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S P E K T R I V I Š J I H R E D O V K A R D I O V A S K U L A R N I H S I G N A L O V N A 

O S N O V I T R A N S F O R M A C I J E Z V A L Č K I 

R A Z Š I R J E N I P O V Z E T E K 

Ritmi so med najbolj očitnimi lastnostmi živih sistemov. Pojavljajo se na vseh nivojih bioloških 

organizacij, od enoceličnih do večceličnih organizmov, s periodami od dela sekunde do leta. Tako 

srčna in dihalna funkcija kot circadianov ritem1 v spanju in pri zavesti do ključnih periodičnih 

procesov za ohranjanje človeškega življenja. Kljub veliki navezavi s fiziologijo periodični pojavi niso 

omejeni le na žive sisteme. Primer so kemične reakcije, ki so jih prvi odkrili Bray leta 1921, Belousov 

in Zabotinski leta 1959 oziroma leta 1964 in drugi. 

K A R D I O V A S K U L A R N I S I S T E M 

Kardiovaskularni sistem je eden od osnovnih sistemov človeškega organizma. Vsem celicam 

organizma neprestano dovaja energijo in snovi, ki so potrebne za njihovo normalno delovanje, hkrati 

pa iz celic odnaša snovi, ki nastanejo z metabolizmom. Sestavljata ga srce in ožilje (arterije, kapilare 

in vene). Pretok, ki je enak celotnemu volumnu krvi (tj. 4 1 - 6 1 oziroma 7 % - 8 % telesne teže), 

sklene pot pri sproščenem, zdravem človeku po ožilju povprečno v eni minuti [55]. Tako dinamiko 

kardiovaskularnega sistema preučujemo na časovni osi okoli ene minute. Srce ima vlogo črpalke, ki 

poganja kri po sklenjenem krogu elastičnih žil. Pljuča lahko gledamo kot generator pritiska [55]. Krvni 

pretok, pritisk ter aktivnost pljuč in srca določajo dinamiko sistema krvnega obtoka. Raziskave so 

pokazale [8, 9, 10, 110-112, 117], da izmerjeni signali krvnega pretoka vsebujejo deterministično 

dinamiko, kar pomeni, da je sistem krvnega obtoka izid končnega števila podsistemov (avtonomnih 

oscilatorjev), med katerimi ima vsak svojo značilno frekvenco. Pri regulaciji krvnega pretoka in 

pritiska sodeluje pet podsistemov: srčni, respiratorni, miogeni, nevrogeni in metabolični sistem. 

Vsi ti sistemi so tudi pri zdravih ljudeh v mirovanju med seboj rahlo sklopljeni, zato njihove značilne 

frekvence niso stalne, temveč se spreminjajo s časom, njihove amplitude pa so modulirane [6, 7, 110, 

111]. Med posameznimi oscilatorji lahko nastanejo fazne sklopitve in sinhronizacija, ki se pokažejo v 

L. circa - okoli; dies = dan. 
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obliki povezav med njihovimi frekvencami in fazami [9, 79, 94, 97, 113, 114]. Fazna sklopitev je torej 

pojav določenih relacij med fazami medsebojno delujočih sistemov, medtem ko ni nujno, da med 

amplitudami obstaja korelacija. 

Sklopitve omogočajo izmenjavo informacije med procesi in so tako temelj za pravilno delovanje 

sistema krvnega obtoka. Frekvenca in amplituda vsake opazovane oscilacije nam priča o aktivnosti 

oscilatorja in učinku vseh sklopitev. Dobro je raziskana frekvenčna modulacija srčnega ritma v ritmu 

dihanja, znana pod imenom respiratorna sinusna aritmija [18, 34]. Bivariatna analiza v časovnem 

prostoru, ki je bila pred kratkim razvita za analizo sinhronizacije ali posplošene sinhronizacije pri 

kaotičnih in šumnih oscilatorjih, je pokazala, da obstaja sinhronizacija srčnega in respiratomega 

oscilatorja [3, 23, 112, 117]. 

Slika 1: Rešitev enačbe (1) v faznem prostoru za osnovni oscilator. Stabilni limitni cikel je r{ = ax s fazo $ = 

27t#, če je $ = 0 pri t = 0. 

Sklopitve med podsistemi sistema krvnega obtoka obstajajo, narava njihovega delovanja pa je še 

nepojasnjena. Model kardiovaskularnega sistema lahko tako predstavimo s sistemom enačb petih 

sklopljenih podsistemov, od katerih lahko vsak avtonomno oscilira [115, 116]. Osnovna enota je 

preprost oscilator z limitnim ciklom, ki ga je opisal Poincare [128] 

dxi 

-± = alx'](al-rl)-27flxl
2, (1) 

dt 
dxl 

—t = oclx'2{al-rj) + 27flx[, 
dt 

j -2 2 

kjer je rt = ̂ x[ +x'2 . Oscilator vsebuje strukturno stabilnost in robustnost, ki ju določata fiziološko 

razumevanje in analiza izmerjenih signalov. Spremenljivki stanja xl
l'mx'2 opisujeta pretok in hitrost 

II 

/ - 2 2 

kjer je rt = ̂ x[ +x'2 . Oscilator vsebuje strukturno stabilnost in robustnost, ki ju določata fiziološko 

razumevanje in analiza izmerjenih signalov. Spremenljivki stanja xl
l'mx'2 opisujeta pretok in hitrost 
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pretoka z-tega oscilatorja. Vsak oscilator je določen s frekvenco / in amplitudo a\, konstanta a\ pa 

določa hitrost, s katero se vektor stanj približuje limitnemu ciklu, slika 1. 

Ker podsistemov ne moremo obravnavati ločeno, je proučevanje njihove narave in lastnosti 

posameznih medsebojnih sklopitev oscilatorjev zelo težko. Zanima nas narava in pomen faznih zvez 

med posameznimi avtonomnimi oscilatorji, ki lahko v primeru nelinearne sklopitve povzročijo novo 

odvisno komponento pri modulirani frekvenci, ki je vsota osnovnih frekvenc sklopljenih oscilatorjev. 

Sklopitve so torej ključnega pomena za razumevanje kardiovaskularnega in morda tudi celotnega 

človeškega sistema. 

Biološki signali so običajno pomešani s šumom. Za izločitev informacije o faznih, frekvenčnih in 

amplitudnih sklopitvah uporabljamo zapletene transformacije, ki poudarijo njihovo vsebino. 

Bispektralna analiza spada v skupino tehnik, zasnovanih na statistiki višjih redov, ki se lahko 

uporabljajo za analiziranje neGaussovih signalov, za pridobivanje fazne informacije, zmanjševanje 

Gaussovega šuma neznanih spektralnih oblik ter odkrivanje in določevanje nelinearnosti signalov [60, 

68, 69]. V sledečem besedilu razširjamo bispektralno analizo za določanje uporabnih lastnosti iz 

nestacionarnih podatkov in demonstriramo spremenjeno tehniko z uporabo na testnih signalih 

sklopljenih oscilatorjev. 

Bispekter vsebuje statistiko tretjega reda. Ocenjevanje spektrov je osnovano na konvencionalnem 

Fourierevem tipu direktnega pristopa z izračunom momentov tretjega reda, ki so v primeru statistike 

tretjega reda enaki kumulantom tretjega reda [60, 66-69]. 

Klasično oceno bispektra dobimo kot povprečje ocenjenih momentov tretjega reda za vsak segment, 

na katere je razdeljen signal, in sicer zaradi zagotovitve statistične stabilnosti [67]. Moment tretjega 

reda je enak trojnemu produktu diskretne Fouriereve transformiranke pri diskretnih frekvencah k, l in 

k+l[69] 

(2) 

Bispekter B(k, t) je kompleksor, določata ga amplituda^4 in faza <fi 



Bik J) = \B(kJ)\ejZB(k'l) = AeJ*. (3) 

Za vsako bifrekvenco (k, I) ga lahko predstavimo kot točko v kompleksnem prostoru 9?[i?(£, /)] proti 

3[B(k, /)], kar določa vektor. Njegova amplituda (dolžina) je imenovana tudi biamplituda. Faza, ki se 

v primeru bispektra imenuje bifaza, je določena s kotom med vektorjem in pozitivno realno osjo. 

Algoritem za izračun ocene bispektra je podrobno opisan v [39]. 

Kot je podrobno obravnavano v [39], bispekter meri razmerje med osnovnimi oscilatornimi 

komponentami opazovanega signala. Se posebno bispekter določa razmerje med oscilacijami osnovnih 

dveh frekvenc k in l ter harmonični komponenti pri frekvenci k + L Te tri frekvence tvorijo tako 

imenovano trojico (k, l, k + /). Za vsako trojico podaja bispekter B(k, l) vrednost, ki vsebuje 

informacijo o fazi in jakosti sklopitve. Velika amplituda bispektra pri bifrekvenci (k, J) nakazuje vsaj 

frekvenčno sklopitev v trojici frekvenc k, /, in k ± /. Močne sklopitve nakazujejo, da imata lahko 

oscilatomi komponenti pri k in / skupnega povzročitelja. Takšni komponenti lahko povzročita 

nastanek nove komponente pri sestavljeni frekvenci k ± l, če je prisotna kvadratična nelinearnost. 

Klasična bispektralna metoda je primerna za študijo stacionarnih signalov, katerih frekvenčna vsebina 

se časovno ohranja. Da bi vsebovali časovno odvisnost v bispektralni analizi, analogno kot v primeru 

kratkočasovne Fouriereve transformacije (KČFT), premikamo časovno okno w{ri) dolžine M preko 

signala x{n) in računamo diskretno Fourierevo transformiranko za vsako pozicijo okna [81] 

kjer pomeni t časovni premik. Izbira dolžine okna M je kompromis med doseganjem optimalne 

frekvenčne ločljivosti in detekcije časovne spremenljivosti. Trenutno bifazo izračunamo kot 

<f>(kj,n) = <f>k(n) + <f>,(n)-<f>k+l(n). (5) 

Če sta dve frekvenčni komponenti k in / frekvenčno in fazno sklopljeni, <fa+i = <fa + $, potem velja, da 

je bifaza enaka 0 (2TT) radianov. V našem primeru je fazna sklopitev manj stroga, ker so lahko odvisne 

frekvenčne komponente fazno zamaknjene. Za fazno sklopitev smatramo, če je bifaza konstantna (ni 

nujno enaka 0 radianom) za vsaj nekaj period nižje frekvenčne komponente bifrekvence. Istočasno 

opazujemo trenutno biamplitudo, ki lahko podaja relativno jakost sklopitve 
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(6) 

Na ta način želimo opazovati prisotnost in trajanje sklopitev med oscilatorji. 

Zaradi simetrije močnostnega spektra pri frekvenci vzorčenja fJ2 ima bispekter veliko simetrij v k, l 

področju [77, 78]. V primeru realnih signalov ima bispekter 12 simetričnih področij. Bispekter je 

potrebno izračunati le za neredundantno ali glavno področje. To je sestavljeno iz notranjega in 

zunanjega trikotnika, v katerih ima bispekter različne lastnosti [32, 33, 105]. V tej nalogi se bomo 

omejili na določanje bispektra v notranjem trikotniku. 

Da lahko dobljene rezultate med seboj primerjamo, je potrebno izvesti normalizacijo. Bispekter 

normaliziramo z vrednostjo povprečnega bispektra preko celega področja notranjega trikotnika [25, 

69]. Kritična vrednost za oceno bispektra in biamplitude je normalizirana na 1. Oceno jemljemo za 

veljavno, če je višja od povprečne vrednosti bispektra na področju notranjega trikotnika. Kritična 

vrednost je tista vrednost, ki presega efekt razlivanja (Fouriereva transformacija), šumno ozadje 

(različno od Gaussa) in zaokrožitvene napake. 

A N A L I Z A S K L O P I T E V 

Ilustracijo in preskus bispektralne metode ponazorimo na primeru generičnega modela medsebojnega 

vplivanja sistemov, katerih osnovna enota je Poincare oscilator [128]: 

(7) 

Kjer sta x in y vektorja spremenljivk stanj oscilatorja, so CC[, ax ter cox konstante, gx(x) in gy(y) pa 

vektorja sklopitve. Aktivnost posameznega sistema opišemo z dvema spremenljivkama stanja x{ in yx, 

kjer i = 1,..., N določa podsistem. 

Različne načine medsebojnega vpliva med podsistemi, kot so linearna, kvadratična sklopitev in 

parametrična frekvenčna modulacija, proučujemo s signali, dobljenimi s predlaganim modelom. Za 

bolj realistične razmere proučujemo signale z ali brez dodanega osrediščenega belega Gaussovega 

u 



šuma. V vseh primerih analiziramo spremenljivko x\ prvega oscilatorja. Najprej izračunamo klasični 

bispekter. Bifrekvence, kjer se pojavijo vrhovi zaradi možnih frekvenčnih interakcij, proučujemo 

naprej z izračunom biamplitude in bifaze v odvisnosti od časa. 

Linearna sklopitev. V primeru linearne sklopitve med dvema oscilatorjema (z = 1, 2) je termin 

sklopitve v modelu (7) enostranski in linearen 

(8) 

V glavnem področju bispektra se nahaja le vrh pri samosklopitveni bifrekvenci prvega oscilatorja s 

frekvenco f\. Bispektralna analiza namreč ugotavlja razmerje med osnovnima frekvenčnima 

komponentama oscilatorjev f\ mf2 ter modulacijsko komponento pri frekvenci/i ±f2, ki pa ni prisotna 

v močnostnem spektru signala. Metoda kot takšna je nezmožna ugotoviti prisotnost linearne sklopitve 

med oscilatorjema. Bispektralna analiza je prvenstveno namenjena za ugotavljanje nelinearne 

kvadratične sklopite in frekvenčne modulacije, ker imata obe za posledico frekvenčne komponente pri 

vsoti in razliki karakterističnih frekvenc vzajemno delujočih oscilatorjev. Da lahko ugotovimo 

linearno sklopitev z bispektralno metodo, je potrebno metodo prilagoditi v smislu spremembe 

frekvenčnega razmerja 

(9) 

prav tako se ustrezno spremeni fazno razmerje 

(10) 

Prilagojeni bispekter |2?a| signala pokaže vrh, ki se nahaja na bifrekvenci (f\,fi). Ta je naše primarno 

zanimanje. Vrh namiguje, da gre vsaj za linearno frekvenčno sklopitev med frekvencama f\ inf2, kar 

je zadosten razlog za nastop vrha. Fazno sklopitev ugotovimo šele z izračunom bifaze, ki je konstantna 

v času trajanja linearne sklopitve. 

Kvadratična sklopitev. Predpostavimo, da sta dva Poincare oscilatorja sklopljena nelinearno; 

sklopitveni člen v modelu (7) ustrezno spremenimo 

(H) 
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Tako dobljeni signal je prikazan na sliki 2 (a). Kvadratična nelinearna sklopitev povzroči nastop višjih 

harmonskih komponent poleg karakterističnih frekvenc [69], kot je prikazano na sliki 2 (b). Bispekter, 

slika 2 (c) in (d), prikazuje značilen razpored vrhov. Ko je kvadratična sklopitev prisotna, je 

biamplituda različna od nič in bifaza konstantna, slika 2 (e). Močnejša ko je sklopitev, višja je 

biamplituda, slika 2 (f). Rezultati so enaki kot v primeru brez šuma, iz česar lahko sklepamo, da je 

metoda robustna na šum. 

Slika 2: Rezultati v primeru kvadratične sklopitve z dodanim šumom, (a) Testni signal x1D, spremenljivka Xj 
prvega oscilatorja s karakteristično frekvenco fx = 1,1 Hz. Karakteristična frekvenca drugega oscilatorja je f2 = 
0,24 Hz. Oscilatorja sta sklopljena enosmerno kvadratično s tremi različnimi stopnjami jakosti sklopitve: r/2 = 
0,0 (1); 0,05 (2); in 0,1 (3). Vsaka sklopitev traja 400 s in je vzorčena z vzorčno frekvenco/> 10 Hz. Za vsak 
primer je prikazan signal za prvih 15 s. (b) Močnostni spekter, (c) Bispekter \B\ izračunan iz K= 33 segmentov, s 
66 % prekrivanjem in z uporabo Blackmanovega okna za zmanjšanje razlivanja in (d) njegov nivojni prikaz. Del 
bispektra nad/2 > 1,0 Hz je odrezan, ker trojica (1,1 Hz, 1,1 Hz, 1,1 Hz) povzroči visok vrh, kije fizično 
nepomemben, (e) Bifaza (/) in (f) biamplituda A za bifrekvenco (1,1 Hz, 0,24 Hz) z 0,3 s časovnim korakom in 
100 s dolgim oknom za oceno diskretne Fouriereve transformiranke in uporabo okna Blackman. 

Frekvenčna modulacija. Z bispektrom želimo ugotoviti tudi parametrično frekvenčno modulacijo in 

jo razlikovati od kvadratične. Parametrična modulacija povzroči nastanek frekvenčnih komponent pri 

vsoti in razliki karakteristične frekvence prvega oscilatorja in frekvence modulacije drugega 

l)ll 



oscilatorja. Obe komponenti bi bili lahko tudi posledica nelinearne kvadratične sklopitve. Enačbo 

prvega oscilatorja modela (7) ustrezno spremenimo 

(12) 

Bispekter se razlikuje od tistega v primeru kvadratične sklopitve. Pri bifrekvenci (/1,̂ 2) dobimo vrh, 

čeprav komponente drugega oscilatorja^ (ena komponenta trojice) ni prisotne v močnostnem spektru 

signala, je vrednost različna od nič zaradi šuma. Bifaza ne kaže razdobja konstantne bifaze. V primeru 

močnejše modulacije je ta manj spremenljiva in ni pogostih faznih 2n skokov, kar je samo dodatna 

indikacija, da gre za primer modulacije. 

S R Č N D - R E S P I R A T D R N A S K L D P I T E V 

V raziskavi je sodelovalo šest moških starih od 25 - 27 let, brez evidence o srčni bolezni. Pred 

začetkom meritve je vsak ležal sproščeno 15 minut. En nabor meritev je bil izmerjen v normalnem 

sproščenem stanju pri spontanem dihanju ter nadaljnja dva do trije nabori meritev pri različnem 

enakomernem dihanju (počasnejšem/hitrejšem od spontanega). Meritve so trajale 20 minut pri 

spontanem in 12 minut pri enakomernem dihanju. Merili smo krvni pretok na štirih različnih mestih s 

podobnimi lastnostmi krvožilnega sistema: na obeh rokah (levo in desno zapestje) in obeh nogah 

(levem in desnem gležnju) z vzorčno frekvenco 40 Hz. Istočasno smo merili tudi električno aktivnost 

srca (EKG) in dihanja z vzorčno frekvenco 400 Hz. Pri vsaki meritvi je tako nastala podatkovna 

datoteka, kije vsebuje 7 signalov. Tehnika zajema podatkov je opisana v [112]. Vse skupaj je bilo 

zajetih 22 podatkovnih datotek. 

Signale krvnega pretoka smo predhodno obdelali. Odstranili smo zelo nizke in zelo visoke frekvence z 

uporabo oken z drsečim povprečjem; dolžine 200 s za trend in 0,2 s za visoke frekvence, hkrati pa 

smo jih prevzorčili na 10 Hz. Tako smo se izognili problemom prekrivanja [81]. Signale smo 

normalizirali med nič in ena in jim odstranili srednjo vrednost. Določili smo karakteristično srčno/1 in 

dihalno/2 frekvenco ter komponente pri njunih harmoničnih pozicijah. Slika 3 levo prikazuje časovni 

potek tako obdelanih signalov za primer enakomernega dihanja, počasnejšega kot v primeru 

spontanega dihanja, in desno detekcijo frekvenčnih komponent v močnostnem spektru. 



Sledil je izračun normaliziranega bispektra kot povprečje preko več segmentov, ki smo jim vsakokrat 

odšteli povprečno vrednost signala. Za ugotavljanje nelinearne kvadratične sklopitve smo za vsak 

signal obdelali 8 vrhov, kot so našteti v preglednici 1. 

0 Time (s) 5 2 1 °>n °'98 l>96 f(Hz) 

Slika 3: Signal krvnega pretoka b(t), merjen istočasno na štirih različnih mestih. Vsakemu je odstranjen trend in 
visoke frekvence ter je prevzorčen, normaliziran in osrediščen. Signali so dolgi 521 s in prevzorčeni na vzorčno 
frekvenco/s= 10 Hz. (a) Signal, izmerjen na desnem zapestju ba(t) in njegov močnostni spekter; (b) levo zapestje 
bh(t) in njegov močnostni spekter; (c) desni gleženj bc(f) in njegov močnostni spekter; (d) levi gleženj bd(t) in 
njegov močnostni spekter. 

Za vsak vrh smo izračunali bifazo in biamplitudo. Frekvenčno ločljivost smo nastavili tako, daje bila 

vsaj 1/10 najnižje dihalne frekvence. Uporabili smo okno, dolgo 100 s za izračun bispektra, 

biamplitude in bifaze. Uporabljeno okno določa tudi časovno ločljivost. Za izključitev ugotovitve 

naključnih sklopitev smo se osredotočili na tiste, ki so trajale vsaj 10 period počasnejše - dihalne 

frekvence, to je približno 100 s ali krajše. Ker je hkratna frekvenčna in časovna ločljivost izključujoča 

po Heisenbergovem principu nedoločenosti [43], je izbor možnosti omejen in potreben je kompromis. 

Okno smo premikali vzdolž časovne vrste s korakom 0,1 s = (1//Š). Kritično vrednost za oceno 

biamplitude smo postavili v vseh primerih na 2, to je dvakrat več kot je povprečna vrednost bispektra 

v tako imenovanem notranjem trikotniku bifrekvenčne domene. 
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Da bi lahko sklepali na kvadratično sklopitev, smo določili potrebne pogoje: (i) Konstantna bifaza vsaj 

10 period počasnejše sklopitvene komponente; (ii) Istočasno prisoten plato bifaze za vseh šest (osem) 

vrhov; (iii) V času sklopitve ni nobenih faznih skokov in bifazne spremembe so znotraj intervala n 

radianov (šum); (iv) Biamplituda mora biti nad določeno kritično vrednostjo. 

Preglednica 1: Vrhovi in pripadajoče bifrekvence v bispektru kot posledica nelinearne kvadratične sklopitve med 
dvema oscilatorjema s karakterističnima frekvencama/i in^. 

Vrh 

1 

2 

3 

4 

5 

6 

7 

8 

Bifrekvenca 

Vi,fi) 
(fl-fljl) 
(fr/2,2f2) 
((/i,2/2) 

(fufrfi) 
ifi+fiJrfi) 

ifiJi) 

Vufi) 

(a) 

f2(Hz) 
^(Hz) 

0,87 0,98 1,09 f (Hz) 

Slika 4: (a) Bispekter \B\ signala ba, izračunan iz K = 33 segmentov, 87 % prekrivanjem in Blackmanovim 
oknom za zmanjševanje razlivanja, (b) Nivojni prikaz dela bispektra/i,/^ < 1,4 Hz, ki nas zanima. 

Primer tipičnega bispektra za celotno frekvenčno področje prikazuje slika 4 (a). Razvidnih je več 

vrhov. Področje našega interesa je srčno-respiratorna sklopitev, področje okoli bifrekvence {f],fj), ki 

je podrobnejše prikazano na sliki 4 (b). Pri nižjih frekvencah so razvidne sklopitve, ki so lahko 

posledica sklopitev med miogenim in nevrogenim oscilatorjem. Teh v tem delu ne obravnavamo. 

Natančna analiza pokaže, da se v bispektru nahajajo vsi vrhovi, našteti v preglednici 1. Izračun bifaz 

in biamplitud za vse vrhove pa razkrije, da so v določenem časovnem intervalu Tqc izpolnjeni vsi 

pogoji za nelinearno kvadratično sklopitev. Primer vrhov, biamplitud in bifaz za vrhova ena in dva 
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prikazuje slika 5. Povzetek analize vseh signalov, v katerih je bila ugotovljena nelinearna sklopitev, pa 

je podan v preglednici 2. Čeprav so bili signali izmerjeni na šestih osebah, so v preglednici 2 podatki 

samo za pet oseb. Tudi pri šesti osebi smo ugotovili nelinearne sklopitve, vendar niso izpolnjevale 

zahtevanega časa trajanja. Samo za en primer spontanega dihanja so bili izpolnjeni vsi pogoji za 

nastop nelinearne sklopitve. Pri spontanem dihanju so epizode sklopitev kratke in fazni preskoki 

pogostejši. 

Slika 5: Analiza krvnega pretok signala bJJ), izračunanega iz K = 33 segmentov, 87 % prekrivanjem, z 0,1 s 
časovnim korakom in 100 s dolgim oknom za izračun diskretne Fouriereve transformiranke z uporabo 
Blackmanovega okna za zmanjševanje razlivanja za vrhova (a) 1 in (b) 2; levi stolpec, bispekter |Z?ba| s 
pripadajočim nivojnim prikazom; sredinski, biamplituda Aha; in desni, bifaza $,a. 

Vprašanje, ali kardiovaskularni sistem vsebuje deterministično dinamiko, je bilo že predmet številnih 

raziskav [6, 8, 109, 110, 112]. Številni rezultati potrjujejo, daje sistem, ki regulira krvni pretok, 

determinističen. Ali so rezultati bispektralne analize posledica deterministične ali stohatične 

komponente v signalih krvnega pretoka, preverimo z uporabo surogatov [102, 106]. V ta namen 

uporabimo metodo surogatov naključne faze [44, 102, 106, 123, 124]. Tako dobljeni signali imajo 

podobne spektralne lastnosti kot originalni signali krvnega pretoka, to je enako povprečno vrednost, 

enako varianco, enako avtokorelacijsko funkcijo in posledično enak močnostni spekter s to razliko, da 

ni faznih povezav, oziroma so rezultat linearnega Gaussovega procesa. Z bispektralno analizo ne 

ugotovimo nelinearnih sklopitev v surogatih signalov krvnih pretokov. Zaključimo lahko, da so fazne 

informacije vsebovane v kardiovaskularnem signalu krvnega pretoka deterministične narave. 

Aktivnost srca se izraža v vsaki krvni žili in je prisotna tudi v mikrocirkulaciji kapilarnega omrežja. 

Periferni krvni pretok regulirata zunanji (centralni) in notranji (lokalni) mehanizem in mora tako 
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odražati aktivnost obeh [6, 7, 9, 108, 110]. Signali krvnega pretoka odražajo centralne in lokalne 

mehanizme regulacije v kardiovaskularnem sistemu. Signali, zajeti na različnih, med seboj precej 

oddaljenih mestih, so lahko zelo podobni. Čeprav odražajo pretok v kapilarni mreži, vsi vsebujejo 

informacijo o prostorsko invariantni periodični aktivnosti centralno generiranih srčnih in dihalnih 

signalov. Jakost periodičnih komponent v perifernem krvnem pretoku se spreminja s premerom žil in 

gostote omrežja, to je z lokalno upornostjo pretoka. 

Preglednica 2: Nelinearna kvadratična sklopitev zaznana v signalih krvnega pretoka. Za vsako meritev so bili 
istočasno izmerjeni krvni pretoki na štirih različnih mestih, kanali a-d. Tqc je interval, v katerem z bispektralno 
analizo ugotovimo, da sta srčni oscilator^ in respiratorni oscilator^es lahko nelinearno sklopljena. Produkt Tqc x 
fKs določa trajanje sklopitve. Za časa Tqc smo izračunali najvišjo biamplitudo za vrh 1, kije našega osnovnega 

zanimanja, največjo spremembo bifaze A$ njeno povprečno vrednost (j) in standardno deviacijo c%. 

