted bispectral methods, we find that we obtain results very similar to
those in the absence of noise. The method is evidently noise robust. The results for non-zero coupling

are quite different from those where coupling is absent, Fig. 4.7 (e).
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Fig. 4.7: Results for quadratic couplings in the presence of additive Gaussian noise. (a) The test signal xp,
variable x; of the first oscillator with characteristic frequency f; = 1.1 Hz. The characteristic frequency of the
second oscillator is f; = 0.24 Hz. The oscillators are unidirectionally and quadratically coupled with three
different coupling strengths: 7, - 0.0 (1); 0.05 (2); and 0.1 (3). Each coupling lasts for 400 s at a sampling
frequency f; = 10 Hz. Only the first 15 s are shown in each case. (b) Its power spectrum. (c) The bispectrum |B|
calculated with K = 33 segments, 66 % overlapping and using the Blackman window to reduce leakage and (d)
its contour view. The part of the bispectrum above f; > 1.0 Hz is cut, because the triplet (1.1 Hz, 1.1 Hz, 1.1 Hz)
produce a high peak that is physically meaningless. (e) The biphase ¢ and (f) biamplitude A for bifrequency (1.1

Hz, 0.24 Hz), with a 0.3 s time step and a 100 s long window for estimating DFTs using the Blackman window.




4 ANALYSIS OF COUPLINGS

4.5 Frequency modulation in the presence of noise

We are also interested of being able to detect parametric frequency modulation and to distinguish it
from quadratic coupling. Parametric modulation produces frequency components at the sum and
difference of the characteristic frequency and the modulation frequency, i.e., the same two frequency
components that can also result from quadratic coupling. Let us now consider an example where the
first oscillator f; = 1.1 Hz is frequency modulated by the second one £, = 0.24 Hz. For this purpose the

equations of the first oscillator become

Ji-l =—Xq, "y1(m: +7?mx2)+§(f)a
N ==-nq, +x(@ +1,¥,), (4.7)

q, =a](\;x,2 "‘J’]2 —-a,).

The model parameters a ,, @; > and the noise intensity D are chosen to be the same as in the previous

examples.

We thus obtain a test signal xg. It is the time evolution of the variable x; of the first oscillator,
presented in Fig. 4.8 (a) with the corresponding power spectrum 4.8 (b) for three different parametric
frequency modulation strengths: no modulation 7, = 0 (1); and modulation 7,, = 0.1 (2), 7, = 0.2 (3).
The bispectrum of the test signal x;g, Fig. 4.8 (c), exhibits several high peaks. The highest are at
bifrequencies (1.1 Hz, 0.86 Hz), (0.86 Hz, 0.24 Hz) and (1.1 Hz, 0.24 Hz), in addition to the (1.1 Hz,
1.1 Hz) peak. They also appear in the case of quadratic coupling. In general, however, the other peaks
that appear for quadratic coupling are absent. The reason is that although the component of the second
oscillator f; (one component of the triplet) is not present in the power spectrum, its value is not exactly

ZEero.

Observing the biphase, no epochs of constant biphase can be observed, although for strong frequency
modulation the biphase is less variable. In the power spectrum, Fig. 4.8 (b), no component rises above
the noise level at frequency £, of the bifrequency pair, where the bispectrum peaks. This is an
indication that there is parametric coupling between the oscillators as there is a high value of
biamplitude. The biphase changes runs between 0 and 2w, and is modulated in the absence of noise.
There are also no rapid 2n phase slips of the kind that are normal if no modulation is present. In the
absence of couplings and modulation, but with noise present, there would be no such peaks in the

power spectrum and bispectrum.
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Fig. 4.8: Results for parametric frequency modulation in the presence of additive Gaussian noise. (a) The test
signal xg, of variable x, of the first oscillator with characteristic frequency f, = 1.1 Hz frequency modulated by
the second oscillator £, = 0.24 Hz with three different frequency modulation strengths; 7, = 0.0 (1), 0.1 (2) and
0.2 (3). Each frequency modulation lasts for 400 s, at sampling frequency #; = 10 Hz. Only the first 15 s are
shown in each case. (b) Its power spectrum. (c) The bispectrum |B| calculated with X = 33 segments, 66 %
overlapping and using the Blackman window to reduce leakage and (d) its contour view. The part of the
bispectrum above f; > 1.0 Hz is cut, because the triplet (1.1 Hz, 1.1 Hz, 2.2 Hz) produces a high peak that is
physically meaningless. (¢) The biphase ¢ and (f) biamplitude A4 for bifrequency (1.1 Hz, 0.24 Hz), witha 0.3 s

time step and a 100 s long window for estimating the DFTs using the Blackman window.
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5 CARDIO-RESPIRATORY INTERACTIONS

5.1 Data acquisition

5.2 Measurements

5.3 Data analysis

5.4 Results

5.5 Surrogates

5.6 Global couplings

3.7 Cross-bispectrum

5.8 Discussion
5.8.1 Definition of the phase
5.8.2 Nonlinear coupling, or linear coupling of strongly nonlinear oscillators?
5.8.3 Relationship to synchronization
5.8.4 Synchronization, modulation and type of coupling
3.8.5 Unidirectional or bidirectional coupling

5.8.5.1 Forced oscillator

5.1 Data acquisition

The interaction between two harmonic components can in practice contribute to the power at their sum
and/or difference frequencies. We assume that the cardiac and respiratory oscillators are weakly
coupled and can interact with each other nonlinearly. The coupling is assumed to be weak in part
because of the transient/episodic character of cardio-respiratory synchronization in healthy subjects;
the assumption of weak nonlinearity is on account of several factors including the lack of
combinatorial components near the cardiac frequency. We return to these questions and discuss them
in more detail at the end of Sec. 5.8.2. A quadratic interaction will give rise to higher harmonic
components with frequencies 2f,, 2f,, f, + £; and £ - 5, in addition to the characteristic frequencies [ 68,

69]. As well as having a particular harmonic structure, the components also have phases that are

related, 2¢y, 2¢», ¢ + ¢h and ¢, - ¢,.

As discussed in detail in [39], the bispectrum quantifies the relationships among the underlying

oscillatory components of the observed signals. Specifically, bispectral analysis examines the

e



relationships between the oscillations at two basic frequencies, f; and f; and a modulation component

at the frequency f £ /5. This set of three frequencies is known as a triplet (f}, £, fi £ f2).

A high bispectrum value at bifrequency (f;, /) indicates that there is at least frequency coupling within
the triplet of frequencies fi, £, and f; £ f5. Strong coupling implies that the oscillatory components at f;
and /, may have a common generator, or that the cardiovascular circuit they drive may, through with

some non-linear interaction, synthesize a new, dependent component at the modulation frequency, f; +

b

Nonlinear transformation causes the appearance of self-coupling peaks in the bispectrum [69, 127]. In
periodic signals, peaks at the self-frequency without self-phase couplings are common. Again, the

simultaneous appearance of both couplings is a very strong indicator of the presence of nonlinearity.

5.2 Measurements

The data acquisition techniques have already been described [112] but, in summary, were as follows.
A four-channel laser Doppler blood flow monitor (floLAB, Moor Instruments Ltd., UK) was used for
simultaneous recordings of blood flow at the four different sites: both arms (left and right caput ulnae)
and both legs (left and right medial maleollus). Skin over bony prominences was chosen in order to
standardize the measurement sites for the four extremities. A standard calibration (flux standard) of all
the probes was made in order to be able to compare signals, and the blood flow was expressed in
arbitrary units (arb. units). The electrical activity of the heart or electrocardiogram (ECG), respiration
and blood pressure were also simultaneously recorded. The respiratory effort was measured using the
TSD101B Respiratory Effort Transducer (Biopac Systems, Inc., USA). It consists of a piezoresistive
sensor equipped with a silicon rubber strain assembly that measures the change in thoracic or
abdominal circumference. The electrical conductivity of the sensor is proportional to the increase of
abdominal circumference. The blood pressure was also measured with a piezoelectric transducer, and
the ECG was recorded using a standard technique with two electrodes placed on the shoulders and one

below the heart.

Six males aged 25-27 years with no history of cardiopulmonary disease participated in the study. Each
of them lay in repose on a bed for 15 minutes before the start of data recording. One set of
measurements was taken in the normal relaxed state, with spontaneous breathing, and a further
two/three measurement under differently paced breathing. The duration of the measurements was 20

minutes for spontaneous breathing, and 12 minutes for paced breathing. Blood flow signals were
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digitized with 16-bit resolution and sampled at 40 Hz, whereas the ECG, respiration and pressure
signals were sampled at 400 Hz. The paced respiration frequency was held constant during the
measurement of a given time series and the rhythm was paced by metronome. Altogether 22

recordings were made, as summarized in Tab. 5.1.

Tab. 5.1: Data for six subjects measured during spontaneous and paced respiration. V‘, is average tidal volume,

Oy, is its standard deviation, f; is average heart frequency and f; is average respiratory frequency during

spontaneous f,; and paced f5, respiration. The tidal volume is obtained as a value between minimum voltage
recorded during expiration and a succeeding maximum voltage recorded during inspiration. The voltages were
not calibrated to express volumes in litres; rather, values were normalized to the average tidal volume obtained

for each subject during spontaneous respiration. Data marked with * are presented in Tab. 5.3.

Person | Breathing 3%; (l-fz) (:liz) V_'f / _‘,v o / V;k Note
1 Jos 27 | 1.10 | 0.13 1.00 0.27
Jop<fas 1.08 | 0.11 1.31 0.17
Sfoo> fos 1.00 | 0.23 1.08 0.18 «
Sfo> bos 0.97 | 0.34 2.56 0.68 %
2 Jos 27 | 1.16 | 0.14 1.00 0.13 "
J2p<Jas 1.06 | 0.09 1.33 0.22
Fop < Jos 1.05 | 0.10 0.83 0.11 ¥
Jp<tos 0.98 | 0.11 0.67 0.10 *
3 Lo 25 | 1.03 | 0.16 1.00 0.20
Jop<Jas 1.08 | 0.13 1.40 0.11 *
foo™ fos 1.10 | 0.26 0.95 0.23 *
4 fos 25 1099 | 0.16 1.00 0.20
Sop<tos 1.01 | 0.10 1.82 0.28 *
fop<hos 0.99 | 0.11 1.88 0.12 *
Jop™ Sos 1.03 | 0.20 1.08 0.26
5 bs 26 | 1.20 | 0.15 1.00 0.49
Soo<os 1.20 | 0.10 431 0.90 ¥
Jap<tos 1.20 | 0.11 1.84 0.70
Jo> Pos 1.14 | 0.21 0.44 0.12
6 S 25 [0.95]0.27 1.00 0.22
Jop™> fos 0.89 | 0.35 0.15 0.07
Jop<tos 0.92 | 0.24 0.55 0.11




5.3 Data analysis

The blood flow signals were first pre-processed. Both very low and very high frequencies were
removed by use of moving average windows: drift with a 200 s long window; and high frequencies
with a 0,2 s window while, and at the same time, the signal was resampled to 10 Hz. By using the
moving average before resampling, we avoid problems of aliasing [81]. In addition, each signal was
normalized to lie between zero and one, and its mean value was then subtracted. The characteristic
cardiac f; and respiratory f; frequencies, and their components at harmonically related positions were
identified: for each signal, the power spectrum was computed to identify f; and £, and to detect those
components possibly caused by nonlinear interactions, 2f;, 2f;, and fi £ f;. Then the bispectrum
estimates were calculated. For each time series the signal was divided into several segments and to
ensure stationarity the average value within each window was also subtracted. The chosen window
length affected both frequency resolution and the statistical stability of the estimates. Because of the
finite length of the time series, optimal choice of the number of segments requires a measure of
compromise: the more segments the better the estimates, but increasing the number of segments also
reduces the length of individual segments which, in turn, reduces the frequency resolution. To obtain
reliable estimates 30 or more segments are necessary [39]. The compromise can be optimised by an

appropriate overlapping of the segments (see below).

Tab. 5.2: Peaks at bifrequencies in the bispectrum, arising as the result of a nonlinear interaction between the two

oscillators f; and £.

Peak Bifrequency
I (i, f2)
(-2, 12)
(fi- /2. 22)
(1, 2f2)
(i, /- 12)
(fith. fi- 1)
(2. /)
(i, 1)

| N[ |Wv | |W]|N

In the case of quadratic coupling, for which we wish to test, several peaks occur in the bispectrum.
Besides the peaks at the bifrequencies (f;, f5), the cardiac self-coupling (f}, f1) and respiration self-
coupling (£, ), others occur as a consequence of the interactions. Those of primary interest were at

bifrequency (fi, /), representing the coupling between the two oscillators at f; and f, and five others.




5 CARDIO-RESPIRATORY INTERACTIO!

To investigate the cardio-respiratory coupling eight peaks were analysed for each signal, as shown in

Tab. 5.2. To be able to compare results, a normalization procedure was performed.

The maximum biphase and biamplitude were calculated for each peak. The frequency resolution was
set to be 1/10 of the lowest respiration frequency or better. The slowest-paced breathing, £, was
approximately 0.1 Hz, so that a window of 100 s or longer was necessary for estimation of the
bispectrum, biphase and biamplitude. Short plateaus in the estimated biphase occur frequently. To
exclude coincidence interactions we focused on those that lasted for at least about 10 periods of the
lower coupling frequency /. The length of the window also determines the time resolution. In the case
of the slowest-paced breathing, where /; was 0.1 Hz we were seeking approximately 10 times (1/ /) =
100 s long epochs of constant biphase. Therefore a window length of 100 s or less was necessary to
meet the criterion for time resolution. Due to the Heisenberg uncertainty principle [43], the scope for
choice of window length is limited, and compromise is needed between time and frequency resolution.
The window was moved along the time series with a minimum time step of 1/f;, = 0.1 s, where £, is the
sampling frequency. The critical value for the biamplitude estimate to be considered valid was set in

all cases to 2, i.e., twice the average value of the bispectrum within its so-called inner triangle (IT).

To be able to conclude that quadratic coupling exists, we require several condition to be fulfilled: (i) A
constant biphase during at least 10 periods of the lower interacting component; (ii) Biphases for all six
(eight) peaks must be present at the same time as the biphase plateau; (iii) No phase slips must occur
during the coupling, and the biphase variations must stay within 7 rad interval (the biphase being
expected to be more or less constant, depending on the coupling strength and noise intensity: phase
slips are frequent when the interaction is extremely weak; they are mostly due to noise, but sometimes
caused by modulation; strong modulation is expected to result in a biphase with fewer phase slips);
(iv) The biamplitude must be above the specified critical value, i.e., be more than twice the average

bispectrum value within the IT.

5.4 Results

Examples of detrended, resampled, blood flow signals are presented in the left-hand column of Fig.
5.1. These signals correspond to the case of paced respiration slower than the natural frequency. Their
calculated frequency content is presented in the right hand column. The peak at ~0.98 Hz belongs to
cardiac activity, f;; that at ~0.11 Hz to respiratory activity, /5, which was also obtained directly as a
check by use of a piezo sensor. Although the characteristic frequencies differ from person to person,

they all lie within defined frequency bounds. Stefanovska proposed in [112] that the respiration




frequency interval should be defined as 0.14-0.6 Hz with a median frequency 0.3 Hz. The spontaneous
respiratory frequency for person 2 was 0.14 Hz, i.e., it fell at the lower limit of this interval. The

slowest paced respiration frequency was set to 0.09 Hz.

Assuming nonlinear cardio-respiratory coupling the cardiac side peaks are positioned at their sum f; +
f, =~1.09 Hz, and difference f, - £ =~0.87 Hz. Cardiac 2f; and respiratory 2f> second harmonics are
also present. It can be seen that their precise values vary in time, which is what makes the analysis
difficult. The widths of the peaks indicate their time-variable frequency content, which makes a time-
frequency domain presentation more convenient [9, 43]. The effect is, of course, associated with the

interactions between cardiovascular oscillators.
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Fig. 5.1: Blood flow signals A(f) measured simultaneously at four different sites. Each of them was detrended,
resampled, normalized, and brought to zero mean by subtraction of its average value. The records are each 521 s
long, resampled to a sampling frequency of £, = 10 Hz. (a) Signal from the right wrist b,(¢) and its power
spectrum; (b) left wrist by(7) and its power spectrum; (c) right ankle b (¢) and its power spectrum; (d) left ankle

by(t) and its power spectrum.

A typical bispectrum for the whole frequency domain for signal b, is presented in Fig. 5.2 (a). A very
high peak located at bifrequency (0.11 Hz, 0.11 Hz), belonging to the respiratory self-coupling can be
seen in the bispectrum, Fig. 5.2 (b). At least four other peaks are clearly evident: at (0.98 Hz, 0.11 Hz)

N
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attributable to cardio-respiratory coupling; at (0.87 Hz, 0.11 Hz) which we assume to be coupling
between the respiratory component £, and the difference f; - £, that could be due to a nonlinear
coupling mechanism; and two peaks attributable to interaction with lower cardiovascular characteristic
components. The latter interactions (with the intrinsic myogenic and neural oscillators) are not of
interest in the present context. Also, other lower frequency peaks can be seen in the bispectrum. Their

positions can be seen in the bispectrum contour view shown in Fig. 5.2 (c).
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0.98 P
0.87} -
0732 bosibons R
0,11;@% iR " 1& § b
0.11 0.87 0.98 1.09 £, (H2)

Fig. 5.2: (a) The bispectrum |B| for a signal b,, calculated with K = 33 segments, 87 % overlapping and using the
Blackman window to reduce leakage. (b) Part of the bispectrum f;, ; < 1.4 Hz that is of our interest and (c) its

contour view.

The bispectrum is sensitive to time-variations of the frequency components, yielding in the bispectrum
a characteristic diagonal elongation of peaks. The cardiac frequency f; spans 0.93-1.02 Hz. Although
the respiratory frequency f; extends from 0.09 Hz to 0.12 Hz, this large range is actually the result of a
single deep breath: the respiratory frequency (being paced) is constant for most of the time, leading to
a high bispectrum. The cardio-respiratory bifrequency coupling consequently has a wide frequency
range resulting mainly from variation of the cardiac frequency (in Fig. 5.2 it is elongated along the f;

axes).
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Fig. 5.3: Blood flow analyses for signal b,(¢), calculated with K = 33 segments, 87 % overlapping, using a 0.1 s
time step and a 100 s long window for estimating the DFT, with a Blackman window to reduce leakage, for
peaks (a) 1, (b) 2, (c) 3, (d) 4, (e) 5 and (f) 6; left column, the bispectrum |B,,| with its corresponding contour
plots; middle, the biamplitude Ay,; and right, the biphase ¢,,.
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The peaks corresponding to cardiac activity are lower, mainly due to time frequency variations. In the
presence of quadratic nonlinear coupling, peaks should be present at all six of the bifrequencies
summarized in Tab. 5.2. Significant values of the bispectrum (i.e., exceeding twice the average
bispectrum within the IT) were obtained near all these bifrequencies (see the left-hand column of Fig.

5.3), showing that the peaks are indeed present.

o N.(a.l'b units) 3

76.8 172.4 Time (s) 47

pals ¢hn4 2
3O (rad) ™

[
-

Fig. 5.4: (a) Determination of quadratic nonlinear coupling interval T, and (b) maximum biphase variation A¢

for signal b, for peak 4.

Once the peaks at the defined bifrequencies had been confirmed, the time biphase and biamplitude
were calculated at the bifrequency peaks. The time interval 7, during which quadratic coupling
persisted was determined,; if all 6 peaks fulfilled our conditions, then the T interval was calculated for
all peaks and the boundaries were defined such that the biamplitude for all the peaks in T interval

would be above the condition Fig. 5.4 (a). For each T interval, the maximum variation of the biphase

A¢, was determined as shown on Fig. 5.4 (b).

It can be seen that the biamplitude during the time interval from 76.8 s to 172.4 s meets our criterion
of being more than twice as large as the average bispectrum in the IT: see middle column of Fig. 5.3
(a) to (). The biphase in this time interval, 95.6 s long (shaded area), remains constant within a 1.47
rad interval, i.e., there are no phase slips. The biphases at bifrequencies 1, 2, 3 and 5 are very constant;

those at 4 and 6 are less so, but they still remain within the n rad interval.

5.5 Surrogates

In many areas of signal processing, an important problem exists in determining whether an observed

time series is deterministic, contains a deterministic component, or is purely stochastic. The surrogate
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data method provides a rigorous way to determine if an observed time series has a statistically

significant deterministic component [102, 106].

The question of whether or not the cardiovascular system possesses a deterministic dynamic was
already subject to many research activities by a variety of analyses [6, 8, 109, 110, 112]. These

provided notable evidences that the system that regulates blood flow is deterministic.

In this work we use the surrogate data method to validate bispectral analysis to determine whether the
obtained biphases from the cardiovascular blood flow signals are a result of the deterministic dynamic

of blood flow, or as a result of its stochastic component.

For this purpose, we use the phase randomization method of generating the surrogates [44, 102, 106,
123, 124]. The discrete Fourier transform is computed from the original data, which consists of
amplitude and phase at each frequency, and then shuffled to destroy all correlations. The surrogate is
the inverse discrete Fourier transform of the shuffled data. Besides phase shuffling, one can also
perform phase randomization or data shuffling. Each amplitude is replaced by the amplitude of the
same frequency as in the original data. After the inverse Fourier transform, the amplitude of the
surrogate data is adjusted by applying a nonlinear transform to give the surrogate data the same

distribution as in the original data.

In this way we obtain surrogate data which have similar spectral properties as that of the original data.
The surrogate data sequence has the same mean, the same variance, the same autocorrelation function,
and therefore, the same power spectrum as the original sequence, but the phase relations are destroyed.

The generated surrogate data are output of a linear Gaussian process.

We posit a null hypothesis:

H;: Quadratic nonlinear coupling is present.

We determine the null hypothesis on surrogate data sy,(7) generated from blood flow signal b,(¢). The
obtained surrogate signal sy,(¢), Fig. 5.5 (a), has almost the same power spectrum. Fig. 5.5 (b), as it is
the power spectrum Py, of the original signal b,(f), Fig 5.1 (a). As expected, we also obtained a similar
bispectrum for the whole frequency domain, Fig. 5.5 (c). The peaks are lower, and less evident,

compared to bispectrum of b,(f), Fig. 5.2. (b).
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Fig. 5.5: (a) Surrogate of blood flow signal from the right wrist sy,(¢), its power spectrum (b), and (c) its
bispectrum |B|, calculated with K = 33 segments, 87 % overlapping and using the Blackman window to reduce

leakage.
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Fig. 5.6: Blood flow analyses for surrogate signal sy,(f), calculated with K = 33 segments, 87 % overlapping,
using a 0.1 s time step, a 100 s long window for estimating the DFT, and using a Blackman window to reduce
leakage, for peaks (a) 1, (b) 2 and (c) 3; left column, the bispectrum |B,| with its corresponding contour plots;
middle, the biamplitude A4; and right, the biphase ..

By calculating the biphases for all of the six bifrequencies summarized in Tab. 5.2, we conclude that

the necessary conditions for quadratic nonlinear coupling are not fulfilled. Fig 5.6 shows peaks,




biamplitudes and biphases for the first three bifrequencies of bispectum Bi. It can be seen that all the
biphases, ¢, ¢ and ¢ tend to always drift. They do not show any plateaus of constant biphase, as is
expected, since the phase information is randomized in the surrogate signal. Moreover, the

biamplitude condition is also not fulfilled.