Oseba 

1 

1 

1 

2 

2 

2 

3 

3 

4 

4 

5 

Dihanje 

enakomerno 

enakomerno 

enakomerno 
spontano 

enakomerno 

enakomerno 

enakomerno 

enakomerno 

enakomerno 

enakomerno 

enakomerno 

Kanal 

a 

d 

b 

a 

c 

a 

d 

c 

d 

d 

d 

fbr 
(Hz) 

1,08 

1,00 

0,97 

1,16 

1,05 

0,98 

1,08 

1,10 

1,01 

0,99 

1,20 

/res 

(Hz) 

0,11 

0,23 

0,34 

0,14 

0,10 

0,11 

0,13 

0,26 

0,10 

0,11 

0,10 

T 
* qc 

(s) 

105,7 

56,8 

18,9 

82,0 

89,5 

95,6 

56,5 

52,4 

105,6 

95,6 

57,5 

•* qc-*7res 

11,6 

13,1 

6,4 

11,5 

9,0 

10,5 

7,3 

13,6 

10,6 

10,5 

5,8 

-^ lmax 

(arb. 

units) 

190 

62 

50 

352 

122 

383 

334 

52 

407 

219 

1009 

A^ 

(rad) 

1,11 

0,92 

0,84 

1,87 

1,48 

1,47 

1,29 

0,46 

2,47 

2,19 

2,05 

(rad) 

8,92 

10,93 

0,47 

32,68 

4,05 

3,22 

2,21 

4,96 

0,58 

-6,51 

5,88 

cr<l> 

(rad) 

0,20 

0,29 

0,28 

0,47 

0,34 

0,42 

0,48 

0,10 

0,18 

0,76 

0,67 

Čeprav so bili izmerjeni signali krvnega pretoka zajeti na različnih, med seboj oddaljenih mestih 

(kanal a-d), vsi odražajo enake karakteristične srčne in respiratorne frekvence. Z bispektralno analizo 

signalov krvnega pretoka smo za vsako meritev dobili enake rezultate za vse signale, istočasno 

izmerjene na različnih mestih (kanal a-d) in tako potrdili, da se informacija o faznem razmerju 

ohranja, kar je v skladu s predhodnimi raziskavami. 

Bispekter, definiran kot (2), je poseben primer križnega spektra, ko so vsi trije signali enaki. 

Imenujemo ga tudi avto bispekter. Poleg signalov krvnega pretoka smo istočasno merili tudi signal 

EKG, signal dihanja in signal krvnega pritiska. Z uporabo križnega bi spektra preverimo srčno-

respiratorno sklopitev z uporabo bivariatnih podatkov. Križni bispekter definiramo kot [69] 
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BXYY(kJ) = X(k)Y(l)Y\k + l), (13) 

kjer sta X in Y diskretni Fourierevi transformiranki dveh različnih signalov x{t) in y{t) pri diskretnih 

frekvencah k, l in k+l. Izračunali smo križne spektre Z?cebb (kjer c pomeni križni, e signal e{i) in b 

signal b(t)), za primer, ko je x(t) signal EKG e{t) \ny(f) signal krvnega pretoka ba(t). Signal EKG nam 

primarno govori o srčni električni aktivnosti. Fazo prve, srčne komponente f\, v trojici {f\,fi,f\ +/2) 

dobimo tako neposredno iz EKG signala, dihalno komponento^ in komponento pri harmonski poziciji 

f\ +fi pa iz signala krvnega pretoka. Na podoben način kot (13) definiramo še križni bispekter Bxxx(k, 

J) in ga izračunamo za dva različna primera: (i) BcbTh, kjer je x(t) signal krvnega pretoka ba(t) in y(f) 

signal dihanja r{t). Signal r{t) najbolj direktno opisuje aktivnost respiratornega oscilatorja (ii) 5cprp, 

kjer je x{t) signal krvnega pritiska p(t) \ny{t) signal dihanja r{t). 

Z izračunom križnih bispektrov ugotovimo, daje informacija o sklopitvi med srčnim in respiratornim 

oscilatorjem neodvisna od signala, oziroma da je prisotna tudi v drugih kardiovaskularnih signalih. 

Križne spektre smo izračunali tudi za primer surogatov signalov e{i), r{i) in p{f) z naključno fazo. V 

tem primeru nismo ugotovili faznih sklopitev. 

Nelinearna sklopitev ali linearna sklopitev močno nelinearnih oscilatorjev. Naša študija je 

zasnovana na predpostavki, da sta srčni in respiratorni proces opisana kot šibki nelinearni oscilator in 

da so sklopitve med njima šibke [116]. Prikladno seje vprašati, kaj se zgodi, če predpostavke niso 

izpolnjene. Odgovor na to vprašanje smo poiskali na dva različna načina, z analitično aproksimacijo in 

digitalno simulacijo. 

V analizi v prilogi B obravnavamo generiranje harmoniko v paroma sklop lj enih šibko nelinearnih 

oscilatorjev. Ta potrjuje, da pri šibki sklopitvi nastopijo dodatne harmonične komponente pri 2o>2, 2oj\, 

<x>\ ± o>i, 2&>i + 26)2, 3&>i ± 0)2, ki jih lahko povežemo s kvadratično sklopitvijo. Če gre za zadosti 

nelinearen oscilator in zadosti močno sklopitev, se lahko v principu pojavijo te in ostale kombinatorne 

frekvence kot posledica efekta drugega reda tudi v primeru linearne sklopitve. Vendar pa nastop teh 

kombinatornih frekvenc sam po sebi ni zadosten za izpolnitev pogojev za nastop nelinearne sklopitve 

v bispektru. Za to pri šibko do srednje močnih sklopitvah lahko vedno zanesljivo določimo, da gre za 

nelinearno sklopitev. Ko so nelinearnosti posebno močne ne moremo vedno pričakovati, da bo 

bispektralni pristop razkril zanesljivo informacijo o naravi sklopitve. 

Analiza je dopolnjena z digitalno simulacijo, s katero ugotavljamo področje ekstremnih pogojev, kjer 

pričakujemo, da bo bispektralni pristop neuspešen. Za generičen model izberemo van der Polov 

oscilator z dodatno nelinearnostjo, vsiljen z drugim relaksacijskim van der Polovim oscilatorjem v 



smislu aditivne sklopitve z dodanim Gaussovim šumom. Analiziramo podroben nabor parametrov za 

primera: (i) ko sta dva oscilatorja močno nelinearna, vendar linearno sklopljena; in (ii) ko sta 

nelinearna in nelinearno sklopljena. V najbolj ekstremnem primeru zelo močne linearne sklopitve in 

zelo močne dodane nelinearnosti ne moremo več razlikovati med močno nelinearnostjo oscilatorjev in 

močno nelinearno sklopitvijo. V tem primeru bispektralna metoda odpove. 

Kljub temu pa je več argumentov, ki podpirajo domnevo, da sta srčni in dihalni podsistem šibka 

nelinearna oscilatorja, ki sta šibko sklopljena. (i) Pri spontanem dihanju zdravih ljudi se pojavljajo le 

občasne in kratke epizode sinhronizacije [10, 99-101], kar nakazuje na relativno šibke sklopitve. (ii) 

Sinusna respiratorna aritmija je šibka pri spontanem dihanju in le malo močnejša pri zelo nizkih 

dihalnih frekvencah [23], kar ponovno podpira šibko sklopljen opis. (iii) Sklopitve lahko včasih 

popolnoma izginejo, kot je to pri komi [112]. Brez sklopitev se dinamika drastično poenostavi s 

popolno odsotnostjo sinhronizacije in modulacije. Dejstvo, da kljub majhni amplitudni spremenljivosti 

zaradi notranjega šuma ni opažene nobene spremembe naravnih frekvenc, nakazuje, da so sami 

oscilatorji kvečjemu šibko nelinearni, (iv) Če bi bili oscilatorji močno nelinearni in močne sklopitve 

(linearne), bi opazili veliko kombinatornih komponent okoli srčne frekvence. 

Analizirano pretirano močno sklopitveno področje je tako irelevantno za srčno-respiratorno sklopitev, 

ki jo ugotavljamo v tem delu. 

Razmerje do sinhronizacije. Dejstvo da lahko notranje sklopitve med oscilatorjema privedejo do 

sinhronizacije kot tudi do modulacije, je imelo za posledico veliko študij faznega razmerja med srčnim 

in respiratornim oscilatorjem [10, 24, 42, 46, 52, 71, 92, 95, 97, 100, 101, 113, 114, 118]. Prav 

možnost sinhronizacije nas je motivirala, da smo razvili nova orodja za nadaljnje raziskovanje 

sklopitev med sistemi: smer, jakost in še posebej naravo sklopitev. Informacijo o sklopitvah lahko 

dobimo s pomočjo bivariatnih podatkov (signal dihanja in EKG signal), z uporabo nedavno razvitih 

metod za analizo sinhronizacije, ali s posplošeno sinhronizacijo med kaotičnimi in/ali šumnimi sistemi 

(glej [72] in reference, ki so tam navedene). Tu nas zanima, ali se sinhronizacija pojavi ali ne, v 

pogojih, ko jasno zaznamo sklopitev. Z uporabo sinhrograma ugotovimo obstoj frekvenčne 

modulacije, ne pa sinhronizacije v primeru enakomernega nizkofrekvenčnega dihanja. Bispektralna 

analiza podaja drugačno informacijo kot jo dobimo iz sinhrograma. Razmerje do sinhronizacije v 

širšem smislu podrobneje podajamo v naslednjem poglavju. 

Vsiljen oscilator. Z uporabo novih razvitih tehnik za analizo smeri sklopitve [72, 93, 94, 103] je bilo 

pokazano [73, 117], da sta srčni in respiratorni sistem sklopljena obojesmerno. Vendar pa je vpliv 

dihanja prevladujoč (vodilni sistem) pri vseh dihalnih frekvencah, spontanih ali enakomernih [73, 
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117]. Sklopitev med srčnim in respiratornim oscilatorjem lahko tako vidimo kot enosmerno: 

respiratorni sistem vodi srčnega. Poseben primer je enakomerno dihanje. Čeprav je med enakomernim 

dihanjem dihalna frekvenca konstantna, se primer razlikuje od primera vsiljenega oscilatorja (kjer je 

srčni oscilator vsiljen in respiratorni vodilo). Primer ponazorimo z generičnim modelom skoraj 

periodičnega Poincare oscilatorja, vsiljenega s periodično šibko zunanjo silo. Srčno-respiratorna 

sklopitev je bolj kompleksna kot vzeti primer, ki ne more povzročiti frekvenčnih komponent, ki jih 

opazimo pri srčno-respiratorni sklopitvi. Eksperiment enakomernega dihanja lahko razumemo kot 

sistem dveh sklopljenih oscilatorjev, čeprav je frekvenca enega vsiljena in konstantna (respiratorni 

sistem) sklopitev med obema spontana. 

R A Z M E R J E M E D B I S P E K T R I I N S I N H R O N I Z A C I J O 

Sinhronizacija je osnovni pojav v fiziki, ki ga je v začetku moderne dobe znanosti prvič odkril 

Huvgens [37]. V klasičnem smislu pomeni sinhronizacija nastavitev frekvenc oscilatorjev zaradi 

šibkih medsebojnih vplivov [2, 4, 30]. Ne obstaja enotna definicija za sinhronizacijo. Najbolj osnovni 

sta frekvenčna in fazna sinhronizacija. Ti dve definiciji sta bili generalizirani na pojav sinhronizacije 

dveh ali več oscilatorjev, ki so periodični, šumi ali kaotičnih oscilatorji [79, 90, 91, 96]. V najbolj 

enostavnem primeru dveh periodičnih oscilatorjev je fazna sinhronizacija definirana kot sklopitev faz 

[79] 

(14) 

kjer sta n in m celi števili, ki opisujeta sklopitveno razmerje, <f)\ in (f>i fazi oscilatorjev in £nek začetni 

fazni premik. Enačba (14) v ožjem smislu velja samo za kvaziperiodične oscilatorje. Za periodične 

oscilatorje je pogoj za fazno sklopitev ekvivalenten pogoju za frekvenčno sklopitev nf\ = mf2, kjer sta 

/i in^2 karakteristični frekvenci oscilatorjev. 

Kadar opazujemo sinhronizacijo v prisotnosti šuma, sinhronizacijo kaotičnih sistemov ali oscilatorjev 

z moduliranimi lastnimi frekvencami, fazna in frekvenčna sklopitev nista več ekvivalentni [101]. 

Kadar je šum močan, lahko pride do faznih preskokov in vidi se le težnja k sinhronizaciji. Fazno 

sinhronizacijo lahko razumemo kot pojav vrha v porazdelitvi ciklične relativne faze 

(15) 
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in si jo razlagamo kot obstoj preferenčne stabilne vrednosti fazne razlike fa med dvema 

oscilatorjema. V takih primerih ne moremo enoumno odgovoriti na vprašanje o sinhronizaciji sistema, 

nanjo lahko gledamo le v statističnem smislu. 

Pri kardiovaskulamem sistemu s časovno spremenljivimi karakterističnimi frekvencami se lahko 

fazna sinhronizacija pojavi, za frekvence pa ni nujno, da so povezane. Držimo se zapisa (14) za fazno 

sinhronizacijo, v besedilu uporabljamo skrajšano sinhronizacija. 

Že odprto vprašanje razmerja bispektrov do sinhronizacije podrobnejše obdelamo na primeru signalov 

podgan med splošno anestezijo. Signali so bili že obdelani z metodami za analizo sinhronizacije [63]. 

Iz signalov smo izbrali in analizirali z bispektri dva signala, za katera dobimo v sinhrogramu zelo 

jasno izraženo epizodo sinhronizacije. 

Za podgane med splošno anestezijo smo merili električno aktivnost srca (EKG), dihanje, EEG in 

temperaturo. Izmerjenih je bilo 21 podgan, težkih 250 g, večina jih je bilo samcev. Prvih 11 smo 

uporabili za testiranje in umerjanje merilnih naprav ter za določanje kvalitete signalov. Z meritvijo 

smo začeli 4-7 minut po vbrizgu anestetika in končali, ko so se podgane začele spontano gibati. 

Meritve so trajale -70 min, vzorčna frekvenca je bila 1000 Hz. Med meritvijo so podgane ležale na 

trebuhu v Faradavevi kletki [63, 64]. 

6 f(Hz) 8 0 0,5 1 1,5 2 2,5 3 f(Hz) 

Slika 6: 10 s detrendiranega, prevzorčenega, normaliziranega in osrediščenega signala (a) EKG e(t) in (c) dihanja 
r(f) signala rat20 med splošno anestezijo, -72 min dolg, vzorčen s/s = 50 Hz in njuna močnostna spektra (b) in 
(d). Vrh pri 6 Hz v močnostnem spektru e{t) nastopi, ko se podgana začne zbujati iz anestezije, strm prehod v 
trenutni srčni frekvenci okoli 40 minute, slika 7 (a). 

Za obe podgani smo izračunali križne bispektre Bceve, kjer pomeni c križni, e signal e{i) in r signal r{f). 

Signale EKG in dihanja smo predhodno obdelali. Odstranili smo zelo nizke in zelo visoke frekvence z 

uporabo oken z drsečim povprečjem; dolžine 200 s za trend in 0,04 s za visoke frekvence, hkrati pa 

HUI 
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smo jih prevzorčili na 50 Hz. Tako smo se izognili problemom prekrivanja [81]. Signale smo 

normalizirali med nič in ena in jim odstranili srednjo vrednost. Primer tako obdelanih signalov EKG 

e(i) in dihanja r{t) in njunih močnostnih spektrov za podgano rat20 je prikazan na sliki 6. Za oba 

signala smo najprej izračunali trenutno srčno in respiratorno frekvenco ter njuno razmerje in 

sinhrogram, ki so za podgano rat20 prikazani na sliki 7. Sledil je izračun križnih bispektrov in za prve 

štiri vrhove iz preglednice 1 še izračun biamplitude in bifaze. 

1,83 10 20 30 40 Time (min) 63,17 

Slika 7: (a) Trenutna srčna (b) dihalna frekvenca in (c) njuno frekvenčno razmerje za podgano rat20 med splošno 
anestezijo, (d) Srčno-respiratorni sinhrogram za podgano rat20. 

Frekvenčno ločljivost smo nastavili na 1/20 najnižje respiratorne frekvence, ki je bila okoli 1 Hz 

(potrebno je 20 s dolgo okno). Opazovali smo sklopitve, ki so trajale vsaj 10 period nižje sklopitvene 

frekvence, 10 krat (\//2) — 10 s. Glede na Heisenbergov princip nedoločenosti [43] smo zadovoljili 

potrebo po frekvenčni ločljivosti in izbrali 20 s dolgo okno za izračun bispektra, biamplitude in bifaze. 

Okno smo premikali vzdolž časovne vrste s korakom 0,1 s. Kritično vrednost smo za vse primere 

postavili na 2, to je dvakratno vrednost povprečne vrednosti bispektra na področju notranjega 

trikotnika. 

Križni bispektri razkrijejo nastanek in trajanje sinhronizacije, kot je prikazano na sliki 8. Ugotovimo 

tudi pojav nelinearnih sklopitev. Relacijo do sinhronizacije dopolnimo še z generičnim modelom. 

Pojav sinhronizacije lahko spremlja modulacija. V poglavju „Analiza sklopitev" smo pokazali primer 

modulacije brez sinhronizacije. Iz sinhrograma težko ugotovimo prisotnost modulacije, možno je le v 

primeru, daje ta zelo močna. Z generičnim modelom pa ugotavljamo zmožnosti bispektralne analize v 
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primeru, da istočasno nastopita sinhronizacija in modulacija. Uporabimo skoraj periodični vsiljen 

Poincare oscilator, ki ga periodično vodi šibka zunanja sila z dodano frekvenčno modulacijo. Njuno 

frekvenčno razmerje namenoma vzamemo za celoštevilsko; tako dobimo s sinhrogramom 

sinhronizacijo tudi, ko med njima ni sklopitve. 

Slika 8: Bifaza (j) in biamplituda A za vrh 1 (4,3 Hz, 1,05 Hz), izračunani z 0,1 časovnim korakom in 20 s dolgim 
oknom za oceno diskretne Fourierove transformiranke in uporabo Blackmanovega okna. 

Pri močni sinhronizaciji sta uspešna oba, sinhrogramom in bispekter. V bispektru opazujemo vrh 1 in 

obdobje konstantne bifaze, če je biamplituda nad kritično vrednostjo. Šibka sinhronizacija je težko 

zaznavna s sihrogramom, v bispektru pa je bifaza manj konstantna z več faznimi preskoki. Če 

sinhronizacije ni, potem ni vodoravnih črt v sinhrogramu, v bispektru pa vrha 1. Sinhrogram nas lahko 

zavede v primeru, da sklopitve med sistemoma ni, je pa njuno frekvenčno razmerje konstantno. V 

primeru sinhronizacije se lahko pojavi tudi nelinearna sklopitev, to pa ne velja nujno tudi v obratni 

smeri. Med njima ni enostavne povezave. Samo prisotnost modulacije lahko ugotovimo z bispektrom, 

zavede pa nas lahko hkratna prisotnost modulacije in linearne sklopitve. V tem primeru je potrebno 

analizirati več vrhov. Pomagamo si lahko z opazovanjem poteka faz frekvenčnih komponent v trojici. 

Skupni nastop močne nelinearne sklopitve in močne modulacije ni mogoče razločiti. 

Bispektralna analiza je bolj občutljiva na sklopitve med sistemi kot sinhrogram. Ugotovimo lahko tudi 

nastanek sinhronizacije, vendar v splošnem ne podaja enake informacije kot sinhrogram. 

S P E K T R I V I S J I H R E D O V N A O S N O V I T R A N S F O R M A C I J E 

Z V A L Č K I 

Fouriereva transformacija je zasnovana na predpostavki (a) periodičnosti signala in (b) neskončno 

dolgih časovnih vrst [57, 58]. Ker nobena od predpostavk ni strogo izpolnjena za izmerjene signale, je 

določitev posameznih frekvenc v sistemu, ki vsebuje močne sklopitve, zelo zahtevna. Še težje je v 

nizkofrekvenčnem področju, ki nas še posebej zanima, saj je karakteristične frekvence še težje ločiti. 

Princip nedoločenosti Fouriereve transformacije omejuje zmožnosti ločevanja harmoničnih 
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komponent v frekvenčnem področju bispektra [20, 69]. To lahko povzroči težave pri ugotavljanju 

nelinearne kvadratične sklopitve, ko je frekvenčni par blizu skupaj. Da lahko zagotovimo dobro 

ločljivost nizkih frekvenc, potrebujemo daljše odseke za izračun diskretnih Fourierevih 

transformirank. To hkrati zniža število odsekov in poslabša oceno bispektralnih mer. Daljši signali pa 

vodijo v nestacionarnost in varianca postane še večja [69]. 

Pomagamo si lahko s transformacijo z valčki (TV), ki je v nekem smislu posplošena Fouriereva 

transformacija [43] z dodano časovno ločljivostjo na bolj osnoven način, kot je to dovoljeno s KČFT 

[81]. TV je že bila uspešno uporabljena za obdelavo kardiovaskularnih signalov [3, 5]. Posplošitev 

bispektra na TV lahko omogoči ugotavljanje začasnih sprememb v faznih sklopitvah ali kratkotrajne 

sklopitve. Prav tako pričakujemo, da bo uspešna pri ločevanju širokih in sovpadajočih vrhovih na 

račun povečane časovne ločljivosti. 

VT preslika signal iz časovnega prostora v prostor čas-skala. Signal g{t) razstavi na družino v 

splošnem neortogonalnih funkcij %±, kijih dobimo s premikanjem in skaliranjem osnovnega valčka 

if{u). Valčna transformiranka Wg(s, t), ki jo je prvi vpeljal Morlet [28], je definirana kot [43] 

(16) 

Osnovni valček mora biti omejen tako v časovnem kot v frekvenčnem prostoru. Za analizo 

kardiovaskularnih signalov je najbolj primeren Morletov valček, kije Gaussova funkcija, modulirana s 

sinusnim valom [6, 8]. Poenostavljena oblika v časovnem prostoru je 

(17) 

Razmerje med skalo s in frekvenco / j e f = fQ/s, kjer s jo določimo število period sinusa v oknu. 

Frekvenčna ločljivost se tako spreminja s skalo (frekvenco) - pri nizkih je boljša kot pri visokih, 

medtem ko je časovna ločljivost boljša pri visokih kot pri nizkih frekvencah. 

Valčni bispekter WB definiramo analogno v skladu s Fourierevo definicijo bispektra kot 

(18) 

kjer velja 
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Valčni bispekter meri vrednost fazne sklopitve, ki nastopi med valčnimi transformirankami pri skalah 

Si, s2 in s signala g(t) na intervalu T, tako daje pravilo vsote skal (frekvenc) (19) izpolnjeno. 

Valčni bispekter W2?je kompleksor, določata ga amplituda^ in faza (f> 

(20) 

Za vsako biskalo (s\t s2) ga lahko predstavimo kot točko v kompleksnem prostoru 9l[WB(s\, s2)] proti 

3[WZ?(si, s2)], kar določa vektor. Njegova amplituda (dolžina) je biamplituda, bifaza pa je določena s 

kotom med vektorjem in pozitivno realno osjo. Trenutno bifazo izračunamo analogno kot v primeru 

(5) 

(21) 

Če sta dve skalni komponenti S\ in s2 skalno in fazno sklopljeni, $, = fa + 0s2, potem velja, daje bifaza 

enaka 0 (2n) radianov. V našem primeru je fazna sklopitev manj stroga, ker so lahko odvisne skalne 

komponente fazno zamaknjene. Za fazno sklopitev smatramo, če je bifaza konstantna (ni nujno enaka 

0 radianom) za vsaj nekaj period višje skalne komponente biskale (sh s2). Istočasno opazujemo 

trenutno biamplitudo, ki lahko podaja relativno jakost sklopitve 

(22) 

V skladu s Fourierevo definicijo križnega bispektra lahko definiramo analogno križni valčni bispekter 

kot 

(23) 

Da lahko zadostimo frekvenčnemu pogoju vsote (19) pri visokih frekvencah, je potrebna višja 

frekvenčna ločljivost. Dosežemo jo tako, da Morletov valček spremenimo 
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(24) 

Faktor d določa eksponentno upadanje Morletovega valčka. Večji kot je počasneje upada Gaussova 

funkcija in boljša je frekvenčna ločljivost ob hkratnem zmanjšanju časovne ločljivosti. Ustrezno 

frekvenčno ločljivost pri visokih frekvencah lahko zagotovimo tudi s faktorjem am, s katerim 

dosežemo, da širina okna ne upada hiperbolično, temveč počasneje. Za višje frekvence lahko 

uporabimo tudi konstantno širino valčka. S konstanto cn dosežemo normalizacijo, da transformacija 

ohranja energijo (moč). Za analizo kardiovaskularnih signalov izberemof0 = 1, daje razmerje med 

frekvenco in skalo/= l/s, in lažje interpretacije valčnih bispektrov. 

Na sliki 9 (a) in (b) je prikazan valčni bispekter za testni primer nelinearne kvadratične sklopitve med 

dvema Poincare oscilatorjema z dodanim Gaussovim šumom, signal Xu>, slika 2 (a). 

Slika 9: Rezultati za kvadratično sklopitev v prisotnosti aditivnega Gaussovega šuma, testni signal xm, dobljen z 
valčnim bispektrom. (a) Valčni bispekter \WB\, izračunan iz K = 33 segmentov, 66 % prekrivanjem, Tm

2 = 8 s, 
Ge

3 = 0,001 in z uporabo Morletovega valčka s konstantno dolžino 7HF = 40 s za izračun visokih frekvenc in (b) 
njegov nivojski prikaz. Del valčnega bispektra nad f2> 1,0 Hz je odrezan, ker trojica (1,1 Hz, 1,1 Hz, 1,1 Hz) 
povzroči visok vrh, ki je fizično nepomemben, (c) Bifaza (f> in (d) biamplituda A za bifrekvenco (1,1 Hz, 0,24 
Hz), z 0,1 s časovnim korakom. 

Oba bispektra, valčni in Fourierev, podajata enako informacijo o sklopitvi. Razlika je vidna v obliki 

vrhov, ki so v primeru valčnega bispektra širši. To je pričakovati, saj je frekvenčna ločljivost za visoke 

frekvence nižja kot pri bispektru na osnovi Fouriereve transformacije. Hkrati je opazna večja časovna 

ločljivost valčnega bispektra predvsem iz časovnega poteka bifaze, slika 9 (c) in (d). 

2 Dolžina Morletvega osnovnega valčka, s =1 s. 
3 Vrednost Gaussove funkcije na robu Morletovega valčka. 
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Vpeljano metodo valčnega bispektra uporabimo na signalih krvnega pretoka, ki smo jih že analizirali z 

uporabo Fourierevega bispektra na osnovi KČFT. Parametri valčne bispektralne transformacije so 

nastavljeni na tipske vrednosti, ugotovljene na podlagi testnih signalov. 

Valčni bispekter za celotno frekvenčno področje signala krvnega pretoka Z>a je prikazan sliki 10 (a). 

Razvidnih je več vrhov. Področje našega interesa je srčno-respiratoraa sklopitev, področje okoli 

bifrekvence (/j, f2), ki je podrobnejše prikazano na sliki 10 (b). Natančna analiza pokaže, da se v 

bispektru nahajajo vsi vrhovi, našteti v preglednici 1. Izračun bifaz in biamplitud za vse vrhove pa 

razkrije, da so v časovnem intervalu od 77,1 s do 170,4 s izpolnjeni vsi pogoji za nelinearno 

kvadratično sklopitev, katere dolžina je Tqc = 93,3. Primer vrhov, biamplitud in bifaz za vrhova 1 in 2 

prikazuje slika 11. 

Slika 10: (a) Valčni bispekter | WB\ signala ba, izračunan iz K = 33 segmentov, 87 % prekrivanjem, Tm = 8 s, Ge ~ 
0,001 in z uporabo Morletovega valčka s konstantno dolžino TH¥ = 80 s za izračun visokih frekvenc, (b) Nivojni 
prikaz dela bispektra fuf2 < 1,4 Hz, ki nas zanima. 

Primerjava rezultatov, dobljenih z valčnim bispektrom, s tistimi, dobljenimi s Fourierevim bispektrom, 

razkrije, da z obema metodama ugotovimo enako pozicijo vrhov v bispektru. Vrhovi, dobjeni z 

valčnim bispektrom, so širši kot v primeru Fourierevega bispektra. Časovni poteki biamplitud so zelo 

podobni. Pojavlja se enako število izstopajočih vrhov v enakih časovnih trenutkih. Izračun križno-

korelacijskega koeficienta za biamplitudi prvega vrha obeh metod je enak 0,95. Podobno velja za 

časovni potek bifaz. Opazimo lahko, da so spremembe bifaze veliko bolj izrazite v primeru valjčnega 

bispektra. Čeprav si po obliki časovni poteki bifaz niso tako podobni, kot velja za biamplitude, pa se 

pojavljajo platoji s konstantno bifazo v enakih časovnih trenutkih. Z obema metodama ugotovimo 
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prisotnost kvadratične sklopitve. V primeru valčnega bispektra je za 2,3 s krajša, kar je 2,4 odstotna 

razlika. 

f,(Hz) 77,1 Time (s) Time (s) 

Slika 11: Analiza krvnega pretok signala ba(t), izračunanega iz K = 33 segmentov, 87 % prekrivanjem, z 0,1 s 
časovnim korakom, Tm = 8 s, Ge = 0,001 in z uporabo Morletovega valčka s konstantno dolžino Tw = 80 s za 
izračun visokih frekvenc, za vrhova (a) 1 in (b) 2; levi stolpec, bispekter |5ba| s pripadajočim ni vojnim prikazom; 
sredinski, biamplituda Aha; in desni, bifaza $,a. 

Če povzamemo, dobimo z obema metodama zelo podobne rezultate. Iz širine vrhov v bispektru lahko 

sklepamo, da je frekvenčna ločljivost Fourierevega bispektra višja, medtem ko časovna ločljivost 

valčnega bispektra višja, saj bolje zazna hitre bifazne spremembe. Valčna metoda ne da opazno boljših 

rezultatov. To velja za primer analize srčno-respiratorno sklopitve, in sicr pri določenih pogojih, po 

katerih sklepamo na nelinearno sklopitev. V tem primeru je izbrano okno za izračun Fourierevega 

bispektra ravno tisto, ki zadovolji potrebni frekvenčni ločljivosti in hkratni časovni ločljivosti. 

Posledično ne dobimo znatnih razlik med rezultati obeh metod. 

Razliko si oglejmo na primeru generičnega testnega signala dveh kvadratično sklopljenih Poincare 

oscilatorjev z dodanim Gaussovim šumom, i = 1,2, kjer sta/i = 1,1 Hz in f2 = 0,24 Hz: 

(25) 
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Slika 12: Rezultati, dobljeni s Fourierevim (c)-(f) in valčnim (g)-(h) bispektrom za primer prekinjajoče se 
kvadratične sklopitve dveh Poincare oscilatorjev z dodanim Gaussovim šumom, (a) Testni signal xlh 

spremenljivka X\ prvega oscilatorja s karakteristično frekvenco/] = 1,1 Hz. Karakteristična frekvenca drugega 
oscilatorja je f2 ~ 0,24 Hz. Oscilatorja sta sklopljena enosmerno kvadratično z dvema različnima jakostima 
sklopitve: rj2 = 0,0 (1); in 0,2 (2). Sklopitev (2) je prisotna vsakih 20 s in traja 20 s. Signal je dolg 1200 s in 
vzorčen z vzorčno frekvenco/ = 10 Hz. Za vsak primer je prikazan signal za prvih 15 s. (b) Močnostni spekter, 
(c) Bifaza ^ in (d) biamplituda A za bifrekvenco (1,1 Hz, 0,24 Hz) izračunani s 100 s dolgim oknom za oceno 
diskretne Fouriereve transformiranke. (e) Bifaza <j) in (f) biamplituda A za bifrekvenco (1,1 Hz, 0,24 Hz) 
izračunani s 130 s dolgim oknom za oceno diskretne Fouriereve transformiranke. V obeh primerih z 0,1 s 
časovnim korakom, K = 33 segmenti, s 66 % prekrivanjem in z uporabo okna Blackman. (g) Bifaza <p in (h) 
biamplituda A za bifrekvenco (1,1 Hz, 0,24 Hz), izračunani z valčnim bispektrom s K = 33 segmenti, z 0,1 s 
časovnim korakom, 66 % prekrivanjem, Ge = 0,01, Tm = 8 s in z uporabo Morletovega valčka s konstantno 
dolžino THF = 20 s za izračun visokih frekvenc. 

Tako dobljeni generični signal xu(t) je prikazan na sliki 12 (a) s pripadajočim močnostnim spektrom, 

slika 12 (b), za dve jakosti sklopitev: r/2 = 0; in TJ2 = 0,2, ki se izmenjujeta vsakih 20 s. Dodatni vrhovi, 

poleg karakterističnih za kvadratično sklopitev, so posledica analize celotnega signala naenkrat. Zaradi 

diskretnih sprememb sklopitve pride do bogate harmonske vsebine signala. Opazujemo le vrh pri 

bifrekvenci (1,1 Hz, 0,24 Hz). V prvem primeru uporabimo 100 s dolgo okno za izračun Fourierevega 

bispektra. Iz poteka bifaze, slika 12 (e), bi lahko napačno sklenili, da ni fazne sklopitve, saj le-ta ni 

konstantna, temveč narašča s časom. V drugem primeru uporabimo 130 s dolgo okno za izračun 
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Fourierevega bispektra. Iz poteka biamplitude in bifaze, slika 12 (e) in (f), bi lahko sklenili, da sta 

oscilatorja ves čas sklopljena, saj je biamplituda nad kritično vrednostjo, bifaza pa brez faznih 

preskokov, t j . znotraj K rad intervala. 

Šele z uporabo valčnega bispektra razkrijemo pravo naravo sklopitve, slika 12 (g) in (h). Biamplituda 

kaže prisotnost sklopitve na vsakih 20 s, prav v teh intervalih pa je tudi bifaza konstantna, sicer pa 

monotono narašča. 

Glavna razlika med valčnim in Fourierevim bispektrom je prav časovna in frekvenčna ločljivost. Po 

Heisenbergovem principu nedoločenosti [43] sta hkratni natančni določitvi frekvence in časa 

vzajemno si izključujoči 

(26) 

kjer je A/ časovni interval in A/frekvenčni pas. Enačaj velja le v primeru, ko je okno Gaussovo. 

Medtem ko sta frekvenčna in časovna ločljivost pri KČFT določeni z izbranim oknom (njegovo 

dolžino) in se ne spreminjata, se pri valčnem bispektru frekvenčna in časovna ločljivost spreminjata s 

skalo. Razmerje med frekvenco in frekvenčno ločljivostjo je konstantno. Visoke frekvence se 

spreminjajo hitreje in nizke počasneje, valčni bispekter WB ima visoko frekvenčno ločljivost nizkih 

frekvenc in visoko časovno ločljivost visokih frekvenc, zato je zmožen zaznati kratkotrajne fazne 

sklopitve. Prav z uporabo Morletovega valčka dosežemo optimalno razmerje med frekvenčno in fazno 

ločljivostjo. Fourierev bispekter s povprečjem izloči večino časovno povezane informacije. Vendar pa 

moramo biti pazljivi pri uporabi VT, saj je lahko pri visokih frekvencah časovna ločljivost previsoka, 

frekvenčna pa prenizka. Tako bodo bispektralne ocene občutljive na šum, po drugi strani pa to pelje k 

slabi/nepravilni določitvi karakterističnih frekvenc. 

Pri Fourierevem bispektru je frekvenčni korak določen s širino okna, pri valčnem bispektru pa je 

poljuben, saj je valčna transformacija zvezna, kar je velika prednost. To ima za posledico 

prevzorčenje, ki pa se nas, če ne iščemo inverzne transformacije, ne dotika. Če izberemo/) = 1, je 

interpretacija valčnega bispektra enaka kot v primeru Fourierevega. Prav tako je enostavna 

normalizacija na energijo (moč). Prednosti sta še manjša statistična napaka in računska zahtevnost. 

Med VT in KČFT obstaja še tako imenovana modificirana kratkočasovna Fouriereva transformacija 

ali selektivna diskretna Fouriereva transformacija (SDFT), ki sta jo prvič predstavili Keselbrenerjeva 

in Akselrodova [47]. Podobno kot KČFT je časovno odvisna Fouriereva transformacija. Časovno-

frekvenčno občutljivost dosežemo z uporabo okna specifične dolžine okoli analizirane podatkovne 

točke za izračun vsake spektralne komponente posebej. Za vsako frekvenčno komponento izvedemo 
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diskretno Fourierevo transformacijo. Dolžina okna je obratno sorazmerna frekvenci izračuna, podobno 

kot krčenje in raztegovanje osnovnega valčka pri VT, kar pomeni, da so nizke frekvence ocenjene z 

dobro frekvenčno ločljivostjo in visoke z dobro časovno ločljivostjo. 

Zaradi uporabe pravokotnih oken pri izračunu diskretne Fouriereve transformiranke pride do pojava 

razlivanja. Da ga omilimo, uporabimo okna za glajenje, kot so na primer Hammingovo, Hanningovo 

ali Blackmanovo [47]. 

Obe, SDFT in VT, sta primerni za generalizacijo bispektralne analize, saj omogočata izbiro med dobro 

frekvenčno in časovno ločljivostjo. Medtem ko uporaba Morletovega valčka omogoča optimalno 

časovno-frekvenčno ločljivost, pa seji lahko s SDFT s primerno izbiro parametrov le približamo. Se 

vedno pa ima VT prednost, daje zvezna, medtem ko SDFT ni. 

O S T A L E M O Ž N O S T I U P O R A B E V A L C N E B I S P E K T R A L N E M E T O D ! 

Za proučevanje kardiovaskularnega sistema nismo nujno vezani samo na kardiovaskularne signale. 

Informacija o sklopitvah nevrogenega kardiovaskularnega podsistema je vsebovana tudi v možganskih 

valovih. Če ugotovimo, da nastopi sinhronizacija med posameznimi centri v možganih, lahko 

sklepamo, da so ti centri med seboj sklopljeni. V večini primerov je sinhronizacija povezana z 

obnašanjem specifičnih struktur, frekvenc in stanja obnašanja. Na splošno nizkofrekvenčne oscilacije 

izvirajo iz večjih struktur kot visokofrekvenčne. Pod določenimi pogoji, kot je primer splošne 

anestezije, lahko opazimo pri merjenju signala elektroencefalograma (EEG) sinhronizacijo kot 

organizirane, razločljive vzorce. Ti vzorci so odvisni od povzročitelja anestezije in globine anestezije 

[107]. Delta možganski valovi so najpočasnejši izmed možganskih valovanj (0-4 periode na sekundo). 

Povezani so z globokim spanjem brez sanj, s stanjem transa, povečanjem imunskih funkcij, hipnozo in 

je zato pričakovati, da se pojavijo med anestezijo. Prostorska homogenost v EEG signalu med 

anestezijo se pogosto ugotavlja na osnovi spektralnih metod [21, 86, 122]. 

Merjenje kvadratične fazne sklopitve med komponentami EEG signala je prvi uvedel G. Dumermuth z 

uporabo bispektralne analize leta 1969 [51]. Številne EEG študije, ki so uporabljale matematična 

orodja spektrov višjih redov, so bile od tedaj objavljene [12, 27, 53, 65]. Za merjenje globine 

anestezije in stopnje sprostitve [84, 88, 98] se pogosto uporablja tako imenovani bispektralni indeks 

(BIS) [89]. Ta kompleksni parameter je sestavljen iz komponent pridobljenih na osnovi različnih 

analiz in samo ena je povezana z bispektrom. Na splošno stacionarnosti v signalih EEG ne moremo 
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pričakovati, zato se za analizo uporabljajo predvsem časovnofrekvenčne porazdelitve, TV, časovno 

spremenljive avtoregresijske metode na osnovi gibajočih se povprečjih (ARMA) in druge, ki ponujajo 

zadostno časovno in frekvenčno ločljivost. Razvita je bila tudi časovno spremenljiva bispektralna 

metoda [5, 69, 98]. Medtem ko se ti pristopi osredotočajo na časovnofrekvenčni prostor (spektri 

drugega reda) ali na obliko v frekvenčno-frekvenčnem prostoru (spektri tretjega reda), pa je naš namen 

izločiti časovno sklopitveno informacijo iz frekvenčno-frekvenčne domene bispektra, to je 

biamplitudo in bifazo. 

Nedavno je bila opravljena analiza EEG signalov podgan med splošno anestezijo z izračunom 

sinhronizacijskih indeksov [63, 64]. Analiza je pokazala, da imajo ti signali več časovno spremenljivih 

frekvenčnih komponent. Najbolj dominantne so v delta frekvenčnem področju (0-4 Hz). Podoben 

vzorec je bil opažen pri vseh izmerjenih podganah. Na začetku je dominantna ena, počasi 

spreminjajoča se frekvenčna komponenta okoli centralne frekvence 2 Hz. Okoli nje so višje 

frekvenčne komponente, ki na začetku niso razločljive. Ko se začnejo podgane spontano premikati in 

spontano dihati, dominantna frekvenčna komponenta v EEG signalu izgine. Sinhronizacijski indeksi 

so bili izračunani za primer (a) valovi delta iz EEG in EKG, (b) valovi delta iz EEG in dihanje in (c) 

EKG in dihanje. Samo za zadnji primer je bila sinhronizacija očitna. V vseh primerih se je pojavljal 

splošni vzorec, na začetku sinhronizacija 2:1 ali 3:1, ki kasneje preide v 4:1 ali 5:1 in se kasneje vrne 

nazaj v 3:1 ali 2:1 sinhronizacijo. Na koncu signalov ni sinhronizacije, kar povezujemo s prehodom v 

manj globoko anestezijo. Izračunane so bile tudi smeri in jakosti sklopitev oscilatorjev. Medtem ko 

lahko vidimo, da na začetku respiratorni oscilator vodi oscilacije, ki izhajajo iz delta valovanja iz 

EEG, pa ne moremo ničesar zaključiti o smeri sklopitve in jakosti med srčnim oscilatorjem in valovi 

delta iz EEG signala. 

Globina anestezije je povezana s sinhronizacijo med srčnim in respiratornim oscilatorjem [63, 64]. 

Globino anestezije lahko dobimo iz signala EEG, ta pa je povezana z bispektrom. V tem poglavju 

analiziramo signal EEG podgane rat20, že obravnavane v poglavju „Razmerje med bispektri in 

sinhronizacijo", z metodo valčnih bispektrov za ponazoritev zmožnosti metode. Želimo ugotoviti, ali 

lahko z izračunom valčnega bispektra, biamplitude in bifaze izvlečemo enako informacijo iz 

univariatnega signala EEG, kot jo da bivariatna sinhronizacija EKG in dihalnega signala. 

Signal EEG smo najprej obdelali, tako da smo odstranili zelo nizke in zelo visoke frekvence z uporabo 

oken z drsečim povprečjem; dolžine 200 s za trend in 0,04 s za visoke frekvence in ga hkrati 

prevzorčili na 50 Hz. Signal smo dalje normalizirali med nič in ena in mu odstranili srednjo vrednost. 

Signal EEG podgane rat20 in njegov močnostni spekter sta prikazana na sliki 13 (a-b). 
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Za jasnejšo interpretacijo smo -63 min dolg EEG signal podgane rat20 razdelili na štiri odseke a, b, c 

in d, glede na dobljeni sinhrogram med srčnim in respiratomim oscilatorjem za podgano rat20, slika 

13 (c). Vsak odsek je določen tako, da se v tem času v sinhrogramu pojavi samo en sinhronizacijski 

pojav, to je sinhronizacija ali brez sinhronizacije. 

Slika 13: (a) 10 s detrendiranega, prevzorčenega, normaliziranega in osrediščenega EEG(0 signala in njegov 
močnostni spekter (b) za podgano rat20 med splošno anestezijo, -63 min dolg in prevzorčen na fs = 50 Hz (c) 
Srčno-respiratorni sinhrogram za podgano rat20, razdeljen na 4 odseke a-d. 

Slika 14: Primer rezultatov za podgano rat20 med splošno anestezijo, (a) Valčni bispekter \WBC\ EEG signala 

podgane za odsek c izračunan iz K = 33 segmentov, 81 % prekrivanjem, Ge = 0.001, Tm = 8 s, z uporabo 

Morletovega valčka s konstantno dolžino Tm = 20 s za izračun visokih frekvenc in (b) njegov nivojski prikaz, 

(c) Bifaza <f> in (d) biamplituda A za bifrekvenco (1,4 Hz, 1,4 Hz), izračunana iz K = 33 segmentov, z 81 % 

prekrivanjem, Ge = 0.001, Tm = 8 s, 0,1 s časovnim korakom in z uporabo Morletovega valčka s konstantno 

dolžino 7HF = 80 s za izračun visokih frekvenc. 

Pri izračunu valčnih bispektrov za visoke frekvence smo uporabili okno dolžine 20 s, za oceno bifaz in 

biamplitud za bifrekvenco, kjer se pojavi najvišji vrh v valčnem bispektru, pa dolžine 80 s. S tem smo 

zagotovili visokofrekvenčno ločljivost za visoke frekvence, kjer je kompleksen EEG signal 
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koncentriran, okoli 1 Hz. Frekvenco smo povečevali s korakom 0,02 Hz, da smo ohranili frekvenčno 

pravilo vsote (19), okno pa premikali vzdolž serije s korakom 0,1 s. Kritična vrednost biamplitude je 

bila 2. Opazovali smo samo sklopitve med valovi delta iz EEG signala podgane. 

V posameznih odsekih zaznamo z valčnim bispektrom fazne sklopitve. Primer bispektra, biamplitude 

in bifaze za odsek c signala EEG podgane rat20 so prikazani na sliki 14. Če upoštevamo potrebne 

pogoje za nastop nelinearne sklopitve, vendar samo za vrh samosklopitve, dobimo fazne 

samosklopitve, zbrane v preglednici 3. 

Preglednica 3: Fazne sklopitve ugotovljene v EEG signalu podgane rat20. Tpc je časovni interval, za katerega z 
valčno bispektralno analizo ugotovimo, daje so valovi delta iz EEG signala fazno samosklopljeni pri bifrekvenci 
(/j /i). Produkt rpc x/j pove, koliko period valov delta iz EEG signala je trajala fazna sklopitev. V času trajanja 
Tpc smo izračunali še največjo biamplitudo vrha Amax ter največjo spremembo bifaze A$ njeno povprečno 

vrednost (f> in standardno deviacijo c .̂ 

Odsek 

a 

a 

a 

a 

a 

b 

b 

C 

C 

C 

d 

(min) 

2,67 

5,87 

7,45 

8,22 

12,38 

18,83 

23,83 

35,00 

36,42 

36,92 

40,67 

h 
(min) 

3,55 

6,33 

8,17 

10,83 

13,03 

19,50 

24,31 

36,17 

36,75 

37,45 

41,53 

(Hz) 

1,1 

1,1 

1,1 

1,1 

1,1 

1,3 

1,3 

1,4 

1,4 

1,4 

1,6 

T 
-* pc 
(s) 

49 

28 

43 

157 

39 

40 

29 

70 

20 

32 

52 

TPcxf\ 

57 

33 

50 

183 

45 

67 

48 

141 

40 

65 

130 

A -rlmax 

(del. 

enot) 

753 

494 

1224 

1894 

535 

922 

3249 

2931 

839 

617 

558 

(rad) 

1,16 

0,24 

0,81 

2,53 

0,58 

1,31 

1,33 

2,43 

0,99 

1,09 

1,02 

<f> 
(rad) 

3,24 

3,59 

-8,14 

-9,62 

-6,05 

-1,77 

-39,44 

8,45 

3,64 

7,92 

4,50 

(rad) 

0,23 

0,05 

0,29 

0,69 

0,12 

0,34 

0,30 

0,62 

0,23 

0,34 

0,31 

Največ faznih sklopitev se nahaja v odseku a in c. Te sklopitve so najmočnejše in trajajo najdaljši čas 

Tpc. Če združimo vse biamplitude posameznih odsekov, potem izstopata dva vrhova. V času, ko 

nastopita vrhova je bifaza znotraj n intervala. Čas nastopa in trajanje faznih sklopitev sta prikazana na 

sliki 15. Ta dva dogodka zaznamo tudi v sinhrogramu srčno-respiratorne sklopitve, slika 13 (c), ko se 

pojavi in ko izgine sinhronizacija 4:1. V vmesnem času sinhrogram ne pokaže nobene sinhronizacije, z 

valčnim bispektrom pa zaznamo kratkotrajne fazne sklopitve, ki ne morejo sinhronizirati sklopljenih 

oscilatorjev, saj se bifaza spreminja uniformno. 
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H* 
i 

2,33 7,45 23,83 35,00 Time (min) 62,67 

Slika 15: Fazne sklopitve rpc, ki izstopajo po amplitudi biamplitude (1000 del. enot in več) v preglednici 3. 
Prikazan je čas njihovega nastopa in trajanje. Prvi in zadnji Tpc sovpada z nastopom in izginotjem fazne 
sinhronizacije med srčnim in respiratomim oscilatorjem, slika 13 (c). 

Na podoben način kot smo analizirali srčno-respiratorno sklopitev bi lahko analizirali tudi sklopitev 

med srčnim oscilatorjem in valovi delta iz EEG signala in respiratomim oscilatorjem in valovi delta iz 

EEG signala, kar pa ni predmet tega dela. Valčni bispekter se je izkazal kot obetavno orodje za analizo 

EEG signalov med anestezijo. 
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Osnovna motivacija dela je bil razvoj orodja za proučevanje medsebojnega vpliva podsistemov 

kardiovaskulamega sistema. Z orodjem, ki bi bilo občutljivo na časovno spremenljivo vsebino, želimo 

povečati možnosti razkrivanja narave in pomena sklopitev. Sklopitve omogočajo izmenjavo 

informacije med procesi in so tako temelj za pravilno delovanje sistema krvnega obtoka. Frekvenca in 

amplituda vsake opazovane oscilacije nam pričata o aktivnosti oscilatorja in učinku vseh sklopitev. 

Sklopitve so torej ključnega pomena za razumevanje kardiovaskulamega in morda tudi celotnega 

človeškega sistema. Bolezensko stanje vodi v fiziološke spremembe, ki se odražajo v spremembah 

dinamičnih lastnosti kardiovaskulamega sistema. Poznavanje sklopitev pomeni možnost zaznavanja 

bolezenskega stanja v njegovem začetnem stadiju, ko je potreben minimalni zdravniški poseg. 

Razvito časovno občutljivo bispektralno metodo omogoča določitev narave sklopitev med 

sklopljenimi oscilatorjimi. Prednosti so: (i) možnost hkratnega opazovanja celotnega frekvenčnega 

področja; (ii) ugotavljanje sklopitev dveh ali več medsebojno sklopljenih oscilatorjev; (iii) določanje 

jakosti sklopitve; (iv) določanje narave sklopitve: linearna, nelinearna kvadratična ali parametrična v 

eni od frekvenc; (v) metoda je primerna za analizo šumnih signalov. 

Učinek sklopitev med srčnim in respiratomim oscilatorjem je prej epizodičen kot stalen in 

nespremenljiv. Frekvenčne in fazne sklopitve se izmenjujejo. Nelinearne sklopitve obstajajo tako med 

spontanim kot enakomernim dihanjem. Sklopitve med oscilatorji so šibke. Bispektralna in križna 

bispektralna analiza sta pokazali, daje informacija o sklopitvi med srčnim in respiratomim procesom 

lastna procesoma in prostorsko invariantna. Oba procesa sta centralnega izvora. Njuno fazno razmerje 

lahko opazujemo v signalu EKG, signalu krvnega pretoka in signalu krvnega pritiska, izmerjenih na 

različnih med seboj oddaljenih mestih. Nelinearna narava sklopitev med srčnim in respiratomim je 

vrojena in postane bolj izrazita, ko je frekvenca dihanja konstantna. Bispektralna analiza je torej 

sposobna določevati frekvenčne in fazne sklopitve med C V procesi in s tem primerna za razumevanje 

kardiovaskulamih signalov. 

V primerjavi s sinhrogramom je bolj občutljiva na sklopitve in manj občutljiva na šum. Zazna fazne 

sklopitve, vendar na drugačen način kot jih podaja sinhrogram. Med sklopitveno informacijo, dobljeno 

s sinhrogramom in z bispektrom, ne moremo določiti enostavne povezave. 
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Valčna bispektralna metoda signalov krvnega pretoka ne da opazno boljših rezultatov kot Fourierova 

bispektralna metoda. To velja pri analizi srčno-respiratorno sklopitve pri določenih pogojih, po katerih 

sklepamo na nelinearno sklopitev. 

Za obdelavo signalov sta primernejša valčni in križno valčni bispekter kot bispekter na osnovi 

Fouriereve transformacije. Omogočata ugotavljanje kratkočasovnih faznih sklopitev, optimalno 

časovno in frekvenčno ločljivost, enostavno povezavo med skalo in frekvenco, neposredno 

interpretacijo, normalizacijo na energijo (moč), manjšo statistično napako, poljuben frekvenčni korak 

in sta računsko manj potratna. 

Iz dobljenih rezultatov valčne bispektralne analize signala EEG podgane med anestezijo lahko 

sklepamo, da so srčni in respiratorni kardiovaskularni oscilator in valovi delta iz EEG signala med 

anestezijo sklopljeni. Anestezija lahko vpliva na valove delta iz EEG signala tako, da ti vodijo srčni in 

respiratorni sistem v sinhronizacijo. 

Valčni bispekter lahko omogoči povezavo med teoretičnim kardiovaskulamim modelom in 

eksperimentalnimi meritvami. 
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I Z V I R N I P R I S P E V K I K Z N A N O S T I 

Pomembnejši izvirni prispevki k znanosti: 

1. Ugotavljanje sklopljenih nelinearnih oscilatorjev z uporabo časovno občutljivih bispektralnih 

cenilk za biamplitudo in bifazo. 

Vpeljali smo časovno občutljivi bispektralni cenilki - biamplitudo (6) in bifazo (5) - za 

razkrivanje faznih sklopitev v univariatnih podatkih (poglavje 3, strani od 13 do 16). Pokazali 

smo, da je vpeljana metoda primerna za proučevanje sklopljenih nelinearnih oscilatorjev. 

Sposobna je meriti jakost fazne sklopitve z bispektralno cenilko - biamplitudo, katere vrednost 

je proporcionalna vrednosti koeficienta medsebojne sklopitve e (2.6) sklopljenih nelinearnih 

oscilatorjev (poglavje 2, strani od 7 do 12) in razkriti naravo sklopitve, t.j., ali je sklopitev 

dodana linearna, kvadratična ali parametrična v eni od frekvenc (poglavje 4, strani od 17 do 28). 

2. Potrditev hipoteze o sklopitvi med srčnim in respiratornim oscilatorjem v človeškem 

kardiovaskularnem sistemu. 

Prvi smo uporabili vpeljano časovno bispektralno metodo na signalih krvnega pretoka za 

proučevanje narave srčno-respiratorne sklopitve. Kljub omejeni možnosti za razkrivanje metode 

med linearno in nelinearno sklopitvijo v ekstremnih razmerah je metoda uporabna, dokler 

sklopitve ne postanejo preveč zapletene, upoštevajoč fiziološko poznavanje kardiovaskularnega 

sistema (poglavje 5, strani od 29 do 56). Sklopitve med srčnim in respiratornim oscilatorjem so 

epizodične, prej kot stalne in nespremenljive. Frekvenčne in fazne sklopitve se izmenjujejo. 

Nelinearne sklopitve obstajajo tako med spontanim kot enakomernim dihanjem. Izrazitejše so 

pri enakomernem dihanju. Sklopitve med oscilatorji so šibke (poglavji 5 in 6, strani od 28 do 37 

in od 57 do 76 ). Informacija o sklopitvi med srčnim in respiratornim procesom je lastna 

procesoma in prostorsko, znotraj CVS, invariantna. Oba procesa sta centralnega izvora. Njuno 

fazno razmerje lahko opazujemo v signalu EKG, signalu krvnega pretoka in signalu krvnega 

pritiska, izmerjenih na različnih med seboj oddaljenih mestih (poglavje 5, strani od 37 do 46). 

3. Posplošitev bispektralnih cenilk na transformacijo z valčki 

Bispektralni cenilki - biamplitudo (22) in bifazo (21) - smo posplošili na transformacijo z 

valčki. Metoda je primernejša za ugotavljanje kratkočasovnih sklopitev. Omogoča za nas 

optimalno časovno in frekvenčno ločljivost. Valčni bispekter lahko omogoči povezavo med 
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teoretičnim kardiovaskularnim modelom in eksperimentalnimi meritvami (poglavji 7 in 8, strani 

od 77 do 106). 