We performed the hypothesis on bispectral analysis for seven different realizations of surrogate signal
for signal b,(7). The null hypothesis H; was not consistent with the data and was rejected in all seven
cases. We can conclude that the phase information possessed in cardiovascular blood flow signal is

deterministic.

5.6 Global couplings

The heart's pumping action is manifested in every single vessel, and it is also present in the
microcirculation through the capillary bed. Peripheral blood flow is controlled by both extrinsic
(central) and intrinsic (local) mechanisms, and so it must reflect the activities of both the local and
central mechanisms of cardiovascular regulation [6, 7, 9, 108, 110]. The origin of respiratory

frequencies in peripheral blood flow was discussed by Hoffman et al [35].

Blood flow signals reflect central and local mechanisms of regulation in the cardiovascular system.
Those derived from widely separated sites can be remarkably similar. Although they reflect the flow in
the capillary bed, each of them contains the same information on the spatially invariant periodic
activities seen in the centrally generated cardiac and respiratory signals. The power of each oscillatory
component in the peripheral blood flow varies with the vessels' diameters and the network density, i.e.,
the local resistance to the flow. Measurement sites of similar network density were chosen [9, 112],

viz on bony prominences of the wrist and ankle joints, thus avoiding any large vessels.

Our measured signals, i.e., channels a to d, come from widely differing sites. Nonetheless, in
agreement with the earlier work, the respiratory and cardiac characteristic frequency components
preserve the same values and, moreover, their phase relationships contain the same information. The
left-hand column of Fig. 5.7 shows the bispectrum for peak 1 for signals by, b, and by measured on
channels c-d. The maximum amplitude of the peak is positioned at the same bifrequency (0.98 Hz,
0.11 Hz) as already seen for peak 1 of the signal b, measured on channel a, Fig. 5.7, midddle column.
The left-hand column of Fig. 5.8 shows the bispectrum for peak 6 for signals by, b, and by measured on
channels c-d. As excepted the maximum amplitude of the peak is positioned at the same bifrequency

(0.98 Hz, 0.11 Hz) as already seen for peak 6 of the signal b, measured on channel a, Fig. 5.8, midddle
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column. The correlation of the biamplitude and biphase for signals b, and by-b, for all peaks 1-6 is
very high. For peak 6, for signal b, and by, is it is 0.85 for both, the correlation of the biamplitude and
biphase, as can also be seen from their time evolution presented in the right-hand and middle column

of Fig. 5.8.
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Fig. 5.7: Left: the bispectrum [B| calculated with K = 33 segments, 87 % overlapping, and using the Blackman
window to reduce leakage for the test signal (a) by, (b) b, and (c) by for peak 1 with its contour view. Middle: the
biamplitude 4, and right the biphase ¢; a 0.1 s time step and 100 s long window were used for computation of the

DFT using a Blackman window.

The biamplitude meets our amplitude criterion within the same time interval from 76.8 s to 172.4 s,
and the biphase is also constant during this interval. We obtain the same coupling information at all
four measuring sites for all the peaks (1-8). The results obtained from time-bispectral analyses of the
measured signals are summarized in Tab. 5.3. Inspecting the data in Tabs. 5.1 and 5.3 we see no
obvious correlation between the average tidal volume and the onset of nonlinear cardio-respiratory

interaction.
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window to reduce leakage for the test signal (a) by, (b) b, and (c) by for peak 6 with its contour view. Middle: the

biamplitude A, and right the biphase ¢ a 0.1 s time step and 100 s long window were used for computation of the

DFT using a Blackman window.
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Tab. 5.3: Quadratic nonlinear couplings detected in blood flow signals marked by * in Tab. 5.1. For each
measurement, four blood flow signals were measured simultaneously at different sites, channels a-d. Ty is the
time interval during which the bispectral analysis showed that the heart oscillator f;,, and the respiratory oscillator
Jres might be nonlinear coupled. The product of T - fi.s tells us over how many respiratory periods the interaction

persisted. During 7. the maximum biamplitude is calculated for the peak 1 that is of our primary interest. In

addition, the maximum variation of the biphase Ag, its average value ¢ , and its standard deviation oy were

calculated during Tg.

Almzu —
Person Breathing Channel f S e Tocfres (arb. af g w
(Hz) | (Hz) | (s) : (rad) | (rad) | (rad)
units)
1 paced a 1.08 | 0.11 | 105.7 11.6 190 | 1.11 8.92 ( 0.20
1 paced d 1.00 | 023 | 56.8 13.1 62 0.92 1093 | 0.29
1 paced b 097 | 0.34 18.9 6.4 50 0.84 047 | 0.28
2 spontaneous a 1.16 | 0.14 | 82.0 11.5 352 | 1.87 32.68 | 0.47
2 paced c 1.05) 0.10] 895 9.0 122 | 1.48 4.05| 0.34
2 paced a 098 [ 0.11 95.6 10.5 383 | 147 322 | 042
3 paced d 1.08 | 0.13 | 56.5 7.3 334 1.29 221 | 048
3 paced c 1.10 | 026 | 524 13.6 52| 046 496 | 0.10
4 paced d 1.01 | 0.10 | 105.6 10.6 407 | 247 0.58 | 0.18
4 paced d 099 | 0.11 | 956 10.5 219 | 219 -6.51 | 0.76
5 paced d 120 | 0.10 | 575 58 1009 | 2.05 5.88 | 0.67

5.7 Cross-bispectrum

The bispectrum as defined in [40] can be seen as a special case of the cross-bispectrum when the three
signals are the same. In addition to the blood flow signals, the ECG e(#), respiration 7(#) and blood
pressure p(f) were also simultaneously recorded. This gave us the possibility of globally checking the
coupling between cardiac and respiratory activity using bivariate data. Let us define the cross-

bispectrum as [69]
B, (k)= X()Y(D)Y (k+1), 5.1

where X and Y are discrete Fourier transforms of two different signals x(#) and y(f) at discrete
frequencies k, / and k£ + I. We calculated the cross-bispectrum B.ey, (Where ¢ stands for cross, e for
signal e(r) and b for signal b(7)), for the case where x(7) is the ECG signal e(#) and y(f) is the blood
flow signal b,(f). The ECG signal tells us primarily about the cardiac electrical activity. The phase of




the first, cardiac component £, in the triplet (fi, £, fi1/2) is thus directly extracted from the ECG signal.
The respiratory component f, and the component at the harmonically related position f; + £, are

extracted from the blood flow signal.

We also define the cross-bispectrum as

By (k1) = X(Y(DHX (k+1), (5.2)

and calculate it for 2 different cases: (i) B, Where x(¢) is the blood flow signal b,(¢) and 3(¢) is the
respiration signal (7). The signal r(#) most directly describes the activity of the respiratory oscillator.
Therefore the phase of the second component in the triplet (f;, /5, f; + ) is directly extracted from the
respiratory signal. (ii) Bepp, Where x(7) is the blood pressure signal p(f) and y(¢) is the respiration signal
r(f). By calculating the latter cross-bispectrum we are interested in establishing whether the
information about coupling between the heart and the respiratory oscillators is signal-independent, i.e.,

whether it is also present in other CV signals.
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Fig. 5.9: Results for the cross-bispectrum. Row (a) shows the first 25 s of the signals: left ECG signal e(f),
middle respiration signal r(f), and right differentiated blood pressure signal p(¢7); whereas row (b) shows their
power spectra. The sampling frequency was f; = 400 Hz. In the lower rows (c) the biphase ¢ and (d) the
biamplitude A4 are shown; a 0.1 s time step and 100 s long window were used for computation of the DFT using a
Blackman window. The biphase and the biamplitude were calculated using the cross-bispectrum (left) By,

(middle) By, and (right) By,
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We proceeded as discussed above in Sec. 5.3. for each of the three different cross-bispectrum cases.
The time evolution of the signals e(r), r(t) and p(#) and their power spectra are presented in Fig. 5.9 (a)
and (b). For the cross-bispectrum B, all the peaks from 1 to 8 are present at the same bifrequencies
as in the case of auto-bispectrum of the blood flow signal. Since the power spectrum of the respiratory
signal P, exhibits only components of the respiratory oscillator we cannot expect peaks 5, 6 and 8 to
appear in the cross-bispectrum By, and Byyp. All the rest of the peaks are present at the same
bifrequencies as in case of the auto-bispectrum. The biamplitude meets our amplitude criterion within
the same time interval from 76.8 s to 172.4 s, for all peaks; moreover the biphase is constant during
this time interval. Examples of the biamplitude and biphase time evolution for peak 1 for the three

different cross-bispectrum are presented in Fig. 5.9 (c) and (d).

Cross-bispectrum were also calculated with surrogate data, where the phases of the frequency
components of the signals e(?), 7(f) and p(f) were randomized. No phase couplings were detected in
this case. The coupling information among cardiac and respiratory process seems to be signal

independent.

5.8 Discussion

The signals were measured on six persons, whereas in the first column of Tab. 5.3 data are only
provided for five; the sixth person also showed evidence of nonlinear couplings, but over time, these
intervals were too short to fulfil our required conditions. Four blood flow signals, simultaneously
measured in different places (channels a, b, ¢, and d), were available for each recording. We usually
first analysed the one with the most distinctive characteristic frequencies in its power spectrum and, if
our criteria were fulfilled, checked the other three signals as well. The time interval, T;, during which
quadratic coupling persisted, was determined; if all 6 peaks fulfilled our conditions, then the T
interval was calculated for all peaks, and the boundaries were defined such that the biamplitude for all

the peaks in T, interval would be above the condition.

Also shown in Tab. 5.3 are three cases where the couplings 7 lasted less than 10 - 1/, where 1/f; is
the longest respiratory period, since they could be detected very distinctly and clearly. Column A4,y is
the maximum biamplitude for peak 1 during the T interval. The strength of the coupling is, in
general, not correlated with its duration. For each T interval, the maximum variation Ag¢ of the

biphase, its average value, and its standard deviation, were calculated.
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Fig. 5.10: (a) Example of blood flow signal during spontaneous breathing for person 5, channel a and (b) its
power spectrum. (¢) Bispectrum [B| and its contour view calculated with K = 33 segments, 87 % overlapping,

and using the Blackman window to reduce leakage.

There was only a single case of spontaneous breathing for which the coupling lasted long enough (82 s
without phase slips) to fulfil the criteria. During the spontaneous respiration phase slips are relatively

frequent, and epochs with constant biphase are short.

Fig. 5.10 shows an example of data for spontaneous breathing (a) and its power spectrum (b). Signals
of this kind are, in general, very difficult to analyse due to their large time-variable frequency content,
which results in broadened and coalescing peaks, as seen in Fig. 5.10 (c). Peaks 1-6 cannot easily be

resolved due to time-frequency resolution restrictions.

5.8.1 Definition of the phase

As already mentioned above in Sec. 2.2, the cardiac and respiratory systems can be perceived as
coupled autonomous oscillators [6, 7, 9, 13, 59, 75, 99-101, 110, 111, 115]. Using a bispectrum based
on Fourier transform, which is a decomposition of the signal in terms of complex exponential
(sinusoidal) components, each component can be represented as a point in a complex space, R[X(k)]
versus J[X(k)], thus defining a vector, where X is DFT and k is a discrete frequency. Its magnitude
represents a power, whereas the phase is determined by the angle between the vector and the positive
real axis. The phase of an oscillator is defined as the phase of the sinusoidal component that lies
closest to the characteristic frequency of the oscillator, with a corresponding spectral peak. Thus our
phase definition differs from that in Kuramoto phase reduction, [54]. In this way it is possible to study

the phase relations and resolve the nature of the couplings.
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5.8.2 Nonlinear coupling, or linear coupling of strongly nonlinear

oscillators?

Our study is based on the assumptions that the cardiac and respiration processes can be described as
weakly nonlinear oscillators and that the interaction between them is also weak [116]. It is pertinent to
investigate what happens when these assumptions are not fulfilled. We have addressed the question in

two different ways based on analytic approximation and digital simulation, respectively.

The analysis in Appendix B considers harmonic generation by a pair of coupled, weakly nonlinear,
oscillators. It confirms that, for weak coupling, the appearance of additional harmonics at 2, 2@,
2, + 2w, @y + @, 3w + @ can confidently be associated with the presence of quadratic coupling.
For a sufficiently nonlinear oscillator and sufficiently strong coupling, these and other combinatorial
harmonics can in principle be generated, as a second-order effect, even for linear coupling. As will be
illustrated below, however, the appearance of these combinatorial harmonics does not in itself fulfil
the necessary conditions to support a conclusion that there is nonlinear coupling when tested by
bispectral analysis: the high biamplitude and constant biphase may be absent. In any case, the
bispectral approach cannot be expected to yield reliable information about the nature of the coupling

when the nonlinearities are extremely strong.

We have therefore complemented the analysis of Appendix B with a digital simulation, exploring the
range of extreme conditions where the bispectral approach is expected to fail. We have chosen to
simulate a generic model (5.3) of the van der Pol relaxation oscillator, with an additional nonlinear

term, linearly driven by another relaxation van der Pol oscillator via an additive coupling [125]

X =Y
W =51(1_x|)2y| _wlle +mx|2 + 44 (x, —x,) +S(1), (5.3)
X, =Y, .

J-’g =£2(1_x2)2y1 _a)zzxZ‘

The activity of the oscillators is described by the two state variables x; and y;, where g and @, = 2nf; are
constants, and i = 1, 2 denote respectively the driven or the driving oscillator. 7, is a constant that sets
the strength of the additional nonlinear term in the driven oscillator, and g, is the strength of the
coupling. Here, &(#) is zero-mean white Gaussian noise, (£(7)) = 0, (&1), &0)) = D&Xr) and D = 0.8 is
the noise intensity. Following the pioneering work of van der Pol and van der Mark [125], the

parameters are set to & = 70, and & = 3.




A detailed parameter space analysis has been completed, showing that a situation indeed exists for
which the bispectral technique fails to distinguish between the two situations when: (i) two oscillators
are strongly nonlinear, but linearly coupled; or (ii) when they are nonlinear and nonlinearly coupled.
As an illustration, bispectral analysis was performed for two coupled van der Pol oscillators, with and
without added Gaussian noise, for different sets of parameters. In the first case the strength of the
additional nonlinearity was changed, while z4 was kept constant: (a) 4 = const. = 1; 7, was 0, 0.5, 1,
2, 5,10, 12 and 15, and from 20 to 90 was varied with step 10 and 93 was also included. (b) 14 =
const, = 25; 77, was varied from 1 to 10 with step 1, values 12, 15, 18 and 25 were also considered, and
again values from 20 to 60 with step 10. In the second case the strength of the coupling was changed
while 77, was kept constant: (a) 7, = const. = 1; g was varied from 0.1 to 1 with step 0.1, from 1 to 10
with step 1, then values 2.5, 3.5, 11, 15, 20, 25, 30, 35, 120 and 200 were considered, and again values
from 40 to 100 with step 10. (b) 7, = const. = 5; g4 = 25. (c) 7 = const. = 15: 24 was varied from 1 to
10 with step 1, values 12, 15, 17, 20, 24 and 25 were considered, and again from 30 to 60 with step 10.

The test signal x,r(7) is the variable x, of the driven oscillator, recorded as a continuous time series. For
the first 400 s, the strength of the additional nonlinear term, i.e., 77, = 15 was very strong and the
coupling, i.e., g4 = 1 was relatively strong; 24 was then substantially increased to 25, whereas the
strength of the additional nonlinear term was decreased to 1. After a further 400 s, the strength of the
additional nonlinear term was increased back to 15. The first 5 s and corresponding power spectrum
for each coupling strength are shown in Fig. 5.11 (a) and (b). The peak 1.1 Hz in the absence of
coupling, labelled as f, represents the driven cardiac oscillator; and f; = 0.24 Hz represents the driving

respiratory oscillator. These frequencies are deliberately chosen such that their ratio is not an integer.

The power spectra, Fig. 5.11 (b), for all the three different cases of the strengths of the linear coupling
and additional nonlinear term exhibit rich frequency content. As the coupling gets stronger, and/or the
strength of the additional nonlinear term increases, the frequency content of the signal x;z becomes

richer. The power spectra clearly exhibit components at the harmonically related positions f; + f; and f

‘f:-

The principal domain of the bispectrum for the test signal x, Fig. 5.11 (c) and (d), shows a peak at the
bifrequency (0.96 Hz, 0.24 Hz) that is of our primary interest. A window length of 100 s was chosen
to calculate the instantaneous biphase and biamplitude, Fig. 5.11 (e) and (f), and was moved across the
signal in 0.1 s steps. The whole signal is analysed as a single entity, but transients caused by the
changes in coupling and/or in the strength of the additional nonlinear term are removed prior to

processing.
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Fig. 5.11: Digital simulation illustrating a situation where the bispectral method fails. The simulation models two
unidirectionally, very strongly coupled, relaxation van der Pol oscillators with additional very strong nonlinear
terms, in the presence of additive Gaussian noise. (a) The test signal x; of variable x, of the forced van der Pol
oscillator with characteristic frequency f; = 1.1 Hz periodically forced at frequency f5 = 0.24 Hz for three
different coupling strengths z, = 1 (1), 25 (2), and 25 (3), with strengths of the additional nonlinear term 7, = 15
(1), 1 (2), and 15 (3). Each coupling lasts for 400 s, at sampling frequency f; = 50 Hz. Only the first 5 s are
shown in each case. (b) The power spectrum of xr. (¢) Its bispectrum |B]| calculated with K = 34 segments, 67 %
overlapping and using the Blackman window to reduce leakage and (d) its contour view. (e) The biphase ¢ and
(f) the biamplitude A for bifrequency (0.96 Hz, 0.24 Hz), with a 0.1 s time step and a 100 s long window for
estimating the DFTs using the Blackman window, for cases (1), (2) and (3). Note that only for (3) are both
conditions (i.e., high enough biamplitude, and constant biphase) for the (incorrect) inference of nonlinear

coupling satisfied.

During the period of relatively weak coupling 4 = | and strong nonlinearities, no peak is present in
the bispectrum as can be seen from the biamplitude, Fig. 5.11 (f), which remains far below unity
(0.012). Moreover, at value 7, = 0.7 the frequency component at modulation position f; + f; appears in
the power spectrum for the first time. The modulation components f; + /, become large and almost

equal in size in the power spectrum, but not until 7, = 15. However, even then, not all the necessary




peaks (also peak at bifrequency (f;, 2f;)) in the bispectrum are present and the method correctly

resolves the absence of nonlinear coupling, even though the biphase is constant, Fig. 5.11 (e).

By grossly exaggerating the strength of the coupling, with gz = 25, the frequency components that
might also arise from nonlinear coupling become large. This results in an substantial increases of the
biamplitude at bifrequency (f}, £) in the bispectrum; the biphase is then non-constant, however, and
increases continuously. Again the required conditions for the identification of nonlinear coupling are

not fulfilled.

In the most extreme example shown, with very strong coupling and very strong additional
nonlinearity, i.e., with 7, = 15, x4 =25, we are unable to distinguish between strong nonlinearity of the
oscillators and strong nonlinear coupling. In a signal coming from a “black box”, the observed
frequency components could mistakenly be attributed to nonlinear coupling: the bispectrum, Fig. 5.11
(c), contains all the necessary peaks (only three of them are visible, the rest of them being much
smaller, although fulfilling the necessary amplitude condition). There are other frequency components
that could result from nonlinear coupling, and the biphase remains constant. In this case the method

clearly fails.

There are, however, compelling arguments suggesting that the cardiac and respiratory subsystems
should be in fact treated as weakly nonlinear oscillators that are weakly coupled. (i) In healthy
subjects, breathing spontaneously, only occasional and brief episodes of synchronization are seen [10,
99-101], indicative of relatively weak coupling. (ii) Sinus arrhythmia is small at spontaneous breathing
frequencies and only slightly larger at very low breathing frequencies [23], again supporting a weak-
coupling description. (iii) The couplings can sometimes decrease almost to vanishing point, e.g., in
coma [112]. Without couplings, the dynamics becomes drastically simplified - with complete absence
of synchronization or modulation. The fact that virtually no variability is seen in any of the natural
frequencies, despite small amplitude variations attributable to internal noise, suggests that the
oscillators themselves are at most weakly nonlinear. (iv) If there were strong oscillator nonlinearity,
and strong (but linear) coupling, we would observe many combinatorial components around the
cardiac frequency, which is not the case (see Fig. 5.1 (a) - (d)). The excessively strong-coupling
regime explored in the above simulations would appear, therefore, to be largely irrelevant to the
cardio-respiratory interaction that we study in this work: our bispectral technique [40] should be

applicable as we have assumed.
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5.8.3 Relationship to synchronization

The fact that inter-oscillator interaction can give rise to synchronization, as well as to modulation, has
excited much attention in studies of the phase relationships between the cardiac and the respiratory
oscillators [10, 24, 42, 46, 52, 71,92, 95, 97, 100, 101, 113, 114, 118]. Indeed, it was the possibility of
synchronization that motivated us to develop new techniques to investigate further the interactions
between the systems: the direction, strength and, in particular, the nature of the couplings. They can be
obtained from bivariate data (respiration and ECG signal) by use of the methods recently developed
for analysis of synchronization, or generalized synchronization, between chaotic and/or noisy systems
(see [79] and references therein). We now consider whether or not synchronization is onsets under

conditions where we have clear evidence of interaction.

Fig. 5.12 (d) shows a cardio-respiratory synchrogram based on the stroboscopic technique [79] for
person 2 during paced respiration, supplementing bispectral results for signal b,. It is constructed by

plotting the normalized relative phase of a heartbeat within m respiratory cycles [79]

a6 = (6,6 mod 2m), (5.4)
T

where # is the time of A-th heart beat and ¢, is the instantaneous phase of respiration. In perfect n:m
phase locking, %,(#) attains exactly the same » different values within each m adjacent respiratory
cycles and the synchrogram consists of » horizontal strips. The instantaneous phase of the cardiac
activity was obtained by characteristic or marker events - the R peaks in the ECG signal. A 27 increase
of phase is attributed to the interval between subsequent R peaks. The instantaneous phase of

respiration was obtained in a similar way, using zero-crossing as the marker event.

For m = 1 we cannot see any horizontal structure that would resolve n:1 phase locking during 77-172
s. By differentiating the instantaneous phases we obtain the instantaneous (a) cardiac and (b)
respiratory frequencies and (c) their ratio as shown in Fig. 5.12. In the histogram of frequency ratio
(not shown) two peaks appear, one at f;/f; = 9 and the other at £,/f; = 10, as can also be seen from the
Fig. 5.12 (c). The synchrogram presented in Fig. 5.12 (e) shows the case where m = 9. The vertical
inclined lines suggest that the frequency ratio is almost constant, whereas phase drift is present most of
the time. No synchronization is evident in either synchrogram. It looks as though the cardiac
oscillation has a tendency to synchronize with the respiratory one, but cannot tune due to the slow-

paced respiration frequency. In other words, it appears that, for most of the time, the cardiac frequency

5




is just modulated by the respiratory rhythm, i.e., what is commonly referred to as respiratory sinus

arrhythmia.
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Fig. 5.12: (a) Instantaneous cardiac frequency f;, (b) instantaneous respiratory frequency f, and (c) their
frequency ratio for person 2 during paced respiration, supplementing bispectral results for blood flow signal b,.