4. Ugotovitev sklopitve med srčnim in respiratornim sistemom ter delta valovi signala EEG z 

uporabo posplošenih bispektralnih značilk. 

Delta valovi iz EEG signala podgane med splošno anestezijo razkrivajo fiziološko razmerje med 

srčnim in respiratornim sistemom in delta valovi iz EEG signala. Srčno-respiratorna 

sinhronizacija je lahko posledica vodenja delta valov iz EEG signala podgane med splošno 

anestezijo (poglavje 9, strani od 107 do 114). 
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Bispectral analysis, a technique based on high-order statistics, is extended to encompass tirne 

dependence for the čase of coupled noisy nonlinear oscillators. It is applicable to univariate, as well as 

to multivariate, data obtained respectively from one or more of the oscillators. It is demonstrated for a 

generic model of interacting systems, whose basic units are Poincare oscillators. Their frequency and 

phase relationships are explored for different coupling strengths, both with and without Gaussian 

noise. The distinctions between additive linear, quadratic, and parametric (frequency modulated) 

interactions in presence of noise are illustrated. 

Bispectral analysis has been used to study the nature of the coupling between cardiac and respiratory 

activity. Univariate blood flow signals recorded simultaneously on both legs and arms were analysed. 

Coupling between cardiac and respiratory activity was also checked by use of bivariate data and 

computation of the cross-bispectrum betvveen ECG and respiratory signals and surrogate data of blood 

flow signals. Measurements were made on six healthy males, aged 25-27 years, during spontaneous 

breathing and during paced respiration, at frequencies, both lower and higher than that of spontaneous 

respiration. 

It was confirmed that the dvnamics of blood flow can be usefully considered in terms of coupled 

oscillators, and demonstrated that interactions betvveen the cardiac and respiratory processes are weak 

and time-varying, and that they can be nonlinear. Nonlinear coupling was revealed to exist during both 

spontaneous and paced respiration. Relation of bispectral analysis to svnchronization is outlined in the 

example of cardiovascular ECG and respiration signals of rats undergoing anaesthesia. Bispectrum 

proves to be more sensitive to interactions than the svnchrogram. It detects the phase svnchronization, 

and nevertheless, yields different information from that which can be resolved from a svnchrogram. 

Wavelet transform was incorporated into bispectrum and adopted to analyse cardiovascular signals 

using a Morlet wavelet as a mother wavelet. A tirne dependant biphase/biamplitude estimate, with 

higher frequency resolution at low frequencies, and higher tirne resolution at higher frequencies, was 

obtained. Its advantages, compared to Fourier based bispectrum, are discussed and demonstrated for a 

generic model of interacting systems, whose basic units are Poincare oscillators, in the application of 

CV blood flow signals, and in the application of EEG signal of rat undergoing anaesthesia. The 

wavelet bispectrum may provide a link between theoretical CVS models and experimental 

measurements. 
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Most real systems are nonlinear and complex. In general, they may be regarded as a set of interacting 

subsystems; given their nonlinearity, the interactions can also be expected to be nonlinear. 

Phase relationships between a pair of interacting oscillators can be obtained from bivariate data (i.e., 

where the coordinate of each oscillator can be measured separately) by use of the methods recently 

developed for analysis of synchronization, or generalized synchronization, between chaotic and/or 

noisy systems. Not only can the interactions be detected [79], but their strength and direction can also 

be determined [72, 93, 94, 103]. The next logical step in studying the interactions among coupled 

oscillators must be to determine the nature of the couplings; the methods developed for 

svnchronization analysis do not provide us with the means to answer this question. 

Studies of higher order spectra, or polyspectra, offer a promising way forvvard in digital signal 

processing. The approach is applicable to interacting systems, quite generally, regardless of vvhether or 

not they are mutually svnchronized. Following the pioneering work of Brillinger and Rosenblatt [11], 

increasing applications of polyspectra have appeared in a diversity of fields, such as: 

telecommunications, radar, sonar, speech, biomedical, geophysics, imaging systems, surface gravity 

waves, acoustics, econometrics, seismology, nondestructive testing, oceanography, plasma physics 

and seismology. An extensive overview can be found in [120]. The use of bispectrum as a means of 

investigating the presence of second-order nonlinearity in interacting harmonic oscillators has been of 

particular interest during the last few years [20, 25, 48, 68, 74, 85]. 

Systems are usually taken to be stationary. For real systems, however, the mutual interaction among 

subsystems often results in time-variability of their characteristic frequencies. Frequency and phase 

couplings can occur temporally, and the strength of coupling betvveen pairs of individual oscillators 

may change with tirne. In studying such systems, bispectral analysis for stationary signals, based on 

tirne averages, is no longer sufficient. Rather, the tirne evolution of bispectral estimates is required. 

Priestley and Gabr [80] were probably the first to introduce the time-dependent bispectrum for 

harmonic oscillators. Most of the subsequent work has been related to the time-frequency 

representation and is based on high-order cumulants [5, 26]. The parametric approach has been used to 

obtain approximate expressions for the evolutionary bispectrum [87]. Furthermore, Perry and Amin 

have proposed a recursion method for estimating the time-dependent bispectrum [76]. Dandavvate and 

• • • • i 
I 
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Giannakis have defined estimators for cvclic and time-varying moments, and cumulants of 

cyclostationary signals [16]. Schack et al. [98] have recently introduced a tirne-varying spectral 

method for estimating the bispectrum and bicoherence: the estimates are obtained by filtering in the 

frequency domain and then obtaining a complex time-frequency signal by inverse Fourier transform. 

Their assumption is, hovvever, that the interacting oscillators are harmonic. 

Millingen et al. [61, 62] introduced the wavelet bicoherence, and were the flrst to demonstrate the use 

of bispectra for studying interactions among nonlinear oscillators. They used the method to detect 

periodic and chaotic interactions betvveen two coupled van der Pol oscillators, but vvithout 

concentrating on time-phase relationships in particular. 

It has long been known that the heart of a healthy human subject in repose does not beat regularly. The 

rhvthmic variation in the heart rate occurring at the frequency of respiration is known as respiratory 

sinus arrhythmia (RSA), which can be seen in [3, 18, 23, 34, 117] and references therein; it is not the 

only arrhvthmia [112]. In fact, at least^zve characteristic frequencies can be seen in blood flow signals, 

at ~1 Hz, 0.3 Hz, 0.1 Hz, 0.04 Hz and 0.01 Hz. The first two components correspond to the cardiac 

and respiratory oscillators respectively. The component at -0.1 Hz is often attributed to intrinsic 

mvogenic activity. The other two correspond respectively to neural and endothelial related metabolic 

activity. The wavelet transforms of such signals have been discussed in detail [6, 7, 111]. 

The cardiac and respiratory systems can be perceived from the nonlinear dvnamics point of view as 

coupled autonomous oscillators, each with its own characteristic frequency [112, 115, 116]. It is 

respiratory sinus arrhvthmia - the rhvthmic fluctuations of electrocardiographic R-R intervals, or the 

rhvthmic modulation of the instantaneous cardiac frequency - that provides the most obvious 

manifestation of their coupling. Although the interaction betvveen the cardiac and respiratory rhvthms 

has been known to exist since the early works by Hales [29] and Ludwig [56], the underlying 

physiological mechanisms are not completely understood. In his recent revievv, Eckberg [23] discusses 

several possible mechanisms for respiratory gating, of both central and peripheral origin: central, 

secondary to efferent respiratory motoneurone activity; and peripheral, secondary to afferent neural 

activity from pulmonary and thoracic stretch receptors. He presents a wide range of evidence 

favouring the influence of respiration on R-R interval fluctuations (as well as on the fluctuations in 

systolic blood pressure that are strongly correlated to the R-R fluctuations), rather than the influence of 

peripheral baroreceptor physiology as an origin of modulation. As the physiological mechanisms of 

cardio-respiratory coupling are not fully understood, even less is knovvn about the nature of this 

coupling, e.g., vvhether it is linear, quadratic, or of an even higher-order. 
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In addition to the modulation, a mutual adjustment of the cardiac and respiratory rhythms may occur, 

leading to their synchronization: in a conscious healthy subject at rest, the cardiac and respiratory 

systems have been shown to synchronize for short periods of tirne [10, 99-101]. The state of the 

system is characterized by the interactions and couplings between the oscillatory physiological 

processes. For instance, in anaesthesia, the cardiac and respiratory systems synchronize for more 

extended periods of tirne [114]. It has also been shown that during anaesthesia, RS A is reduced [1, 

83]. 

Not only C V signals are relevant for studying CVS. Neural C V subsystem coupling information is 

incorporated in the brain waves. Bispectral index (BIS) is a processed electroencephalogram (EEG) 

parameter that purports to measure the level of hypnosis in anaesthetized patients. The BIS was 

formulated retrospectively using a large database of EEG recordings and clinical correlative data. It 

incorporates parameters derived by high-order spectra, and is one of the most widely applied cases of 

high-order spectra [89] use. The EEG measures electrical activity in the brain, i.e., brainwaves of 

different frequencies and short-lived evoked potentials that occur when the brain responds to sensory 

input. Quantification of nonlinear quadratic phase-coupling between EEG signal components has been 

established since G. Dumermuth's pioneered investigations using bispectral analysis in 1969 [51]. A 

number of EEG studies have been published using the mathematical tools of high-order spectra 

analysis EEG [12, 27, 53, 65]. Recently the depth of anaesthesia vvas found to be related to 

svnchronization states between the cardiac and respiratory oscillators [63, 64]. 

The interactions can be detected by analysis of the recorded tirne series, and their strength and 

direction can also be determined [72, 73, 93, 94, 103]. The next logical step in studying interactions 

among the coupled oscillators must be to determine the nature of the couplings from the tirne series. 

A long-term aim is therefore to develop a coupled oscillator model that can provide a description of 

the system, quantify the couplings and relate their values to its different states of health or disease. We 

may thus aim for improved techniques of early diagnosis, better assessment of the efficacy of 

treatment for a range of cardiovascular diseases, and perhaps quantification of depth of anaesthesia. 

The thesis is organised as follows: Chapters 2 provides a brief overview of the human cardiovascular 

system, viewed from a point as a dvnamical system, and outlines cardio-respiratory interaction; 

Chapter 3 briefly describes bispectral analysis and introduces our development of a new approach [40] 

that introduces tirne dependence to the bispectral analysis of univariate data, while focusing on the 

time-phase relationships between two (or more) interacting systems. Chapter 4 presents our 

demonstration/testing of the aforementioned technique on a well-characterized simple model. 
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Examples of different kinds of interaction among the subsystems, e.g., additive linear or quadratic, or 

parametric frequency modulation, both with, and without, the consideration of zero-mean white 

Gaussian noise. Chapter 5 gives application of the new technique to univariate cardiovascular (CV) 

blood flow signals, which reflect the activities of both the local and central mechanisms of 

cardiovascular regulation [41]. We summarise how measurements are made, discuss how the resultant 

data are analysed, and present the results. In 5.8 Discussion, it is shown that the cardiac and 

respiratory processes can be nonlinearly phase coupled. Chapter 6 establishes the relation between 

bispectral analysis and svnchronization. Chapter 7 introduces the time-frequency variant resolution in 

the bispectrum, using vvavelet transform. Chapter 8 compares bispectrum based on Fourier transform, 

and bispectrum based on vvavelet transform. Chapter 9 displays these new potentials of usage, using 

the čase of an electroencephalogram signal. Chapter 10 provides an overview of the main results of the 

work, and outlines areas where more work is required. Chapter 11 presents drawn conclusions. 

Appendix A details the normalization techniques used for comparison of the different measurements. 

Appendix B provides an analysis of harmonic generation by a pair of weakly-coupled weakly-

nonlinear oscillators. 
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Z C A R D I D V A S D U L A R S Y S T E M 

2 C A R D I D V A S C U L A R S Y S T E M 

2.1 Backgroimd 

2.2 Coupled oscillators 

Rhythms are among the most conspicuous properties of living systems. They occur at ali levels of 

biological organization, from unicellular to multicellular organisms, with periods ranging from 

fractions of a second to years, Tab. 2.1. In humans, the cardiac and respiratory functions and the 

circadian rhvthms of a sleep and wakefulness point to the key role of periodic processes in the 

maintainance of life. In spite of their close association with physiology, however, periodic phenomena 

are by no means restricted to living systems. Oscillatory chemical reaction was discovered by Bray in 

1921, the reaction of Bray, Belousov and Zhabotinsky reaction in 1959, respectively 1964 and others. 

Tab. 2.1: A list of the main biological rhythms, classified according to increasing period. 

Hovvever, oscillatory behaviour does not always possess a simple periodic nature. Thus, both in 

chemistry and biology, oscillations sometimes present complex patterns of bursting, in which 

successive trains of high-frequency spikes are separated at regular intervals by phases of quiescence. 

In the phase space, sustained oscillations correspond to the evolution towards a closed curve called a 

limit cycle by Poincare of it's uniqueness and independence from initial conditions (Minorskv, 1962). 

Time taken to travel along the closed curve represents the period of oscillations. VVhen a single limit 

cycle exists, the system always evolves tovvards the same closed curve characterized by a fixed 



amplitude and period, for a given set of parameter values, regardless of the initial state of the system. 

Moreover, sustained oscillations of limit cycle type can be viewed as a temporal dissipative structure 

(Prigogine, 1968). 

2A Background 

The human cardiovascular or circulatory system is one of the basic systems that plays an essential role 

in the maintenance of a constant internal body environment [3, 55]. It distributes matter and energy to 

the cells and removes by-products of their metabolism. The cells extract matter and energy from the 

blood which is pumped by the heart into the network of vessels. The lungs, where the blood becomes 

oxygenated, are also part of the cardiovascular network. 

The circulatory system can be divided into two parts: the pulmonary circulation, which moves blood 

trough the lungs for exchange of oxygen and carbon dioxide and systemic circulation, which supplies 

ali other tissues. Both, the pulmonary and systemic circulation have a pump, an arterial system, 

capillaries and a venous system. Arteries and arterioles function as a distribution system. Capillaries 

serve to exchange diffusible substances between blood and tissue. Venules and veins serve as 

collection and storage vessels that return the blood to the heart. 

The heart of a relaxed, healthy subject, pumps an amount equivalent to the total amount of blood in the 

body (i.e., 4-6 litres or 7-8 % of the body weight) in approximately one minute [55]. Thus, in 

cardiovascular dvnamics we consider the dynamics of blood distribution trough the cardiovascular 

netvvork on a tirne scale of approximately one minute. It can be characterised by the dvnamics of the 

blood flow and the blood pressure in the system, and the activity of the lungs and the heart pump. 

The research has shown [8, 9, 10, 110-112, 117], that cardiovascular blood flovv signals posses a 

deterministic dvnamic, meaning, that the cardiovascular system is a result of a final number of 

subsystems (oscillators), each with its own characteristic frequency. Five subsystems take part in 

blood flovv regulation: cardiac, respiratory, myogenic, neural and endothelial metabolic system. They 

ali regulate blood flow that they have in common. 

The function of the heart is manifested as electric potentials spread across the heart muscle, and as a 

mechanical pump that rhythmically expels the blood into the arterial netvvork approximately once per 
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second (1 Hz4) [55]. However, the period of the heart cycle is not constant but, rather, varies in tirne. 

The lungs can be seen as a pressure generator [55]. The frequency of respiration also varies betvveen 

0.15 and 0.3 Hz consequently, the flow and the pressure change in an oscillatory fashion with tirne, 

and do so on several different tirne scales. Peripheral blood flow depends from the systems that control 

the blood vein diameter - the blood flow resistance. The smooth-muscle cells in the vessel walls 

respond continually to the changes in intravascular pressure, which is known as the myogenic 

response. This intrinsic rhvthmic activity of the vessels, caused by the pacemaker cells in the smooth 

muscles of their walls, is called mvogenic activity. The vessels contractions respond to the changes in 

the blood flow and blood pressure and are related to the characteristic frequency at approximately 0.1 

Hz [50]. 

Beside the mvogenic activity at least two more systems influence the veins resistance. The first one is 

the neural control, provided by the autonomous nerve innervations of vessel. Having it's origin in 

some centres in the brainstem that are connected to other parts of the central nervous system, and 

sensors throughout the whole network of vessels, it provides svnchronization of the function of the 

entire system. It's characteristic frequency is approximately 0.04 Hz [45]. The second one corresponds 

to metabolic activity. A number of substances, which are required for cellular metabolism or are 

produced as metabolites, have an effect on the state of contraction of vascular musculature. The 

rhvthmic regulation of vessel resistance to the blood flow, initiated by concentrations of metabolic 

substances, can be related to characteristic frequency at approximately 0.01 Hz [3, 8, 110]. 

2.2 Coupled oscillators 

Cardiovascular subsystems do interact among them selves even at healthy human in rest, therefore 

their characteristic frequencies are not constant but, rather, varie in tirne and their amplitudes are 

modulated [3, 18, 23, 34, 117]. Each svstem can be regarded as an autonomous nonlinear oscillator 

with its own characteristic frequency that can be detected in the power spectrum of the cardiovascular 

blood flow signal. Phase couplings and svnchronization can onset among separate oscillators. It has 

been shown recently [9, 79, 94, 97, 113, 114] that cardiac and respiratory oscillations are 

svnchronized. Svnchronization or adjusting in tirne onsets vvhen two or more nonlinear oscillators are 

coupled. It can be seen in form of their frequency or phase interactions. After Huvgens the 

svnchronization is frequency adjustment of autonomous harmonic oscillators5 due to their weak 

4 Characteristic frequencies differ from human to human. Given values are result of estimated characteristic 
frequencies obtained by frequency analysis of blood flow signals for čase of young, healthy male humans. 

5 Oscillators can be chaotic or noisy. 



interaction. Phase coupling is thus onset of some phase relations among interacting systems while it 

doesn't necessary exist any amplitude correlation. 

The coupling effect on the interacting oscillator's behaviour depends on coupling strength. While 

weak couplings result in oscillator's characteristic frequency varying, strong couplings can cause 

qualitative changes in system behaviour named as phase transitions [13]. If there were no couplings 

among cardiovascular oscillators sharp peaks would occur in power spectrum and the characteristic 

frequency ratio would be proportional what is not the čase for healthy human in rest where the ratio is 

at most rational. Appearance of a resonance is a phenomenon, where the system breaks down and the 

death occurs. 

Couplings enable information exchange among processes and are basic for normal cardiovascular 

system activity. Understanding of physiological nature of these couplings is of essential meaning for 

the understanding of the whole system. Each detected oscillations frequency and amplitude describes 

the oscillator's activity and impact of ali couplings. It is not possible to measure separate oscillator's 

activity, therefore various methods are used to analyse phase, frequency and amplitude couplings. 

A subsystem of the cardiovascular system may be represented as an oscillator, described by a state 

vector x which satisfies [115, 116]: 

(2.1) 

where x is the nonlinear rate function and s denotes the parameter of the oscillator. A simple limit 

cycle oscillator, as proposed by Poincare [128], 

can be used to describe a basic unit of the system. It possesses the structural stability and robustness 

necessitated by physiological understanding and the analysis of measured time series. The state 

variables x[ and x\ describe the flow and velocity of the flow contributed by the /-th oscillator. 
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2 C A R D I D V A S C U L A R S Y S T E M 

Five oscillators are assumed to contribute to the blood flow trough the cardiovascular system: cardiac, 

respiratory, myogenic, neural and endothelial related metabolic activity. Each of them is characterized 

by a frequency / and amplitude ax. The constant oj determines the rate at which the state vector 

approaches the limit cycle. In polar coordinates, with radius rx and angle <f\ the state variables are 

(2.4) 

(2.5) 

The system has two steady-state solutions, where drjdt = 0, at rx = 0 and rx = a. The limit cycle 

oscillations at r\ = a is stable and globally attracting for ali initial conditions, except the origin. In the 

limit as / —> oo the state of the oscillator on the limit cycle is essentially described by the angle <f>, the 

phase. The periodic solution travels around with period Tj = \lf{, Fig. 2.1. 

Fig. 2.1: The phase plane solutions of differential equations (2.2) for abasic oscillator. The asymptotically stable 

limit cycle is r\ = ax with phase ^ = 2nf\t, if $ = 0 is taken at t = 0. 

However, the characteristic frequencies of the cardiovascular system vary in time [6, 7, 110, 111]. 

Therefore, besides the autonomous part, we suppose that there also exists a component resulting from 

mutual interactions. Accordinglv, we add a coupling term to differential equations (2.2) Hi .(x{9x
J
2) , 

(2.6) 



where et is a coupling coefficient. Hi , (x(, xJ
2) represents ali possible influences from the rest of the 

system on the z-th oscillator. 

In čase of cardio-respiratory interaction, the coupling terms are not symmetrical, i.e., impact of 

respiration on the heart differs from the impact of the heart on respiration. 

If there is no coupling betvveen the oscillators (e, = 0), each will oscillate at its own frequency and the 

state vector in the four dimensional phase space approaches the so-called attracting invariant torus. 

Analogously to the one-dimensional system discussed above, in the limit as / —• QO, the original system 

of four differential equations can be reduced to a two dimensional system describing the flow on a two 

dimensional torus. The amplitudes of both oscillators define the torus, while the flow on a torus can be 

described entirely in terms of the rate of change of phases of the first ($) and second (^) oscillator. In 

the uncoupled čase, 

and so the phase difference increases at a constant rate, determinated by the differences between the 

natural frequencies of both oscillators (/i and^)-

If two oscillators are loosely coupled {et« 0), so that each has only small effect on the other, the 

invariant torus does not vanish, but is only slightly different. There states are close, \xl(t) - x2(t)\ ~ 0, 

but remain different. Different types of svnchronization may be expected, depending on the type of 

coupling. 

Svnchronization is defined as phase locking or frequency entrainment [79]. In čase of cardiovascular 

system, with time-varying characteristic frequencies, phase synchronization may onset, while the 

frequencies may or may not be entrained, we use a weaker condition for phase locking [79] 

\n<f>\ - m(j>i - d\< cons t , (2.8) 

where n and m are integers, (jh, fc are the phases of two oscillators and d is some phase shift. In čase of 

real systems, measured data contain some noise. It can be instrumental, numerical (resulting from 
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quantization of analogue signals) or physiological (the effect of interactions with the rest of the system 

on the measured quantity). For weak noise the phase difference ^m = nfr - m(/>2 would be expected to 

fluctuate in a random way around a constant value. In čase of strong noise, phase slips would occur. 
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Bispectral analysis belongs to a group of techniques, based on high-order statistics (HOS) that may be 

used to analyse non-Gaussian signals, to obtain phase information, to suppress Gaussian noise of 

unknown spectral form, and to detect and characterize signal nonlinearities [60, 68, 69]. In what 

follows we extend bispectral analysis to extract useful features from nonstationary data, and we 

demonstrate the modified technique by application to test signals generated from coupled oscillators. 

3.1 Bispectral analysis 

The bispectrum involves third-order statistics. Spectral estimation is based on the conventional Fourier 

type direct approach, through computation of the 3rd-order moments which, in the čase of 3rd order 

statistics, are equivalent to 3rd-order cumulants [60, 66-69]. 

The classical bispectrum estimate is obtained as an average of estimated 3rd-order moments 

(cumulants) 

(3.1) 

where the 3rd-order moment estimate is performed by a triple product of Discrete Fourier 

Transforms (DFTs) at discrete frequencies k, l and k+l [69]: 

(3.2) 

with i = 1,..., K segments into which the signal is divided to try to obtain statistical stability of the 

estimates [67]. Algorithm for bispectrum estimation is described in detail in [39]. 



The bispectrum B(k, /) is a complex quantity, defined by magnitude A and phase <f> 

(3.3) 

Consequently, for each {k, /), its value can be represented as a point in a complex space, %l[B(k, /)] 

versus 3[B(k, /)], thus defining a vector. Its magnitude (length) is known as the biamplitude. The 

phase, which for the bispectrum is called the biphase, is determined by the angle between the vector 

and the positive real axis. 

As discussed in detail in [39], the bispectrum quantifies the relationships among the underlying 

oscillatory components of the observed signals. Specifically, bispectral analysis examines the 

relationships between the oscillations at two basic frequencies, k and / and a harmonic component at 

the frequency k +/. This set of three frequencies is known as a triplet (k, /, k+ /). The bispectrum B(k, 

/), a quantity incorporating both phase and power information, can be calculated for each triplet. 

A high bispectrum value at bifrequency (k, l) indicates that there is at least frequency coupling within 

the triplet of frequencies k, /, and k ± /. Strong coupling implies that the oscillatory components at k 

and / may have a common generator. Such components may svnthesize a new component at the 

combinatorial frequency, k± /, if a quadratic non-linearity is present. 

3.2 Time-phase bispectral analysis 

The classical bispectral method is adequate for studving stationary signals whose frequency content is 

preserved over tirne. We now wish to encompass tirne dependence within the bispectral analysis. In 

analogy with the Short Time Fourier transform (STFT), we accomplish this by moving a tirne window 

w(ri) of length Macross the signal x(n), calculating the DFT at each window position [81] 

(3.4) 

Here, k is the discrete frequency, n the discrete tirne and rthe tirne shift. The choice of window length 

M is a compromise betvveen achieving optimal frequency resolution and optimal detection of the time-

variability. The instantaneous biphase is then calculated: from Eqs. (3.2) and (3.3), it is 



(3.5) 

If the two frequency components k and / are frequency and phase coupled, ^+1 = <fa + <j\, it holds that 

the biphase is 0 (27i) radians. For our purposes the phase coupling is less strict because dependent 

frequency components can be phase-delayed. We consider phase coupling to exist if the biphase is 

constant (but not necessarily = 0 radians) for at least several periods of the lovvest frequency 

component. Simultaneouslv, we observe the instantaneous biamplitude from which it is possible to 

infer the relative strength of the interaction: 

(3.6) 

We thus hope to be able to observe the presence and persistence of coupling among the oscillators. 

3.3 Normalization 

Just as the discrete power spectrum has a point of symmetry at the folding frequency^/2, the discrete 

bispectrum has many svmmetries in the k, l plane [77, 78]. For real signals, the bispectrum has 12 

symmetry regions. Because of these, it is necessary to calculate the bispectrum only in the non-

redundant region, or principal domain, as shown in Fig. 3.1. 

Fig. 3.1: The principal domain of the discrete bispectrum of a band-limited signal can be divided into two 

triangular regions, the inner triangle (IT) and the outer triangle, k and / are discrete frequencies,^ is the sampling 

frequency. 

The latter can be divided into two triangular regions in which the discrete bispectrum has different 

properties: the inner triangle (IT), and the outer one [32, 33, 105]. In the current work it is the IT that 
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is of primary interest. Thus it is sufficient to calculate the bispectrum over the IT of the principal 

domain defined in 

To be able to compare results a normalization procedure was performed. For each bispectrum and 

biphase estimate, a bispectrum was first calculated for the whole IT using the same parameters, i.e., 

number of segments, segment length, percentage of segment overlap, type of tapering window, and 

size of window for frequency averaging. The normalization value was calculated as the average 

bispectrum estimate over the IT [40]. 

Normalization is parameter dependent. The more segments (short windows) for the bispectrum 

calculation, the higher its average value over the IT becomes. It has local maxima, because the vvidth 

of the window directlv affects the frequency resolution. The better the frequency resolution, the 

smaller the leakage effect. Higher percentages of overlap result in a lower average value over the IT, 

whereas the frequency averaging window increases the average value. 

The normalized bispectrum also indicates the average level of quadratic nonlinear phase coupling and, 

in a way, serves as an indicator of how non-Gaussian the signal is [31]. 

The critical values for the bispectrum and biamplitude estimates were normalized to 1. If the estimated 

value is higher than the average value of bispectrum in the IT, then it is taken as valid. By critical 

value is meant a value that exceeds the leakage affect, the noisy background (other than Gaussian), 

and rounding errors. 
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4 A N A L Y S I S D F C D U P L I N G S 

4 A N A L Y S I S O F C D U P L I N G S 

4.1 Linear couplings 

4.2 Linear couplings in presence ofnoise 

4.3 Quadratic couplings 

4.4 Quadratic couplings in the presence ofnoise 

4.5 Frequency modulation in the presence ofnoise 

To illustrate the essence of the method, and to test it, we use a generic model of interacting systems 

whose basic unit is the Poincare oscillator [128]: 

(4.1) 

Here, JC and y are vectors of the oscillator state variables, o\, ax and cox are constants and gy(y) and gx(x) 

are coupling vectors. The activitv of each subsystem is described by the two state variables, X\ and yn 

where i = 1,..., JVdenotes the subsystem. 