(d) Synchrogram based on stroboscopic technique calculated for m = 1 and (e) m = 9.

Using the synchrogram technique we thus detect the existence of frequency modulation but no
synchronization for the case of paced, low frequency, respiration. We conclude, therefore, that
bispectral analysis yields different information from that which can be resolved from a synchrogram.
The relation to synchronization in more general way is going to be discussed in detail in the

subsequent chapter.

5.8.4 Synchronization, modulation and type of coupling

Just as frequency modulation does not necessarily coexist with synchronization between the cardiac
and respiratory systems, there is not a one-to-one correspondence between quadratic coupling and

modulation. As seen in Fig, 5.12 (a), the cardiac frequency is continuously modulated by the
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respiratory frequency throughout the recording, whereas quadratic coupling is reliably detected only in
the interval between 77 s and 172 s. Using bispectral analysis we can obtain additional information
about the possible presence of modulation. Inspection of the time evolution of the amplitudes and
phases for all the frequencies that constitute the triplets for bifrequencies summarized in Tab. 5.3 has

shown that the observed nonlinear coupling does not correspond directly to frequency modulation.

It remains an open question whether the observed interchange and coexistence between modulation,
synchronization and other manifestations of coupling arise through complexity of the cardio-
respiratory interaction itself, or through indirect interactions involving the other oscillatory processes

(see [110] and the references therein) known to exist in the cardiovascular system.

5.8.5 Unidirectional or bidirectional coupling

We have studied the combinatorial frequencies, that arise from the influence of the respiratory on the
cardiac system. This naturally begs the question of whether the coupling is unidirectional or
bidirectional. Using the same method, one could equally well analyse the combinatorial frequencies
responsible for the influence of cardiac on the respiratory system. In fact, using newly developed
algorithms for analysis of the direction of coupling [72, 93, 94, 103] has already shown [73, 117], that

the two systems are bidirectionally coupled.

5.8.5.1 Forced oscillator

The effect of respiratory system is, however, dominant (i.e., is the driving system) at all respiratory
frequencies, whether paced or spontaneous [73, 117]. The interaction between the cardiac and
respiratory oscillators can be seen as unidirectional: the respiratory system drives the cardiac one. A
particular case is the case of the paced respiration. Although, during paced respiration, the respiration
frequency is kept constant, the situation differs from that of a forced oscillator (with the cardiac
oscillator being driven, and the respiration oscillator being the drive). Paced respiration experiments
can in fact be perceived as a state of the system of two coupled oscillators, where, although the
frequency of one of them (respiration) is forced and kept constant, the interaction between the two

oscillators remains spontaneous.

To illustrate how this happens, we use a generic model (5.5) of an almost periodic, Poincaré oscillator

periodically, driven by a weak external force




X =-xq—,y+ Fsin(o,t +¢,) +&(1),
y=-yq+0x, (5.5)

g=a(x*+y* -

The activity of the oscillator is described by the two state variables x and y, &, a and @, are constants
and F is the forcing amplitude with frequency @, and initial force phase ¢. Here, &(#) is zero-mean
white Gaussian noise, (&(1)) =0, (&(7), &0)) = DA¢), and D = 0.1 is the noise intensity. The parameters

of the model are setto =1, and a=0.5.
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Fig. 5.13: Results for a forced Poincaré oscillator in the presence of additive Gaussian noise. (a) The test signal
X1, of variable x of the forced oscillator with characteristic frequency f; = 1.1 Hz periodically forced at
frequency f; =0.24 Hz with three different forcing amplitudes; ' = 0.0 (1), 0.1 (2) and 0.2 (3). Each forcing lasts
for 400 s, at sampling frequency £, = 10 Hz. Only the first 15 s are shown in each case. (b) Its power spectrum.
(c) The bispectrum |B| calculated with K = 33 segments, 66 % overlapping and using the Blackman window to
reduce leakage and (d) its contour view. The part of the bispectrum above £, > 1.0 Hz is cut, because the triplet
(1.1 Hz, 1.1 Hz, 2.2 Hz) produces a high peak that is physically meaningless. (¢) The biphase ¢ and (f)
biamplitude A for bifrequency (1.1 Hz, 0.24 Hz), with a 0.3 s time step and a 100 s long window for estimating
the DFTs using the Blackman window.
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The test signal x;5(?) is the variable x of the driven oscillator, recorded as a continuous time series. For
the first 400 s, there was no forcing, i.e., the amplitude was set to zero. It was then raised to a small
constant value 0.1. After a further 400 s, it was increased again to 0.2. The first 15 s and corresponding
power spectrum for each forcing strength are shown in Fig. 5.13 (a) and (b) in order to demonstrate the
changes in spectral content and behaviour caused by the forcing. The peak labelled as f; = 1.1 Hz
represents the driven cardiac oscillator and the £, = 0.24 Hz represents the driving respiratory

oscillator. These frequencies are deliberately chosen to have an irrational ratio.

For nonzero forcing strength F, there is at least one peak present at the harmonically related position
21, - f; attributable to forcing of the cardiac oscillator. It arises from the nonlinearity of the first
oscillator, but is caused by the forcing. Clearly, the power spectrum does not exhibit any components
at the harmonically related positions f; + £, and f; - f, that are present in case of real cardiovascular

blood flow signals.

The principal domain of the bispectrum for the test signal x,g, Fig. 5.13 (c) and (d), shows a peak at
the bifrequency (1.1 Hz, 0.24 Hz) that is of our primary interest. A window length of 100 s was chosen
to calculate the instantaneous biphase and biamplitude, Fig. 5.13 (e) and (f), and was moved every 0.3
s across the signal. The whole signal is analysed as a single entity, but transients, caused by the

changes in forcing strength are removed prior to processing.

Longer epochs of constant biphase cannot be observed: it changes continuously and many phase slips

are present.

Note, that the cardio-respiratory interaction is more complex than just a driven oscillator, since this
cannot produce the observed frequency components, and nor is the biphase constant during the
forcing. Although the respiration frequency is kept constant, the situation differs from that of a forced
oscillator (with the cardiac oscillator being driven, and the respiration oscillator being the drive). In a
sense, the respiratory oscillator is a driven one, with which the cardiac oscillator interacts. Beside the
mechanical interaction there is also the interaction via the central nervous system. Bispectral analysis
shows different information, which can be resolved from the synchrogram. In the power spectra of the
cardiovascular signals higher harmonic components are present, as well as components at the
modulation frequency. The higher harmonic components could be, due to nonlinear coupling,
nonlinearity of the oscillators, or blood propagation through the veins. The latter possibility must be
excluded, however, since the modulation components in question are also present in the ECG signal.
In the present work we are concerned not with the origin of these components, but mainly with their

phase relationships.
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6 BISPECTRAL RELATION TO SYNCHRONIZATION

6.1 Synchronization definition

6.2 Measurements
6.3 Data analysis
6.4 Results
6.4.1 Ratl6
6.4.2 Rat20
6.5 Discussion
6.5.1 Synchronization and modulation

6.6 Conclusions

The question of bispectral analysis related to synchronization was already opened and discussed in
Sec. 5.8.3 and 5.8.4. At that time, it was not possible to give well-founded conclusions. In the
following chapter, we further investigate the question in more detail. We use signals obtained from
rats undergoing anaesthesia. The signals have already been analysed using a synchronization
technique [63, 64]. Two signals which were chosen for analysis, using the bispectrum as their
synchrograms, express very clear episodes of synchronization. Since there is not a unique way of

defining the synchronization, we will start with a brief synchronization definitions overview.

6.1 Synchronization definition

Synchronization is a basic phenomenon in physics, discovered at the beginning of the modern age of
science by Huygens [37]. In the classical sense, synchronization means the adjustment of frequencies
of periodic oscillations due to weak interactions [2, 4, 30]. The most fundamental definitions of
synchronization are frequency and phase synchronization. These definitions have been generalized to
encompass synchronization phenomenon from coupled (two or more) periodic, noisy to chaotic
oscillators [79]. Throughout this work, we use synchronization as an abbreviation for phase

synchronization.




Frequency synchronization. Generally, the interaction between two systems is nonsymmetrical:
either one oscillator is more powerful than the other, or they influence each other to different extents,
or both. If the action in one direction is essentially stronger than in the other one, then we have a
particular case of external forcing. In this case, the frequency of the driven system is pulled towards
the frequency of the drive. The main point in a bidirectional interaction is that the frequencies of both
oscillators change. Let us denote the frequencies of the autonomous systems as f; and /5, and let £ < f5;
the observed frequencies of interacting oscillators are denoted as Q,,. If the coupling is sufficiently
strong, frequency locking or entrainment appears as the mutual adjustment of frequencies, so that Q, =
Q, = Q, where typically f; < Q < f,. Whether or not synchronization takes place, depends on coupling
strength and frequency detuning, or mismatch. The identity of the frequencies that hold within a finite
detuning range is the hallmark of synchronization, and is called frequency locking (also mode
locking). The entire family of curves, Q - f, vs /, (f; is the drive), for different values of the forcing
amplitude, & determine the region in (f, &) plane that corresponds to the synchronized state of the

oscillator, called synchronization region or Arnold tongue [79].

Phase synchronization. The onset of a certain relationship between the phases of two synchronized
self-sustained oscillators is often called phase locking. Frequency locking implies a certain relation
between the phases that depend, not only on the frequency detuning and coupling strength, but also on
the way in which the systems are interacting. Let us consider two nearly identical, symmetrically
coupled oscillators. If the interaction is weak, then we can assume that only the phases are influenced,
and that they shift the points along the limit cycles, but not the amplitudes. Phase-attractive interaction
leads to in-phase synchronization, whereas the phase-repulsive one results in anti-phase

synchronization.

Mutual synchronization. It is a special case of phase synchronization when two oscillators equally
affect each other. This case covers the classical experiment of Huygens [37]. Mutual phase
synchronization of chaotic oscillators is also possible. In this case, synchronization notation is
specified more precisely, because it is not obvious how to characterize the rhythm of a chaotic

oscillator. Chaotic oscillatory process can be characterized by mean frequency [79]

T, 6.1)

where 7 is a large time interval and N, number of cycles within interval z. If the coupling is large

enough, than the mean frequencies of the two oscillators become equal. This does not imply that the
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signals must also coincide. Weak coupling does not affect the chaotic nature of both oscillators; the

amplitudes remain irregular and uncorrelated, whereas the frequencies are adjusted.

High-order synchronization. Generally, when the incommensurate frequencies of an uncoupled
system obey relation nf; ~ mf;, synchronization of order n:m arises for sufficiently strong couplings.
The frequencies of interacting systems become locked, nf; = mf,, and the phases ¢ and ¢ are also

related. The condition of phase locking can be formulated as [79]

¢n,m - n¢1 —m¢2 = const. . (62)

where n and m are integers. For periodic oscillators, the condition of phase locking is equivalent to the

notation of the frequency locking [79]:
nf) - mf; = const. (6.3)

This phase locking condition (6.2) can be used only for quasi-periodic oscillators. For more general

forms of nonlinear oscillators, i.e., relaxation oscillators, a weaker condition of phase locking is used,

‘ngﬁ, —mg, —5| <const., 6.4)

where ¢ is some phase shift. A phase shift between the oscillators depends on the initial detuning of

the interacting systems and the type and parameters of coupling.

Lag synchronization. Lag synchronization is defined as a coincidence of states of two systems shifted
in time, x5(t + 7) = x;(#) [91]. It is an appearance of shift between times of characteristic points of the

first (7}) and the second (73) oscillator, formulated as [91]

nT, —mT, = const. (6.5)

Global synchronization. In large ensembles of oscillators, where each element interacts with all
others, it is also denoted as all-to-all coupling. A phase-transition-like phenomenon, characterized by
the appearance, or disappearance, of collective oscillations in the oscillator communities is known as

Kuramoto self-synchronization transition [54].




Complete synchronization. Contrary to phase synchronization, it can be observed in any chaotic
system, not necessarily autonomous systems. This phenomenon is not close to the classical
synchronization of periodic oscillations, due to the lack of rhythm adjustment. Complete
synchronization is the suppression of differences in coupled identical systems. This effect cannot be
described as entrainment or locking, as it is closer to onset of symmetry. Regime, where each of the
systems demonstrate that chaos and their states are identical at each moment in time, is called

complete synchronization®.

Generalized synchronization. This is the synchronization of nonidentical systems. Clearly, the states
cannot coincide exactly, but they can be rather close to each other. In particular, it may be that for a
large enough coupling, there is a functional relation x, = F(x,) between the states of the two systems.
This means that knowing the functions F, one can uniquely determine the state of the second system,
if the first is known. The regime is called generalized synchronization [96]. Complete synchronization
is a particular case of generalized synchronization when the functions F are simply identity functions.
Typically, generalized synchronization is observed for unidirectional coupling when the first (driving)
system forces the second (driven) system, but there is no back-action, known as a master-slave

coupling.

Synchronization and noise. In general, synchronization can be destroyed in the presence of noise.
Measured data sets contain some noise. It can be instrumental, thermal, physiological, or numerical,
i.e., resulting from quantization of analogue signals. By physiological, we mean the effect of
interactions on the measured quantity with the rest of the system. It manifests as a complex
modulation of the natural frequency of the subsystem under observation. However, if the noise is
small, the frequencies are nearly locked. Phase difference would be expected to fluctuate around a
constant value. In this case, the condition (6.3) is fulfilled on an average, n{f;) = m(f;). Large noise can
cause phase slips, i.e., the phase performs random-walk-like motion. Strictly speaking, the
synchronization region shrinks to a point where the largest phase-locking intervals survive as regions

of nearly constant mean frequency.

If we consider synchronization in the presence of noise, synchronization of chaotic systems, or
synchronization of oscillators with modulated natural frequencies, phase and frequency locking, may
no longer be equivalent [101]. One can distinguish between several forms of synchronization
frequency and phase locking, phase locking without frequency locking and frequency locking without

phase locking [79]. The question of whether it is synchronous or not cannot be answered in a unique

% Sometimes the terms identical, full and chaotic are also used.
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way, but only treated in a statistical sense. Phase synchronization can be understood as the appearance

of a peak in the distribution of the cyclic relative phase [79]

V.= @, , mod2rm, (6.6)

and interpreted as the existence of a preferred stable value of the phase difference ¢, ,, between the two

oscillators.

In the case of the cardiovascular system, with time-varying characteristic frequencies, phase
synchronization may onset, while the frequencies may or may not be entrained. The notation (6.4) is

used for phase synchronization.

6.2 Measurements

Electrical activity of the heart (ECG), respiration, EEG and temperature were recorded from rats
undergoing anaesthesia. 21 rats all weighted 250 g, most of them males, were measured. The first 11
rats were of testing nature used for calibration of the measuring devices and determination of the
signal quality. They were not used for the subsequent data analysis. The measurements started 4-7
minutes after the anaesthetic (Rompun- ksilizinhydrochlorid, Ketalar-ketaminhydrochlorid) infusion
and ended once the rats started to move spontaneous (pinch test). The duration of the measurements
was ~70 min. All signals were digitized with 16-bit resolution and sampled at 1000 Hz using National
Instruments measuring device. Temperature was set to 24 £+ 1 °C. Rats were lying on abdomen during
the measurement in Faraday’s cage. The data acquisition techniques are described in [63] but, in
summary, were as follows. The respiratory effort was measured using the TSD101B Respiratory
Effort Transducer (Biopac Systems, Inc., USA). It consists of a piezoresistive sensor mounted on an
inelastic band. To detect the respiratory movements, the band was wrapped around rat abdomen. The
electrical conductivity of the sensor was proportional to the increase of abdominal circumference. The
electrical activity of the rat’s heart was obtained using three electrodes. The reference electrode was
mounted on the rat’s tail whereas the remaining two electrodes were put on the front legs of the rat.
EEG, the electrical activity of the rat’s brain was measured using one differential signal and one
reference electrode. The electrodes were realised with medicine needles that were thrusted into the
rat’s head. And finally the temperature was measured using NTK (negative temperature coefficient)

resistors in differential binding.
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6.3 Data analysis

We proceeded as already discussed above in Sec. 5.6. for the calculation of cross-bispectrum Beere,
where ¢ stands for cross, e for signal e(#) and r for signal #(¢). The ECG and respiration signals were
first pre-processed. Both very low and very high frequencies were removed by use of moving average
windows: drift with a 200 s long window; and high frequencies with a 0.04 s window while, and at the
same time, the signal was resampled to 50 Hz. By using the moving average before resampling, we
avoid problems of aliasing [81]. In case of cross-bispectrum calculation the signals have been further

normalized between zero and one, and their mean value subtracted.

The maximum biphase and biamplitude were calculated for each peak. The frequency resolution was
set to be 1/20 of the lowest respiration frequency or better. The slowest-paced breathing, f,, was
approximately 1 Hz, so that a window of 20 s or longer was necessary for estimation of the cross-
bispectrum, biphase and biamplitude. Short plateaus in the estimated biphase occur frequently. To
exclude coincidence interactions we focused on those that lasted for at least about 10 periods of the
lower coupling frequency f;. The length of the window also determines the time resolution. In the case
of the slowest-paced breathing, where f, was 1 Hz we were seeking approximately 10 times (1/£) =10
s long epochs of constant biphase. Therefore a window length of 10 s or less was necessary to meet the
criterion for time resolution. Due to the Heisenberg uncertainty principle [43], the scope for choice of
window length is limited, and compromise is needed between time and frequency resolution. 20 s long
window was chosen. The window was moved along the time series with a time step of 0.1 s. The
critical value for the biamplitude estimate to be considered valid was set in all cases to 2, i.e., twice the

average value of the bispectrum within its so-called inner triangle (IT), as discussed in Sec. 3.3.

By calculating the cross-bispectrum we are interested in establishing relation to the information about

coupling between the heart and the respiratory oscillators and one obtained from the synchrogram.

6.4 Results

We show results of cross-bispectrum obtained from ratl6 and rat20 rats signals undergoing

anaesthesia where a clear episodes indicating synchronization were detected.
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6.4.1 Rat16

Examples of detrended, resampled and their mean value subtracted ECG e(f) and respiration r(f)

signals for ratl6 undergoing anaesthesia are presented on Fig. 6.1 (a) and (c).
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Fig. 6.1: 10 s of detrended, resamlpled and removed zero mean (a) ECG ¢(r) and (c) respiration r(f) signal for the
case of ratl6 undergoing anaesthesia, ~72 minutes long at sampling frequency f; = 50 Hz and power spectrums
(b) and (d).
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Fig. 6.2: (a) Instantaneous cardiac, (b) respiration frequency and (c) their frequency ratio for a ratl6 undergoing

anaesthesia. (d) Cardio-respiratory synchrogram for the rat16.

The peak in the power spectrum, Fig. 6.1 (b), at frequency of ~4.4 Hz belongs to cardiac activity, fi;
the ones at ~1-1.5 Hz belong to the respiratory activity, />, Fig. 6.1 (d). It can be seen that their precise




! _.;ggggngxnnn
values vary in time, which is what makes the analysis difficult. The widths of the peaks indicate their

time-variable frequency content.

The instantaneous phase of the cardiac activity was obtained by characteristic or marker events - the R
peaks in the ECG signal. A 2n increase of phase is attributed to the interval between subsequent R
peaks. The instantaneous phase of respiration was obtained in a similar way, using expiration moment
as the marker event. By differentiating the instantaneous phases we obtain the instantaneous (a)

cardiac and (b) respiratory frequencies and (c) their ratio as shown in Fig. 6.2.

Fig. 6.2 (d) shows a cardio-respiratory synchrogram based on the stroboscopic technique [79] for rat16
undergoing anaesthesia. A 3:1 phase locking can be seen lasting from 1.83 until approximately 9.1
min. #{ attains same 3 different values within each 1 adjacent respiratory cycle resulting in 3
horizontal strips in synchrogram during this time. Just before time equals 20 minutes horizontal
structures appear again resolving a 4:1 phase locking during breathing indicating synchronization and
then disappear before time equals approximately 33.6 min. It cannot be clearly seen that 3 strips occur

after that indicating weak 3:1 synchronization till approximately 44.6 min.

In the histogram of frequency ratio, Fig. 6.3, two high peaks appear, one at f5/f; = 3 and the other at

flfi = 4 as one would expect from the content of the synchrogram.
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Fig. 6.3: Histogram of cardiac f; and respiratory f; frequency ratio for the ratlé.

Cross-bispectrum for rat16 is presented in Fig. 6.4. High peaks are indicating frequency and/or phase
interactions between cardiac and respiratory activity. From the contour view of the cross-bispectrum it
can be clearly seen that at bifrequency of our primary interest two peaks occur. The first one is located

at (4.25 Hz, 1.1 Hz), and the second one at (4.45 Hz, 1.4 Hz) resolving that there was a frequency shift
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in cardiac and respiratory activity. For both peaks we are looking for further three peaks, according to

their frequency relations, Tab. 5.2. All of them are present.
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Fig. 6.4: Results for a rat16 undergoing anaesthesia. (a) The cross-bispectrum |B...| calculated with K = 211

segments, 0 % overlapping and using the Blackman window to reduce leakage and (b) its contour view.
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Fig. 6.5: The biphase ¢ and biamplitude A for bifrequencies: (a) peak 1 (4.25 Hz, 1.4 Hz), (b) peak 2 (2.85 Hz,
1.4 Hz), (c) peak 3 (2.85 Hz, 2.8 Hz) and (d) peak 4 (4.25 Hz, 2.8 Hz) with a 0.1 s time step and a 20 s long

window for estimating the DFTs using the Blackman window.
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Fig. 6.6: The biphase ¢ and biamplitude A for bifrequencies: (a) peak 1 (4.45 Hz, 1.1 Hz), (b) Peak 2 (3.35 Hz,
1.1 Hz), (c) Peak 3 (3.35 Hz, 2.2 Hz) and (d) Peak 4 (4.4 Hz, 2.2 Hz) with a 0.1 s time step and a 20 s long

window for estimating the DFTs using the Blackman window.

6.4.2 Rat20

Examples of detrended, resampled and their mean value subtracted ECG e(7) and respiration #(f)

signals for rat20 undergoing anaesthesia are presented on Fig. 6.7 (a) and (c).
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Fig. 6.7: 10 s of detrended, resampled, normalized and removed zero mean (a) ECG e(f) and (c) respiration »(r)

signal for the case of rat20 undergoing anaesthesia, ~72 minutes long at sampling frequency £, = 50 Hz and their

power spectrums (b) and (d).
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The peak in the power spectrum, Fig. 6.7 (b), at frequency of ~4.3 Hz belongs to cardiac activity, f;;
the one at ~1 Hz belongs to the respiratory activity, f,, Fig. 6.7 (d). Beside second harmonic of the f; a
peak can be seen ~6 Hz. This peak occurs when the rat starts wakening from anaesthesia, the inclined
transition in the instantaneous cardiac frequency at approximately 40 min, Fig. 6.8 (a). Instantaneous

respiratory frequency and ratio of cardiac and respiratory frequencies are shown in Fig. 6.8. (b) and

(c).
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Fig. 6.8: (a) Instantaneous cardiac, (b) respiration frequency and (c) their frequency ratio for a rat20 undergoing

anaesthesia. (d) Cardio-respiratory synchrogram for the rat20.