The form of the coupling terms can be adjusted to study different kinds of interaction among the 

subsystems, e.g., additive linear or quadratic, or parametric frequency modulation. Examples will be 

considered both without, and with, a zero-mean white Gaussian noise to obtain more realistic 

conditions. 

Different cases of interaction are demonstrated for signals generated by the proposed model. In each 

čase we analyse the x\ variable of the first oscillator, recorded as a continuous time series. For the first 

400 s, the inter-oscillator coupling strength was zero. It was then raised to a small constant value. 

After a further 400 s, it was increased again. The first 15 s and corresponding power spectrum for each 

coupling strength are shown in the figures for each test signal, in order to demonstrate the changes in 

spectral content and behaviour caused by the coupling. For bispectral analysis the whole signal is 

analysed as a single entity, but the transients caused by the changes in coupling strength are removed 

prior to processing. First the classical bispectrum is estimated. Bifrequencies where peaks provide 
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evidence of possible frequency interactions are then further studied by calculation of the biphase and 

biamplitude as functions of tirne. They were calculated using a window of length 100 s, moved across 

the signal in 0.3 s steps. For this analysis the proposed normalization in Sec. 3.3 was not used. In ali 

cases bispectral estimates were calculated and then the values were multiplied by a constant 109. 

4.1 Linear couplings 

Let us start with the simplest čase of a linear interaction between coupled oscillators. We suppose the 

model (4.1) to consists of only two oscillators, i = 1,2. The parameters of the model are set to a\ = 1, 

a\ = 0.5 and cc2, a2 = 1. The coupling term is unidirectional and linear 

Fig. 4.1: Results in the absence of noise. (a) The test signal XiA(t), variable Xi of the flrst oscillator with 
characteristic frequency/i = 1.1 Hz. The characteristic frequency of the second oscillator \sf2 = 0.24 Hz. The 
oscillators are unidirectionally and linearly coupled with three different couplings strengths: rj2 = 0.0 (1); 0.1 (2); 
and 0.2 (3). Each coupling lasts for 400 s at sampling frequency/s = 10 Hz. Only the first 15 s are shown in each 
čase. (b) Its power spectrum and (c) svnchrogram. (d) The bispectrum \B\, using K = 33 segments, 66 % 
overlapping and the Blackman window to reduce leakage and (e) its contour view. 

The test signal XIA(0 is the variable x\ of the first oscillator. It is presented in Fig. 4.1 (a) with the 

corresponding power spectrum for three different coupling strengths: no coupling rj2 - 0; and weak 

couplings rj2 - 0.1, 0.2. The peaks labelled as / i = 1.1 Hz and/2 = 0.24 Hz are the independent 

harmonic components of the first and the second oscillator. These frequencies are deliberately chosen 

to approximately have a non-integer ratio. There is also at least one peak present at the harmonically 
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related position/3 = 2/1 - f2 attributable to interaction betvveen the two oscillators. It arises from the 

nonlinearity of the first oscillator, but is caused by the forcing of the second oscillator. 

The principal domain of the bispectrum for the test signal JCIA, Fig. 4.1 (d), shows one peak at the 

bifrequency (1.1 Hz, 1.1 Hz), the so called self-coupling. No other peaks are present. Bispectral 

analysis examines the relationships betvveen oscillations at the two basic frequencies, f\ and f2 and a 

modulation component at the frequency/i ±f2 which is absent from the povver spectra in Fig. 4.1 (b). 

Therefore no peak is present at bifrequency (1.1 Hz, 0.24 Hz). Thus the method as it stands is 

incapable of detecting the presence of linear coupling between the oscillators by analysis of the test 

signal X\A- Nonetheless, we stili suggest the use of bispectral analysis to investigate the presence of 

non-linearity, but based on an adapted way of calculating the bispectrum. 

In general the bispectral method can be used to examine phase and frequency relationships at arbitrary 

tirne. It is thus well suited for detecting the presence of quadratic couplings and frequency modulation, 

since they both give rise to frequency components at the sum and difference of the interacting 

frequency components. 

To be able to detect linear couplings using the bispectral method, as proposed, it is necessary to 

change the frequency relation. Study of coupled Poincare oscillators demonstrates the presence of a 

component at frequency 2k - / as a consequence of nonlinearity. This component was detected 

numerically, and is not necessarily characteristic of ali nonlinear oscillators. By modifying the 

bispectral definition to 

(4.3) 

the biphase turns into 

(4.4) 

vvhere index a is introduced and will be used in what follovvs to indicate that the values are obtained 

using the adapted method. To obtain 0 radians in the čase of phase coupling we have to correct the 

adapted biphase expression (4.4) by subtracting (f)c = 2(/\- <fa. In the presence of a harmonically related 

frequency component, and phase coupling, the biphase will then be 0 radians. 

The adapted bispectrum |2?a| for the signal x]A exhibits several peaks, as shown in Fig. 4.2 (a). It peaks 

vvhere/i =fi\ a triple product (/1,72 /̂3) of povver at frequencies/i =f2 =f, and also/3 = 2/j -f2 *=/ raises 

a high peak at the bifrequency (f, j). The self-coupling peak is physically meaningless, and it is 

mmmm 
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therefore cut from the adapted bispectrum. It can be used for additional checking, since it strongly 

implies non-linearity [127]. 

The peak of primary interest is at bifrequency (1.1 Hz, 0.24 Hz). There is also a high peak positioned 

at bifrequency (0.67 Hz, 0.24 Hz) lying on the line where the third frequency in the triplet is equal to 

the frequency of the first oscillator and is therefore a consequence of the method. The small peaks 

present in the adapted bispectrum are the result of leakage effects and numerical rounding error due to 

the DFT calculation. 

Fig. 4.2: (a) Adapted bispectrum |Z?a|, calculated from the test signal xlA using K = 34 segments, 80 % 
overlapping and the Blackman window and (b) its contour view. Regions of the adapted bispectrum abovef2 > 
0.88 Hz and below/J < 0.3 Hz are cut, because the triplets (1.1 Hz, 1.1 Hz, 1.1 Hz) and (0.24 Hz, 0.24 Hz, 0.24 
Hz) produce high peaks that are physically meaningless. (c) Adapted biphase $, and (d) biamplitude Aa for 
bifrequency (1.1 Hz, 0.24 Hz), using a 0.3 s tirne step and a 100 s long Blackman window for estimating the 
DFT. 

The peak (1.1 Hz, 0.24 Hz) indicates that oscillations at those pairs of frequencies are at least linearly 

frequency-coupled. Frequency coupling alone is sufficient for a peak in the bispectrum to occur. 

Although the situation can in principle arise by coincidence, frequency and phase coupling together 

strongly imply the existence of nonlinearities. To be able to distinguish between different possible 

couplings we calculate the adapted biphase Fig. 4.2 (c). 

During the first 400 s of test signal X\A, where no coupling is present, the adapted biphase changes 

continuously between 0 and 2TT radians. For the same tirne of observation it can be seen that the 

adapted biamplitude is 0, Fig. 4.2 (d). During the second and third 400 s of the signal X\A, a constant 

adapted biphase can be observed indicating the presence of linear coupling. The value of the adapted 

biamplitude is higher in the čase of stronger coupling. The coupling constant 772 can be obtained by 

normalization, and we are thus able to define the relative strengths of different couplings. 
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When the oscillators are coupled bidirectional the frequency content of each of them changes and 

components 2/1 and 2f2 are generated. Both of these characteristic frequencies can be observed in the 

tirne series of each oscillator. Two combinatorial components are also present in their spectra, 2/1 -f2 

and/1 - 2/2, assuming that/1 > f2. In analysing bidirectional coupling the procedure described above 

can be extended and two combinatorial components should be analysed in the same way. 

Making use of the calculated instantaneous phases of both oscillatory components we also construct a 

synchrogram (Fig 4.1 (c)), as proposed by Schafer et al. (see Ref. [79] and the references therein), and 

can immediately establish whether or not the coupling also results in synchronization. 

The instantaneous phases can also be used to calculate the direction and strength of coupling, using the 

methods recently introduced by Schreiber, Rosenblum et al. and Paluš et al. [72, 93, 94, 103]. 

4.2 Linear couplings in presence ofnoise 

We now test the method for the čase where noise is added to the variable x\ of the first oscillator: 

(4.5) 

Here, %j) is zero-mean white Gaussian noise, (4(0) = 0> (4(0» £$)) = D$J), and D = 0.08 is the noise 

intensity. In this way we obtain a test signal X\B,(t), Fig. 4.3 (a). 

For nonzero coupling strength /72, the component at frequency position/3 can stili be seen in the power 

spectrum despite the noise Fig. 4.3 (b). The adapted biphase Fig. 4.3 (f) can clearly distinguish 

betvveen the presence and absence of coupling. When coupling is weaker, the adapted biamplitude 

[Fig. 4.3 (g)] is lower and the adapted biphase is less constant. 

The bispectrum for the signal JCIB, shown in Fig. 4.4 (a), differs from that in the čase of zero noise, Fig. 

4.1 (d). Noise raises two additional peaks positioned at (1.1 Hz, 0.24 Hz) and (0.86 Hz, 0.24 Hz). The 

former could be the result of interaction; the latter is due to the method: the sum of the frequencies in 

this bifrequency pair gives the frequency of the first oscillator. Close inspection of the (1.1 Hz, 0.24 

Hz) peak by calculation of the biphase gives Fig. 4.4 (c). When coupling is present the characteristic 

frequency of the second oscillator appears in the power spectrum Fig. 4.3 (b). Two frequencies of high 

amplitude result in a small peak even if no harmonics are present at the sum and/or difference 



frequencies. The second peak is not of interest to us. It can easily be checked whether a phase coupling 

exists among the bifrequencies from the tirne evolution of the biphase. 

Fig. 4.3: Results in the presence of additive Gaussian noise. (a) Test signal x1B, variable Xi of the first oscillator 

with characteristic frequency/j = 1.1 Hz. The characteristic frequency of the second oscillator is 72 = 0-24 Hz. 

The oscillators are unidirectionally and linearh/ coupled with three different coupling strengths; r]2 = 0.0 (1); 0.1 

(2); and 0.2 (3). Each coupling lasts for 400 s at a sampling frequency^ = 10 Hz. Only first 15 s are shown in 

each čase. (b) Its povver spectrum and (c) svnchrogram. (d) Adapted bispectrum \Ba\ using K = 33 segments, 66 

% overlapping and the Blackman window and (e) its contour view. The parts of the \Ba\ above^ > 0.79 Hz and 

below/i < 0.3 Hz are omitted because the triplets (1.1 Hz, 1.1 Hz, 1.1 Hz) and (0.24 Hz, 0.24 Hz, 0.24 Hz) 

produce a high peak that is physically meaningless. (f) Adapted biphase $, and (g) adapted biamplitude Aa for 

bifrequency (1.1 Hz, 0.24 Hz), using 0.3 s tirne step and 100 s long window for estimating the DFT using the 

Blackman window. 

In general, besides estimating bispectral values, one can also observe the tirne dependences of the 

phase and amplitude for each frequency component, and their phase relationships. This applies 

particularly to frequencies that form a bifrequency giving a high peak in the bispectrum or adapted 

bispectrum. Synchrograms, Fig. 4.1 (c) and 4.3 (c), are obtained by first calculating the instantaneous 

phase of each oscillator, and then their phase difference [79]. The phase difference in this čase is 
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4 A N A L Y S I S D F C D U P L I N G S ; ''':* ;':1: 

between two fixed frequencies. We do not calculate their instantaneous frequencies, although it is 

possible to follow the frequency variation by calculating the phase difference at neighbouring 

bifrequencies around the observed one and showing them simultaneously on the same plot. Examples 

of the phase difference *F= fa - fo between the phases of the first (f>\ and the second & interacting 

oscillators are shown in Fig. 4.4 (e) and (f). Bispectral relation to svnchronization is discussed in detail 

in Chapter 6. 

Fig. 4.4: Bispectrum \B\, calculated from the signal xlB presented in Fig. 4 (a), using K = 33 segments, 66 % 

overlapping and Blackman window to reduce leakage and (b) its contour view. (c) Biphase <f> and (d) biamplitude 

A for bifrequency (1.1 Hz, 0.24 Hz), using a 0.3 s tirne step and a 100 s long window for estimating the DFTs 

using a Blackman window. (e) Phase difference 5P between $\ of the characteristic frequency component/! of 

the first oscillator and ^ of the characteristic frequency component^ of the second oscillator, for tirne step \lfs 

and (f) at each period of lowest frequency \lf2 in the bifrequency pair (1.1 Hz, 0.24 Hz), using interpolation and 

100 s long window for estimating DFTs using Blackman window. 
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4.3 Quadratic couplings 

We now assume that two Poincare oscillators can interact with each other nonlinearly. A quadratic 

nonlinear interaction generates higher harmonic components in addition to the characteristic 

frequencies [69]. In order to study an example where the first/1 = 1.1 Hz and second^S - 0.24 Hz 

oscillators are quadratically coupled, we change the coupling terms in the model (3.1) to quadratic 

ones 

Fig. 4.5: Results for quadratic coupling in the absence of noise. (a) The test signal xiC, variable x\ of the first 

oscillator with characteristic frequency/i = 1.1 Hz. The characteristic frequency of the second oscillator i s ^ = 

0.24 Hz. Oscillators are unidirectionally and quadratically coupled with three different couplings strengths: T]2 = 

0.0 (1); 0.05 (2); and 0.1 (3). Each coupling lasts for 400 s at sampling frequency/s = 10 Hz. Only the first 15 s 

are shown in each čase. (b) Its power spectrum. (c) The bispectrum \B\ using K = 33 segments, 66 % overlapping 

and the Blackman window to reduce leakage and (d) its contour view. The part of the bispectrum abovef2 > 1,0 

Hz is cut, because triplet (1.1 Hz, 1.1 Hz, 1.1 Hz) produces a high peak that is not physically significant. 

Clearly, the test signal JCIC presented in Fig. 4.5 (a) for three different coupling strengths (no coupling 

rj2 = 0 (1); and weak couplings rj2 = 0.05 (2), rj2 = 0.1 (3)) has a richer harmonic structure. In addition 

to the characteristic frequencies, it contains components with frequencies 2/1, 2f2,f\ +f2 and/ i -f2 Fig. 

4.5 (b). Eq. (4.6) also indicates that, as well as having a particular harmonic structure, the components 

of the signal X\c also have related phases, 2 $ , 2^2, <fa+ fo and (f>\- <fh-

We expect several peaks (three and not four, because the triplet (f\,f2,f\ +f2) has the same peak in the 

bispectrum as the triplet (fi, f2, fr/2)) to arise in the bispectrum. The peak of principal interest is at 

bifrequency (1.1 Hz, 0.24 Hz). As before, the self-coupling peaks are at (1.1 Hz, 1.1 Hz) and (0.24 Hz, 

0.24 Hz) are of no interest, so they are cut from the bispectrum. Additional peaks appear at the 
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bifrequencies (0.86 Hz, 0.24 Hz), (0.62 Hz, 0.48 Hz), (0.86 Hz, 0.48 Hz), (1.1 Hz, 0.48 Hz), (1.1 Hz, 

0.86 Hz) and (1.34 Hz, 0.86 Hz). The triplet of harmonically related frequency components (f\,fi,fi) 

would peak in the bispectrum when the power for ali these frequencies differs from zero. The 

components 0.48 Hz, 0.86 Hz, 1.34 Hz and 2.2 Hz resulting from quadratic couplings form such 

triplets which peak in the bispectrum: (0.86 Hz, 0.24 Hz, 1.1 Hz), (0.86 Hz, 0.48 Hz, 1.34 Hz) and 

(1.34 Hz, 0.86 Hz, 2.2 Hz). Besides these, there are also other peaks e.g., that at the bifrequency (0.62 

Hz, 0.48 Hz) arising from the triplet (0.62 Hz, 0.48 Hz, 1.1 Hz); the sum/difference combination of 

such frequencies always give the characteristic frequency, or one that results from quadratic coupling. 

The existence of such peaks has no other meaning than as a strong indicator of second-order 

nonlinearity. Consequently, the biphase for ali peaks due to possible nonlinear mechanisms in the 

bispectrum must have the same value, and same behaviour, as shown e.g., in Figs. 4.6 (a) and 4.6 (c). 

The biphase is constant in the presence of quadratic coupling. From the biamplitude, the coupling 

constant can be determined by normalization. 

Fig. 4.6: (a) The biphase (p and (b) biamplitude A for the test signal xxc for bifrequency (1.1 Hz, 0.24 Hz), using 

0.3 s tirne step and 100 s long window for estimating DFT using Blackman window. (c) Biphase and (d) 

biamplitude for the bifrequency (0.86 Hz, 0.24 Hz), with a 0.3 s tirne step and a 100 s long window for 

estimating DFT using the Blackman window. 

In the power spectrum there is a component at frequency 2/1 - f2, even although linear coupling is 

absent. It arises from nonlinearity in the Poincare oscillator. The adapted bispectrum for the signal XiC 

shows a peak at bifrequency (1.1 Hz, 0.24 Hz), but the adapted biphase varies continuously: we may 

therefore exclude the possibility of linear coupling being present. 



4.4 Quadratic couplings in the presence of noise 

As in the čase of linear coupling (Sec. 4.2.) we add a noise term to the quadratic coupling gx\ and 

obtain the test signal x]D, presented in Fig. 4.7 (a). 

Using the bispectral and adapted bispectral methods, we flnd that we obtain results very similar to 

those in the absence of noise. The method is evidently noise robust. The results for non-zero coupling 

are quite different from those where coupling is absent, Fig. 4.7 (e). 

Fig. 4.7: Results for quadratic couplings in the presence of additive Gaussian noise. (a) The test signal xlD, 

variable X\ of the first oscillator with characteristic frequency / i = 1.1 Hz. The characteristic frequency of the 

second oscillator is f2 = 0.24 Hz. The oscillators are unidirectionally and quadratically coupled with three 

different coupling strengths: r/2 = 0.0 (1); 0.05 (2); and 0.1 (3). Each coupling lasts for 400 s at a sampling 

frequency^ = 10 Hz. Only the first 15 s are shown in each čase. (b) Its power spectrum. (c) The bispectrum \B\ 

calculated with K = 33 segments, 66 % overlapping and using the Blackman window to reduce leakage and (d) 

its contour view. The part of the bispectrum abo\ef2 > 1.0 Hz is cut, because the triplet (1.1 Hz, 1.1 Hz, 1.1 Hz) 

produce a high peak that is physically meaningless. (e) The biphase ^ and (f) biamplitude A for bifrequency (1.1 

Hz, 0.24 Hz), with a 0.3 s tirne step and a 100 s long window for estimating DFTs using the Blackman window. 
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4.5 Frequency modu lati on in the presence ofnoise 

We are also interested of being able to detect parametric frequency modulation and to distinguish it 

from quadratic coupling. Parametric modulation produces frequency components at the sum and 

difference of the characteristic frequency and the modulation frequency, i.e., the same two frequency 

components that can also result from quadratic coupling. Let us now consider an example where the 

first oscillator/i = 1.1 Hz is frequency modulated by the second onQ/2 = 0.24 Hz. For this purpose the 

equations of the first oscillator become 

(4.7) 

The model parameters a^2, a\,i and the noise intensity D are chosen to be the same as in the previous 

examples. 

We thus obtain a test signal ;t1E. It is the tirne evolution of the variable X\ of the first oscillator, 

presented in Fig. 4.8 (a) with the corresponding power spectrum 4.8 (b) for three different parametric 

frequency modulation strengths: no modulation rjm = 0 (1); and modulation rjm = 0.1 (2), r/m = 0.2 (3). 

The bispectrum of the test signal JCIE, Fig. 4.8 (c), exhibits several high peaks. The highest are at 

bifrequencies (1.1 Hz, 0.86 Hz), (0.86 Hz, 0.24 Hz) and (1.1 Hz, 0.24 Hz), in addition to the (1.1 Hz, 

1.1 Hz) peak. They also appear in the čase of quadratic coupling. In general, hovvever, the other peaks 

that appear for quadratic coupling are absent. The reason is that although the component of the second 

oscillator f2 (one component of the triplet) is not present in the power spectrum, its value is not exactly 

zero. 

Observing the biphase, no epochs of constant biphase can be observed, although for strong frequency 

modulation the biphase is less variable. In the power spectrum, Fig. 4.8 (b), no component rises above 

the noise level at frequency f2, of the bifrequency pair, where the bispectrum peaks. This is an 

indication that there is parametric coupling between the oscillators as there is a high value of 

biamplitude. The biphase changes runs between 0 and 2TC, and is modulated in the absence of noise. 

There are also no rapid 2n phase slips of the kind that are normal if no modulation is present. In the 

absence of couplings and modulation, but with noise present, there would be no such peaks in the 

power spectrum and bispectrum. 
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Fig. 4.8: Results for parametric frequency modulation in the presence of additive Gaussian noise. (a) The test 

signal x1E, of variable xx of the first oscillator with characteristic frequency/i = 1.1 Hz frequency modulated by 

the second oscillator/> = 0.24 Hz with three different frequency modulation strengths; rjm = 0.0 (1), 0.1 (2) and 

0.2 (3). Each frequency modulation lasts for 400 s, at sampling frequency/s = 1 0 Hz. Only the first 15 s are 

shovvn in each čase. (b) Its power spectrum. (c) The bispectrum \B\ calculated with K = 33 segments, 66 % 

overlapping and using the Blackman window to reduce leakage and (d) its contour view. The part of the 

bispectrum above^ > 1.0 Hz is cut, because the triplet (1.1 Hz, 1.1 Hz, 2.2 Hz) produces a high peak that is 

physically meaningless. (e) The biphase (j) and (f) biamplitude A for bifrequency (1.1 Hz, 0.24 Hz), with a 0.3 s 

tirne step and a 100 s long window for estimating the DFTs using the Blackman window. 
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S C A R D I D - R E S P I R A T D R Y I N T E R A C T I D N S 

5 C A R D I D - R E S P I R A T D R Y I N T E R A C T I D N S 

5.1 Data acauisition 

5.2 Measurements 

5.3 Data analysis 

5.4 Results 

5.5 Surrogates 

5.6 Global couplings 

5.7 Cross-bispectrum 

5.8 Discussion 

5.8.1 Definition ofthe phase 

5.8.2 Nonlinear coupling, or linear coupling ofstrongly nonlinear oscillators? 

5.8.3 Relationship to synchronization 

5.8.4 Synchronization, modulation andtype of coupling 

5.8.5 Unidirectional or bidirectional coupling 

5.8.5.1 Forced oscillator 

5.1 Data acquisition 

The interaction between two harmonic components can in practice contribute to the power at their sum 

and/or difference frequencies. We assume that the cardiac and respiratory oscillators are weakly 

coupled and can interact with each other nonlinearly. The coupling is assumed to be weak in part 

because of the transient/episodic character of cardio-respiratory synchronization in healthy subjects; 

the assumption of weak nonlinearity is on account of several factors including the lack of 

combinatorial components near the cardiac frequency. We return to these questions and discuss them 

in more detail at the end of Sec. 5.8.2. A quadratic interaction will give rise to higher harmonic 

components vvith frequencies 2/i, 2f2,f\ +f2 and/i -f2, in addition to the characteristic frequencies [ 68, 

69]. As well as having a particular harmonic structure, the components also have phases that are 

related, 2</f\, 2<fo, (fh+ (jh and (fh- (fh-

As discussed in detail in [39], the bispectrum quantifies the relationships among the underlying 

oscillatory components of the observed signals. Specifically, bispectral analysis examines the 
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relationships between the oscillations at two basic frequencies,/i and^ and a modulation component 

at the frequency/i ±f2. This set of three frequencies is known as a triplet (fi,/2,fi ±fi)-

A high bispectrum value at bifrequency (f\,fi) indicates that there is at least frequency coupling within 

the triplet of frequencies/i,/2, and/i ±fi. Strong coupling implies that the oscillatory components at/i 

and fi may have a common generator, or that the cardiovascular circuit they drive may, through with 

some non-linear interaction, svnthesize a new, dependent component at the modulation frequency,/i ± 

h-

Nonlinear transformation causes the appearance of self-coupling peaks in the bispectrum [69, 127]. In 

periodic signals, peaks at the self-frequency without self-phase couplings are common. Again, the 

simultaneous appearance of both couplings is a very strong indicator of the presence of nonlinearity. 

5.2 Measurements 

The data acquisition techniques have already been described [112] but, in summarv, were as follows. 

A four-channel laser Doppler blood flow monitor (floLAB, Moor Instruments Ltd., UK) was used for 

simultaneous recordings of blood flow at the four different sites: both arms (left and right caput ulnae) 

and both legs (left and right medial maleollus). Skin over bony prominences was chosen in order to 

standardize the measurement sites for the four extremities. A standard calibration (flux standard) of ali 

the probes was made in order to be able to compare signals, and the blood flow was expressed in 

arbitrary units (arb. units). The electrical activity of the heart or electrocardiogram (ECG), respiration 

and blood pressure were also simultaneously recorded. The respiratory effort was measured using the 

TSD101B Respiratory Effort Transducer (Biopac Svstems, Inc., USA). It consists of a piezoresistive 

sensor equipped with a silicon rubber strain assembly that measures the change in thoracic or 

abdominal circumference. The electrical conductivity of the sensor is proportional to the increase of 

abdominal circumference. The blood pressure was also measured with a piezoelectric transducer, and 

the ECG was recorded using a standard technique with two electrodes placed on the shoulders and one 

below the heart. 

Six males aged 25-27 years with no history of cardiopulmonary disease participated in the study. Each 

of them lay in repose on a bed for 15 minutes before the start of data recording. One set of 

measurements was taken in the normal relaxed state, with spontaneous breathing, and a further 

two/three measurement under differently paced breathing. The duration of the measurements was 20 

minutes for spontaneous breathing, and 12 minutes for paced breathing. Blood flow signals were 
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digitized with 16-bit resolution and sampled at 40 Hz, whereas the ECG, respiration and pressure 

signals were sampled at 400 Hz. The paced respiration frequency was held constant during the 

measurement of a given tirne series and the rhvthm was paced by metronome. Altogether 22 

recordings were made, as summarized in Tab. 5.1. 

Tab. 5.1: Data for six subjects measured during spontaneous and paced respiration. VT is average tidal volume, 

<jy is its standard deviation, / i is average heart frequency and f2 is average respiratory frequency during 

spontaneous f2s and paced f2p respiration. The tidal volume is obtained as a value between minimum voltage 

recorded during expiration and a succeeding maximum voltage recorded during inspiration. The voltages were 

not calibrated to express volumes in litres; rather, values were normalized to the average tidal volume obtained 

for each subject during spontaneous respiration. Data marked with * are presented in Tab. 5.3. 
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5.3 Data analysis 

The blood flow signals were first pre-processed. Both very low and very high frequencies were 

removed by use of moving average windows: drift vvith a 200 s long window; and high frequencies 

with a 0,2 s window while, and at the same tirne, the signal was resampled to 10 Hz. By using the 

moving average before resampling, we avoid problems of aliasing [81]. In addition, each signal was 

normalized to lie betvveen zero and one, and its mean value was then subtracted. The characteristic 

cardiac/i and respirato^^ frequencies, and their components at harmonically related positions were 

identified: for each signal, the power spectrum was computed to identify/i and/2, and to detect those 

components possibly caused by nonlinear interactions, 2/1, 2f2, and f\ ± f2. Then the bispectrum 

estimates were calculated. For each tirne series the signal was divided into several segments and to 

ensure stationarity the average value vvithin each window was also subtracted. The chosen window 

length affected both frequency resolution and the statistical stability of the estimates. Because of the 

finite length of the tirne series, optimal choice of the number of segments requires a measure of 

compromise: the more segments the better the estimates, but increasing the number of segments also 

reduces the length of individual segments which, in turn, reduces the frequency resolution. To obtain 

reliable estimates 30 or more segments are necessary [39]. The compromise can be optimised by an 

appropriate overlapping of the segments (see below). 