Fig. 6.8 (d) shows a cardio-respiratory synchrogram for rat20 undergoing anaesthesia. A 4:1 phase
locking can be seen starting at approximately 4.4 minutes until approximately 10.7 minutes and from
approximately 33.7 minutes until approximately 37.9 minutes, both resulting in 4 horizontal strips in

synchrogram during that time.

In the histogram of frequency ratio, Fig. 6.9, one high peak appears at £o/f; = 4.2 as one would expect
from the content of the synchrogram. The peak at frequency ratio 1.6 is due to rat20’s onset of

spontaneous breathing from approximately 38 to 42 minutes, Fig. 6.8 (b), and is thus irrelevant.

Cross-bispectrum for rat20 is presented in Fig. 6.10. High peaks appear, indicating at least frequency
interactions between cardiac and respiratory activity. From the contour view of the cross-bispectrum it
can be clearly seen that at bifrequency (4.3 Hz, 1.05 Hz), that is of our primary interest a peak appears.
Close inspection of the cross-bispectrum resolves all three other, according to their frequency

relations, Tab. 5.2, necessary peaks. They are all present.
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Fig. 6.9: Histogram of cardiac f; and respiratory f frequency ratio for the rat20.
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Fig. 6.10: Results for a rat20 undergoing anaesthesia. (a) The cross-bispectrum |B...| calculated with K = 185

segments, 0 % overlapping and using the Blackman window to reduce leakage and (b) its contour view.
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Fig. 6.11: The biphase ¢ and biamplitude A for bifrequencies: (a) peak 1 (4.3 Hz, 1.05 Hz), (b) peak 2 (3.25 Hz,
1.05 Hz), (c) peak 3 (3.25 Hz, 2.1 Hz) and (d) peak 4 (4.3 Hz, 2.1 Hz) with a 0.1 s time step and a 20 s long

window for estimating the DFTs using the Blackman window.

6.5 Discussion

Rat16. Both cross-bispectrum and synchrogram analysis produced very similar results. The cardio-
respiratory synchronization appears in synchrogram in the beginning of the signal, at 1.83 minutes, in
the ratio 3:1, and lasting until approximately 9.1 minutes. This interaction can be seen in the cross-
bispectrum as presence of the peaks. Close inspection, i.e., calculating the biamplitude and biphase for
the peak of our primary interest at bifrequency (4.45 Hz, 1.1 Hz), indicates high amplitude and a
constant biphase during this time, Fig. 6.6 (a). This indicates a phase coupling between the cardiac and
respiratory oscillators. Moreover, inspecting peaks 2-4 at frequency positions related according to Tab.
5.2, we obtain the same results. Biamplitudes are high and biphases are constant during this time, Fig.
6.6 (b) - (d). Taking into account the conditions for nonlinear quadratic interaction, we obtain two
distinct time intervals, Ty, and Ty, where they are all fulfilled, Tab. 6.1. The first, Ty, starts at 4.20
minutes and lasts for 47 seconds, or 66 breathing cycles. The second, 7, starts at 5.25 minutes and

lasts for 66 seconds, or 92 breathing cycles.

Analysing further, according to the synchrogram after the 3:1 synchronization stops, we obtain a 4:1
synchronization starting at approximately 20 minutes, and persisting until approximately 33 minutes.
In cross-bispectrum, a peak at bifrequency (4.25 Hz, 1.4 Hz) appears. Other peaks also appear that are

frequency related according to Tab. 5.2. From the biamplitude’s time dependences, Fig. 6.5 left
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column, we obtain high biamplitudes at all inspected bifrequencies, 4, - 44 during this time. Biphases
also tend to be constant during this time, Fig. 6.5 right column. Biphases 4, and 4, are constant,
whereas biphases 4; and 44 have many phase slips. There is only one longer time interval when
conditions for nonlinear quadratic interaction are fulfilled. It starts at 20.33 minutes and lasts for 14

seconds, or 15 breathing cycles.

In the synchrogram, it cannot be clearly seen that three strips occur after 4:1 synchronization at
approximately 38 minutes, indicating weak 3:1 synchronization until approximately 44.6 minutes.
This weak interaction can also be detected with the cross-bispectrum. There is a biamplitude rise
above 0 during this time, Fig. 6.6 left column, and biphase ¢, tends to be constant, Fig. 6.6 (a). Peak 3

is absent, and we cannot detect any nonlinear interaction during this time.

Rat20. Cross-bispectrum and synchrogram analysis results differ. The cardio-respiratory
synchronization appears in synchrogram at the beginning of the signal at approximately 4.4 minutes,
in the ratio 4:1, and lasts until approximately 10.7 minutes. This interaction can be also seen in the
cross-bispectrum, indicating the presence of peaks. Calculating the biamplitude and biphase for the
peak of our primary interest at bifrequency (4.3 Hz, 1.05 Hz), indicates high amplitude and a constant
biphase during this time, Fig. 6.11 (a). This indicates a phase coupling between the cardiac and
respiratory oscillators. Further inspection of peaks 2-4 at frequency positions related according to Tab.
5.2, provided the same results. Biamplitudes are high and biphases are constant during this time, Fig.
6.11 (b) - (d). Taking into account when the conditions for nonlinear quadratic interaction are fulfilled,
we obtain an interval starting at 7.33 minutes, that lasts for 76 seconds, or 80 breathing cycles, Tab.

6.1.

Second synchronization section, from approximately 33.7 to 37.9 minutes in the synchrogram, when
the 4:1 synchronization reappears. In this case, the information obtained from the cross-bispectrum
differs from the synchrogram. From biamplitude 4, time dependence, a high amplitude can be seen
during the interval at 25-35 minutes. During this time, biphase ¢, is constant, but only until 33 minutes
when 4:1 synchronization is detected in the synchrogram. At this point, biphase ¢ is no longer
constant, and biamplitude 4, begins to decrease until it reaches 0, at which point, the synchronization

stops. Peak 3 is not present during this time.

The data of Rat20 was specifically chosen, as there is constant frequency ratio from approximately 15
minutes to 30 minutes, Fig. 6.8 (c), but no synchronization can be seen in the synchrogram, Fig. 6.8
(d). Bispectrum resolves more information about the coupling. From the Fig. 6.11 (a), (b) and (d) there

is high biamplitude during this time whereas (c) is low. The biphase for peak | is constant from 25
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minutes onwards. This strongly suggests that modulation takes place. In the following chapter this will

be discussed in detail.

Tab. 6.1: Quadratic nonlinear couplings detected in rat16 and rat20 signals. 7 is the time interval during which
the bispectral analysis showed that the heart oscillator, f,, and the respiratory oscillator, f., might be nonlinear
coupled. The product of Ty x f.s provides us with the amount of respiratory periods over which the interaction

persisted. During T, the maximum biamplitude is calculated for peak 1, which is of primary interest to us. In

addition, the maximum variation of biphase Ag, its average value ¢ , and its standard deviation oy, Were

calculated during 7.

Almnx —
t l§ res T c A
Rat | | AL ® | Texfes | (arb. g ¢ %
(min) [ (min) | (Hz) | (Hz) | (s) . (rad) | (rad) | (rad)
units)
16 | 420 498 | 425 1.4 47 66 608 | 0.57 -1.81 | 0.14
16 5.25 635 | 4.25 1.4 66 92 679 | 1.05| 5825| 0.29
16 | 2023 | 2047 | 445 1.1 14 15 304 | 0.71| -14.33 | 0.21
20 7.33 8.60 | 430 | 1.05 76 80 353 | 1.25| -13.82| 0.27

It is not possible to discern from synchrogram whether the horizontal strips are due to synchronization
or modulation. Moreover, both phenomena can overlap. Nevertheless, if the modulation is very strong,

then the horizontal strips are not equidistant, and the modulation can be detected.

6.5.1 Synchronization and modulation

Synchronization analysis, based on the mutual prediction approach [93, 94] and on information-
theoretic functional [70, 73] for rat16 and rat20, showed that during the synchronization episodes, the
respiratory system is dominant (i.e., is the driving system) and drives the cardiac system [63]. In Sec.
5.8.5.1, we have demonstrated the case of a forced oscillator illustrating the unidirectional interaction

between the cardiac and respiratory oscillators, where the respiration frequency is kept constant. In

this example, cardiac and respiratory oscillators are not synchronized. In Sec. 4.5, we showed a
numerical example of frequency modulation. Again, there was no synchronization of the interacting

oscillators.

Besides the modulation, when two oscillators are interacting, whether unidirectionally or
| bidirectionally, synchronization can also onset. These phenomena are distinct, although they can
overlap. There can be modulation without synchronization, synchronization without modulation, or a

combination of both effects. To illustrate how efficient bispectral analysis is in the latter two

| 1
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examples, we use a generic model (6.7) of an almost periodic, Poincaré oscillator, periodically driven

by a weak external force, as in case of the model (5.5) with additional frequency modulation

X ==xq— (o, +n, sin(a,t +¢,))y + Fsin(w,t + ¢,) + £(1),
y==yq+ (o, +n,sin(o,l + ¢))x, (6.7)

q= 0:(1/1'2 +y* -a).

The activity of the oscillator is described by the two state variables, x and y. @, a and @, are constants.
F is the forcing amplitude with frequency @, and initial force phase ¢ and 7, is the strength of
modulation by the forcing oscillator. Here, &(¢) is zero-mean white Gaussian noise, (&(1)) = 0, ({?),
&0)) = D&X1), and D = 0.2 is the noise intensity. The parameters of the model are setto =1, and a =
0.5.

The test signal x,;4(¢) is the variable x of the driven oscillator, recorded as a continuous time series. For
the first 400 s, there was no forcing, i.e., the amplitude was set to zero. It was then raised to a small
constant value 0.1, without frequency modulation. After a further 400 s, the forcing was increased to
0.2 and the modulation strength was set to 0.2 (moderate). The corresponding power spectrum for the
first 15 s and for each forcing strength are shown in Fig. 6.12 (a) and (b), in order to demonstrate the
changes in spectral content and behaviour caused by the forcing. The peak labelled as f/; = 1 Hz
represents the driven cardiac oscillator, and the peak labelled £ = 0.2 Hz represents the driving

respiratory oscillator. These frequencies are deliberately chosen to have an integer ratio 5:1.

In case of n:1 locking, the effect of the forcing can be twofold. It causes modulation on the period of
the oscillator that occurs with the period of the forcing, and the force adjusts the average period of
oscillations, i.e., synchronization. Synchrogram for the test signal x;u, Fig. 6.13, exhibits 5:1
synchronization for the whole signal duration. In the first 400 s, there is no interaction, forcing or
modulation on the oscillator. The frequencies and the force of the oscillator are constant and in integer
ratio, which is the reason for the synchronization appearing in the synchrogram. In general, one should
be cautious when interpreting synchrogram, as it can be misleading. For this case, the bispectrum will

be completely flat, without the appearance of any peaks, as can be seen from Fig. 6.12 (f).

From 400 s to 800 s, weak forcing is present. External force tries to change the amplitude as well as
the phase of the oscillation. The amplitude is stable, whereas the phase is neutral (it is neither stable
nor unstable). Weak force influences the oscillator phase that results in synchronization. A similar case

without synchronization was already discussed in Sec. 5.8.5.1 Adapted bispectrum resolves that linear

interaction takes place. If biphase is constant for the bifrequency (f, /;), then we can conclude that
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they are phase coupled. This results in synchrogram in horizontal strips - synchronization. If the
frequency ratio was rational, then horizontal strips would not appear in the synchrogram. Thus, the

bispectrum yields the correct information about the coupling.
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Fig. 6.12: Results for a forced and frequency modulated Poincaré oscillator in the presence of additive Gaussian
noise. (a) The test signal xy, of variable x of the forced oscillator, with characteristic frequency f; = 1 Hz
periodically forced at frequency f; = 0.2 Hz, with three different forcing amplitudes; 7= 0.0 (1), 0.1 (2) and 0.2
(3) and three different modulations ; 7, =0.0 (1), 0.0 (2) and 0.2 (3). Each forcing lasts for 400 s, at sampling
frequency f; = 10 Hz. Only the first 15 s are shown in each case. (b) Its power spectrum. (c¢) The bispectrum |B]
calculated with K = 33 segments, 66 % overlapping and using the Blackman window to reduce leakage, and (d)
its contour view. (e) The biphase ¢, (f) biamplitude 4 for bifrequency (1,0 Hz, 0,2 Hz) peak 1, (g) biphase ¢ and
(h) biamplitude A4 for bifrequency (1.2 Hz, 0.8 Hz) peak 6, with a 0.1 s time step, and a 100 s long window, for

estimating the DFT's using the Blackman window.

In the last 400 s of the test signal x;y, moderate forcing and moderate modulation take place. The
synchronization is preserved, as can be seen from the synchrogram, Fig. 6.13. Combination of forcing
and modulation could be misleading in detecting nonlinear interaction using the bispectrum as all the
frequency components, except for the appearance of 2f; ( the 2f; - f; is present) in the power spectrum,

Fig. 6.12 (b) (3). It is not as evident as in the case presented in chapter 4.7, where only the modulation
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Fig. 6.13: Synchrogram for test signal x,u.

takes place, but one can determine it by calculating all the necessary peaks for the nonlinear coupling.
Biamplitude for the peak of primary interest is very high and the biphase is constant, Fig. 6.12 (e) and
(f), whereas for peak 6, it is not, Fig. 6.12 (g). Also significant for the modulation, is the appearance of
very high peaks (1 and 2), compared to the others (3-6). From the constant biphase for peak I, we can
conclude that the interacting oscillators are in phase and synchronized. If the phase would not be that
constant, then it would be difficult to say that they are synchronized, as it was seen in the case of
rat20, where only modulation was detected, since the biphase of peak 2, Fig. 6.11 (b), is not similarly

time dependant at that time, as is the case for peak 1.

6.6 Conclusions

For the case of synchronization, we can conclude as follows:

e Strong synchronization. Synchrogram and bispectrum (cross-bispectrum) provide us with the
same results. We only inspect the peak at bifrequency of our primary interest. When there is a
strong synchronization between two interacting oscillators, then clear horizontal strips appear
in synchrogram indicating synchronization. In bispectrum, the synchronization is indicated

with a high biamplitude value and constant biphase at bifrequency of our primary interest (f,

f)-

e Weak synchronization. Horizontal strips in synchrogram can hardly be detected or they
cannot be detected. Bispectrum results in moderate biamplitude and less constant biphase,

with more phase slips at bifrequency of our primary interest (f, f5).

¢ No synchronization. The synchrogram contains no horizontal strips. Bispectrum results in
zero biamplitude at bifrequency of our primary interest (f;, £,). Although there is no coupling,

synchronization can onset in synchrogram, due to constant frequency ratio.
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As synchronization can take place simultaneously with frequency modulation/forcing/nonlinear

coupling, we can further conclude:

e Synchronization and nonlinear coupling. Nonlinear coupling can appear while
synchronization takes place, whereas while there is nonlinear coupling, synchronization does
not necessarily onset. There is no obvious link between the two phenomena. Analysis of rats
undergoing anaesthesia shows that nonlinear coupling occurs during synchronization, while
analysis of CV blood flow signals of humans in resting shows nonlinear coupling when

synchronization is not present.

e Frequency modulation. Frequency modulation can be detected using bispectrum. The peak
of primary interest (f;, £2), and the second peak at bifrequency (f; - /5, £), are high in
comparison to other peaks (that may not be present at all) that appear in the case of nonlinear

interaction. Their biphase is constant if the frequency modulation is strong.

e Frequency modulation and forcing. Instantaneous presence of both phenomena can be
misleading in detecting the nonlinear coupling. It is necessary to check all the peaks, 1-6.
Biphase for peaks 4 and 6 is not constant. It is recommended to analyse the peak of primary
interest (f}, f>) for adopted bispectrum. Biphase should be constant. In this way, it is possible
to resolve this kind of interaction between two oscillators. Nevertheless, one should be careful
in interpreting the bispectrum results when strong frequency modulation and strong forcing in
the presence of strongly noisy data take place. Observing the phases of each frequency

component in the triplet can be helpful.

e Frequency modulation and nonlinear coupling. When strong frequency modulation and
nonlinear coupling take place simultaneously, it is not possible to detect modulation. When
the frequency modulation is weak, this can be seen as undulated biphase at peak of primary
interest (f}, £5). It is difficult to be sure, as it could also be the case of a weak nonlinear

coupling.

We conclude, therefore, that bispectral analysis is more sensitive to interactions and is more noise
robust than the synchrogram. It detects the phase synchronization, and nevertheless, yields different
information from that which can be resolved from a synchrogram. Frequency modulation interaction
can be detected, whereas it is not always possible to resolve it if it simultaneously occurs with other

types of interactions.
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7 HIGH-ORDER SPECTRA BASED ON WAVELET TRANSFORM

7.1 Wavelet Transform

7.1.1 Discretization

7.1.2 Wavelet transform adopted to CV signals
7.2 Wavelet bispectrum definition

7.2.1 Wavelet bispectrum transform adopted to CV signals
7.3 Wavelet bispectrum example of test signal

7.4 Discussion

The Fourier transform is based on presumptions (a) of the periodicity of the signal and (b) of infinitely
long signal series [57, 58]. Because neither assumption is strictly true for the measured signals, the
determination of separate frequencies in a system that possesses strong couplings is very demanding.
The difficulty is even greater in the low frequency range, which is of our particular interest, where the
characteristic frequencies are close to each other, and are therefore even harder to separate. The
uncertainty principle of the Fourier transform limits its ability to separate harmonic components in the
frequency domain of the bispectrum [20, 43]. This might cause problems for detection of quadratic
phase couplings in the case of frequency pairs that are close together. To ensure good resolution of
low frequencies, we need longer sections for calculation of the discrete Fourier transform. This
immediately decreases the number of sections possible and weakens the bispectrum estimation.
However, we cannot use longer signals, because they lead to nonstationarity, and the variance

consequently becomes even larger [69].

7.1 Wavelet Transform

Wavelet analysis can be seen as a generalization of the Fourier analysis [43] by adding time resolution
- in a more fundamental way than is permitted by the Short-Time Fourier Transform (STFT) [81].
Wavelet analysis has been applied with considerable success to cardiovascular data [6, 8]. The
generalization of bispectrum to wavelet analysis may be expected to be able to detect temporal

variation in phase coupling or short-lived couplings, and cope with broadened and coalescing peaks
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that cannot be resolved due to time-frequency resolution restrictions by the bispectrum based on

STFT.

Morlet first introduced wavelet analysis [28]. Within this transform, the window length is adjusted to
the frequency currently being analysed. It is a scale independent method. Window function is called a
mother wavelet or basic wavelet (u). It can be any function y(u) that satisfies the wavelet

admissibility condition [43]
¢, = ﬂl;/(u)[ |u| du < oo, (7.1)

This function introduces a scale s (its width) into the analyses. Commitment to any particular scale is
avoided by using all possible scaling of y{u). The mother wavelet is also translated along the signal to

achieve time localization. Thus, a family of generally non-orthogonal basis function is obtained [43]

- u—1
v, =|s ”w[ ] (72)

s
The parameter p is the normalization choice and is an arbitrary non-negative number. In literature,
values of p of 0, % and 1 are encountered [17]. The prevailing choice is p = 2. Factor |s|w”2 is used to

ensure energy preservation. In this case, the L* norm of the wavelet, and thus its energy, is unaffected

by the scaling operator s. The continuous wavelet transform of a signal g(7) is defined as [43]:
w . T—1
W, (s.0= [ ¥ (Eg)dr. (13)
o s

The wavelet transform W,(s, 7) is a mapping of the function g(f) onto the time scale plane. Not every
function can be used as the mother wavelet. Only those that enable us to reconstruct the original
function g(r) from its wavelet transform W(s, 7) are admissible. The inverse continuous wavelet

transform is defined as [43]:

1 2p-3 T~
=< [ ﬂs| VW, (s,0)ds dr, (7.4)

"?

where the constant C' is determined by the shape of the mother wavelet [43]
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Il f|Jv/(f)[ df, (1.5)

where (f) is the Fourier transform of y(x). It can be seen from Eq. (7.4) that reconstruction is only
possible if 0 < C <. If 7 € R, then ¥ (f) is continuous, so that C can only be finite if 7(0) =0,
i.e., [43]

Tw(u)du =0

(7.6)
Total energy of the signal g(¢) can be calculated as [43]
"g"2 = C_I _[ _ﬂs|2p_3 |Wg (S-,f)!z ds dt. (7.7)
ﬁl
The function
pP= C_] lS‘zp_3 (7.8)

can be interpreted as the energy density of the signal in the time scale plane, also called a scalogram.

Applying Parseval identity (e, @) = (é, @) into Eq. (7.4) we obtain

W, (s.0)=(¥,,.8)=(¥,,.8).

(7.9)
Fourier transform of ¥, is
AP =2\
= |s| se T (sf), (7.10)
so that Eq. (7.3) can be written as [43]
W, (s.0)=|s|" fe "™ (s)E)df.
- (7.11)

324

The wavelet transform provides a multiplying constant and phase shift e information about g

inside the window that is determined by instantaneous scale and shape of the mother wavelet.
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7.1.1 Discretization

In numerical applications, scale s and time ¢ are restricted to discrete values only. The natural
discretization of the scaling parameter is s,, = 0", where m € Z, and the step is a positive number o #
0, 1. Within the scale ¢”, the signal is sampled only at times #, = no”, which means that the sampling

rate is automatically adjusted to the scale [43].

For different values of m and n, we obtain the discrete wavelet family
¥, ,w)=c""y(c"u-nr), (7.12)

where we have set the value of parameter p to 2. The discrete wavelet transform, defined by this
family, is simply a sampled version of W(s, 7). By choosing o near 1, we can get a representation

close to the continuous transform.

7.1.2 Wavelet transform adopted to CV signals

The coupling between wavelets makes sense when a frequency can be assigned to wavelet. We restrict
our attention to wavelets which have Fourier transforms that exhibit a single dominant peak, and
define the location of that peak as the corresponding frequency. In literature [43], several suitable
wavelets are mentioned. Issuing from former energy density studies of measured cardiovascular
signals, the wavelet transform with Morlet mother wavelet was chosen to be the most suitable one [6,

8].