Tab. 5.2: Peaks at bifrequencies in the bispectrum, arising as the result of a nonlinear interaction between the two 
oscillators/i and/. 

In the čase of quadratic coupling, for which we wish to test, several peaks occur in the bispectrum. 

Besides the peaks at the bifrequencies if\, fi), the cardiac self-coupling (/1,/1) and respiration self-

coupling (/2, /2), others occur as a consequence of the interactions. Those of primary interest were at 

bifrequency (/i,/2), representing the coupling betvveen the two oscillators at/ t and/>, and five others. 
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To investigate the cardio-respiratory coupling eight peaks were analysed for each signal, as shown in 

Tab. 5.2. To be able to compare results, a normalization procedure was performed. 

The maximum biphase and biamplitude were calculated for each peak. The frequency resolution was 

set to be 1/10 of the lowest respiration frequency or better. The slowest-paced breathing, f2, was 

approximately 0.1 Hz, so that a window of 100 s or longer was necessary for estimation of the 

bispectrum, biphase and biamplitude. Short plateaus in the estimated biphase occur frequently. To 

exclude coincidence interactions we focused on those that lasted for at least about 10 periods of the 

lower coupling frequency/2- The length of the window also determines the time resolution. In the čase 

of the slowest-paced breathing, where^ was 0.1 Hz we were seeking approximately 10 times (1/ f2) = 

100 s long epochs of constant biphase. Therefore a window length of 100 s or less was necessary to 

meet the criterion for time resolution. Due to the Heisenberg uncertainty principle [43], the scope for 

choice of window length is limited, and compromise is needed between time and frequency resolution. 

The window was moved along the time series with a minimum time step of \/fs = 0.1 s, vvhere^Š is the 

sampling frequency. The critical value for the biamplitude estimate to be considered valid was set in 

ali cases to 2, i.e., tvvice the average value of the bispectrum within its so-called inner triangle (IT). 

To be able to conclude that quadratic coupling exists, we require several condition to be fulfilled: (i) A 

constant biphase during at least 10 periods of the lower interacting component; (ii) Biphases for ali six 

(eight) peaks must be present at the same time as the biphase plateau; (iii) No phase slips must occur 

during the coupling, and the biphase variations must stay within n rad interval (the biphase being 

expected to be more or less constant, depending on the coupling strength and noise intensity: phase 

slips are frequent when the interaction is extremely weak; they are mostly due to noise, but sometimes 

caused by modulation; strong modulation is expected to result in a biphase with fewer phase slips); 

(iv) The biamplitude must be above the specified critical value, i.e., be more than tvvice the average 

bispectrum value vvithin the IT. 

5.4 Results 

Examples of detrended, resampled, blood flow signals are presented in the left-hand column of Fig. 

5.1. These signals correspond to the čase of paced respiration slovver than the natural frequency. Their 

calculated frequency content is presented in the right hand column. The peak at ~0.98 Hz belongs to 

cardiac activity,/i; that at ~0.11 Hz to respiratory activity,/2, which was also obtained directly as a 

check by use of a piezo sensor. Although the characteristic frequencies differ from person to person, 

they ali lie within defmed frequency bounds. Stefanovska proposed in [112] that the respiration 
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frequency interval should be defined as 0.14-0.6 Hz with a median frequency 0.3 Hz. The spontaneous 

respiratory frequency for person 2 was 0.14 Hz, i.e., it fell at the lower limit of this interval. The 

slowest/?ace<irespiration frequency was set to 0.09 Hz. 

Assuming nonlinear cardio-respiratory coupling the cardiac side peaks are positioned at their sum/i + 

f2 = ~1.09 Hz, and difference/i -f2 = ~0.87 Hz. Cardiac 2/1 and respiratory 2f2 second harmonics are 

also present. It can be seen that their precise values vary in tirne, which is what makes the analysis 

difficult. The widths of the peaks indicate their time-variable frequency content, which makes a time-

frequency domain presentation more convenient [9, 43]. The effect is, of course, associated with the 

interactions between cardiovascular oscillators. 

Fig. 5.1: Blood flow signals b(t) measured simultaneously at four different sites. Each of them was detrended, 

resampled, normalized, and brought to zero mean by subtraction of its average value. The records are each 521 s 

long, resampled to a sampling frequency of fs = 10 Hz. (a) Signal from the right wrist ba(t) and its power 

spectrum; (b) left wrist bh(t) and its power spectrum; (c) right ankle bc(t) and its power spectrum; (d) left ankle 

bd(t) and its power spectrum. 

A tvpical bispectrum for the whole frequency domain for signal 6a is presented in Fig. 5.2 (a). A very 

high peak located at bifrequency (0.11 Hz, 0.11 Hz), belonging to the respiratory self-coupling can be 

seen in the bispectrum, Fig. 5.2 (b). At least four other peaks are clearly evident: at (0.98 Hz, 0.11 Hz) 
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attributable to cardio-respiratory coupling; at (0.87 Hz, 0.11 Hz) which we assume to be coupling 

betvveen the respiratory component f2 and the difference f\ - f2, that could be due to a nonlinear 

coupling mechanism; and two peaks attributable to interaction with lower cardiovascular characteristic 

components. The latter interactions (with the intrinsic myogenic and neural oscillators) are not of 

interest in the present context. Also, other lower frequency peaks can be seen in the bispectrum. Their 

positions can be seen in the bispectrum contour view shown in Fig. 5.2 (c). 

Fig. 5.2: (a) The bispectrum \B\ for a signal ba, calculated with K = 33 segments, 87 % overlapping and using the 

Blackman window to reduce leakage. (b) Part of the bispectrum fhf2 < 1.4 Hz that is of our interest and (c) its 

contour view. 

The bispectrum is sensitive to tirne-variations of the frequency components, yielding in the bispectrum 

a characteristic diagonal elongation of peaks. The cardiac frequency/i spans 0.93-1.02 Hz. Although 

the respiratory frequency^ extends from 0.09 Hz to 0.12 Hz, this large range is actually the result of a 

single deep breath: the respiratory frequency (being paced) is constant for most of the tirne, leading to 

a high bispectrum. The cardio-respiratory bifrequency coupling consequently has a wide frequency 

range resulting mainly from variation of the cardiac frequency (in Fig. 5.2 it is elongated along the/i 

axes). 
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Fig. 5.3: Blood flow analyses for signal ba(t), calculated with K = 33 segments, 87 % overlapping, using a 0.1 s 

time step and a 100 s long window for estimating the DFT, with a Blackman window to reduce leakage, for 

peaks (a) 1, (b) 2, (c) 3, (d) 4, (e) 5 and (f) 6; len column, the bispectrum |Z?ba| with its corresponding contour 

plots; middle, the biamplitude A\,a; and right, the biphase $,„. 
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The peaks corresponding to cardiac activitv are lower, mainly due to tirne frequency variations. In the 

presence of quadratic nonlinear coupling, peaks should be present at ali six of the bifrequencies 

summarized in Tab. 5.2. Significant values of the bispectrum (i.e., exceeding twice the average 

bispectrum \vithin the IT) were obtained near ali these bifrequencies (see the left-hand column of Fig. 

5.3), showing that the peaks are indeed present. 

Time (s) 

Fig. 5.4: (a) Determination of quadratic nonlinear coupling interval Tqc and (b) maximum biphase variation A^ 

for signal ba for peak 4. 

Once the peaks at the defined bifrequencies had been confirmed, the tirne biphase and biamplitude 

were calculated at the bifrequency peaks. The time interval Tqc during which quadratic coupling 

persisted was determined; if ali 6 peaks fulfilled our conditions, then the Tqc interval was calculated for 

ali peaks and the boundaries were defined such that the biamplitude for ali the peaks in Tqc interval 

would be above the condition Fig. 5.4 (a). For each Tqc interval, the maximum variation of the biphase 

A$ was determined as shown on Fig. 5.4 (b). 

It can be seen that the biamplitude during the time interval from 76.8 s to 172.4 s meets our criterion 

of being more than tvvice as large as the average bispectrum in the IT: see middle column of Fig. 5.3 

(a) to (f). The biphase in this time interval, 95.6 s long (shaded area), remains constant within a 1.47 

rad interval, i.e., there are no phase slips. The biphases at bifrequencies 1, 2, 3 and 5 are very constant; 

those at 4 and 6 are less so, but they stili remain within the n rad interval. 

5.5 Surrogates 

In many areas of signal processing, an important problem exists in determining whether an observed 

time series is deterministic, contains a deterministic component, or is purely stochastic. The surrogate 
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data method provides a rigorous way to determine if an observed tirne series has a statistically 

significant deterministic component [102, 106]. 

The question of whether or not the cardiovascular system possesses a deterministic dynamic was 

already subject to many research activities by a variety of analyses [6, 8, 109, 110, 112]. These 

provided notable evidences that the system that regulates blood flow is deterministic. 

In this work we use the surrogate data method to validate bispectral analysis to determine whether the 

obtained biphases from the cardiovascular blood flovv signals are a result of the deterministic dvnamic 

of blood flovv, or as a result of its stochastic component. 

For this purpose, we use the phase randomization method of generating the surrogates [44, 102, 106, 

123, 124]. The discrete Fourier transform is computed from the original data, which consists of 

amplitude and phase at each frequency, and then shuffled to destroy ali correlations. The surrogate is 

the inverse discrete Fourier transform of the shuffled data. Besides phase shuffling, one can also 

perform phase randomization or data shuffling. Each amplitude is replaced by the amplitude of the 

same frequency as in the original data. After the inverse Fourier transform, the amplitude of the 

surrogate data is adjusted by applying a nonlinear transform to give the surrogate data the same 

distribution as in the original data. 

In this way we obtain surrogate data which have similar spectral properties as that of the original data. 

The surrogate data sequence has the same mean, the same variance, the same autocorrelation function, 

and therefore, the same power spectrum as the original sequence, but the phase relations are destroved. 

The generated surrogate data are output of a linear Gaussian process. 

We posit a null hvpothesis: 

H0: Quadratic nonlinear coupling is present. 

We determine the null hvpothesis on surrogate data Sba(0 generated from blood flow signal ba{t). The 

obtained surrogate signal Sba(t), Fig. 5.5 (a), has almost the same power spectrum. Fig. 5.5 (b), as it is 

the povver spectrum Pba of the original signal ba(t), Fig 5.1 (a). As expected, we also obtained a similar 

bispectrum for the whole frequency domain, Fig. 5.5 (c). The peaks are lower, and less evident, 

compared to bispectrum of ba(t), Fig. 5.2. (b). 
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Fig. 5.5: (a) Surrogate of blood flow signal from the right wrist sha(t), its power spectrum (b), and (c) its 

bispectrum \B\, calculated with K = 33 segments, 87 % overlapping and using the Blackman window to reduce 

leakage. 

Fig. 5.6: Blood flow analvses for surrogate signal sha(t), calculated with K = 33 segments, 87 % overlapping, 

using a 0.1 s tirne step, a 100 s long window for estimating the DFT, and using a Blackman window to reduce 

leakage, for peaks (a) 1, (b) 2 and (c) 3; left column, the bispectrum |5S| with its corresponding contour plots; 

middle, the biamplitude As; and right, the biphase ^s. 

By calculating the biphases for ali of the six bifrequencies summarized in Tab. 5.2, we conclude that 

the necessarv conditions for quadratic nonlinear coupling are not fulfilled. Fig 5.6 shows peaks, 
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biamplitudes and biphases for the first three bifrequencies of bispectum Bs. It can be seen that ali the 

biphases, <fis\, <fis2 and ^s3 tend to always drift. They do not show any plateaus of constant biphase, as is 

expected, since the phase information is randomized in the surrogate signal. Moreover, the 

biamplitude condition is also not fulfilled. 

We performed the hypothesis on bispectral analysis for seven different realizations of surrogate signal 

for signal ba(t). The null hvpothesis Ho was not consistent with the data and was rejected in ali seven 

cases. We can conclude that the phase information possessed in cardiovascular blood flow signal is 

deterministic. 

5.6 Global couplings 

The hearfs pumping action is manifested in every single vessel, and it is also present in the 

microcirculation through the capillary bed. Peripheral blood flow is controlled by both extrinsic 

(central) and intrinsic (local) mechanisms, and so it must reflect the activities of both the local and 

central mechanisms of cardiovascular regulation [6, 7, 9, 108, 110]. The origin of respiratory 

frequencies in peripheral blood flow was discussed by Hoffman et al [35]. 

Blood flow signals reflect central and local mechanisms of regulation in the cardiovascular svstem. 

Those derived from widely separated sites can be remarkably similar. Although they reflect the flow in 

the capillary bed, each of them contains the same information on the spatially invariant periodic 

activities seen in the centrally generated cardiac and respiratory signals. The power of each oscillatory 

component in the peripheral blood flow varies with the vessels' diameters and the netvvork density, i.e., 

the local resistance to the flow. Measurement sites of similar network density were chosen [9, 112], 

viz on bony prominences of the wrist and ankle joints, thus avoiding any large vessels. 

Our measured signals, i.e., channels a to d, come from widely differing sites. Nonetheless, in 

agreement with the earlier work, the respiratory and cardiac characteristic frequency components 

preserve the same values and, moreover, their phase relationships contain the same information. The 

left-hand column of Fig. 5.7 shows the bispectrum for peak 1 for signals b\» bc and bd measured on 

channels c-d. The maximum amplitude of the peak is positioned at the same bifrequency (0.98 Hz, 

0.11 Hz) as already seen for peak 1 of the signal &a measured on channel a, Fig. 5.7, midddle column. 

The left-hand column of Fig. 5.8 shows the bispectrum for peak 6 for signals b\>, bc and b^ measured on 

channels c-d. As excepted the maximum amplitude of the peak is positioned at the same bifrequency 

(0.98 Hz, 0.11 Hz) as already seen for peak 6 of the signal ba measured on channel a, Fig. 5.8, midddle 
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column. The correlation of the biamplitude and biphase for signals ba and b\>-b& for ali peaks 1-6 is 

very high. For peak 6, for signal ba and bd, is it is 0.85 for both, the correlation of the biamplitude and 

biphase, as can also be seen from their tirne evolution presented in the right-hand and middle column 

of Fig. 5.8. 

Fig. 5.7: Left: the bispectrum |B| calculated with K = 33 segments, 87 % overlapping, and using the Blackman 

window to reduce leakage for the test signal (a) bh, (b) bc and (c) bd for peak 1 with its contour view. Middle: the 

biamplitude A, and right the biphase (/>; a 0.1 s tirne step and 100 s long window were used for computation of the 

DFT using a Blackman window. 

The biamplitude meets our amplitude criterion vvithin the same tirne interval from 76.8 s to 172.4 s, 

and the biphase is also constant during this interval. We obtain the same coupling information at ali 

four measuring sites for ali the peaks (1-8). The results obtained from time-bispectral analvses of the 

measured signals are summarized in Tab. 5.3. Inspecting the data in Tabs. 5.1 and 5.3 we see no 

obvious correlation between the average tidal volume and the onset of nonlinear cardio-respiratorv 

interaction. 
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Fig. 5.8: Left: the bispectrum |B| calculated with K = 33 segments, 87 % overlapping and using the Blackman 

window to reduce leakage for the test signal (a) bh, (b) bc and (c) bA for peak 6 with its contour view. Middle: the 

biamplitude A, and right the biphase (jr, a 0.1 s tirne step and 100 s long window were used for computation of the 

DFT using a Blackman window. 
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Tab. 5.3: Quadratic nonlinear couplings detected in blood flow signals marked by * in Tab. 5.1. For each 
measurement, four blood flow signals were measured simultaneously at different sites, channels a-d. Tqc is the 
tirne interval during which the bispectral analysis showed that the heart oscillator f^ and the respiratory oscillator 
fies might be nonlinear coupled. The product of Tqc -frt% tells us over how many respiratory periods the interaction 
persisted. During Tqc the maximum biamplitude is calculated for the peak 1 that is of our primary interest. In 

addition, the maximum variation of the biphase A0, its average value (/) , and its standard deviation ĉ  were 

calculated during Tqc. 

5.7 Cross-bispectrum 

The bispectrum as defined in [40] can be seen as a special čase of the cross-bispectrum when the three 

signals are the same. In addition to the blood flow signals, the ECG e(t), respiration r{f) and blood 

pressure p{i) were also simultaneously recorded. This gave us the possibility of globally checking the 

coupling between cardiac and respiratory activity using bivariate data. Let us define the cross-

bispectrum as [69] 

(5.1) 

where X and Y are discrete Fourier transforms of two different signals x(t) and y{i) at discrete 

frequencies k, l and k + L We calculated the cross-bispectrum Bcehb (where c stands for cross, e for 

signal e{i) and b for signal b(t)), for the čase where x(t) is the ECG signal e(t) and y{t) is the blood 

flow signal ba(t). The ECG signal tells us primarily about the cardiac electrical activity. The phase of 
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the first, cardiac component/ls in the triplet (fufiifi+fi) is thus directly extracted from the ECG signal. 

The respiratory component f2 and the component at the harmonically related position f\ + f2 are 

extracted from the blood flow signal. 

We also define the cross-bispectrum as 

(5.2) 

and calculate it for 2 different cases: (i) i?cbrb, where x(t) is the blood flow signal bjf) and y(t) is the 

respiration signal r(t). The signal r(i) most directly describes the activity of the respiratory oscillator. 

Therefore the phase of the second component in the triplet (f\,fi,f\ +fi) is directly extracted from the 

respiratory signal, (ii) 5cprp, where x(t) is the blood pressure signal p{t) and y(t) is the respiration signal 

r(f). By calculating the latter cross-bispectrum we are interested in establishing whether the 

information about coupling between the heart and the respiratory oscillators is signal-independent, i.e., 

whether it is also present in other CV signals. 

Fig. 5.9: Results for the cross-bispectrum. Row (a) shows the first 25 s of the signals: left ECG signal e(f), 

middle respiration signal r(t), and right differentiated blood pressure signal p(t); whereas row (b) shows their 

power spectra. The sampling frequency was fs = 400 Hz. In the lower rows (c) the biphase (f> and (d) the 

biamplitude A are shovra; a 0.1 s tirne step and 100 s long window were used for computation of the DFT using a 

Blackman window. The biphase and the biamplitude were calculated using the cross-bispectrum (left) Behh, 

(middle) Bhlh and (right) 5prp. 
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We proceeded as discussed above in Sec. 5.3. for each of the three different cross-bispectrum cases. 

The time evolution of the signals e(t), r{t) and p{t) and their power spectra are presented in Fig. 5.9 (a) 

and (b). For the cross-bispectrum Z?cebb ali the peaks from 1 to 8 are present at the same bifrequencies 

as in the čase of auto-bispectrum of the blood flow signal. Since the power spectrum of the respiratorv 

signal Prexhibits only components of the respiratorv oscillator we cannot expect peaks 5, 6 and 8 to 

appear in the cross-bispectrum BcbTb and Bcprp. Ali the rest of the peaks are present at the same 

bifrequencies as in čase of the auto-bispectrum. The biamplitude meets our amplitude criterion vvithin 

the same time interval from 76.8 s to 172.4 s, for ali peaks; moreover the biphase is constant during 

this time interval. Examples of the biamplitude and biphase time evolution for peak 1 for the three 

different cross-bispectrum are presented in Fig. 5.9 (c) and (d). 

Cross-bispectrum were also calculated with surrogate data, where the phases of the frequency 

components of the signals e(t), r(t) and p(i) were randomized. No phase couplings were detected in 

this čase. The coupling information among cardiac and respiratory process seems to be signal 

independent. 

5.8 Discussion 

The signals were measured on six persons, whereas in the first column of Tab. 5.3 data are only 

provided for five; the sixth person also showed evidence of nonlinear couplings, but over time, these 

intervals were too short to fulfil our required conditions. Four blood flow signals, simultaneously 

measured in different places (channels a, b, c, and d), were available for each recording. We usually 

first analysed the one with the most distinctive characteristic frequencies in its power spectrum and, if 

our criteria were fulfilled, checked the other three signals as well. The time interval, Tqc, during which 

quadratic coupling persisted, was determined; if ali 6 peaks fulfilled our conditions, then the Tqc 

interval was calculated for ali peaks, and the boundaries were defined such that the biamplitude for ali 

the peaks in Tqc interval vvould be above the condition. 

Also shown in Tab. 5.3 are three cases where the couplings Tqc lasted less than 10 • 1//S, where \/f2 is 

the longest respiratory period, since they could be detected very distinctly and clearly. Column Aimax is 

the maximum biamplitude for peak 1 during the Tqc interval. The strength of the coupling is, in 

general, not correlated with its duration. For each Tqc interval, the maximum variation A</> of the 

biphase, its average value, and its standard deviation, were calculated. 
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Fig. 5.10: (a) Example of blood flow signal during spontaneous breathing for person 5, channel a and (b) its 
power spectrum. (c) Bispectrum |B| and its contour view calculated with K = 33 segments, 87 % overlapping, 
and using the Blackman window to reduce leakage. 

There was only a single čase of spontaneous breathing for which the coupling lasted long enough (82 s 

without phase slips) to fulfil the criteria. During the spontaneous respiration phase slips are relatively 

frequent, and epochs with constant biphase are short. 

Fig. 5.10 shows an example of data for spontaneous breathing (a) and its power spectrum (b). Signals 

of this kind are, in general, very difficult to analyse due to their large time-variable frequency content, 

which results in broadened and coalescing peaks, as seen in Fig. 5.10 (c). Peaks 1-6 cannot easily be 

resolved due to time-frequency resolution restrictions. 

5.8.1 Definition of the phase 

As already mentioned above in Sec. 2.2, the cardiac and respiratory systems can be perceived as 

coupled autonomous oscillators [6, 7, 9, 13, 59, 75, 99-101, 110, 111, 115]. Using a bispectrum based 

on Fourier transform, which is a decomposition of the signal in terms of complex exponential 

(sinusoidal) components, each component can be represented as a point in a complex space, 9?[X(A:)] 

versus 3[X(&)], thus defining a vector, where X is DFT and A: is a discrete frequency. Its magnitude 

represents a power, whereas the phase is determined by the angle between the vector and the positive 

real axis. The phase of an oscillator is defined as the phase of the sinusoidal component that lies 

closest to the characteristic frequency of the oscillator, with a corresponding spectral peak. Thus our 

phase definition differs from that in Kuramoto phase reduction, [54]. In this way it is possible to study 

the phase relations and resolve the nature of the couplings. 
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5.8.2 Nonlinear coupling, or linear coupling of strongly nonlinear 
oscillators? 

Our study is based on the assumptions that the cardiac and respiration processes can be described as 

weakly nonlinear oscillators and that the interaction betvveen them is also weak [116]. It is pertinent to 

investigate what happens when these assumptions are not fulfilled. We have addressed the question in 

two different ways based on analytic approximation and digital simulation, respectively. 

The analysis in Appendix B considers harmonic generation by a pair of coupled, weakly nonlinear, 

oscillators. It confirms that, for weak coupling, the appearance of additional harmonics at la^, 2a>\, 

2a>\ ± 2o>2, a>\ ± a>2, 3coi ± a>2 can confidently be associated with the presence of quadratic coupling. 

For a sufficiently nonlinear oscillator and sufficiently strong coupling, these and other combinatorial 

harmonics can in principle be generated, as a second-order effect, even for linear coupling. As will be 

illustrated below, however, the appearance of these combinatorial harmonics does not in itself fulfil 

the necessary conditions to support a conclusion that there is nonlinear coupling when tested by 

bispectral analysis: the high biamplitude and constant biphase may be absent. In any čase, the 

bispectral approach cannot be expected to yield reliable information about the nature of the coupling 

when the nonlinearities are extremely strong. 

We have therefore complemented the analysis of Appendix B vvith a digital simulation, exploring the 

range of extreme conditions where the bispectral approach is expected to fail. We have chosen to 

simulate a generic model (5.3) of the van der Pol relaxation oscillator, vvith an additional nonlinear 

term, linearly driven by another relaxation van der Pol oscillator via an additive coupling [125] 

(5.3) 

The activity of the oscillators is described by the two state variables X{ and_yi, vvhere % and a>\ = 2nf[ are 

constants, and i = 1,2 denote respectively the driven or the driving oscillator. 771 is a constant that sets 

the strength of the additional nonlinear term in the driven oscillator, and ju\ is the strength of the 

coupling. Here, Č[i) is zero-mean white Gaussian noise, (%j)) = 0, {č{i), ^(0)) = DS(t) and D = 0.8 is 

the noise intensity. Following the pioneering work of van der Pol and van der Mark [125], the 

parameters are set to S\ = 70, and £2 = 3. 



A detailed parameter space analysis has been completed, showing that a situation indeed exists for 

which the bispectral technique fails to distinguish betvveen the two situations when: (i) two oscillators 

are strongly nonlinear, but linearly coupled; or (ii) when they are nonlinear and nonlinearly coupled. 

As an illustration, bispectral analysis was performed for two coupled van der Pol oscillators, with and 

without added Gaussian noise, for different sets of parameters. In the first čase the strength of the 

additional nonlinearity was changed, while jU\ was kept constant: (a) ju\ = const. = 1; i)\ was 0, 0.5, 1, 

2, 5, 10, 12 and 15, and from 20 to 90 was varied with step 10 and 93 was also included. (b) ju\ = 

const. = 25; J]\ was varied from 1 to 10 vvith step 1, values 12, 15, 18 and 25 were also considered, and 

again values from 20 to 60 with step 10. In the second čase the strength of the coupling was changed 

vvhile 771 was kept constant: (a) r\\ - const. = 1; ju\ was varied from 0.1 to 1 vvith step 0.1, from 1 to 10 

vvith step 1, then values 2.5, 3.5, 11, 15, 20, 25, 30, 35, 120 and 200 vvere considered, and again values 

from 40 to 100 vvith step 10. (b) 771 = const. = 5; /4 = 25. (c) /71 = const. = 15: /4 was varied from 1 to 

10 vvith step 1, values 12, 15, 17, 20, 24 and 25 vvere considered, and again from 30 to 60 vvith step 10. 

The test signal X\7(t) is the variable X\ of the driven oscillator, recorded as a continuous time series. For 

the first 400 s, the strength of the additional nonlinear term, i.e., 771 = 15 was very strong and the 

coupling, i.e., ju\ = 1 was relatively strong; ju\ vvas then substantially increased to 25, vvhereas the 

strength of the additional nonlinear term vvas decreased to 1. After a further 400 s, the strength of the 

additional nonlinear term vvas increased back to 15. The first 5 s and corresponding povver spectrum 

for each coupling strength are shovvn in Fig. 5.11 (a) and (b). The peak 1.1 Hz in the absence of 

coupling, labelled as/i, represents the driven cardiac oscillator; and^ = 0.24 Hz represents the driving 

respiratory oscillator. These frequencies are deliberately chosen such that their ratio is not an integer. 

The povver spectra, Fig. 5.11 (b), for ali the three different cases of the strengths of the linear coupling 

and additional nonlinear term exhibit rich frequency content. As the coupling gets stronger, and/or the 

strength of the additional nonlinear term increases, the frequency content of the signal X\? becomes 

richer. The povver spectra clearly exhibit components at the harmonically related positions/i +f2 and/i 

-fi-

The principal domain of the bispectrum for the test signal JCIF, Fig. 5.11 (c) and (d), shovvs a peak at the 

bifrequency (0.96 Hz, 0.24 Hz) that is of our primary interest. A vvindovv length of 100 s vvas chosen 

to calculate the instantaneous biphase and biamplitude, Fig. 5.11 (e) and (f), and vvas moved across the 

signal in 0.1 s steps. The vvhole signal is analysed as a single entity, but transients caused by the 

changes in coupling and/or in the strength of the additional nonlinear term are removed prior to 

processing. 