Morlet proposed the use of Gaussian function modulated by a sin wave. Its Fourier transform is a

shifted Gaussian, adjusted slightly so that the admissibility condition y(0) =0 is fulfilled [43]

P e R 2 T
[e TS =f) ! —e 4z 26’ Tty I (7]3)

-~ ].
= Al O ——
w(f) ﬂ%

In the time domain, simplified expression is [43]

H‘l

ww)=nr"" (e_"z"’""” _e AN }!_T. (7.14)
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The choice of f; is a compromise between localization in time and in frequency. For smaller f, the
shape of the wavelet favours localization of singular time events, whilst for larger f,, more periods of
the sin wave in the window improve the frequency localization. For f, > 0.8, the value of the second
term in (7.14) is so small that it can be ignored in practice, and a simplified expression for the Morlet

wavelet in the time domain is [43]

u?

p(u)=n"""e e 7, (7.15)

The corresponding wavelet family consists of Gaussians, centred at a time 7 with standard deviation s.
In the frequency domain, we have Gaussians with a central frequency f= fy/s and a standard deviation
of 1/24/27s. Therefore, the wavelet transform at a given scale s can also be interpreted as band-pass
filtering, giving an estimation of the contribution of the frequencies in this band. The relation between

the scale and the central frequency for the Morlet wavelet is [43]
f==. (7.16)

The frequency resolution changes with frequency; at low frequencies (large scales), the resolution is
better than at the high frequencies (small scales). Accordingly, the time resolution is better for high
frequency than it is for low frequency components. In order for peaks to be detected at f; and £, (f; >
/f>), they must be separated by at least one half of the standard deviation of the peak at the higher
frequency, namely £, - f» = fi/4nf;. The choice of f; determines the current frequency resolution. By

choosing f, = 1, a simple relation between scale and frequency was obtained f'= 1/s.

To obtain the energy density in the time-scale plane, an approximation of the continuous wavelet
transform was calculated using the Morlet mother wavelet discretized with o = 1.05 and 7 = 1 s.
However, to make the three-dimensional plots of the transform clearer, time was not discretized as #, =

no” t, but 1, =ntwas used instead. In this way, the transform is over sampled in time for large scales.

Slow events are examined with a long window, whilst a shorter window is used for faster events, Fig.
7.1. The Morlet wavelet [28], a Gaussian window, i.e., a Gaussian function modulated by a sin wave,
is used. Thus, for our purpose, the best time-frequency localization within the limits of the uncertainty
principle can be achieved. For details see [43]. For the Morlet mother wavelet, the value C, Eq. (7.5),

equals C'=1.0132 [8].
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Fig. 7.1: (a) Real (black line) and imaginary (grey line) part of the Morlet mother wavelet for scale s = 1 and (c)

for scale, s = 5, (b) and (d) its Fourier transforms. In both cases, f; = 1.

7.2 Wavelet bispectrum definition

The definitions are completely analogous to the definitions used in Fourier analysis [67]. The Wavelet

Bispectrum (WB) is given by

WB(s,,s,) = IWR (s,,0)W, (sz,r)Wg' (s,7)dr, (7.17)
T
where
I 1 1
iy (7.18)
3 &% @

The WB measures the amount of phase coupling in the interval 7 that occurs between wavelet
components of scale lengths s, and s, and s of signal g(¢), such that the frequency sum-rule is satisfied

(7.18). It is a complex quantity, defined by magnitude 4 and phase ¢

WB(s,,s,) =|WB(s,,s,)|e’“"** = ge’? . (7.19)

82
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Consequently, for each (sy, 5,), its value can be represented as a point in a complex space, R[WB(s;,
s52)] versus I[WB(sy, 5,)], thus defining a vector. We define its magnitude (length) as biamplitude, and

the phase, which is determined by the angle between the vector and the positive real axis, as biphase.

The instantaneous biphase is then calculated: from Egs. (7.17) and (7.19), it is
¢(SI ? Sz 2 t) = ¢.c| (f) + ¢\'2 (I) - ¢5 (t)' (720)

If two scale components s, and s, are scale and phase coupled, ¢ = ¢, + ¢, it holds that the biphase is
0 (2r) radians. For our purposes, the phase coupling is less strict because dependent scale components
can be phase-delayed. We consider phase coupling to exist if the biphase is constant (but not

necessarily = 0 radians) for at least several periods of the highest scale component.

Simultaneously, we observe the instantaneous biamplitude from which it is possible to infer the

relative strength of the interaction
A(sy,8,,0) = [WB(s,,5,,0)| (7.21)
According to the Fourier definition (5.1), a wavelet cross-bispectrum can be defined as:

WB 1y (5155,) = [W, (5,00, (55,7 W, (5,7)d. (7.22)
]

The wavelet cross-bispectrum measures the amount of phase coupling in the interval T that occurs
between wavelet components of scale lengths s, and s of signal g(¢), and wavelet component s, of A7),

such that the frequency sum-rule is satisfied (7.18).

For ease of interpretation, the WB is plotted in the (f}, f;)-plane, rather than in the (sy, 5;)-plane. It has
the same symmetries in frequency domain as in the case of Fourier based Bispectrum (FB). The non-
redundant region is the principal domain of the wavelet bispectrum. Similarly, the principal domain
can be divided into two triangular regions in which the wavelet bispectrum has different properties:

the inner triangle (IT), and the outer one. The IT is of our interest.
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7.2.1 Wavelet bispectrum transform adopted to CV signals

Relation between frequency (scale) and the width of the window that is used for calculation of the
wavelet transform, is hyperbolic. Logarithmic-logarithmic scale is natural for its presentation,
whereas, to be able to comply with the (7.18) frequency (scale) sum-rule, we need to achieve better
frequency (scale) resolution for high frequencies (low scales) (according to the CV frequency bands
proposed in [112]), as can be achieved using the Morlet wavelet when f; is chosen to be 1 for the
reason of the interpretation of the wavelet bispectrum. Otherwise, nearby peaks at high frequencies

cannot be resolved.

We introduce a parameter d into the Morlet wavelet that determines the exponential decay of the

Gaussian

u!

wu)=a, -c, e e . (7.23)

This also decays the Morlet wavelet, and thus permits suitable combination of time and frequency
(scale) resolution to be selected. The time resolution is At = sd, given by the decay of the exponential
part of the wavelet. As d increases (d > 1), frequency (scale) resolution improves, whereas time
resolution deteriorates. We do not impose the condition that the wavelets must be orthogonal, as we
wish to choose the frequencies in the analysis procedure freely, and not restricted to s € {2"}. This
implies a certain redundancy in the wavelet transform coefficients, which must be taken into account

upon interpreting the results.

The parameter d is calculated so that the Gauss function decays to 0.001 for each scale (d is between
2.5 and 2.6). A high value of d causes a non-zero value of Morlet window at its edges that results in
side lobes in wavelet bispectrum. If 4 would be infinite, than Morlet window would become a unit
window, and wavelet transform would become Selective Discrete Fourier Transform (SDFT) [47].

Parameters a,, and c, are discussed in the following text.

Frequency resolution for high frequencies is yet insufficient. It is necessary to increase the length of
the Morlet wavelet for high frequencies. This can be obtained in different ways. Fig. 7.2 shows the
hyperbolicous decay of the Morlet wavelet length with the increasing frequency (solid line). The
wavelet length can be multiplied by a factor ay, that is for the one with the lowest frequency of

interest, and then increases with the increasing frequency
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where f= 1/s is the frequency of observation, and f;, and f. define the frequency range of interest. In
this way, we obtain a dotted line on Fig. 7.2. As the wavelet length is prolonged for high frequencies,
the frequency resolution increases, whereas the time resolution deteriorates. Other ways to obtain the
necessary frequency resolution is by using a fixed wavelet length for all high frequencies - Fig. 7.2,
dash-dot line. We propose to use a 20-80 s long wavelet in the case of analysing the human

cardiovascular blood flow signal of a normal, healthy subject at rest.

|
0 0204 0608 1 12 14 f(Hz) 2

Fig. 7.2: Length of the Morlet wavelet Ny depended from frequency (scale). Morlet wavelet (solid line), adapted
Morlet wavelet (dotted line), and fixed wavelet length for high frequencies (dash-dot line).

WB estimation using the proposed Morlet wavelet as a mother wavelet encounters a normalization
problem. For each scale, a window of different length is used. In the case of a signal composed of
different frequency components, but equal Fourier powers, this would result in different wavelet
spectral energies for separate frequencies. Two couplings among different frequencies with the same

Fourier powers and the same nature of coupling, would result in different coupling strength in wavelet

. 44/, ’
bispectrum. In (7.2), a factor Isl " is used to ensure energy preservation. We choose to use a factor

1/Ny, instead, where Ny is the Morlet window length. Constant c,, Eq. (7.23), equals to 3.9487-7""*.

In this way, we can compare results obtained by FB and WB, since both preserve energy.

Normalization of the WB is applied in the same way as on the FB, discussed in Sec. 3.3. The
normalized WB indicates the average level of quadratic nonlinear phase coupling and, in a way, serves
as an indicator of how non-Gaussian the signal is [31]. The critical values for the WB and biamplitude
estimates were normalized to 1. If the estimated value is higher than the average value of W5 in the
IT, then it is taken as valid. By critical value, it is meant that a value exceeds the noisy background

(other than Gaussian), rounding, and estimation errors.
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7.3 Wavelet bispectrum example of test signal

Results of WB are illustrated on a numerically generated test signal of two Poincaré oscillators
quadratically coupled in the presence of additive Gaussian noise - Eq. (4.6), Sec. 4.4, test signal xp,
presented in Fig. 4.7 (a). Test signal x;p was already analysed using Fourier based bispectrum in Sec.

4.4.

Results obtained using WB, depend on the choice of parameters set for WB calculation. In the first
step, the WB is calculated for the whole bifrequencies domain. Similarly, as in the case of FB, one has
to set the parameters: K - number of segments into which the signal x)p is divided to try to obtain
statistical stability of the estimates; O - percentage of segments overlapping; and L - L - L area for
bispectrum frequency averaging. These parameters have already been discussed in detail in [39]. In
case of FB, one chooses tapering window (Hamming, Hanning, Blackman or other), whereas WB uses

the Morlet mother wavelet. Parameters that can further be chosen are:

» T - Morlet mother wavelet length. By choosing f; = 1, a simple relation between scale
and frequency is obtained: f = 1/s. Mother wavelet for f = 1Hz is then stretched and
compressed. The prevailing choice of the T, is from 8 s (i.e., £ 4 s)to 125 [6, 7].

» d - exponential decay of Gaussian function of Morlet wavelet. Rather than setting the
parameter d, we set Gaussian function of Morlet wavelet edge value to G, so that it
decays to some small value. The prevailing choice is from 0.01 to 0.0001 (see Sec. 7.2.1

for details).

» Af- frequency (scale) step. It can be chosen arbitrarily, whereas, to be able to comply with
the (7.18) frequency (scale) sum-rule, the prevailing choice is to be at least 1/10 of the

slowest frequency in the bifrequency pair of our interest.

* g, - multiplication factor for additional Morlet wavelet stretching (see Sec. 7.2.1 for
details). One can set basis, and the constant in the power. Morlet wavelet length is
multiplied by a factor a,,. The factor equals the one of lowest frequency of interest and
then increases with the increasing frequency. Either one chooses to use factor a, whose
prevailing choice for basis is 2, and the constant in the power is 1.8, or one chooses to fix
the Morlet mother wave length for high frequencies 7yr. The prevailing choice of the
fixed window length for higher frequencies is from 20 s to 80 s. One should start with a 40
s long window. If the peaks at the bifrequencies of our interest are distinct than shorter

fixed window can be used, otherwise longer fixed window must be used.
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Once WB is obtained, and longer lasting (bispectral averaging over K segments eliminates short lasting
couplings) phase and/or frequency coupling are detected, biphase and biamplitude time evolution are
estimated for bifrequencies of our interest (see Tab. 5.2 for details). Parameters K, O and L do not

influence the estimation. Additional parameters can be chosen:

= A7 - time step. Minimum time step is defined with sampling frequency f; and equals
Atyin=1/f.. Tt should be set to such a value that epochs of constant biphase of
approximately 10 times the slowest period (1/ f;) of the bifrequency pair (f;, f;) can be
detected, i.e., at least 1/10 of the epoch length.

= L, - number of samples for time averaging. In the case of signals with non-Gaussian noise,
one can reduce the noise by averaging in the time domain over L, samples, before and

after the time of observation.

WB for the test signal x,p is presented in Fig. 7.3 (a). Parameters are set according to prevailing choice
for CV signal analysis as described above (7}, =8 s, G. = 0.001, Af=0.01 Hz, 7z =40 s and Az = 0.1
s). Averaging is neither used in frequency, nor in time domain (L = 0, L, = 0). Peaks appear at
bifrequencies (1.1 Hz, 0.24 Hz), (0.86 Hz, 0.24 Hz), (0.62 Hz, 0.48 Hz), (0.86 Hz, 0.48 Hz), (1.1 Hz,
0.48 Hz), (1.1 Hz, 0.86 Hz) and (1.34 Hz, 0.86 Hz).

—~ (a) 1
£ (©)
g 60
'g L aan e o Y e
2 .
B Time (s) 1150
0.86+ _,__..,__—_,.. (d)
g‘_\. 048._ i S A R T (@ ..... ‘ ‘ ............
0.24} .
0o f, (Hz) 062 08 L1 134 15 Time (s) 1150

Fig. 7.3: Results for quadratic couplings in the presence of additive Gaussian noise, test signal x,p, obtained with
the wavelet bispectrum for comparison with the Fourier bispectrum, Sec. 4.4. (a) The wavelet bispectrum |5
calculated with K = 33 segments, 66 % overlapping, T,, = 8 s, G. = 0.001 and using fixed Morlet wavelet length
of Tyr = 40 s for high frequencies calculation and (b) its contour view. The part of the wavelet bispectrum above
/> > 1.0 Hz is removed, because the triplet (1.1 Hz, 1.1 Hz, 1.1 Hz) produces a high peak that is physically
meaningless. (¢) The biphase ¢ and (d) biamplitude A for bifrequency (1.1 Hz, 0.24 Hz), with a 0.1 s time step.
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As before, the self-coupling peaks at (1.1 Hz, 1.1 Hz) and (0.24 Hz, 0.24 Hz) are of no interest, so they
are removed from the wavelet bispectrum. We obtain the same information as with the FB, Fig. 4.7
(c). The most obvious difference is in the shape of the peaks. They are much wider than in the case of

FB. This is expected, since frequency resolution for high frequencies is lower than in the case of FB.

Fig. 7.3 (c) shows biphase and (d) biamplitude for the peak of our principal interest at bifrequency (1.1
Hz, 0.24 Hz). We obtain the same information as with FB, Fig. 4.7 (e) and (f). The biphase is constant
in the presence of quadratic coupling. Coupling strength can be determined from the biamplitude by
normalization. The WB possesses the FB concerning the noise robustness. The results for non-zero
coupling are quite different from those where coupling is absent, Fig. 7.3 (d). From the biphase time
dependence, it can be seen that the WB is better at detecting biphase changes, since its time resolution

is higher than in the case of FB.

7.4 Discussion

In the case of bispectral analysis of cardiovascular interaction, the time-dependent biphase/biamplitude
estimate was estimated with an STFT, using a window of constant length. The optimal window length
depends, however, on the frequency being studied. The effective length of the window used for each
frequency can be varied by applying the wavelet transform. If natural frequencies of the oscillators lie
within a relatively narrow frequency interval, then STFT is sufficient for good time and
phase/frequency localization. With broader frequency content, however, the wavelet transform, or

selective discrete Fourier transform, needs to be applied.

The wavelet and cross-wavelet bispectrum was defined analogous to the definitions used in Fourier
based bispectrum and cross-bispectrum. By doing this time-dependant biphase/biamplitude estimate
with higher frequency resolution at low frequencies, higher time resolution at higher frequencies was
obtained. The wavelet bispectral analysis was adopted for analysing cardiovascular signals. For a

mother wavelet modulated Gauss function, the Morlet mother wavelet was used.

The wavelet bispectral analysis was illustrated on a test signal. Since the time resolution of wavelet
bispectrum is higher, and the frequency resolution is poorer at high frequencies compared to FB, it is
necessary to ensure sufficient frequency resolution before interpretation of the results. Poor frequency
resolution would result in poor/incorrect localization of characteristic frequencies. Too high of a time
resolution could result in extremely high sensitiveness to noise and statistical error, that would result
in phase slips and incorrect oscillator coupling determination. It was necessary to raise frequency

resolution for high frequencies, as well as to preserve the scale (frequency) sum condition necessary
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for bispectrum estimation. Wavelet bispectrum results are parameter set dependant. Parameter impact
on wavelet bispectrum estimation and detailed comparison with Fourier based bispectrum are

discussed in the subsequent chapter.
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8 FOURIER AND WAVELET BISPECTRUM COMPARISON

8.1 Wavelet bispectrum of CV blood flow signals
8.1.1 Results
8.1.2 Fourier and wavelet bispectrum results comparison
8.1.3 Results interpretation
8.2 Fourier and wavelet bispectrum advantages and weakness
8.3 Other possible methods for bispectrum estimation

8.4 Discussion

In the following section, wavelet bispectrum is compared in detail with Fourier based bispectrum.
First, wavelet bispectrum is applied to CV blood flow signals that were already used for studying
cardio-respiratory interactions using the Fourier based bispectrum method in Sec. 5. Its benefits and

weakness over the Fourier based bispectrum method are then compared in detail and discussed.

8.1 Wavelet bispectrum of CV blood flow signals

For the comparison of WB and FB, we illustrate results obtained for the blood flow signal by(?),
showed on Fig. 5.1 (a), left column in Sec. 5, used for cardio-respiratory interactions analysis. Data
analysis was preformed in the same manner as in Sec. 5, whereas instead of using FB, WB was used.
Parameters for WB evaluation were set according to the prevailing choice recommended in section

T3,

8.1.1 Results

WB for the whole frequency domain for signal b,(7) is presented in Fig. 8.1 (a). A very high peak
located at bifrequency (0.11 Hz, 0.11 Hz), belonging to the respiratory self-coupling, can be seen in
the |WBy,|, Fig. 8.1 (b). At least three other peaks are clearly evident: at (0.98 Hz, 0.11 Hz) attributable

to cardio-respiratory coupling; at (0.87 Hz, 0.11 Hz), which we presume to be coupling between the
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respiratory component f; and the difference f; - f;; and peak attributable to interaction with lower

cardiovascular characteristic components. Their positions can be seen in the |WB,,| contour view shown

in Fig. 8.1 (¢).

Close inspection of |WBy,|, Fig. 8.1 (b), resolves that all the necessary peaks, according to Tab. 5.2,
arise as a possible result of a nonlinear interaction between the two oscillators f; and f; are present.
Characteristic frequency at ~0.98 Hz belongs to cardiac activity, fi: that at ~0.11 Hz to respiratory
activity, f, Peaks 1 to 6 are presented in Fig. 8.2, left column. Time evolution for biamplitude and

biphase for all the peaks are shown in Fig. 8.2, mid and right columns.
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Fig. 8.1: (a) The wavelet bispectrum |WBy,| for signal b,(¢), calculated with K = 33 segments, 87 % overlapping,
Tw=28s, G.=0.001, and using a Tyr = 80 s long fixed Morlet wavelet for estimating high frequencies. (b) Part

of the wavelet bispectrum f, /5 < 1.4 Hz that is of our interest, and (c) its contour view.

The time interval T, during which quadratic coupling persisted, was determined. If all 6 peaks
fulfilled our conditions (see Sec. 5.3 for details), then the T interval was calculated for all peaks, and
the boundaries were defined such that the biamplitude for all the peaks in 7} interval would be above
the condition. It can be seen that the biamplitude during the time interval from 77.1 s to 170.4 s meets

our criterion of being more than twice as large as the average wavelet bispectrum in the IT domain;
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Fig. 8.2: Wavelet bispectrum results for blood flow signal (), calculated with K = 33 segments, 87 %
overlapping, using a 0.1 s time step, T,, = 8 s, G, = 0.001, and Ty = 80 s long fixed Morlet wavelet for
estimating high frequencies for peaks (a) 1, (b) 2, (¢) 3, (d) 4, (e) 5 and (f) 6; left column, the wavelet bispectrum
|WBy,| with its corresponding contour plots; middle, the biamplitude A4y,; and right, the biphase @,,.
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see middle column of Fig. 8.2 (a) to (f). The biphase in this time interval, 93.3 s long (shaded area),
remains constant within a 3.02 rad interval, i.e., there are no phase slips. The biphases at bifrequencies
1, 2, 3 and 5 are very constant; those at 4 and 6 are less so, but they still remain within the = rad

interval.

8.1.2 Fourier and wavelet bispectrum results comparison

Results obtained using WB are most similar to the ones obtained with Fourier based bispectrum. All
peaks, 1 to 6; (0.98 Hz, 0.105 Hz), (0.87 Hz, 0.105 Hz), (0.87 Hz, 0.21 Hz), (0.98 Hz, 0.21 Hz), (0.98
Hz, 0.87 Hz), (1.08 Hz, 0.87 Hz), are detected at the same bifrequencies. Characteristic respiratory
activity, f, is detected at 0.105 Hz, since we used a smaller frequency step for wavelet bispectrum

estimation (Af = 0.005 Hz), than in the case of Fourier based bispectrum (Af = 0.01 Hz).

Similar to the case of test signal xp, the peaks are wider, Fig. 8.2 (a) to (e), left column, than in the

case of FB obtained results shown in Fig. 5.3 (a) to (e), left column.

Biamplitude time evolution for peak 1, Fig. 8.2 (a), mid column, exhibits three distinguishable peaks.
Their time appearance coincides with the peaks obtained with FB, Fig. 5.3 (a), mid column. Moreover,
biamplitude time dependence according to it’s shape, i.e., number of detectable peaks, their amplitude
ratio, and time of occurrence, is highly similar for all the peaks, 1-6. The cross-correlation coefficient

for biamplitude, for peak 1, for Fourier and wavelet bispectrum, equals 0.95.

Biphases time evolution obtained with WB, Fig. 8.2 (a) to (f), right column, resemble the time
evolution of biphases obtained with FB, Fig. 5.3 8.2 (a) to (f), right column. One can notice that small,
sudden changes of biphase obtained using FB, are much more pronounced when WB is used. These
changes usually result as sudden biphase slips. Compare biphases at approximately 70 s in Fig. 5.3 (a)
and Fig. 8.2 (a), both left column. Although the biphases are not as similar in shape as the

biamplitudes are, epochs of constant biphase do coincide for both cases of estimation.

Nonlinear - quadratic coupling is detected in both cases, Tab. 8.1. The one detected with FB lasts from
76.8 s to 172.4 s, shaded area in Fig. 5.3 (a) to (e), mid and right columns, and the one detected with
WB lasts from 77.1 s to 170.4 s, shaded area in Fig. 8.2 (a) to (e), mid and right columns. The time
interval of quadratic coupling T, is 2.3 s shorter when estimated with WB. This is less than a 2.4 %

difference, Tab. 8.1.

T T r—
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Tab. 8.1: Quadratic nonlinear couplings detected in blood flow signal b,(¢), channel a, for person 1 during paced
breathing, detected with both bispectral methods based on Fourier and wavelet transform. 7, is the time interval
during which the bispectral (wavelet) analysis showed that the heart oscillator f;, and the respiratory oscillator f;.
are nonlinear coupled. The product of T - fs indicates the span of respiratory periods in which the interaction

persisted. During Tj., the maximum biamplitude is calculated for peak 1, that is of our primary interest. In

addition, the maximum variation of the biphase Ag, its average value ¢ , and its standard deviation o, were

calculated during 7.

Almax s
i res T C A U
Method | * | P “ | Tyuxfes | (arb. ¢ f !
(Hz) | (Hz) | (s) . (rad) | (rad) | (rad)
units)
WB 0.98 | 0.105 | 933 9.8 461 | 1.09 -1.34 | 0.32
FB 0.98 1.11 95.6 10.5 383 1.47 322 042

8.1.3 Results interpretation

Remarkably similar results were obtained with Fourier and wavelet bispectrum. It can be concluded
from the width of the peaks, that FB has a higher frequency resolution. Detection of fast, sudden
biphase jumps is a result of higher time resolution when using WB. Nevertheless, there were no
remarkable differences in quadratical phase coupling detection, therefore, we cannot yet conclude that
one method has evident advantages over another. This is correct when analysing cardio-respiratory
coupling, where necessary frequency resolution is approximately 1/10 of the lowest interacting
component - the respiratory one, f; - and where the length of constant biphase episodes that we wish to
detect, is approximately 10 times the lowest interacting component. On one hand, it is to ensure that
the frequency resolution window length of at least 1/( f1/10) is necessary for Fourier bispectrum
estimation, and on the other hand, it is to satisfy that the maximum time resolution window of 10 -
(1/£1) is necessary. In this particular case, it is rather an exception, 1/( £i/10) = 10 - (1/f;), where both
resolution conditions are satisfied if a window of 1/( £i/10) length is used. Moreover, this window
length is an optimal choice between time and frequency resolution. This is the reason why there are no
remarkable differences among the two different Fourier and wavelet transform based bispectral

methods.

Choosing the proper window length and the tapering window are the most crucial parameters when
applying FB. The parameter choice has already been discussed in detail [39]. WB, adopted for analysis
of CV signals, allows one to choose among a set of parameters (7}, d or G., Ty or a - see Sec. 7.3 for

details). Proper choice might be crucial when treating the results. Fig. 8.3 illustrates an example of
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WB results for blood flow signal b,(7), for peak 5, for a modified parameter set. In the first example,
Fig. 8.3 (a), frequency resolution is emphasized by increasing Morlet mother wavelet length (7,, = 10
s) and setting a longer window for high frequencies estimation (7yr = 50 s). Comparing this to results
obtained with the prevailing choice of the parameter set, Fig. 8.2 (e), the difference is obvious. The
peak in the wavelet bispectrum is much narrower, Fig 8.3 (a), left column, whereas time evolution for
biamplitude, Fig. 8.3 (a), mid column, and biphase, Fig 8.3 (a), right column, are both smoothened out
as a result of lower time resolution. In the second example, Fig 8.3 (b), the time resolution is
emphasized by compressing Morlet mother wavelet length (7,,= 8 s) and setting a shorter window for
high frequencies estimation (7yr = 24 s). The peak in the wavelet bispectrum is much wider, Fig 8.3
(b), left column, whereas biamplitude, Fig. 8.3 (b), mid column and biphase, Fig 8.3 (b), right column,
are more sensitive to changes. In the first example, Fig. 8.3.(a), mid column, biamplitude has only one
predominant peak, whereas in the second example, Fig. 8.3 (b), right column, biphase has a longer
epoch of constant biphase. In the latter case, one could detect a much longer lasting episode of

nonlinear cardio-respiratory interaction.
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Fig. 8.3: Wavelet bispectrum results for blood flow signal b,(¢), for peak 5, for a modified parameter set. Left
column, the wavelet bispectrum |#B,,| with its corresponding contour plots; middle column, the biamplitude
Apas; and right column, the biphase ¢,s. (a) Calculated with Morlet mother wavelet (f= 1 Hz) length (a) T;, = 20
s and Tyr = 50 s long fixed wavelet for estimating high frequencies, and (b) 7}, = 16 s and Ty = 24 s long fixed
Morlet wavelet for estimating high frequencies. In both cases, a 0.1 s time step, K = 33 segments and G, = 0.1

was used.

The question is, which parameter set gives us more realistic results? Let us study two Poincaré

oscillators, where the first f; = 1.1 Hz and the second £, = 0.24 Hz oscillators are quadratically coupled:
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X = =X,q, — 0, + 17, (% —x,)" +£(0),

W =0y + 0, +1,( — )’

Xy ==X,q, =0, )5, (8.1)
V2 ==02q, + 0,%,,

QJ :a:( xr'z +yt2 —af')'

Here, &(7) is zero-mean white Gaussian noise, (&(1)) = 0, (&(7), £0)) = D&t), and D = 0.08 is the noise
intensity. The parameters of the model are set to & = 1, a; = 0.5 and @, @, = 1. In this way, we obtain
a test signal x(7), presented in Fig. 8.4 (a), with the corresponding power spectrum for two different
coupling strengths, which are interchanging every 20 s: no coupling 7, = 0; and weak coupling 7, =

0.2, Fig. 8.4 (b), (1) and (2).
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Fig. 8.4: Results for time intermittent quadratic couplings in the presence of additive Gaussian noise analysed
using Fourier bispectrum. (a) The test signal x;;, variable x; of the first oscillator with characteristic frequency f
= 1.1 Hz. The characteristic frequency of the second oscillator is f; = 0.24 Hz. The oscillators are
unidirectionally and quadratically coupled with two different coupling strengths: 7, = 0.0 (1); and 0.2 (2). The
coupling (2) is present every 20 s and lasts for 20 s. The signal is 1200 s long and sampled with sampling
frequency f; = 10 Hz. Only the first 15 s are shown in each case. (b) Its power spectrum. (c) The bispectrum |B|
calculated with K = 33 segments, 66 % overlapping and using the Blackman window to reduce leakage and (d)

its contour view. The part of the bispectrum above f; > 1.0 Hz is cut, because the triplet (1.1 Hz, 1.1 Hz, 1.1 Hz)
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produces a high peak that is physically meaningless. () The biphase ¢ and (f) biamplitude A for bifrequency (1.1
Hz, 0.24 Hz), calculated with a 100 s long window for estimating DFTs and (g) biphase ¢ and (h) biamplitude 4,
calculated with a 130 s long window for estimating DFTs. In both cases, a 0.3 s time step and the Blackman

window was used.
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Fig. 8.5: Results for time intermittent quadratic couplings in the presence of additive Gaussian noise analysed
using wavelet bispectrum. (a) The wavelet bispectrum |WB| calculated with K = 33 segments and 66 %
overlapping. The part of the bispectrum above £; > 1.0 Hz is removed, because the triplet (1.1 Hz, 1.1 Hz, 1.1
Hz) produces a high peak that is physically meaningless. (c) The biphase ¢ and (d) biamplitude A for
bifrequency (1.1 Hz, 0.24 Hz), calculated with a G, = 0.01 and (e) biphase ¢ and (f) biamplitude A4, calculated
with a G, = 0.0001. In both cases, a 0.1 s time step, 7, = 8 s and Ty = 20 s long fixed Morlet wavelet for

estimating high frequencies was used.

Fig. 8.5 (a) shows wavelet bispectrum, and Fig. 8.5 (b) shows its contour view, obtained for signal xy;.
It gives the same information about the peak’s relative amplitude and bifrequency position. Wavelet
bispectrum parameter set, (7yr = 100 s, T}, = 8 s and G, = 0.01), was deliberately chosen in such a way
that time resolution for high frequencies was increased. Results of biamplitude and biphase estimates
are presented in Fig. 8.5 (¢) and (d). Biamplitude clearly exhibits episodes when coupling is present
and when it is not, i.e., every 20 s. From biphase time evolution, episodes of constant biphase can be

seen. Episodes of constant biphase, i.e., without phase slips, last longer than the coupling between the
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oscillators, i.e., more than 20 s. By taking into account the biamplitude condition for quadratical
coupling occurrence, (Sec. 5.3), it is possible to determine the correct quadratic coupling time
persistence. Increasing time resolution of wavelet bispectrum even higher, (T = 100 s, 7, = 8 s and G,
=0.0001), we obtain an even more realistic result. Whereas biamplitude, Fig. 8.5 (f), is estimated to be
poorer due to lower frequency resolution, but still preserving true information about the time of
quadratic coupling occurrence. The biphase, Fig. 8.5 (e), correctly exhibits 20 s of constant biphase

episodes, and then 20 s of constantly growing biphase episodes.

8.2 Fourier and wavelet bispectrum advantages and weakness

Time and frequency resolution. To observe a given frequency, the signal must be observed over at
least one period of this frequency what excludes the time localization. Due to the Heisenberg

uncertainty principle [43] sharp localization in time and frequency are mutually exclusive
At Af> 1/(4n), (8.2)

where At is time interval and Af frequency band. The equality holds if and only if the window is
Gaussian. They are defined as [43]

_ﬂw(t)l (t—1") dt, (8.3)

\I B
v ﬂw(f)l (f-1)df.

where w is in general some window function and w||* is its norm. For STFT the representation of
function g(w) in time-frequency plain G(z, f) has not sharp time and frequency parameters, but

represents an interval around centre time ¢ or frequency f . Time-frequency window is
[+ - A2, t+1 +At2) - [f+f- A2, f+ £ + Af2]. (8.4)
For wavelet transform the representation of W (s, 7) in time-frequency plain is

[2+ sty - SAL/2, t + sty + sAt/2] - [fo' /s - Af/2s, fo /s + Afo/2s], (8.5)
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where £, and f;" are mother wavelet centres of gravity in time and frequency plain and corresponding
deviations of Afy and Afy. Note that the centre of the time window depends only on parameter 7,
whereas the centre of the frequency window depends only on parameter s. On the contrary to the
STFT the wavelet transform’s frequency resolution changes with frequency (low frequencies have
better frequency resolution) and so does the time resolution (high frequencies have better time
resolution). The ratio between centre frequency f(s) = fy /s and bandwidth Af{s) = Afy/s is equal to
fo'/Afy and is scaling independent.

In general WB detects intermittent phase couplings whereas FB averages out most of the time relevant
information. Triplet (f, £, f3) results in a high peak in bispectrum if the coupling condition f; = f; + f5,
is satisfied. Nevertheless, the coupling condition needs to be satisfied only within the frequency
resolution. This condition is less strict in wavelet bispectral analysis. For example if there is a
mismatch in coupling frequency Af such that f; = f; + £ + Af, and Af is larger than the frequency
resolution of the Fourier bispectrum but smaller than the wavelet bispectrum frequency resolution
corresponding to a high bispectrum value for the triplet (fi, /5, f3), than the wavelet bispectrum will
peak whereas the Fourier bispectrum will not. Increasing the frequency resolution of wavelet
bispectrum by increasing the length of the Morlet wavelet for high frequencies results in gradually

approximate results as obtained with the Fourier bispectrum.

On the other hand if there is a short lasting coupling present in the signal the Fourier bispectrum
cannot detect the coupling due to large time window used, whereas the wavelet bispectrum will detect
the coupling if assuming the coupling has a certain minimum duration. Wavelet bispectrum allows

intermittent couplings to be detected.

Applying Fourier bispectrum to real data we have to ensure the necessary frequency resolution to be
able to distinguish separate frequency components and at the same time achieving sufficiently time
resolution to be able to detect the onset of the couplings among CVS oscillators. The scope for choice
of window length is limited due to the Heisenberg uncertainty principle [43], and compromise is

needed between time and frequency resolution.

Wavelet bispectrum based on Morlet mother wavelet in contrast to the Fourier bispectrum enables us
to gain the optimum time and frequency resolution at the same time what is an advantage compared to

the Fourier bispectrum.

Since the time resolution of the wavelet bispectrum is higher and the frequency resolution is poorer at

high frequencies compared to Fourier bispectrum it is necessary to ensure sufficient frequency




8 FOURIER AND WAVELET BISPECT

resolution before interpretation of the results. Poor frequency resolution would result in poor/incorrect
localization of characteristic frequencies. To high time resolution could result in to high sensitiveness
to noise and statistical error, what would result in phase slips and incorrect oscillators coupling onset
determination. Setting the time and frequency resolution so that episodes of approximately 10 periods
of the lower coupling frequency are detectable and its characteristic frequency can be estimated to at

least one tenth or less should be considered.

Frequency step. Once the window length is chosen the frequency resolution is set and fixed for the
Fourier based bispectrum. This is not the case when using wavelet transform. Since the wavelet
transform is continuous we can choose the frequency step arbitrary. In this way, the transform can be

over sampled in time for large scales but we are not concerned for the inverse transform.

Energy preservation. CV signals are power signals [81]. The Fourier bispectrum is based on the DFT
which gives the signals energy (power). In case of wavelet bispectrum the normalization is necessary

to obtain the signals energy (power).

Statistical error. Integrating over finite time series in order to calculate the wavelet bispectrum causes
noise contribution to it’s estimation. It is called statistical noise level since it is the value of wavelet
bispectrum that would be attained by a white noise input signal, and is caused by finite statistics (i.e.,
using a limited number of values in the integrating or averaging process). Beside the noise
contribution there is also error estimate, which is the product of uncertainties in the determination of

the individual wavelet bispectrum coefficients [43, 61, 62, 69].

To calculate the wavelet bispectrum Eq. (7.17) the wavelet coefficients are determinated for each Ny, =
T f, samples in the interval 7 {7, - 7/2 < t < Ty + 7/2} and averaged Eq. (7.3). Let us assume that all

the estimates of the wavelet bispectrum are independent, than the averaged wavelet bispectrum suffers
a statistical error of 1/4/N, due to summation over Ny values. Similarly in case of Fourier

bispectrum the summation is carried out over N/M ensembles, where M is the number of points in each
statistically independent ensemble for which M-points Fourier transform is calculated. The statistical
error in the Fourier bispectrum decays as v M / N , and a factor of M more points are needed to obtain

the same statistical error as with the wavelet bispectrum. From this point of view, the wavelet

bispectrum represents a significant improvement in the time resolution of the bispectrum.

However, the wavelet coefficients are not all statistically independent, since the chosen wavelet family
is not orthogonal. Each coefficient is calculated by evaluating Eq. (7.3) integrating over the range -0 <

t < +o0. Due to the periodicity s of the wavelets of scale s (Fig. 7.1), two statistically independent
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estimates of the wavelet coefficients are separated by a time s/2, or a number of points M(s) = sf/2,
where f; is the sampling frequency. Thus the summation done in the evaluation of the wavelet
bispectrum is not really carried out over Ny points, but only over Ny, /max(M(s)), where the maximum
is taken over the values of s that come into account for the evaluation of a specific value of the wavelet

bispectrum. An estimate for the statistical noise level in WB(f,, f) is

(8.6)

f‘,r"z 1 ]Ix’?

eWB(f,. 15) z{miﬂ(f.fzafl + /) Ny

The statistical error in the determination of WB(f,, ;) can be deduced from Eq. (7.17). Each factor in
this equation that is obtained by integrating over T suffers an error of 1/4/N, , so that the error is

estimated by

AWB(f, 1)) 2 _—
WB(f,.f,) N,

Eqgs. (8.6) and (8.7) imply that wavelet bispectral analysis is able to detect coherent signals in
extremely noisy data, provided the coherency remains constant during sufficiently long times, since

the noise contribution falls off rapidly with increasing V.

Bispectrum interpretation. By choosing f; = | a simple relation between scale and frequency can be
obtained f = 1/s. In this case the interpretation of the wavelet bispectrum is the same as for the FB

otherwise it is not straightforward.

Computation. Default wavelet bispectrum window length drops hyperbolically, whereas Fourier
bispectrum used fixed window length. Wavelet bispectrum is therefore computational less demanding
and much faster. Also relatively short data sequences are sufficient to perform an analysis, in contrast
to the Fourier bispectrum that needs long time series to obtain both sufficient frequency resolution and

statistics.

8.3 Other possible methods for bispectrum estimation

A hybrid between Fourier and wavelet transform is Selective Disctrete Fourier Transform (SDFT)
which can also be used to perform the bispectrum calculation. It is a modified STFT first introduced

by Keselbrener and Akselrod [47]. Like STFT it is time dependent FT. The time-frequency sensitivity
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is obtained by windowing with a window of specific length around the analysed data point for
estimating each spectral component. Low frequencies are expected to vary slowly on the other hand
high frequencies are expected to show fast or sudden changes. For each frequency of interest, a DFT
calculation is preformed, while the time window around the considered data point is selected inversely
proportional to the frequency of interest. This is similar to wavelet transform’s stretching and
compressing of the mother wavelet. Therefore narrow windows are used for estimating high
frequencies and wide ones for low frequencies, what implies estimating low frequencies with good

frequency resolution and high frequencies with good time resolution.

For each time of interest spectral components are calculated using different length of window. The
window duration is chosen so that T = NJf. Parameter N, N, € Z, is the number of entire periods
entering the windowed signal. A high value of N, will lead to poor time resolution (wide window),
while on the contrary, a small value could lead to a less reliable estimation of the spectral components
in case of noisy signals. The value is determined experimentally to gain best results, usually between

the range of 3 and 7 [38].

Leakage may appear in the spectrum, if the signal entering the rectangular window is not periodic, or
at least if the amplitude of the end points is not equal. In order to remove such leakage, the data is
usually convolved with some kind of smoothing window, such as Hamming, Hanning or Blackman
windows. Their role is to taper the windowed data in order to make the two end points amplitudes
smoothly equal. Besides the leakage removal, this tapering windows also improve the time resolution

of the time-dependent spectral analysis.

SDFT and WT provide similar results. Both transforms are using a specific window length to estimate
each spectral component. SDFT uses convolution with Blackman, Hanning, Hamming, or other taper
window whereas WT uses different mother wavelets such as Morlet or other. Both methods enable a
choice between a good time and a good frequency resolution. We can change frequency and time
resolution by changing parameters, but we cannot gain both of them simultaneously, according to the
Heisenberg uncertainty principle. The WT obtained by Morlet wavelet enables an optimal time-
frequency resolution, while using SDFT it can be approached by an appropriate choice of parameters.
They can both be normalised to energy. The main difference between the transforms is that the WT is

continuous whereas the SDFT is not.
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8.4 Discussion

Wavelet bispectrum was applied to CV blood flow signals. Parameters were set to the prevailing
choice, Sec. 7.3. The WB method is suitable for studying cardio-respiratory interaction from the CV
blood flow signals. Results obtained with WB analysis are the same as the ones obtained with the
Fourier based bispectrum method. There are no obvious advantages of WB over FB when detecting

cardio-respiratory interaction that fulfils the conditions defined in Sec. 5.3.

Our motivation was to develop a method that will be able to provide insight into the nature of the CV
subsystem couplings. Dynamics of CV blood flow can be considered in terms of coupled oscillators.
There are at least five subsystems that take part in blood flow regulation: cardiac, respiratory,
myogenic, neural and metabolic system [8, 9, 10, 110-112, 117]. Analysing interaction among cardiac
and respiratory system is thus the first step taken. The effect of respiration on heart rate has been the

most intensively studied.

The question, what do the revealed nonlinear cardio-respiratory couplings mean, and how they arise,
are yet to be resolved. One possibility is that they result from nonlinearity of the carotid baroreceptor-
cardiac reflex [22]; another is that they are attributable to the active involvement of the peripheral
vessels during cardiac and respiratory wave propagation in the network, or they are due to modulation

of the cardiac filling pressure during respiratory movements [126].

In order to be able to analyse all other CVS interactions like cardio-myogenic, cardio- neural, cardio-
metabolic, respiratory-myogenic, respiratory-neural, respiratory-metabolic, myogenic-neural, we need
to use the wavelet bispectral method. Namely an important feature of CV signals is that they are
nonlinear, time-varying, and subject to fluctuation [3, 18, 23, 34, 117]. In low frequency range, which
is of our particular interest, the characteristic frequencies are close to each other, and are therefore
even harder to separate. The uncertainty principle of the FT, limits its ability to separate harmonic
components in the frequency domain of the bispectrum [20, 69]. This might cause problems for
detection of the quadratic phase couplings in the case of frequency pairs that are close together. To
ensure good resolution of low frequencies, we need longer sections for calculation of the discrete
Fourier transform. This immediately decreases the number of sections possible and weakens the
bispectrum estimation. However, we cannot use longer signals, because they lead to nonstationarity,
and the variance consequently becomes even larger [69]. Moreover, determining short-lasting
couplings, shorter than 10 times the lower period in a bifrequency pair, makes the Fourier based
bispectrum incapable of coping with the necessary time-frequency resolution, as was also clearly

demonstrated using a model of coupled oscillators (8.1).
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Tab. 8.2: Summary of Fourier bispectrum (FB), using STFT and wavelet bispectrum (WB), time and frequency
discretized using adapted Morlet mother wavelet comparison for CV signals analysis. * -denotation in the table

means that no method is in advantage.

Property\Method Fourier bispectrum Wavelet bispectrum In advantage
Type Discrete Continuous WB
Basis function Orthogonal Nonorthogonal FB

Interpretation Straightforward Straightforward *

Window Rectangle Adapted Morlet WB
Frequency step 1/M/f; Arbitrary WB
Time resolution Constant Variable WB
Frequency resolution Constant Variable FB
Time and freq. resolution At Af> 1/(4m) At A= 1/(47) WB
Bispectrum computation’ 100 % 19 % (2.6 %) WB
Energy preservation Direct Normalization necessary FB
Statistical error JM/N ~2/ M WB

Aside from WB being able to trace fast changes of high frequency components, and being able to
locate slow frequency components at the same time, there are many other advantages of wavelet
bispectrum (adopted for CV signals) over the Fourier bispectrum. An overview is shown in table 8.2.
Since WB is continuous, and FB is not, it allows an arbitrary frequency step to be chosen, and thus a
better frequency component location. It allows intermittent phase couplings to be detected, whereas
Fourier bispectrum averages out most of the time relevant information. The Heisenberg uncertainty
principle, [43], limits simultaneous time and frequency resolution. Using the wavelet bispectrum, the
optimum time and frequency resolution can be achieved; there is a simple relation between scale and

frequency; and it has smaller statistical error; and is computationally less demanding.

The only drawback of WB, compared to FB, is that it has to be normalized to obtain signal energy, and
it is not orthogonal. Normalization can be preformed, whereas we are not concerned with the inverse

wavelet transform.

A hybrid between Fourier and wavelet transform, the selective discrete Fourier transform, can also be

used to perform the bispectrum calculation. It is a modified STFT, that was first introduced by

7 Bispectrum for signal x,p(f) (see Sec. 4.4) was computed for the whole IT of the principal domain, Fig. 3.1.
Fourier bispectrum |B| was computed with K = 34 segments, 67 % overlapping and using the Blackman window
to reduce leakage. Wavelet bispectrum |WB| was computed with K = 34 segments, 67 % overlapping, T, = 8 s,
G. = 0.001 and using fixed Morlet wavelet length of 7y = 40 s for high frequencies calculation. 100 % is the
number of computations preformed for FB. 81 % less computations are necessary for WB estimation. If we use
hyperbolically decreasing Morlet wavelet length then computation of WB is approximately 40 times faster than
computation of FB (only 2.6 % of FB computations are necessary).
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Keselbrener and Akselrod [47], but the wavelet transform is more adequate, since it is continuous,

whereas the SDFT is not.
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9.1 Measurements
9.2 Data analysis
9.3 Results

9.4 Discussion

CV signals are not the only ones relevant for studying CVS. Neural CV subsystem coupling
information is incorporated in the brain waves. Synchronization among separate brain centres
indicates an interaction between them. In most cases, it is associated with oscillatory behaviour in
specific structures, frequencies and behaviour states. Electroencephalogram (EEG) measures electrical
activity in the brain, i.e., brainwaves of different frequencies, and short-lived evoked potentials that
occur when the brain responds to sensory input. Generally, low frequency oscillations originate from
larger structures than do high-frequency oscillations. In certain conditions, such as general
anaesthesia, synchronization can be seen in EEG measurements as organized, distinguishable patterns.
These patterns depend on the anaesthetic agent and the level of anaesthesia [107]. Delta waves are the
slowest oscillating waves (0-4 cycles per second). They are associated with a deep dreamless sleep,
trance state, lucid dreaming, increased immune functions and hypnosis, and are thus expected to occur

during anaesthesia.