18 



5 C A R D I D - R E S P I R A T D R Y I N T E R A C T I D N S 

Fig. 5.11: Digital simulation illustrating a situation where the bispectral method fails. The simulation models two 

unidirectionallv, very stronglv coupled, relaxation van der Pol oscillators with additional very strong nonlinear 

terms, in the presence of additive Gaussian noise. (a) The test signal XiF of variable X\ of the forced van der Pol 

oscillator with characteristic frequency f{ = 1.1 Hz periodicallv forced at frequency^/2 = 0.24 Hz for three 

different coupling strengths fix ~ 1 (1), 25 (2), and 25 (3), with strengths of the additional nonlinear term >ft = 15 

(1), 1 (2), and 15 (3). Each coupling lasts for 400 s, at sampling frequency^ = 50 Hz. Only the first 5 s are 

shown in each čase. (b) The power spectrum of x1F. (c) Its bispectrum \B\ calculated with K = 34 segments, 67 % 

overlapping and using the Blackman window to reduce leakage and (d) its contour view. (e) The biphase (j) and 

(f) the biamplitude A for bifrequency (0.96 Hz, 0.24 Hz), with a 0.1 s time step and a 100 s long window for 

estimating the DFTs using the Blackman window, for cases (1), (2) and (3). Note that only for (3) are both 

conditions (i.e., high enough biamplitude, and constant biphase) for the (incorrect) inference of nonlinear 

coupling satisfied. 

During the period of relatively weak coupling ju\ = 1 and strong nonlinearities, no peak is present in 

the bispectrum as can be seen from the biamplitude, Fig. 5.11 (f), which remains far below unity 

(0.012). Moreover, at value T/I = 0.7 the frequency component at modulation position/i +f2 appears in 

the power spectrum for the first time. The modulation components f\ ±fi become large and almost 

equal in size in the power spectrum, but not until T]\ = 15. Hovvever, even then, not ali the necessary 
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peaks (also peak at bifrequency (/i, 2f2)) in the bispectrum are present and the method correctly 

resolves the absence of nonlinear coupling, even though the biphase is constant, Fig. 5.11 (e). 

By grossly exaggerating the strength of the coupling, with ju\ = 25, the frequency components that 

might also arise from nonlinear coupling become large. This results in an substantial increases of the 

biamplitude at bifrequency {f\,fi) in the bispectrum; the biphase is then non-constant, however, and 

increases continuously. Again the required conditions for the identiflcation of nonlinear coupling are 

not fulfilled. 

In the most extreme example shown, with very strong coupling and very strong additional 

nonlinearity, i.e., with rj\ = 15, fi\ =25, we are unable to distinguish betvveen strong nonlinearity of the 

oscillators and strong nonlinear coupling. In a signal coming from a "black box", the observed 

frequency components could mistakenly be attributed to nonlinear coupling: the bispectrum, Fig. 5.11 

(c), contains ali the necessary peaks (only three of them are visible, the rest of them being much 

smaller, although fulfilling the necessary amplitude condition). There are other frequency components 

that could result from nonlinear coupling, and the biphase remains constant. In this čase the method 

clearly fails. 

There are, however, compelling arguments suggesting that the cardiac and respiratory subsystems 

should be in fact treated as weakly nonlinear oscillators that are weakly coupled. (i) In healthy 

subjects, breathing spontaneously, only occasional and ^r/^episodes of synchronization are seen [10, 

99-101], indicative of relatively weak coupling. (ii) Sinus arrhvthmia is small at spontaneous breathing 

frequencies and only slightly larger at very low breathing frequencies [23], again supporting a weak-

coupling description. (iii) The couplings can sometimes decrease almost to vanishing point, e.g., in 

coma [112]. Without couplings, the dvnamics becomes drastically simplified - with complete absence 

of svnchronization or modulation. The fact that virtually no variability is seen in any of the natural 

frequencies, despite small amplitude variations attributable to internal noise, suggests that the 

oscillators themselves are at most weakly nonlinear. (iv) If there were strong oscillator nonlinearity, 

and strong (but linear) coupling, we would observe many combinatorial components around the 

cardiac frequency, which is not the čase (see Fig. 5.1 (a) - (d)). The excessively strong-coupling 

regime explored in the above simulations would appear, therefore, to be largely irrelevant to the 

cardio-respiratory interaction that we study in this work: our bispectral technique [40] should be 

applicable as we have assumed. 
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5.8.3 Relationship to synchronization 

The fact that inter-oscillator interaction can give rise to synchronization, as well as to modulation, has 

excited much attention in studies of the phase relationships between the cardiac and the respiratory 

oscillators [10, 24, 42, 46, 52, 71, 92, 95, 97, 100, 101, 113, 114, 118]. Indeed, it was the possibility of 

synchronization that motivated us to develop new techniques to investigate further the interactions 

between the systems: the direction, strength and, in particular, the nature of the couplings. They can be 

obtained from bivariate data (respiration and ECG signal) by use of the methods recently developed 

for analysis of synchronization, or generalized synchronization, between chaotic and/or noisy systems 

(see [79] and references therein). We now consider whether or not synchronization is onsets under 

conditions where we have clear evidence of interaction. 

Fig. 5.12 (d) shows a cardio-respiratory synchrogram based on the stroboscopic technique [79] for 

person 2 during paced respiration, supplementing bispectral results for signal ba. It is constructed by 

plotting the normalized relative phase of a heartbeat within m respiratory cycles [79] 

(5.4) 

where ?* is the time of &-th heart beat and (̂  is the instantaneous phase of respiration. In perfect n\m 

phase locking, ^(/k) attains exactly the same n different values within each m adjacent respiratory 

cycles and the synchrogram consists of n horizontal strips. The instantaneous phase of the cardiac 

activity was obtained by characteristic or marker events - the R peaks in the ECG signal. A 2n increase 

of phase is attributed to the interval between subsequent R peaks. The instantaneous phase of 

respiration was obtained in a similar way, using zero-crossing as the marker event. 

For m = 1 we cannot see any horizontal structure that would resolve n:\ phase locking during 77-172 

s. By differentiating the instantaneous phases we obtain the instantaneous (a) cardiac and (b) 

respiratory frequencies and (c) their ratio as shown in Fig. 5.12. In the histogram of frequency ratio 

(not shown) two peaks appear, one tX/j/fi = 9 and the other atfz/fi = 10, as can also be seen from the 

Fig. 5.12 (c). The synchrogram presented in Fig. 5.12 (e) shows the case where m = 9. The vertical 

inclined lines suggest that the frequency ratio is almost constant, whereas phase drift is present most of 

the time. No synchronization is evident in either synchrogram. It looks as though the cardiac 

oscillation has a tendency to synchronize with the respiratory one, but cannot tune due to the slow-

paced respiration frequency. In other words, it appears that, for most of the time, the cardiac frequency 
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is just modulated by the respiratory rhythm, i.e., what is commonly referred to as respiratory sinus 

arrhythmia. 

Fig. 5.12: (a) Instantaneous cardiac frequency / j , (b) instantaneous respiratory frequency f2 and (c) their 
frequency ratio for person 2 during paced respiration, supplementing bispectral results for blood flow signal ba. 
(d) Synchrogram based on stroboscopic technique calculated for m = 1 and (e) m =9. 

Using the synchrogram technique we thus detect the existence of frequency modulation but no 

synchronization for the čase of paced, low frequency, respiration. We conclude, therefore, that 

bispectral analysis yields different information from that which can be resolved from a synchrogram. 

The relation to synchronization in more general way is going to be discussed in detail in the 

subsequent chapter. 

5.8.4 Synchronization, modulation and type of coupling 

Just as frequency modulation does not necessarily coexist with synchronization between the cardiac 

and respiratory systems, there is not a one-to-one correspondence between quadratic coupling and 

modulation. As seen in Fig. 5.12 (a), the cardiac frequency is continuously modulated by the 
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respiratory frequency throughout the recording, whereas quadratic coupling is reliably detected only in 

the interval between 77 s and 172 s. Using bispectral analysis we can obtain additional information 

about the possible presence of modulation. Inspection of the tirne evolution of the amplitudes and 

phases for ali the frequencies that constitute the triplets for bifrequencies summarized in Tab. 5.3 has 

shown that the observed nonlinear coupling does not correspond directly to frequency modulation. 

It remains an open question whether the observed interchange and coexistence betvveen modulation, 

svnchronization and other manifestations of coupling arise through complexity of the cardio-

respiratory interaction itself, or through indirect interactions involving the other oscillatory processes 

(see [110] and the references therein) known to exist in the cardiovascular system. 

5.8.5 Unidirectional or bidirectional coupling 

We have studied the combinatorial frequencies, that arise from the influence of the respiratory on the 

cardiac system. This naturally begs the question of whether the coupling is unidirectional or 

bidirectional. Using the same method, one could equally well analyse the combinatorial frequencies 

responsible for the influence of cardiac on the respiratory system. In fact, using newly developed 

algorithms for analvsis of the direction of coupling [72, 93, 94, 103] has already shown [73, 117], that 

the two systems are bidirectionally coupled. 

5.8.5.1 Forced oscillator 

The effect of respiratory system is, however, dominant (i.e., is the driving system) at ali respiratory 

frequencies, whether paced or spontaneous [73, 117]. The interaction betvveen the cardiac and 

respiratory oscillators can be seen as unidirectional: the respiratory system drives the cardiac one. A 

particular čase is the čase of the paced respiration. Although, during paced respiration, the respiration 

frequency is kept constant, the situation differs from that of a forced oscillator (with the cardiac 

oscillator being driven, and the respiration oscillator being the drive). Paced respiration experiments 

can in fact be perceived as a state of the system of two coupled oscillators, where, although the 

frequency of one of them (respiration) is forced and kept constant, the interaction betvveen the tvvo 

oscillators remains spontaneous. 

To illustrate how this happens, we use a generic model (5.5) of an almost periodic, Poincare oscillator 

periodically, driven by a weak external force 
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(5.5) 

The activity of the oscillator is described by the two state variables x andy, a, a and co\ are constants 

and F is the forcing amplitude with frequency a>i and initial force phase $>. Here, Č{t) is zero-mean 

white Gaussian noise, <^(/)> = 0, {Č{t\ ^(0)> = Dd(f), and D = 0.1 is the noise intensity. The parameters 

of the model are set to a= 1, and a = 0.5. 

Fig. 5.13: Results for a forced Poincare oscillator in the presence of additive Gaussian noise. (a) The test signal 

*io, of variable x of the forced oscillator with characteristic frequency f\ = 1.1 Hz periodically forced at 

frequency^ =0.24 Hz with three different forcing amplitudes; F = 0.0 (1), 0.1 (2) and 0.2 (3). Each forcing lasts 

for 400 s, at sampling frequency^ = 10 Hz. Only the first 15 s are shown in each čase. (b) Its power spectrum. 

(c) The bispectrum \B\ calculated with K = 33 segments, 66 % overlapping and using the Blackman window to 

reduce leakage and (d) its contour view. The part of the bispectrum above^ > 1.0 Hz is cut, because the triplet 

(1.1 Hz, 1.1 Hz, 2.2 Hz) produces a high peak that is physically meaningless. (e) The biphase <f) and (f) 

biamplitude A for bifrequency (1.1 Hz, 0.24 Hz), with a 0.3 s time step and a 100 s long window for estimating 

the DFTs using the Blackman window. 
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The test signal X\G(t) is the variable x of the driven oscillator, recorded as a continuous tirne series. For 

the first 400 s, there was no forcing, i.e., the amplitude was set to zero. It was then raised to a small 

constant value 0.1. After a further 400 s, it was increased again to 0.2. The first 15 s and corresponding 

power spectrum for each forcing strength are shown in Fig. 5.13 (a) and (b) in order to demonstrate the 

changes in spectral content and behaviour caused by the forcing. The peak labelled as /j = 1.1 Hz 

represents the driven cardiac oscillator and the f2 = 0.24 Hz represents the driving respiratorv 

oscillator. These frequencies are deliberatelv chosen to have an irrational ratio. 

For nonzero forcing strength F, there is at least one peak present at the harmonicallv related position 

2/1 - fi attributable to forcing of the cardiac oscillator. It arises from the nonlinearitv of the first 

oscillator, but is caused by the forcing. Clearly, the power spectrum does not exhibit any components 

at the harmonically related positions f\+ fi and f\ - f2 that are present in čase of real cardiovascular 

blood flow signals. 

The principal domain of the bispectrum for the test signal x\G, Fig. 5.13 (c) and (d), shows a peak at 

the bifrequency (1.1 Hz, 0.24 Hz) that is of our primary interest. A vvindovv length of 100 s was chosen 

to calculate the instantaneous biphase and biamplitude, Fig. 5.13 (e) and (f), and was moved every 0.3 

s across the signal. The whole signal is analysed as a single entity, but transients, caused by the 

changes in forcing strength are removed prior to processing. 

Longer epochs of constant biphase cannot be observed: it changes continuously and many phase slips 

are present. 

Note, that the cardio-respiratory interaction is more complex than just a driven oscillator, since this 

cannot produce the observed frequency components, and nor is the biphase constant during the 

forcing. Although the respiration frequency is kept constant, the situation differs from that of a forced 

oscillator (with the cardiac oscillator being driven, and the respiration oscillator being the drive). In a 

sense, the respiratory oscillator is a driven one, with which the cardiac oscillator interacts. Beside the 

mechanical interaction there is also the interaction via the central nervous system. Bispectral analysis 

shows different information, which can be resolved from the svnchrogram. In the power spectra of the 

cardiovascular signals higher harmonic components are present, as well as components at the 

modulation frequency. The higher harmonic components could be, due to nonlinear coupling, 

nonlinearity of the oscillators, or blood propagation through the veins. The latter possibility must be 

excluded, however, since the modulation components in question are also present in the ECG signal. 

In the present work we are concerned not with the origin of these components, but mainly with their 

phase relationships. 

r r 



6 B l S P E C T R A L R E L A T I D N T O S Y N C H R D N I Z A T I D N 

& B l S P E C T R A L R E L A T I D N T O 5 Y N C H R D N I Z A T I D N 

The question of bispectral analysis related to synchronization was already opened and discussed in 

Sec. 5.8.3 and 5.8.4. At that tirne, it was not possible to give well-founded conclusions. In the 

following chapter, we further investigate the question in more detail. We use signals obtained from 

rats undergoing anaesthesia. The signals have already been analysed using a synchronization 

technique [63, 64]. Tvvo signals which were chosen for analysis, using the bispectrum as their 

synchrograms, express very clear episodes of synchronization. Since there is not a unique way of 

defining the synchronization, we will start with a brief synchronization definitions overview. 

6.1 Synchronization definition 

Synchronization is a basic phenomenon in physics, discovered at the beginning of the modern age of 

science by Huvgens [37]. In the classical sense, svnchronization means the adjustment of frequencies 

of periodic oscillations due to weak interactions [2, 4, 30]. The most fundamental definitions of 

svnchronization are frequency and phase svnchronization. These definitions have been generalized to 

encompass svnchronization phenomenon from coupled (two or more) periodic, noisy to chaotic 

oscillators [79]. Throughout this vvork, we use svnchronization as an abbreviation for phase 

svnchronization. 
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Frequency synchronization. Generally, the interaction between two systems is nonsymmetrical: 

either one oscillator is more powerfiil than the other, or they influence each other to different extents, 

or both. If the action in one direction is essentially stronger than in the other one, then we have a 

particular čase of external forcing. In this čase, the frequency of the driven system is pulled towards 

the frequency of the drive. The main point in a bidirectional interaction is that the frequencies of both 

oscillators change. Let us denote the frequencies of the autonomous systems as/i and^2, and let/i <f2; 

the observed frequencies of interacting oscillators are denoted as Qi;2. If the coupling is sufficiently 

strong, frequency locking or entrainment appears as the mutual adjustment of frequencies, so that Qi = 

Q2
 = Q where typically/i <Q<f2. Whether or not svnchronization takes plače, depends on coupling 

strength and frequency detuning, or mismatch. The identity of the frequencies that hold within a finite 

detuning range is the hallmark of svnchronization, and is called frequency locking (also mode 

locking). The entire family of curves, Q - f2 vs f2 (f2 is the drive), for different values of the forcing 

amplitude, s, determine the region in if, s) plane that corresponds to the svnchronized state of the 

oscillator, called svnchronization region or Arnold tongue [79]. 

Phase synchronization. The onset of a certain relationship between the phases of two svnchronized 

self-sustained oscillators is often called phase locking. Frequency locking implies a certain relation 

between the phases that depend, not only on the frequency detuning and coupling strength, but also on 

the way in which the systems are interacting. Let us consider two nearly identical, symmetrically 

coupled oscillators. If the interaction is weak, then we can assume that only the phases are influenced, 

and that they shift the points along the limit cycles, but not the amplitudes. Phase-attractive interaction 

leads to in-phase svnchronization, whereas the phase-repulsive one results in anti-phase 

svnchronization. 

Mutual svnchronization. It is a special čase of phase svnchronization vvhen two oscillators equally 

affect each other. This čase covers the classical experiment of Huvgens [37]. Mutual phase 

svnchronization of chaotic oscillators is also possible. In this čase, svnchronization notation is 

specified more prečisely, because it is not obvious how to characterize the rhvthm of a chaotic 

oscillator. Chaotic oscillatory process can be characterized by mean frequency [79] 

where r is a large tirne interval and Nx number of cycles within interval r. If the coupling is large 

enough, than the mean frequencies of the two oscillators become equal. This does not imply that the 
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signals must also coincide. Weak coupling does not affect the chaotic nature of both oscillators; the 

amplitudes remain irregular and uncorrected, whereas the frequencies are adjusted. 

High-order synchronization. Generally, when the incommensurate frequencies of an uncoupled 

system obey relation nf\ « mf2, synchronization of order mm arises for sufficiently strong couplings. 

The frequencies of interacting systems become locked, nf\ * mf2, and the phases <fa and ^ are also 

related. The condition of phase locking can be formulated as [79] 

(6.2) 

where n and m are integers. For periodic oscillators, the condition of phase locking is equivalent to the 

notation of the frequency locking [79]: 

(6.3) 

This phase locking condition (6.2) can be used only for quasi-periodic oscillators. For more general 

forms of nonlinear oscillators, i.e., relaxation oscillators, a weaker condition of phase locking is used, 

where S is some phase shift. A phase shift between the oscillators depends on the initial detuning of 

the interacting systems and the type and parameters of coupling. 

Lag synchronization. Lag synchronization is defined as a coincidence of states of two systems shifted 

in time, x2(t + r) = \\(t) [91]. It is an appearance of shift between times of characteristic points of the 

first (T\) and the second (T2) oscillator, formulated as [91] 

(6.5) 

Global synchronization. In large ensembles of oscillators, where each element interacts with all 

others, it is also denoted as all-to-all coupling. A phase-transition-like phenomenon, characterized by 

the appearance, or disappearance, of collective oscillations in the oscillator communities is known as 

Kuramoto self-synchronization transition [54]. 
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Complete synchronization. Contrary to phase synchronization, it can be observed in any chaotic 

system, not necessarily autonomous systems. This phenomenon is not close to the classical 

synchronization of periodic oscillations, due to the lack of rhythm adjustment. Complete 

synchronization is the suppression of differences in coupled identical systems. This effect cannot be 

described as entrainment or locking, as it is closer to onset of symmetry. Regime, where each of the 

systems demonstrate that chaos and their states are identical at each moment in tirne, is called 

complete synchronization6. 

Generalized synchronization. This is the synchronization of nonidentical systems. Clearly, the states 

cannot coincide exactly, but they can be rather close to each other. In particular, it may be that for a 

large enough coupling, there is a functional relation x2 = F(xj) betvveen the states of the two systems. 

This means that knowing the functions F, one can uniquely determine the state of the second system, 

if the first is known. The regime is called generalized synchronization [96]. Complete synchronization 

is a particular čase of generalized synchronization when the functions F are simply identity functions. 

Typically, generalized synchronization is observed for unidirectional coupling when the first (driving) 

system forces the second (driven) system, but there is no back-action, known as a master-slave 

coupling. 

Synchronization and noise. In general, svnchronization can be destroved in the presence of noise. 

Measured data sets contain some noise. It can be instrumental, thermal, physiological, or numerical, 

i.e., resulting from quantization of analogue signals. By physiological, we mean the effect of 

interactions on the measured quantity with the rest of the system. It manifests as a complex 

modulation of the natural frequency of the subsystem under observation. However, if the noise is 

small, the frequencies are nearly locked. Phase difference would be expected to fluctuate around a 

constant value. In this čase, the condition (6.3) is fulfilled on an average, n{f\) = m(f\). Large noise can 

cause phase slips, i.e., the phase performs random-walk-like motion. Strictly speaking, the 

synchronization region shrinks to a point where the largest phase-locking intervals survive as regions 

of nearly constant mean frequency. 

If we consider svnchronization in the presence of noise, svnchronization of chaotic systems, or 

svnchronization of oscillators with modulated natural frequencies, phase and frequency locking, may 

no longer be equivalent [101]. One can distinguish betvveen several forms of svnchronization 

frequency and phase locking, phase locking without frequency locking and frequency locking without 

phase locking [79]. The question of whether it is svnchronous or not cannot be answered in a unique 
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way, but only treated in a statistical sense. Phase synchronization can be understood as the appearance 

of a peak in the distribution of the cyclic relative phase [79] 

and interpreted as the existence of a preferred stable value of the phase difference $im between the two 

oscillators. 

In the čase of the cardiovascular system, vvith time-varying characteristic frequencies, phase 

svnchronization may onset, vvhile the frequencies may or may not be entrained. The notation (6.4) is 

used for phase svnchronization. 

6.2 Measurements 

Electrical activity of the heart (ECG), respiration, EEG and temperature were recorded from rats 

undergoing anaesthesia. 21 rats ali weighted 250 g, most of them males, were measured. The first 11 

rats were of testing nature used for calibration of the measuring devices and determination of the 

signal quality. They were not used for the subsequent data analysis. The measurements started 4-7 

minutes after the anaesthetic (Rompun- ksilizinhvdrochlorid, Ketalar-ketaminhydrochlorid) infusion 

and ended once the rats started to move spontaneous (pinch test). The duration of the measurements 

was -70 min. Ali signals were digitized with 16-bit resolution and sampled at 1000 Hz using National 

Instruments measuring device. Temperature was set to 24 ± 1 °C. Rats were lying on abdomen during 

the measurement in Faraday's cage. The data acquisition techniques are described in [63] but, in 

summarv, were as follovvs. The respiratory effort was measured using the TSD101B Respiratory 

Effort Transducer (Biopac Systems, Inc., USA). It consists of a piezoresistive sensor mounted on an 

inelastic band. To detect the respiratory movements, the band was vvrapped around rat abdomen. The 

electrical conductivity of the sensor was proportional to the increase of abdominal circumference. The 

electrical activity of the rat's heart was obtained using three electrodes. The reference electrode vvas 

mounted on the rat's tail vvhereas the remaining two electrodes were put on the front legs of the rat. 

EEG, the electrical activity of the rat's brain was measured using one differential signal and one 

reference electrode. The electrodes were realised with medicine needles that were thrusted into the 

rat's head. And finally the temperature was measured using NTK (negative temperature coefficient) 

resistors in differential binding. 
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6.3 Data analysis 

We proceeded as already discussed above in Sec. 5.6. for the calculation of cross-bispectrum i?cere, 

where c stands for cross, e for signal e(t) and r for signal r(i). The ECG and respiration signals were 

first pre-processed. Both very low and very high frequencies were removed by use of moving average 

windows: drift with a 200 s long window; and high frequencies with a 0.04 s window while, and at the 

same tirne, the signal was resampled to 50 Hz. By using the moving average before resampling, we 

avoid problems of aliasing [81]. In čase of cross-bispectrum calculation the signals have been further 

normalized between zero and one, and their mean value subtracted. 

The maximum biphase and biamplitude were calculated for each peak. The frequency resolution was 

set to be 1/20 of the lowest respiration frequency or better. The slovvest-paced breathing, f2, was 

approximately 1 Hz, so that a window of 20 s or longer was necessary for estimation of the cross-

bispectrum, biphase and biamplitude. Short plateaus in the estimated biphase occur frequently. To 

exclude coincidence interactions we focused on those that lasted for at least about 10 periods of the 

lower coupling frequency72- The length of the window also determines the tirne resolution. In the čase 

of the slovvest-paced breathing, vvhere/-. was 1 Hz we were seeking approximately 10 times {II fi) =10 

s long epochs of constant biphase. Therefore a window length of 10 s or less was necessary to meet the 

criterion for tirne resolution. Due to the Heisenberg uncertainty principle [43], the scope for choice of 

window length is limited, and compromise is needed between tirne and frequency resolution. 20 s long 

window was chosen. The window was moved along the tirne series with a tirne step of 0.1 s. The 

critical value for the biamplitude estimate to be considered valid was set in ali cases to 2, i.e., twice the 

average value of the bispectrum within its so-called inner triangle (IT), as discussed in Sec. 3.3. 

By calculating the cross-bispectrum we are interested in establishing relation to the information about 

coupling between the heart and the respiratory oscillators and one obtained from the svnchrogram. 

6.4 Results 

We show results of cross-bispectrum obtained from ratl6 and rat20 rats signals undergoing 

anaesthesia where a clear episodes indicating svnchronization were detected. 
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6.4.1 Rat16 

Examples of detrended, resampled and their mean value subtracted ECG e{i) and respiration r{i) 

signals for ratl6 undergoing anaesthesia are presented on Fig. 6.1 (a) and (c). 

Fig. 6.1: 10 s of detrended, resamlpled and removed zero mean (a) ECG e(t) and (c) respiration r{t) signal for the 
čase of ratl6 undergoing anaesthesia, -72 minutes long at sampling frequency7s = 50 Hz and power spectrums 
(b) and (d). 

1.83 10 20 30 40 Time (mili) 72.17 

Fig. 6.2: (a) Instantaneous cardiac, (b) respiration frequency and (c) their frequency ratio for a ratl6 undergoing 
anaesthesia. (d) Cardio-respiratory synchrogram for the ratl6. 

The peak in the povver spectrum, Fig. 6.1 (b), at frequency of-4.4 Hz belongs to cardiac activity,/i; 

the ones at -1-1.5 Hz belong to the respiratory activity,/2, Fig. 6.1 (d). It can be seen that their precise 
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values vary in time, which is what makes the analysis difficult. The widths of the peaks indicate their 

time-variable frequency content. 

The instantaneous phase of the cardiac activity was obtained by characteristic or marker events - the R 

peaks in the ECG signal. A 2TT increase of phase is attributed to the interval betvveen subsequent R 

peaks. The instantaneous phase of respiration was obtained in a similar way, using expiration moment 

as the marker event. By differentiating the instantaneous phases we obtain the instantaneous (a) 

cardiac and (b) respiratory frequencies and (c) their ratio as shown in Fig. 6.2. 

Fig. 6.2 (d) shows a cardio-respiratory svnchrogram based on the stroboscopic technique [79] for ratl6 

undergoing anaesthesia. A 3:1 phase locking can be seen lasting from 1.83 until approximately 9.1 

min. *F\ attains same 3 different values within each 1 adjacent respiratory cycle resulting in 3 

horizontal strips in svnchrogram during this time. Just before time equals 20 minutes horizontal 

structures appear again resolving a 4:1 phase locking during breathing indicating svnchronization and 

then disappear before time equals approximately 33.6 min. It cannot be clearly seen that 3 strips occur 

after that indicating weak 3:1 svnchronization till approximately 44.6 min. 

In the histogram of frequency ratio, Fig. 6.3, two high peaks appear, one atf2/fi - 3 and the other at 

f2lf\ = 4 as one would expect from the content of the svnchrogram. I 

0 1 2 3 4 f / f 6 
1 2 

Fig. 6.3: Histogram of cardiac/! and respiratory/ frequency ratio for the ratl6. 

Cross-bispectrum for ratl6 is presented in Fig. 6.4. High peaks are indicating frequency and/or phase 

interactions betvveen cardiac and respiratory activity. From the contour vievv of the cross-bispectrum it 

can be clearly seen that at bifrequency of our primary interest two peaks occur. The first one is located 

at (4.25 Hz, 1.1 Hz), and the second one at (4.45 Hz, 1.4 Hz) resolving that there was a frequency shift 
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in cardiac and respiratory activity. For both peaks we are looking for further three peaks, according to 

their frequency relations, Tab. 5.2. Ali of them are present. 

Fig. 6.4: Results for a ratl6 undergoing anaesthesia. (a) The cross-bispectrum |5cere| calculated with K = 211 

segments, 0 % overlapping and using the Blackman window to reduce leakage and (b) its contour view. 