In some cases, synchronization can be observed over large distances in the consistent time lags
between signals, using cross-correlation techniques. However, the cross-correlation techniques might
encounter problems when compared to signals that are not stationary, or to oscillations that are weakly
related. In the concept of phase synchronization of chaotic oscillators [90], the solution is approached
with the consideration of two time series, originating from two coupled oscillators. The amount of
coupling can be quantified from the phase difference of the signals. Spatial heterogeneity in EEG

during anaesthesia is often studied by means of amplitude and spectral estimate-based methods [21,

86, 122].

The quantification of quadratic phase-coupling between EEG signal components has been established

since G. Dumermuth’s pioneered investigations using bispectral analysis in 1969 [51]. A number of
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EEG studies have been published using the mathematical tools of high-order spectra analysis EEG
[12, 27, 53, 65]. Additionally, the so-called bispectral index (BIS) [89] is a frequently used parameter
for the quantification of anaesthesia and sedation depth [84, 88, 98]. The BIS is a statistically based,
empirically derived complex parameter that is composed of a combination of time domain, frequency

domain and high-order spectral sub parameters.

By means of bispectral analysis, non-linear interactions of EEG signal brainwaves can be quantified.
The stationarity of the signal is one important prerequisite for consistent bispectrum estimation.
Generally, the mathematical property of stationarity cannot be obtained from real EEG signals.
Therefore, methods for spectral analysis of non-stationary signals have been introduced. Time-
frequency distributions, wavelet transform, and time-variant autoregressive moving average (ARMA)
modelling are the most prominent classes of such approaches with sufficient time and frequency
resolution. By means of time-frequency analysis, only transient linear relations of, and between, signal
components can be captured. Transient nonlinear interactions are undetectable. Therefore, approaches
for time-variant bispectral analysis have been developed [5, 69, 98]. While these approaches
concentrate on time-frequency domain (second-order spectra) or on shape in (third-order spectra)
frequency-frequency domain, we extract time information related to coupling from the frequency-

frequency domain of bispectrum, i.e., the biamplitude and the biphase.

Recently, the synchronization index technique was applied to signals of rats undergoing anaesthesia
[63, 64]. EEG signals contain several time-varying frequency components. The most dominant ones
are in the delta frequency range. Similar signal pattern was observed for all rats analysed while
undergoing anaesthesia. At the beginning, there is one dominant, slightly-varying, frequency
component around the central frequency of 2 Hz. In its surrounding, there are higher frequency
components that are not distinctly at the beginning. The predominant frequency component in the
EEG signal vanishes when rats started to move and breath spontaneous. Synchronization indexes have
been calculated for the case of delta waves of EEG and ECG, delta waves of EEG and respiratory, and
ECG and respiratory signals. Synchronization was distinctive only in the latter case. There is one
general pattern that occurs in all cases: 2:1 or 3:1 synchronization at the beginning, which eventually
transits to 4:1 or 5:1, and then later returns back to 3:1 or 2:1. At the end of the signal there is no
synchronization what is in connection with rat transition from deeper to less deep anaesthesia
(wakening). Furthermore, direction and strength of the coupling was studied. While there can be seen
that in the first part the respiratory oscillator drives the oscillations contributed to delta waves of EEG
signal, there cannot be made any conclusions about cardiac and delta waves of EEG signal direction

and strength of the interaction.
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The depth of anaesthesia is related to synchronization states between cardiac and respiratory oscillator
[63, 64]. Anaesthesia deepness can be extracted from the EEG signal therefore relation between the
cardio-respiratory synchronization and the bispectrum of EEG signal is expected. In this chapter we
apply the wavelet bispectrum to EEG signal. For the demonstration of its applicability we use the EEG
signal from the rat20 as already analysed in Chapter 6. By estimating the biamplitude and the biphase
we wish to test whether the wavelet bispectrum can extract the same information from the univariate

EEG signal as can be obtained from synchrogram of bivariate ECG and respiration signals.

9.1 Measurements

Measurements have already been discussed in the Sec. 6.1. In this analysis we use only the EEG signal

measured on rat20 undergoing the anaesthesia.

9.2 Data analysis

The EEG signal was first pre-processed. Both very low and very high frequencies were removed by
use of moving average windows: drift with a 200 s long window; and high frequencies with a 0.04 s
window while, and at the same time, the signal was resampled to 50 Hz. By using the moving average
before resampling, we avoid problems of aliasing. The signal has been further normalized between

zero and one and its mean value was subtracted.

For clearer interpretation of the results we divided ~63 minutes long EEG signal of rat20 to four parts
a, b, ¢ and d, each of them containing only one phenomenon, i.e., synchronization or no
synchronization. First we calculated the wavelet bispectrum for each separate EEG part for the whole
frequency domain. We used fixed, 20 s long, wavelet for calculation of high frequencies as discussed
in Sec. 7.2.1. Than we estimated the biphase and the biamplitude for the highest peak appearing in the
wavelet bispectrum. For this calculation 80 s long fix wavelet was used to increase frequency
resolution for high frequencies since the signal EEG is highly complex and the signal power is
concentrated at approximately 1 Hz. Frequency step was equidistant and set to 0.02 Hz to preserve the
Eq. (7.18) condition. Morlet window was moved along the time series with a time step of 0.1 s. The
critical value for the biamplitude estimate to be considered valid was set in all cases to 2, i.e., twice the

average value of the WB within its so-called inner triangle (IT).
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9.3 Results

Example of detrended, resampled and it’s mean value subtracted EEG signal for rat20 undergoing
anaesthesia is presented on Fig. 9.1 (a) and its power spectrum (b). As it can be seen from the power

spectrum that it’s power is concentrated in range 0.5-5 Hz with maximum between 1 Hz and 2 Hz.

The synchrogram between the rat20 ECG and respiration signal is presented in Fig. 9.1 (c). Four
distinctive parts can be seen; a and ¢ where synchronization 4:1 takes place and b and d where no
synchronization is evident. The EEG signal was divided according to marked parts and analysed
separately for the sake of clarity. Figure 9.2 (a) - (d) shows WB for each part separately with its
contour view. In all the WB-s there is a dominant peak. In the part a it is located around bifrequency
(1.1 Hz, 1.1 Hz), in part b around bifrequency (1.3 Hz, 1.3 Hz), in part ¢ around bifrequency (1.4 Hz,
1.4 Hz) and in the last part around bifrequency (1.6 Hz, 1.6 Hz). For each part biamplitude and
biphase were calculated for the dominant, the highest peak appearing in the obtained WT. A longer
fixed Morlet wavelet was used, Ty = 80 s, for estimating high frequencies as in the case of |WB,4
calculation, where fixed Morlet wavelet of 20 s was used for estimating high frequencies. The reason
is that |WB,4 exhibit reach bispectral contents, therefore higher frequency resolution is necessary. In
all the cases the highest peak appears at the so-called self-coupling bifrequencies. We observe self-
phase couplings of delta waves of EEG signal.
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Fig. 9.1: (a) 10 s of detrended, and removed zero mean signal EEG(?) and its power spectrum (b) for the case of
rat20 undergoing anaesthesia, ~63 minutes long at sampling frequency f; = 50 Hz. (c) Cardio-respiratory

synchrogram for rat20 divided into four parts a-d.

Biamplitude 4,,, Fig. 9.3 left (a), shows some coupling activity over the whole time with two higher
peaks from approximately 7 minutes until approximately 10 minutes. During this time the biphase d,;,

Fig. 9.3 right (a), tends to be within m interval. We detect phase coupling 7). During part b the
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biamplitude A4y, Fig. 9.3 left (b), shows three short lasting peaks while the biphase ¢,, Fig. 9.3 right
(b), tends to decrease all the time of observation. In part 3 the biamplitude A4, Fig. 9.3 left (c), shows
a very distinct and high peak lasting from 35 minutes to 36.17 minutes, when the synchronization is
the strongest. In this time the biphase ¢,;, Fig. 9.3 right (c), changes for 2.43 rad what is within the =
interval and can be treated as phase coupling. The last part d shows no coupling, biamplitude 4, Fig.
9.3 left (d), except at the very beginning where the biphase ¢, Fig. 9.3 right (d), is also constant

whereas otherwise is not.
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Fig. 9.2: Results for the rat20 undergoing anaesthesia. (a) The wavelet bispectrum |WB,| for part a calculated
with 74 % overlapping and (b) its contour view, (c) |WBy| for part b calculated with 65 % overlapping and (d) its
contour view, (e) |WB,| for part ¢ calculated with 81 % overlapping and (f) its contour view and (g) |WB,| for part
d calculated with 49 % overlapping and (h) its contour view. In all cases of WB K was set to 33 segments,

whereas G, = 0.001, 7,, = 8 s and Ty = 20 s long fixed Morlet wavelet for estimating high frequencies was used.

By applying the necessary conditions for the nonlinear quadratic coupling to be present to analysis of
rat20’s EEG signal, we consider the conditions only for the peak of observation - the self-coupling

peak, Sec. 5.3. All detected phase couplings are summarized in Tab. 9.1.
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Morlet wavelet for estimating high frequencies was used.

Tab. 9.1: Phase couplings detected in rat20 EEG signal. T,
bispectral analysis showed that the delta waves of EEG signal are self-phase coupled at bifrequency (f; f1). The
product of 7, - f; tells us over how many delta waves of EEG signal periods the phase coupling persisted.

During T}, the maximum biamplitude A, is calculated for the peak. In addition, the maximum variation of the

biphase Ag, its average value @ , and its standard deviation o, were calculated during 7.

WAVELET BISPECTRUM METHOD

(d)

Time (min)

62.67

is the time interval during which the wavelet

gl| O b | fi | T | Tefi|  Aum Ap | ¢ o

(min) | (min) | (Hz) | (s) (arb. units) | (rad) | (rad) | (rad)
a 267 | 3.55] 1.1 49 57 753 | 1.16 | 324 | 0.23
a 587 633 | 1.1| 28 33 494 | 0.24 | 3.59 | 0.05
a 745 817 | 1.1| 43 50 1224 | 0.81 | -8.14 | 0.29
a 8221083 | 1.1 |157| 183 1894 | 2.53 | -9.62 | 0.69
a |1238(13.03| L.1] 39 45 535 | 0.58 | -6.05| 0.12
b | 1883|1950 | 13| 40 67 922 | 1.31| -1.77 | 0.34
b [23.83 2431 | 13| 29 48 3249 | 1.33 | -39.44 | 0.30
c | 35.00 | 36.17 1.4 | 70 141 2931 | 2.43 8.45 ] 0.62
c |3642(36.75| 14| 20 40 839 | 099 | 3.64 | 0.23
c | 3692|3745 1.4 | 32 65 617 | 1.09 7.92 1 0.34
d |40.67 4153 1.6| 52 130 558 | 1.02 | 4.50 | 0.31
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9.4 Discussion

From Tab. 9.1, it can be seen that phase couplings onset mostly in part a and part ¢. These couplings
are the strongest and have the longest lasting time, 7. If we put all biamplitudes from 4,, to A4y
together as one time evolution of biamplitude, and do this similarly with biphases from ¢, to ¢y then
two (or three) peaks stand out by their biamplitude. At the times where the peaks appear, the biphase
tends to be constant (within the = interval). The time of onset and phase coupling duration is shown in
Fig. 9.4. These two events can also be detected, as shown in the synchrogram Fig. 9.1 (c), when the
synchronization 4:1 onsets and when it disappears. In the time between these events, the synchrogram
does not show synchronization to be present, whereas from the WB, there are visible, short-time phase-

coupling events that cannot synchronize the interacting oscillations as the biphase decays uniformly.

T onset

2.33 7.45 2383 3500 Time (min) 6267

Fig. 9.4: In Tab. 9.1, phase couplings, T,., that stand out by their biamplitude (1000 and more). Their onset times
and duration are shown. The first and the last 7). coincide with the onset and disappearance of the phase

synchronization between the cardiac and respiratory oscillators, Fig 6.8 (d).

We can conclude that cardiac and respiratory CV systems and delta waves of EEG signal are coupled
during the anaesthesia. The question arises whether the delta waves of EEG signal drive the cardiac
and respiratory systems in synchronization when rat20 is undergoing anaesthesia, or slow respiration
synchronizes with the cardiac system that further influences the delta waves of EEG signal. There is
one applausive hypothesis of anaesthesia reducing the RSA [83, 84]. Anaesthesia may stimulate
inhibitory glycine and GABAergic synapses in the NTS-NA axis, whose projections then inhibit
higher brain centres, such as the limbic system. It also modulates the level of endogenous
hypothalamic peptides, responsible for the natural control of brain metabolism that are known to affect
vagal control of cardiac rhythm [82], and which would be affected if anaesthesia artificially reduces
brain metabolism [1]. That is, anaesthesia may affect the delta waves of EEG signal in such a manner

that they drive the cardiac and respiratory system to synchronization.

Similarly, as we analysed the cardio-respiratory interaction, we could also analyse cardio-delta waves
of EEG signal and respiratory-delta waves of EEG signal interaction to study their interaction and the

nature of couplings, whereas this is not the intent of this work. Wavelet bispectrum proved to be a




VELET BISPECTRUM METHOD

promising tool to analyse EEG signals during anaesthesia. It can detect the phase synchronization

onset and its disappearance.
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10 SUMMARY

The bispectrum is the first high-order spectrum after ordinary spectral analysis, and is useful for the
investigation of non-linear interactions of the lowest-order (i.e., quadratic interactions). Powerful noise
reduction is an integral part of the standard technique, as non-coherent contributions are averaged out,
and weak coherent signals can be detected in very noisy data [68, 69]. The bispectral method has been
extended to encompass time dependence, and has demonstrated the potential of the extended technique
to determine the type of couplings among interacting nonlinear oscillators [40]. Time-phase couplings
can be observed by calculating the bispectrum and adapted bispectrum, and obtaining the time-
dependent biphase and biamplitude. The method has the advantage that it allows an arbitrary number

of interacting oscillatory processes to be studied.

Recently introduced methods for synchronization analysis among chaotic and noisy oscillations (see
[79] and references therein) have stimulated applications to a variety of different systems. Methods for
quantifying the strength and identifying the direction of couplings, based on nonlinear dynamic or
information theory approaches, have recently been proposed [72, 93, 94, 103]. In this work, the
question of the type of coupling that may result in synchronization was addressed, and a method was
proposed for its analysis. It is applicable to both univariate data (a single signal from the coupled

system) and multivariate data (a separate signal from each oscillator).

Millingen et al. [61, 62] have analysed multivariate data using a combined wavelet and bispectral
method, and have discussed its application in the field of chaos analysis. Here we have concentrated
on univariate data and illustrated the potential of the time-phase bispectral method for the detection of
higher-order couplings in the presence of noise. The possibility of using univariate data is of particular
importance when dealing with real signals, as in practice, we often cannot observe and measure the
separate subsystems directly, but only their combination, which is intrinsically difficult. Most of the
methods proposed so far for synchronization analysis and detection of the direction of couplings are
based on bivariate or multivariate data [72, 79, 93, 94, 103]. In conjunction with frequency or time-
frequency filtering [113, 121] or mode decomposition [36] to obtain two or more "separate" signals,
these methods can be used for univariate data as well. Synchronization can also be detected in

univariate data through an analysis of angles and radii [42] in return time maps [119].

The time-phase bispectral method proposed in this work is not only applicable to the synchronization
analysis of univariate data, but also, at the same time, allows one to determine the nature of the

couplings among the interacting nonlinear oscillators. Its benefits include: (i) the possibility of
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observing the whole frequency domain simultaneously; (ii) detecting that two or more subsystems are
interacting with each other; (iii) quantification of the strength of the interaction; and (iv) determination
of whether the coupling is additive linear or quadratic, or parametric in one of the frequencies. We

have shown the method to be suitable for the analysis of noisy signals.

Although it was shown that the technique works effectively on a well-characterized simple model,
there are some difficulties to be faced and overcome in applying it to real problems, e.g., to data from
the cardiovascular system. Understanding the content of the bispectrum, and identification of the
peaks of interest, are not always straightforward. To appreciate which peaks are the ones to focus on,
one has to be aware of the basic properties of the system and its fundamental frequencies.
Distinguishing a quadratic interaction from parametric frequency modulation may be easy when the
coupling/modulation is relatively strong, but becomes more difficult in the case of relatively weak
coupling/modulation. In the latter case, observing each phase in the triplet separately can be helpful.
Also, it is not always an easy task to distinguish between quadratic interaction and parametric
frequency modulation in cases when both of them occur simultaneously. Furthermore, where the
possible basic frequencies are relatively close, it will be hard to detect them separately. This could
cause particular problems in the detection of quadratic phase couplings where frequency pairs are
close together. Although it is possible in principle to study an arbitrary number of interacting
oscillators, it is advisable in practice to study them in pairs: knowledge of the basic frequency of each

is necessary.

The blood flow signal contains a great deal of information and is exceptionally challenging in relation
to processing. It possesses components whose amplitudes and frequencies vary in time. Moreover, the
interactions among its characteristic oscillations also vary in time, and their nature (frequency, phase,
linear and/or quadratic couplings) also changes, giving rise to the observed complexity of

cardiovascular dynamics.

Bispectral analysis has provided insight into the nature of the couplings. Results in this work support
the inference that the dynamics of blood flow can usefully be considered in terms of coupled
oscillators. Application to the cardio-respiratory interaction has shown for the first time that nonlinear
coupling is present [41]. Although evidence for couplings beyond second-order has not been sought,

higher-order coupling may also exist.

In this work, it was shown that the effect of the coupling between the cardiac and respiratory
oscillations is episodic, rather than fixed and permanent. Moreover, an interchange between frequency

and phase couplings is also present, as demonstrated by the evolution of their time-biphase.




10 SUMMARY

Nonlinear coupling was revealed, and shown to exist during spontaneous, as well as during paced,
respiration. Episodes with nonlinear coupling were detected in 11 out of the 22 recordings, and lasted
between 19 s, in the case of high respiratory frequency (£, = 0.34 Hz), and 106 s, in the case of low
paced frequency of respiration (f,p = 0.11 Hz). The episodic nature of the cardio-respiratory interaction
in a healthy human during spontaneous and paced respiration had already been demonstrated using
quite different techniques of analysis [10, 46, 95, 97, 101, 104]. It allows us to infer that the inter-
oscillator coupling is probably relatively weak. There are, however, compelling arguments suggesting
that the cardiac and respiratory subsystems should be, in fact, treated as weakly nonlinear oscillators
that are weakly coupled. (i) In healthy subjects, breathing spontaneously, only occasional and brief
episodes of synchronization are seen [10, 99-101], indicative of relatively weak coupling. (ii) Sinus
arrhythmia is small at spontaneous breathing frequencies and only slightly larger at very low breathing
frequencies [23], again supporting a weak-coupling description. (iii) The couplings can sometimes
decrease almost to a vanishing point, e.g., in coma [112]. Without couplings, the dynamics become
drastically simplified - with complete absence of synchronization or modulation. The fact that virtually
no variability is seen in any of the natural frequencies, despite small amplitude variations attributable
to internal noise, suggests that the oscillators themselves are, at most, weakly nonlinear. (iv) If there
were strong oscillator nonlinearity, and strong (but linear) coupling, we would observe many

combinatorial components around the cardiac frequency, which is not the case.

Using bispectral and cross-bispectral analysis, it was also shown that the coupling information among
cardiac and respiratory processes is inherit from the processes and spatially invariant. Both processes
are of central origin, and their phase relationships can be observed in ECG, blood flow and blood
pressure signals derived from widely separated sites. It would appear that the information is

incorporated within the wave motion of the blood propagating through the vessels.

It is of interest to compare results of this experiment with that of [19]. They had also studied
physiological time series while respiration was being paced at a constant rate; in addition, they also
guided the ventilatory amplitude (tidal volume) so as to produce a sinusoidal modulation envelope
with a period of 60 s. It resulted in oscillations of the same period in several physiological quantities,
including the R-R intervals, blood pressure, and the cardiac stroke volume and output. In this study,
the ventilatory amplitude was left to the subject's spontaneous choice. The slow amplitude modulation
of [19] was selected to mimic the pattern of Cheyne-Stokes respiration, which is often associated with
heart failure. The question addressed in this work was to examine whether or not the relationship
between cardiac and respiratory oscillations can be nonlinear, without any amplitude modulation. It is
difficult to decide whether the nonlinear interactions, shown to occur episodically in the present study,

would or would not have occurred if the amplitude of respiratory oscillations had also been controlled,
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as in the study by [19]. It was shown, however, that quadratic coupling exists even when both the
frequency and the amplitude of respiration are spontaneous. We may therefore conclude that the
nonlinear nature of the interaction between the cardiac and respiratory oscillations is inherent, and that

it becomes more pronounced when the frequency of respiration is kept constant.

The question of what the nonlinear couplings mean, and how they arise, are yet to be resolved. One
possibility is that they result from nonlinearity of the carotid baroreceptor-cardiac reflex [22]; another
is that they are attributable to the active involvement of the peripheral vessels during cardiac and
respiratory wave propagation in the network. A full understanding of these couplings is essential to
gain insight into the physiology and pathophysiology of cardiovascular dynamics, as well as for the
construction of mathematical models that offer novel possibilities for obtaining clinically relevant
physiological information. It can be concluded that bispectral analysis provides a promising tool for
the determination of frequency and phase couplings in the processing and understanding of

cardiovascular signals.

One of the coupling phenomena that can onset among interacting oscillators is phase synchronization.
The most natural way to study the phase relations among interacting oscillators is by using
synchronization techniques. As bispectral analyses provides information about frequency and phase
coupling, and moreover, the nature of the coupling oscillators, we draw its relation to the
synchronization. In the case of strong phase synchronization, the synchrogram and bispectrum provide
the same results. The phase synchronization is indicated with a high biamplitude value and constant
biphase at bifrequency of our primary interest (f}, /;). Weak phase synchronization usually does not
result in obvious horizontal strips in synchrogram, whereas bispectrum results in moderate
biamplitude and less constant biphase, with more phase slips at the bifrequency of our primary
interest. No phase synchronization results in zero biamplitude at the bifrequency of our primary
interest. Bispectral analysis is more sensitive to interactions than the synchrogram. It detects the phase
synchronization, and nevertheless, yields different information from that which can be resolved from a

synchrogram.

Synchronization can take place simultaneously with other type of interaction, such as frequency
modulation, forcing and/or nonlinear coupling. Nonlinear coupling can appear while phase
synchronization occurs, whereas synchronization does not necessarily appear while there is nonlinear
coupling. There is no obvious link between the two phenomena. Analysis of rats undergoing
anaesthesia shows that nonlinear coupling occurs during synchronization while analysis of CV blood

flow signals of humans in resting shows nonlinear coupling while no synchronization is present.




10 SUMMARY

Frequency modulation alone can be detected using bispectrum. Peak of primary interest (£}, 5) and the
second peak at bifrequency (fj-f2, f2) are high in comparison to other peaks (which may not be present
at all) that appear in the case of nonlinear interaction, and their biphase is constant (strong frequency
modulation). Instantaneous presence of frequency modulation and forcing can be misleading in
detecting the nonlinear coupling. Thus, it is necessary to check all the 1-6 peaks, and analyse the peak
of primary interest (f;, f;) for modified bispectrum, and observe the phases of each frequency
component in the triplet. When strong frequency modulation and nonlinear coupling are occur

simultaneously, detection of the frequency modulation is not possible.

In the case of bispectral analysis of cardiovascular interaction, the time-dependent biphase/biamplitude
estimate was estimated with a short time Fourier transform, using a window of constant length. The
optimal window length depends, however, on the frequency being studied. The effective length of the
window used for each frequency can be varied by applying the wavelet transform, or the selective
discrete Fourier transform. For demonstration purposes above, the natural frequencies of the
oscillators were chosen to lie within a relatively narrow frequency interval. An STFT was therefore
sufficient for good time and phase/frequency localization. With broader frequency content, however,

the wavelet transform or selective discrete Fourier transform needs to be applied.

Wavelet transform to higher-order spectra was presented in this work. The wavelet and cross-wavelet
bispectrum was defined analogous to the definitions used in Fourier based bispectrum and cross-
bispectrum. By doing this time-dependant biphase/biamplitude estimate with higher frequency
resolution at low frequencies, higher time resolution at higher frequencies was obtained. The wavelet
bispectral analysis was adopted to analyse cardiovascular signals. For a mother wavelet modulated

Gauss function, the Morlet mother wavelet was used.

Wavelet bispectral analysis was illustrated using a test signal. Since the time resolution of wavelet
bispectrum is higher, and the frequency resolution is poorer at high frequencies compared to Fourier
based bispectrum, it is necessary to ensure sufficient frequency resolution before interpretation of the
results. Poor frequency resolution would result in poor/incorrect localization of characteristic
frequencies. Too high of a time resolution could result in extremely high sensitiveness to noise and
statistical error, which would result in phase slips and incorrect oscillator coupling determination. It
was necessary to raise frequency resolution for high frequencies, and also to preserve the scale
(frequency) sum condition necessary for bispectrum estimation. Wavelet bispectrum results are

parameter set dependant.

Wavelet bispectrum was applied to CV blood flow signals. Parameters were set to the prevailing

choice. The wavelet bispectral method is suitable for studying cardio-respiratory interaction from the

v




CV blood flow signals. Parameter impact on wavelet bispectrum estimation and detailed comparison
with Fourier bispectrum was preformed. Results obtained with WB analysis resemble the ones
obtained with Fourier bispectrum method. There are no obvious advantages of WB over FB when
detecting cardio-respiratory interaction that fulfils the defined necessary conditions for quadratical

coupling occurrence.

Our motivation was to develop a method that will be able to provide insight into the nature of the CV
subsystems couplings. Analysing interaction among cardiac and respiratory systems is thus the first
step taken. In order to be able to analyse all other CVS interactions, such as cardio-myogenic, cardio-
neural, cardio-metabolic, respiratory-myogenic, respiratory-neural, respiratory-metabolic, myogenic-
neural, and others, we need to use the wavelet bispectral method. Namely, an important feature of CV
signals is that they are nonlinear, time-varying and subject to fluctuation [3, 18, 23, 34, 117]. In the
low frequency range, which is of our particular interest, the characteristic frequencies are close to each
other, and are therefore even harder to separate. The uncertainty principle of the Fourier transform
limits its ability to separate harmonic components in the frequency domain of the bispectrum [20, 69].
This might cause problems for detection of the quadratic phase couplings in the case of frequency
pairs that are close together. To ensure good resolution of low frequencies, we need longer sections for
calculation of the discrete Fourier transform. This immediately decreases the number of sections
possible and weakens the bispectrum estimation. However, we cannot use longer signals, because they
lead to nonstationarity, and the variance consequently becomes even larger [69]. Moreover,
determining short-lasting couplings, shorter than 10 times the lower period in a bifrequency pair,
makes the Fourier based bispectrum incapable of coping with the necessary time-frequency resolution,

as was also clearly demonstrated using a model of nonlinearly coupled Poincaré oscillators.

Aside from WB being able to trace fast changes of high frequency components, and being able to
locate slow frequency components at the same time, there are many other advantages of wavelet
bispectrum (adopted for CV signals) over the Fourier bispectrum. Since WB is continuous, and the FB
is not, it allows an arbitrary frequency step to be chosen, and thus a better frequency component
location. It allows intermittent phase couplings to be detected, whereas Fourier bispectrum averages
out most of the time relevant information. The Heisenberg uncertainty principle, [43], limits
simultaneous time and frequency resolution. Using the wavelet bispectrum, the optimum time and
frequency resolution can be achieved: there is a simple relation between scale and frequency; it has

smaller statistical error; and is computationally less demanding.

The only drawback of WB compared to FB, is that it has to be normalized to obtain signal energy, and
it is not orthogonal. Normalization can be preformed, whereas we are not concerned with the inverse

wavelet transform.
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10 SUMMARY

A hybrid between Fourier and wavelet transform, the Selective Discrete Fourier Transform (SDFT),
can also be used to perform the bispectrum calculation. It is a modified STFT, that was first introduced
by Keselbrener and Akselrod [47], but the wavelet transform is more adequate, since it is continuous,

whereas the SDFT is not.

Not only CV signals are relevant for studying CVS. Neural CV subsystem coupling information is
incorporated in the brain waves. Synchronization among separate brain centres indicates an interaction
between them. In certain conditions, such as general anaesthesia, synchronization can be seen in EEG
signals [107] as the onset of delta brainwaves (0-4 cycles per second). Generally, EEG signals do not
satisfy the stationarity condition, which is generally necessary for high-order spectra estimation.
Therefore, methods for spectral analysis of non-stationary signals have been introduced. Time-
frequency distributions, wavelet transforms and time-variant autoregressive moving average (ARMA)
modelling are the most prominent classes of such approaches with a sufficient time and frequency
resolution [12, 27, 51, 53, 65]. Spatial heterogeneity in EEG during anaesthesia is often studied by
means of amplitude and spectral estimate-based methods [21, 86, 122]. These approaches concentrate
on time-frequency space (second-order spectra) or on shape in (third-order spectra) frequency-
frequency space. Using the introduced time dependant wavelet bispectrum, one can extract time
information related to coupling from the frequency-frequency space of bispectrum, i.e., the

biamplitude and the biphase.

Recently, the synchronization index technique was applied to signals of rats undergoing anaesthesia
[63, 64]. EEG is a highly complex signal, which contains several time-varying frequency components.
The signal power is concentrated at delta brainwave range, at approximately 1 Hz - 2 Hz. The
predominant frequency component in the EEG signal vanishes when rats started to move and breath
spontaneous. Synchronization indexes have been calculated for the case of delta waves of EEG and
ECG, delta waves of EEG and respiratory, and ECG and respiratory signals. Synchronization was
distinctive only in the latter case. The depth of anaesthesia is related to synchronization states between
the cardiac and respiratory oscillators. We applied the wavelet bispectrum to the EEG signal of rat20
undergoing anaesthesia, in order to demonstrate its applicability. The analysis showed that the cardio-
respiratory synchronization can be detected in the EEG signal. It can be distinctively seen from the
evolution of the biamplitude and the biphase, when the synchronization 4:1 onsets and when it
disappears. We can conclude that cardiac and respiratory CV systems and delta waves of EEG signal
are coupled during the anaesthesia. The physiological question arises whether cardio-respiratory
synchronization might be a consequence of, or result in, delta waves of EEG signal when rats are

undergoing anaesthesia. One possible hypothesis explains that anaesthesia reduces RSA [83, 84].
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Anaesthesia may stimulate inhibitory glycine and GABAergic synapses in the NTS-NA axis, whose
projections then inhibit higher brain centres such as the limbic system. It also modulates the level of
endogenous hypothalamic peptides responsible for the natural control of brain metabolism that are
known to affect vagal control of cardiac rhythm [82], and which would be affected if anaesthesia
artificially reduces brain metabolism [1]. That is, anaesthesia may affect the delta waves of EEG

signal in such a manner that they drive the cardiac and respiratory systems to synchronization.

Similarly, as we analysed the cardio-respiratory interaction, we could also analyse cardio-delta waves
of EEG signal and respiratory-delta waves of EEG signal interaction to study their interaction and the
nature of couplings, whereas this is not the intent of this work. Wavelet bispectrum proved to be a
promising tool to analyse EEG signals during anaesthesia. It can detect the delta waves of EEG signal

phase coupling states.

A long-term aim is therefore to develop a coupled oscillator model that can provide a description of
the system, quantify the couplings and relate their values to its different states of health or disease. The
wavelet bispectrum may provide a link between theoretical CVS models and experimental

measurements.

Higher order spectral methods can be used to study arbitrary interactions among coupled oscillators: of
quadratic, cubic, or even higher order. In this work we have concentrated on the lowest interaction,
using the third-order spectrum or bispectrum. It has been suggested to proceed to the calculation of
even higher-order spectra than the third-order bispectrum. For higher orders, the volume of the
calculations rises substantially, and the method becomes increasingly demanding, numerically.
However, the difficulty is not mathematical, since the generalization of the bispectrum to higher order
is straightforward, but practical. The representation and interpretation of such high-order spectra
become increasingly difficult which is the limiting factor. We aspect new, powerful computer

visualization tools to open up this direction of development in the coming future.
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11 CONCLUSIONS

11 CONCLUSIONS

The time-phase bispectral method allows us to determine the nature of the couplings among the
interacting nonlinear oscillators. Its benefits include: (i) the possibility of observing the whole
frequency domain simultaneously; (ii) detecting that two or more subsystems are interacting with each
other; (iii) quantification of the strength of the interaction; (iv) determination of whether the coupling
is additive linear or quadratic, or parametric in one of the frequencies; and (v) the method is suitable

for the analysis of noisy signals.

The effect of the coupling between the cardiac and respiratory oscillations is episodic, rather than
fixed and permanent. Frequency and phase couplings interchange. Nonlinear coupling exists during

spontaneous as well as during paced respiration. The inter-oscillator coupling is relatively weak.

Bispectral and cross-bispectral analysis showed that the coupling information among cardiac and
respiratory processes is inherit from the processes, and is spatially invariant. Both processes are of
central origin, and their phase relationships can be observed in ECG, blood flow and blood pressure

signals derived from widely separated sites.

The nonlinear nature of the interaction between the cardiac and respiratory oscillations is inherent, and

it becomes more pronounced when the frequency of respiration is kept constant.

Bispectral analysis is capable of determination of frequency and phase couplings in the processing and

understanding of cardiovascular signals.

Bispectral analysis is more sensitive to interactions and is more noise robust than the synchrogram. It
detects the phase synchronization, and nevertheless, yields different information from that which can
be resolved from a synchrogram. A simple relation between the synchrogram and the bispectrum

revealed information cannot be drawn.

Results of CV blood flow signals analysed using wavelet bispectral method gave the same results as in
the case of using the Fourier based bispectrum method. There are no obvious advantages of wavelet
bispectral method over the Fourier bispectral method, when detecting cardio-respiratory interaction

that fulfils the conditions defined for quadratical coupling onset.
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It is recommended that the wavelet and cross-wavelet bispectrum are applied to cardiovascular signals,
rather than to the Fourier based bispectrum. They allow intermittent phase couplings to be detected,
optimum time and frequency resolution, simple relation between scale and frequency, direct
interpretation, normalization to signal energy, smaller statistical error, arbitrary frequency step and are

computationally less demanding.

We can conclude that cardiac and respiratory CV systems and delta waves of EEG signal are coupled
during the anaesthesia. Anaesthesia may stimulate inhibitory glycine and GABAergic synapses in the
NTS-NA axis, whose projections then inhibit higher brain centres, such as the limbic system. It also
modulates the level of endogenous hypothalamic peptides, responsible for the natural control of brain
metabolism that are known to affect vagal control of cardiac rhythm, and which would be affected if
anaesthesia artificially reduces brain metabolism. Anaesthesia may affect the delta waves of EEG

signal in such a manner that it drives the cardiac and respiratory system to synchronization.

A long-term aim is therefore to develop a coupled oscillator model that can provide a description of
the system, quantify the couplings and relate their values to its different states of health or disease. The
wavelet bispectrum may provide a link between theoretical CVS models and experimental

measurements.
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CONTRIBUTIONS TO SCIENCE

CONTRIBUTIONS TO SCIENCE

Original contributions to science:

1. The study of interacting nonlinear oscillators, using time-phase bispectral estimators of

biamplitude and biphase,

We have introduced, for the first time, time-phase bispectral estimators of biamplitude (3.6) and
biphase (3.5) for unveiling phase coupling information from univariate data (Chapter 3, pages
I3 to 16). We have shown that the introduced method is suitable for studying interacting
nonlinear oscillators, and that it is capable of quantifying the strength of the interaction by
bispectral estimate — biamplitude, whose value is proportional to the coupling coefficient value
£ (2.6) of coupled nonlinear oscillators (Chapter 2, pages 7 to 12), and revealing the nature of
the coupling, i.e., whether the coupling is additive linear or quadratic, or parametric in one of

the frequencies (Chapter 4, pages 17 to 28).

2. Cardio-respiratory coupling in human cardiovascular system hypothesis confirmation.

We have applied, for the first time, the time-phase bispectral method to cardiovascular blood
flow signals, in order to study the nature of cardio-respiratory interactions. Despite the
limitations of the method used to resolve between linear and nonlinear couplings in extreme
conditions, the method is applicable before the couplings become too complex, considering the
physiological knowledge of the system (Chapter 5, pages 29 to 56). Couplings between cardiac
and respiratory oscillations are episodic, rather than fixed and permanent. Frequency and phase
couplings interchange. Nonlinear coupling exists during spontaneous, as well as during paced,
respiration. It becomes more pronounced when the frequency of respiration is kept constant.
The inter-oscillator coupling is relatively weak (Chapter 5 and 6, pages 29 to 37 and 57 to 76).
The coupling information among cardiac and respiratory processes is inherent from the
processes and is spatially invariant. Both processes are of central origin, and their phase
relationships can be observed in ECG, blood flow, and blood pressure signals derived from

widely separated sites (Chapter 5, pages 37 to 46).

3. Bispectum estimates generalization to wavelets.

We have generalized bispectum estimates - biphase (7.20) and biamplitude (7.21) - to wavelets.

The method is suitable for intermittent phase coupling detection, while providing optimum time




and frequency resolution. It may provide a link between theoretical CVS models and

experimental measurements (Chapter 7 and 8, pages 77 to 106).

4. Coupling between cardiac and respiratory systems, and delta waves of EEG signals

determination using generalized bispectral estimates.

Delta waves of EEG signals of rats undergoing anaesthesia, reveal a physiological relation
between cardiac and respiratory systems and delta waves of EEG signals. The cardio-respiratory
synchronization might be a consequence of delta waves of EEG signals of rats undergoing

anaesthesia (Chapter 9, pages 107 to 114).
Portions of this thesis were published in the following papers:

1. J. Jamsek, A. Stefanovska, P.V.E. McClintock and I.A. Khovanov, Time-phase bispectral analysis,
Phys. Rev. E 68, 016201 (2003).

2. J. Jamsek, A. Stefanovska and P.V.E. McClintock, Nonlinear cardio-respiratory interactions

revealed by time-phase bispectral analysis, Physics in Medicine and Biology 49, 4407 (2004).
Portions of this thesis were presented in the following scientific meetings:

1. J. JamSek and A. Stefanovska, Bispectral analysis of cardiovascular signals, Nonlinear Seminar,

Department of nonlinear physics, Lancaster University, United Kingdom (7.2. 2002).

2. J. Jamsek, A. Stefanovska and P.V.E. McClintock, Time-phase bispectral analysis, basic theory and
applications, Nonlinear Seminar, Department of nonlinear physics, Lancaster University, United
Kingdom (12.5. 2002).

3. J. Jam3ek, A. Stefanovska and P.V.E. McClintock, Cardiovascular System, Cardiovascular system,
time-phase bispectral analysis, basic theory and application, 2" Slovenia-Japan Seminar, Center
for Applied Mathematics and Theoretical Physics University of Maribor, Slovenia (28.5.-5.6
2003).

4. J. Jamsek and A. Stefanovska, Quadratic cardio-respiratory coupling?, INTAS international

Workshop, Department of Physics, University of Pisa, Italy (22-24.4. 2003).

5. J. Jam$ek, A. Stefanovska and P.V.E. McClintock, Nonlinear cardio-respiratory interaction,

INTAS-ESF international Workshop, Ljubljana, Slovenia (10-13.11. 2003).
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APPENDIX

APPENDIX

A. Variance of the bispectrum estimate

B. Generation of harmonics

A. Variance of the bispectrum estimate

In order to interpret bispectral values from a finite length time series, the statistics of bispectrum
estimates must be known [49]. To achieve statistical stability, the time series is divided into K
segments for averaging. Phases of different segments are independent of each other and random
variables over [0, 27t). When there is a large number of segments, the estimate gains statistical stability
at the expense of power spectral and bispectral resolution. For a real signal, with a finite number of
points, the compromise between bispectral resolution and statistical stability may be expected at K
approximately 30. Estimates are subject to statistical error, such as bias and variance. An estimate
must be consistent, that is the statistical error must approach zero in the mean-square sense as the
number of realizations becomes infinite. Here we neglect the effects of finite time series length, we

assume that they are sufficiently long. Let us consider the bias and the variance of the bispectrum

estimate B(k,l). The expected value of f?(k,l) will be

i) 3y, ox, 00 e+ ) (A1)

= E[X()X()X " (k+D)]= B(k.1),

as K becomes infinite, X; is the DFT of the i-th segment. Thus, E}(k,f) can be taken as an unbiased

estimate [14, 15, 25]. Its variance will be

var(B) = E[BB’ |- E[B]e[3’ | = %{EﬁX(k)ﬂX(l)]le(k D' |- ElBek.of (A2)
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Note that the variance is inversely proportional to XK. From a mathematical statistics point of view, it is
a nontrivial task to compute the quantity in the bracket in terms of low-order spectra, but one may

write a good approximation [14, 15, 25]
var(B) = E||X(k)|2]X(])|2|X(k +1)|’ J= P(k)P()P(k +1), (A3)

in which case the variance will be
& 5 2 % 1
var(B) = E[IB(k, ) ]— E[pk.nf ~ < PUOPDP(k+ D=5 (k.0)] (A4)

Note that it is a consistent estimate in the sense that the variance approaches zero as K becomes
infinite. The variance is proportional to the product of the powers (P(k) = E[X(k)X*(k)]) at the
frequencies &, / and k + /. Consequently, a larger statistical variability is introduced in estimating larger

values in the bispectrum. Finally, the variance is proportional to [1 - °(k, )], where the bicoherence 5’
is a normalized bispectrum, b’(k, [) = E[ ﬁ’(k,[) * / [P(k)P(I)P(k + D). That is, when the oscillations at
k, I and k + [ are nonlinearly coupled (b* ~ 1), the variance approaches zero, and when the components

are statistically independent (b* ~ 0), the variance is proportional to the power at each spectral

component [14, 15, 25].

Brillinger and Rosenblatt [11] have investigated the asymptotic mean and variance of Fourier-type
estimates of high-order spectra and proved that under certain assumptions the A-th-order spectral
estimate is asymptotically unbiased and Gaussian distributed and that estimates of different-order are

asymptotically independent. The variances of the real and imaginary parts of the bispectrum are
asymptotically (i.e., for large K) Gaussian and are equal, var{Re[ E(k,l)]} = var{Im|[ fb‘(k,l)]}. For a
perfect phase-coupled triplet, the variances of the real and imaginary parts are equal to zero. In the

case of no coupling, there is an identical contribution to the variances from the real and imaginary

parts of the estimate of the bispectrum.

The total variance is a sum of individual (i = 1...., K) contributions, because different triplets are
mutually statistically uncorrelated in the absence of phase coupling. Partial coupling can be expected
to result in a combination of perfectly phase-coupled oscillations, and oscillations with randomly

changing phases.
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APPENDIX

B. Generation of harmonics

In this appendix we show which harmonics appear in the spectrum of a weakly driven weakly
nonlinear oscillator, and in particular we establish which harmonics correspond to quadratic coupling.
The analysis that follows is for a Poincaré oscillator, but a similar result also follows for, e.g., a van

der Pol or other oscillators of similar type.

Consider an oscillator of the form

X =-xn -y, +0(x,,x,),
Y =-nh +ox, (B1)

2 2
n=a(yx; +y, —a),
where the term Q(x,, x;) corresponds to a coupling of the main oscillator (x,, ¥) to another one (x;, ).

We seek a solution in the form

x, = Asin(a, + ¢),

(B2)
y, =—Acos(at +¢),
and transform Eq. (B1) into amplitude/phase coordinates
A=—-aA(A-1)+0(x,, A.§)sin(wt + §), s
A = O(x,, A, §)cos(at +@).
If there is no coupling (Q(x,, 4, ¢) = 0) this system has the simple solution
A=4,=a,
(B4)
¢ = ¢, = const.

If the coupling is non-zero, the system cannot be solved exactly analytically. An approximate solution
for small coupling and weak nonlinearity can, however, still be obtained. The amplitude and phase in

this case vary only slightly and they can be expanded about (4, &) as

M5



A=4, + B,

(B5)
p=¢,+7.

For small /3. 7, a the Eq. (B3) corresponding to those for # and y can be solved approximately. For

the simplest linear coupling of form

O(x,,4,0) = 0(x,) = Fsin(w,1), (B6)

one obtains

B~ m}—i—-&)—z—)sin((a)l — @, + ¢, )~ EE;IJ:_—(OZ)sin((a)I + @)+, ), -
y = mcos({w, —0,)t+ ¢ )— —M%SCOS((&J, + 0, + ¢, )
Then, in the spectrum of the variable
x = (4, + f)sin(oyt + ¢, + ), (B8)
one observes the following harmonics: @y, @,, 2@, + @,. In the case of quadratic coupling
O(x,,4,8) = F(x, —x,)* = F(4sin(o,1) - x,)’, (B9)

there appear additional harmonics: 2@y, 2@, 2@, + 2a», @ + @, 3w £ @,. In the limit under
consideration, with small nonlinearity and weak coupling, the appearance of these additional

combinational harmonics can confidently be associated with the presence of a nonlinear coupling.

It is of course the case that, for a nonlinear oscillator, all sorts of combinational harmonics can in
principle appear even for linear coupling. However, the generation of these harmonics is a second-
order effect which becomes significant only for large nonlinearity and large coupling coefficients.
Under the latter circumstances, just the appearance of particular combinational harmonics cannot

necessarily be related to a given type of coupling and some further analysis is then required.
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