1.83 10 20 30 40 Time (min) 72.17 1.83 10 20 30 40 Time (min) 7 2 1 7 

Fig. 6.5: The biphase (j) and biamplitude A for bifrequencies: (a) peak 1 (4.25 Hz, 1.4 Hz), (b) peak 2 (2.85 Hz, 

1.4 Hz), (c) peak 3 (2.85 Hz, 2.8 Hz) and (d) peak 4 (4.25 Hz, 2.8 Hz) with a 0.1 s tirne step and a 20 s long 

window for estimating the DFTs using the Blackman window. 
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Fig. 6.6: The biphase <j) and biamplitude A for bifrequencies: (a) peak 1 (4.45 Hz, 1.1 Hz), (b) Peak 2 (3.35 Hz, 

1.1 Hz), (c) Peak 3 (3.35 Hz, 2.2 Hz) and (d) Peak 4 (4.4 Hz, 2.2 Hz) with a 0.1 s tirne step and a 20 s long 

window for estimating the DFTs using the Blackman window. 

6.4.2 Rat20 

Examples of detrended, resampled and their mean value subtracted ECG e{t) and respiration r{t) 

signals for rat20 undergoing anaesthesia are presented on Fig. 6.7 (a) and (c). 

Fig. 6.7: 10 s of detrended, resampled, normalized and removed zero mean (a) ECG e(f) and (c) respiration r(t) 

signal for the čase of rat20 undergoing anaesthesia, -72 minutes long at sampling frequency/s = 50 Hz and their 

power spectrums (b) and (d). 
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The peak in the power spectrum, Fig. 6.7 (b), at frequency of ~4.3 Hz belongs to cardiac activity,/i; 

the one at ~1 Hz belongs to the respiratory activity,/2, Fig. 6.7 (d). Beside second harmonic of the/2 a 

peak can be seen ~6 Hz. This peak occurs when the rat starts wakening from anaesthesia, the inclined 

transition in the instantaneous cardiac frequency at approximately 40 min, Fig. 6.8 (a). Instantaneous 

respiratory frequency and ratio of cardiac and respiratory frequencies are shown in Fig. 6.8. (b) and 

(c). 

1.83 10 20 30 40 Time (min) 63.17 

Fig. 6.8: (a) Instantaneous cardiac, (b) respiration frequency and (c) their frequency ratio for a rat20 undergoing 

anaesthesia. (d) Cardio-respiratory synchrogram for the rat20. 

Fig. 6.8 (d) shows a cardio-respiratory synchrogram for rat20 undergoing anaesthesia. A 4:1 phase 

locking can be seen starting at approximately 4.4 minutes until approximately 10.7 minutes and from 

approximately 33.7 minutes until approximately 37.9 minutes, both resulting in 4 horizontal strips in 

synchrogram during that tirne. 

In the histogram of frequency ratio, Fig. 6.9, one high peak appears at/2//i = 4.2 as one would expect 

from the content of the synchrogram. The peak at frequency ratio 1.6 is due to rat20's onset of 

spontaneous breathing from approximately 38 to 42 minutes, Fig. 6.8 (b), and is thus irrelevant. 

Cross-bispectrum for rat20 is presented in Fig. 6.10. High peaks appear, indicating at least frequency 

interactions between cardiac and respiratory activity. From the contour view of the cross-bispectrum it 

can be clearly seen that at bifrequency (4.3 Hz, 1.05 Hz), that is of our primary interest a peak appears. 

Close inspection of the cross-bispectrum resolves ali three other, according to their frequency 

relations, Tab. 5.2, necessary peaks. They are ali present. 
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Fig. 6.9: Histogram of cardiac/i and respiratorv/? frequency ratio for the rat20. 

Fig. 6.10: Results for a rat20 undergoing anaesthesia. (a) The cross-bispectrum \Bcere\ calculated with K = 185 

segments, 0 % overlapping and using the Blackman window to reduce leakage and (b) its contour view. 
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Fig. 6.11: The biphase (p and biamplitude A for bifrequencies: (a) peak 1 (4.3 Hz, 1.05 Hz), (b) peak 2 (3.25 Hz, 

1.05 Hz), (c) peak 3 (3.25 Hz, 2.1 Hz) and (d) peak 4 (4.3 Hz, 2.1 Hz) with a 0.1 s tirne step and a 20 s long 

window for estimating the DFTs using the Blackman window. 

6.5 Discussion 

Ratl6. Both cross-bispectrum and synchrogram analysis produced very similar results. The cardio-

respiratory synchronization appears in synchrogram in the beginning ofthe signal, at 1.83 minutes, in 

the ratio 3:1, and lasting until approximately 9.1 minutes. This interaction can be seen in the cross-

bispectrum as presence ofthe peaks. Close inspection, i.e., calculating the biamplitude and biphase for 

the peak of our primary interest at bifrequency (4.45 Hz, 1.1 Hz), indicates high amplitude and a 

constant biphase during this tirne, Fig. 6.6 (a). This indicates a phase coupling betvveen the cardiac and 

respiratory oscillators. Moreover, inspecting peaks 2-4 at frequency positions related according to Tab. 

5.2, we obtain the same results. Biamplitudes are high and biphases are constant during this tirne, Fig. 

6.6 (b) - (d). Taking into account the conditions for nonlinear quadratic interaction, we obtain two 

distinct tirne intervals, Tqc\ and rqc2, where they are ali fulfilled, Tab. 6.1. The first, Tqch starts at 4.20 

minutes and lasts for 47 seconds, or 66 breathing cycles. The second, Tqc2, starts at 5.25 minutes and 

lasts for 66 seconds, or 92 breathing cycles. 

Analysing further, according to the synchrogram after the 3:1 synchronization stops, we obtain a 4:1 

synchronization starting at approximately 20 minutes, and persisting until approximately 33 minutes. 

In cross-bispectrum, a peak at bifrequency (4.25 Hz, 1.4 Hz) appears. Other peaks also appear that are 

frequency related according to Tab. 5.2. From the biamplitude's tirne dependences, Fig. 6.5 left 
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column, we obtain high biamplitudes at ali inspected bifrequencies, A\ - A^ during this tirne. Biphases 

also tend to be constant during this tirne, Fig. 6.5 right column. Biphases A\ and A2 are constant, 

whereas biphases A3 and A\ have many phase slips. There is only one longer tirne interval when 

conditions for nonlinear quadratic interaction are fulfilled. It starts at 20.33 minutes and lasts for 14 

seconds, or 15 breathing cvcles. 

In the svnchrogram, it cannot be clearly seen that three strips occur after 4:1 svnchronization at 

approximately 38 minutes, indicating weak 3:1 svnchronization until approximately 44.6 minutes. 

This weak interaction can also be detected with the cross-bispectrum. There is a biamplitude rise 

above 0 during this tirne, Fig. 6.6 left column, and biphase fa tends to be constant, Fig. 6.6 (a). Peak 3 

is absent, and we cannot detect any nonlinear interaction during this tirne. 

Rat20. Cross-bispectrum and svnchrogram analysis results differ. The cardio-respiratory 

svnchronization appears in svnchrogram at the beginning of the signal at approximately 4.4 minutes, 

in the ratio 4:1, and lasts until approximately 10.7 minutes. This interaction can be also seen in the 

cross-bispectrum, indicating the presence of peaks. Calculating the biamplitude and biphase for the 

peak of our primary interest at bifrequency (4.3 Hz, 1.05 Hz), indicates high amplitude and a constant 

biphase during this tirne, Fig. 6.11 (a). This indicates a phase coupling betvveen the cardiac and 

respiratory oscillators. Further inspection of peaks 2-4 at frequency positions related according to Tab. 

5.2, provided the same results. Biamplitudes are high and biphases are constant during this tirne, Fig. 

6.11 (b) - (d). Taking into account when the conditions for nonlinear quadratic interaction are fulfilled, 

we obtain an interval starting at 7.33 minutes, that lasts for 76 seconds, or 80 breathing cvcles, Tab. 

6.1. 

Second svnchronization section, from approximately 33.7 to 37.9 minutes in the svnchrogram, when 

the 4:1 svnchronization reappears. In this čase, the information obtained from the cross-bispectrum 

differs from the svnchrogram. From biamplitude A\ tirne dependence, a high amplitude can be seen 

during the interval at 25-35 minutes. During this tirne, biphase (j>\ is constant, but only until 33 minutes 

when 4:1 svnchronization is detected in the svnchrogram. At this point, biphase (/h is no longer 

constant, and biamplitude A\ begins to decrease until it reaches 0, at which point, the svnchronization 

stops. Peak 3 is not present during this tirne. 

The data of Rat20 was specifically chosen, as there is constant frequency ratio from approximately 15 

minutes to 30 minutes, Fig. 6.8 (c), but no svnchronization can be seen in the svnchrogram, Fig. 6.8 

(d). Bispectrum resolves more information about the coupling. From the Fig. 6.11 (a), (b) and (d) there 

is high biamplitude during this tirne vvhereas (c) is low. The biphase for peak 1 is constant from 25 
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minutes onwards. This strongly suggests that modulation takes plače. In the following chapter this will 

be discussed in detail. 

Tab. 6.1: Quadratic nonlinear couplings detected in ratl6 and rat20 signals. Tqc is the time interval during which 
the bispectral analysis showed that the heart oscillator, f^, and the respiratory oscillator, fres, might be nonlinear 
coupled. The product of Tqc x fKS provides us with the amount of respiratory periods over which the interaction 
persisted. During Tqc, the maximum biamplitude is calculated for peak 1, which is of primary interest to us. In 

addition, the maximum variation of biphase A$ its average value (j) , and its standard deviation a^, were 

calculated during Tqc. 

It is not possible to discern from synchrogram whether the horizontal strips are due to synchronization 

or modulation. Moreover, both phenomena can overlap. Nevertheless, if the modulation is very strong, 

then the horizontal strips are not equidistant, and the modulation can be detected. 

6.5.1 Synchronization and modulation 

Synchronization analysis, based on the mutual prediction approach [93, 94] and on information-

theoretic functional [70, 73] for rat 16 and rat20, showed that during the synchronization episodes, the 

respiratory system is dominant (i.e., is the driving system) and drives the cardiac system [63]. In Sec. 

5.8.5.1, we have demonstrated the čase of a forced oscillator illustrating the unidirectional interaction 

between the cardiac and respiratory oscillators, where the respiration frequency is kept constant. In 

this example, cardiac and respiratory oscillators are not synchronized. In Sec. 4.5, we showed a 

numerical example of frequency modulation. Again, there was no synchronization of the interacting 

oscillators. 

Besides the modulation, when two oscillators are interacting, whether unidirectionally or 

bidirectionally, synchronization can also onset. These phenomena are distinct, although they can 

overlap. There can be modulation vvithout svnchronization, synchronization vvithout modulation, or a 

combination of both effects. To illustrate how efficient bispectral analysis is in the latter two 



examples, we use a generic model (6.7) of an almost periodic, Poincare oscillator, periodically driven 

by a weak external force, as in case of the model (5.5) with additional frequency modulation 

(6.7) 

The activity of the oscillator is described by the two state variables, x andy. a, a and a>\ are constants. 

F is the forcing amplitude with frequency a^ and initial force phase fa and i]m is the strength of 

modulation by the forcing oscillator. Here, <£{f) is zero-mean white Gaussian noise, < (̂/)> = 0, (£{i), 

<̂ (0)) — DS(J), and D = 0.2 is the noise intensity. The parameters of the model are set to a= 1, and a = 

0.5. 

The test signal xm(t) is the variable x of the driven oscillator, recorded as a continuous time series. For 

the first 400 s, there was no forcing, i.e., the amplitude was set to zero. It was then raised to a small 

constant value 0.1, without frequency modulation. After a further 400 s, the forcing was increased to 

0.2 and the modulation strength was set to 0.2 (moderate). The corresponding power spectrum for the 

first 15 s and for each forcing strength are shown in Fig. 6.12 (a) and (b), in order to demonstrate the 

changes in spectral content and behaviour caused by the forcing. The peak labelled as f\ = 1 Hz 

represents the driven cardiac oscillator, and the peak labelled f2 = 0.2 Hz represents the driving 

respiratory oscillator. These frequencies are deliberately chosen to have an integer ratio 5:1. 

In case of n:\ locking, the effect of the forcing can be twofold. It causes modulation on the period of 

the oscillator that occurs with the period of the forcing, and the force adjusts the average period of 

oscillations, i.e., synchronization. Synchrogram for the test signal xm, Fig. 6.13, exhibits 5:1 

synchronization for the whole signal duration. In the first 400 s, there is no interaction, forcing or 

modulation on the oscillator. The frequencies and the force of the oscillator are constant and in integer 

ratio, which is the reason for the synchronization appearing in the synchrogram. In general, one should 

be cautious when interpreting synchrogram, as it can be misleading. For this case, the bispectrum will 

be completely flat, without the appearance of any peaks, as can be seen from Fig. 6.12 (f). 

From 400 s to 800 s, weak forcing is present. External force tries to change the amplitude as well as 

the phase of the oscillation. The amplitude is stable, whereas the phase is neutral (it is neither stable 

nor unstable). Weak force influences the oscillator phase that results in synchronization. A similar case 

without synchronization was already discussed in Sec. 5.8.5.1 Adapted bispectrum resolves that linear 

interaction takes place. If biphase is constant for the bifrequency (f\,f-i), then we can conclude that 
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they are phase coupled. This results in synchrogram in horizontal strips - synchronization. If the 

frequency ratio was rational, then horizontal strips would not appear in the synchrogram. Thus, the 

bispectrum yields the correct information about the coupling. 

X! -P 

Time (s) Time (s) 1150 

Fig. 6.12: Results for a forced and frequency modulated Poincare oscillator in the presence of additive Gaussian 
noise. (a) The test signal jtiH, of variable x of the forced oscillator, with characteristic frequency /i = 1 Hz 
periodicalh/ forced at frequency^ = 0.2 Hz, with three different forcing amplitudes; F= 0.0 (1), 0.1 (2) and 0.2 
(3) and three different modulations ; rjm = 0.0 (1), 0.0 (2) and 0.2 (3). Each forcing lasts for 400 s, at sampling 
frequency^ = 10 Hz. Only the first 15 s are shown in each čase. (b) Its povver spectrum. (c) The bispectrum \B\ 
calculated with K = 33 segments, 66 % overlapping and using the Blackman window to reduce leakage, and (d) 
its contour view. (e) The biphase (p, (f) biamplitude A for bifrequency (1,0 Hz, 0,2 Hz) peak 1, (g) biphase $ and 
(h) biamplitude A for bifrequency (1.2 Hz, 0.8 Hz) peak 6, with a 0.1 s tirne step, and a 100 s long window, for 
estimating the DFTs using the Blackman window. 

In the last 400 s of the test signal xm, moderate forcing and moderate modulation take plače. The 

synchronization is preserved, as can be seen from the synchrogram, Fig. 6.13. Combination of forcing 

and modulation could be misleading in detecting nonlinear interaction using the bispectrum as ali the 

frequency components, except for the appearance of 2/1 (the 2/1 -f2 is present) in the power spectrum, 

Fig. 6.12 (b) (3). It is not as evident as in the čase presented in chapter 4.7, vvhere only the modulation 
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Fig. 6.13: Synchrogram for test signal xm. 

takes plače, but one can determine it by calculating ali the necessary peaks for the nonlinear coupling. 

Biamplitude for the peak of primary interest is very high and the biphase is constant, Fig. 6.12 (e) and 

(f), whereas for peak 6, it is not, Fig. 6.12 (g). Also significant for the modulation, is the appearance of 

very high peaks (1 and 2), compared to the others (3-6). From the constant biphase for peak 1, we can 

conclude that the interacting oscillators are in phase and synchronized. If the phase would not be that 

constant, then it would be difficult to say that they are synchronized, as it was seen in the čase of 

rat20, where only modulation was detected, since the biphase of peak 2, Fig. 6.11 (b), is not similarly 

tirne dependant at that tirne, as is the čase for peak 1. 

6.6 Conclusions 

For the čase of synchronization, we can conclude as follows: 

• Strong synchronization. Synchrogram and bispectrum (cross-bispectrum) provide us with the 

same results. We only inspect the peak at bifrequency of our primary interest. When there is a 

strong synchronization betvveen two interacting oscillators, then clear horizontal strips appear 

in synchrogram indicating synchronization. In bispectrum, the synchronization is indicated 

with a high biamplitude value and constant biphase at bifrequency of our primary interest (/], 

h\ 

• Weak synchronization. Horizontal strips in synchrogram can hardly be detected or they 

cannot be detected. Bispectrum results in moderate biamplitude and less constant biphase, 

with more phase slips at bifrequency of our primary interest (fufi)-

No synchronization. The synchrogram contains no horizontal strips. Bispectrum results in 

zero biamplitude at bifrequency of our primary interest (fufi). Although there is no coupling, 

synchronization can onset in synchrogram, due to constant frequency ratio. 
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As synchronization can take plače simultaneously with frequency modulation/forcing/nonlinear 

coupling, we can further conclude: 

• 

• 

• 

Synchronization and nonlinear coupling. Nonlinear coupling can appear while 

synchronization takes plače, whereas while there is nonlinear coupling, synchronization does 

not necessarily onset. There is no obvious link between the two phenomena. Analysis of rats 

undergoing anaesthesia shows that nonlinear coupling occurs during synchronization, while 

analysis of CV blood flow signals of humans in resting shows nonlinear coupling when 

synchronization is not present. 

Frequency modulation. Frequency modulation can be detected using bispectrum. The peak 

of primary interest (/j, f2), and the second peak at bifrequency (/j - f2, f2), are high in 

comparison to other peaks (that may not be present at ali) that appear in the čase of nonlinear 

interaction. Their biphase is constant if the frequency modulation is strong. 

Frequency modulation and forcing. Instantaneous presence of both phenomena can be 

misleading in detecting the nonlinear coupling. It is necessary to check ali the peaks, 1-6. 

Biphase for peaks 4 and 6 is not constant. It is recommended to analyse the peak of primary 

interest (fi,f2) for adopted bispectrum. Biphase should be constant. In this way, it is possible 

to resolve this kind of interaction between two oscillators. Nevertheless, one should be careful 

in interpreting the bispectrum results when strong frequency modulation and strong forcing in 

the presence of strongly noisy data take plače. Observing the phases of each frequency 

component in the triplet can be helpful. 

Frequency modulation and nonlinear coupling. When strong frequency modulation and 

nonlinear coupling take plače simultaneously, it is not possible to detect modulation. When 

the frequency modulation is weak, this can be seen as undulated biphase at peak of primary 

interest (/i, f2). It is difficult to be sure, as it could also be the čase of a weak nonlinear 

coupling. 

We conclude, therefore, that bispectral analysis is more sensitive to interactions and is more noise 

robust than the svnchrogram. It detects the phase svnchronization, and nevertheless, yields different 

information from that which can be resolved from a svnchrogram. Frequency modulation interaction 

can be detected, vvhereas it is not always possible to resolve it if it simultaneously occurs with other 

types of interactions. 

• 
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V H l G H - O R D E R S P E C T R A B A S E D D N VVAVELET T R A N S F D R M 

The Fourier transform is based on presumptions (a) of the periodicity of the signal and (b) of infinitely 

long signal series [57, 58]. Because neither assumption is strictly true for the measured signals, the 

determination of separate frequencies in a system that possesses strong couplings is very demanding. 

The difficulty is even greater in the low frequency range, which is of our particular interest, where the 

characteristic frequencies are close to each other, and are therefore even harder to separate. The 

uncertainty principle of the Fourier transform limits its ability to separate harmonic components in the 

frequency domain of the bispectrum [20, 43]. This might cause problems for detection of quadratic 

phase couplings in the čase of frequency pairs that are close together. To ensure good resolution of 

low frequencies, we need longer sections for calculation of the discrete Fourier transform. This 

immediately decreases the number of sections possible and weakens the bispectrum estimation. 

Hovvever, we cannot use longer signals, because they lead to nonstationarity, and the variance 

consequently becomes even larger [69]. 

7.1 Wavelet Transform 

Wavelet analysis can be seen as a generalization of the Fourier analysis [43] by adding tirne resolution 

- in a more fundamental way than is permitted by the Short-Time Fourier Transform (STFT) [81]. 

Wavelet analysis has been applied with considerable success to cardiovascular data [6, 8]. The 

generalization of bispectrum to vvavelet analysis may be expected to be able to detect temporal 

variation in phase coupling or short-lived couplings, and čope with broadened and coalescing peaks 
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that cannot be resolved due to time-frequency resolution restrictions by the bispectrum based on 

STFT. 

Morlet first introduced wavelet analysis [28]. Within this transform, the window length is adjusted to 

the frequency currently being analysed. It is a scale independent method. Window function is called a 

mother wavelet or basic wavelet yAji). It can be any function ifAii) that satisfies the wavelet 

admissibility condition [43] 

(7.1) 

This function introduces a scale s (its width) into the analyses. Commitment to any particular scale is 

avoided by using all possible scaling of ifiu). The mother wavelet is also translated along the signal to 

achieve time localization. Thus, a family of generally non-orthogonal basis function is obtained [43] 

The wavelet transform Wg(s, i) is a mapping of the function g{t) onto the time scale plane. Not every 

function can be used as the mother wavelet. Only those that enable us to reconstruct the original 

function g(t) from its wavelet transform Wg(s, t) are admissible. The inverse continuous wavelet 

transform is defined as [43]: 

(7.4) 

where the constant C is determined by the shape of the mother wavelet [43] 
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The function 

can be interpreted as the energy density of the signal in the tirne scale plane, also called a scalogram. 

Applying Parseval identity {e, a) = (e, a) into Eq. (7.4) we obtain 

(7.9) 

(7.10) 

(7.11) 

The wavelet transform provides a multiplying constant and phase shift Q]27lft information about g 

inside the window that is determined by instantaneous scale and shape of the mother wavelet. 
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7.1.1 Discretization 

In numerical applications, scale s and time / are restricted to discrete values only. The natural 

discretization of the scaling parameter is sm = cf, where m e Z, and the step is a positive number <J * 

0, 1. Within the scale cf, the signal is sampled only at times tn = ncf, which means that the sampling 

rate is automatically adjusted to the scale [43]. 

For different values of m and n, we obtain the discrete wavelet family 

(7.12) 

where we have set the value of parameter p to V*. The discrete wavelet transform, defined by this 

family, is simply a sampled version of Wg(s, t). By choosing a near 1, we can get a representation 

close to the continuous transform. 

7.1.2 Wavelet transform adopted to CV signals 

The coupling between wavelets makes sense when a frequency can be assigned to wavelet. We restrict 

our attention to wavelets which have Fourier transforms that exhibit a single dominant peak, and 

define the location of that peak as the corresponding frequency. In literature [43], several suitable 

wavelets are mentioned. Issuing from former energy density studies of measured cardiovascular 

signals, the wavelet transform with Morlet mother wavelet was chosen to be the most suitable one [6, 

8]. 

Morlet proposed the use of Gaussian function modulated by a sin wave. Its Fourier transform is a 

shifted Gaussian, adjusted slightly so that the admissibility condition i/}(0) = 0 is fulfilled [43] 

(7.13) 

In the tirne domain, simplified expression is [43] 
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The choice of / is a compromise between localization in time and in frequency. For smaller/), the 

shape of the wavelet favours localization of singular time events, whilst for larger/), more periods of 

the sin wave in the window improve the frequency localization. F o r / > 0.8, the value of the second 

term in (7.14) is so small that it can be ignored in practice, and a simplified expression for the Morlet 

wavelet in the time domain is [43] 

(7.15) 

The corresponding wavelet family consists of Gaussians, centred at a time / with standard deviation s. 

In the frequency domain, we have Gaussians with a central frequency f=fjs and a standard deviation 

of Mljlm. Therefore, the wavelet transform at a given scale s can also be interpreted as band-pass 

filtering, giving an estimation of the contribution of the frequencies in this band. The relation between 

the scale and the central frequency for the Morlet wavelet is [43] 

(7.16) 

The frequency resolution changes with frequency; at low frequencies (large scales), the resolution is 

better than at the high frequencies (small scales). Accordingly, the time resolution is better for high 

frequency than it is for low frequency components. In order for peaks to be detected at/i a n d / (fi > 

/ ) , they must be separated by at least one half of the standard deviation of the peak at the higher 

frequency, namely f\ - f2> fi/4nf0. The choice of / determines the current frequency resolution. By 

choosing/ = 1, a simple relation between scale and frequency was obtained/= lis. 

To obtain the energy density in the time-scale plane, an approximation of the continuous wavelet 

transform was calculated using the Morlet mother wavelet discretized with a = 1.05 and r = 1 s. 

However, to make the three-dimensional plots of the transform clearer, time was not discretized as tn = 

ncfr, but tn =«rwas used instead. In this way, the transform is over sampled in time for large scales. 

Slow events are examined with a long window, whilst a shorter window is used for faster events, Fig. 

7.1. The Morlet wavelet [28], a Gaussian window, i.e., a Gaussian function modulated by a sin wave, 

is used. Thus, for our purpose, the best time-frequency localization within the limits of the uncertainty 

principle can be achieved. For details see [43]. For the Morlet mother wavelet, the value C, Eq. (7.5), 

equals C= 1.0132 [8]. 

mmmm 
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Fig. 7.1: (a) Real (black line) and imaginarv (grey line) part of the Morlet mother wavelet for scale s = 1 and (c) 

for scale, 5 = 5, (b) and (d) its Fourier transforms. In both cases,y^ = 1. 

7.2 Wavelet bispectrum definition 

The definitions are completely analogous to the definitions used in Fourier analysis [67]. The Wavelet 

Bispectrum (WB) is given by 

where 

(7.17) 

(7.18) 

The WB measures the amount of phase coupling in the interval T that occurs between wavelet 

components of scale lengths s\ and s2 and s of signal g(t), such that the frequency sum-rule is satisfied 

(7.18). It is a complex quantity, defined by magnitude^ and phase (f) 

(7.19) 
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Consequently, for each ($1, s2), its value can be represented as a point in a complex space, 9{[WB(s\, 

s2)] versus 3[Wi?(si, s2)], thus defining a vector. We define its magnitude (length) as biamplitude, and 

the phase, which is determined by the angle between the vector and the positive real axis, as biphase. 

The instantaneous biphase is then calculated: from Eqs. (7.17) and (7.19), it is 

(7.20) 

If two scale components S\ and s2 are scale and phase coupled, <fis = (f)s\ + (f)s2, it holds that the biphase is 

0 (2TI) radians. For our purposes, the phase coupling is less strict because dependent scale components 

can be phase-delayed. We consider phase coupling to exist if the biphase is constant (but not 

necessarily = 0 radians) for at least several periods of the highest scale component. 

Simultaneously, we observe the instantaneous biamplitude from which it is possible to infer the 

relative strength of the interaction 

(7.21) 

According to the Fourier definition (5.1), a wavelet cross-bispectrum can be defined as: 

(7.22) 

The wavelet cross-bispectrum measures the amount of phase coupling in the interval T that occurs 

between wavelet components of scale lengths s2 and s of signal g(t), and wavelet component s\ of/(0> 

such that the frequency sum-rule is satisfied (7.18). 

For ease of interpretation, the WB is plotted in the (/i,/2)-plane, rather than in the ($i, s2)-plane. It has 

the same symmetries in frequency domain as in the case of Fourier based Bispectrum (FB). The non-

redundant region is the principal domain of the wavelet bispectrum. Similarly, the principal domain 

can be divided into two triangular regions in which the wavelet bispectrum has different properties: 

the inner triangle (IT), and the outer one. The IT is of our interest. 
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7.2.1 Wavelet bispectrum transform adopted to CV signals 

Relation between frequency (scale) and the width of the window that is used for calculation of the 

wavelet transform, is hyperbolic. Logarithmic-logarithmic scale is natural for its presentation, 

whereas, to be able to comply with the (7.18) frequency (scale) sum-rule, we need to achieve better 

frequency (scale) resolution for high frequencies (low scales) (according to the CV frequency bands 

proposed in [112]), as can be achieved using the Morlet wavelet when/0 is chosen to be 1 for the 

reason of the interpretation of the wavelet bispectrum. Otherwise, nearby peaks at high frequencies 

cannot be resolved. 

We introduce a parameter d into the Morlet wavelet that determines the exponential decay of the 

Gaussian 

(7.23) 

This also decays the Morlet wavelet, and thus permits suitable combination of time and frequency 

(scale) resolution to be selected. The time resolution is At = sd, given by the decay of the exponential 

part of the wavelet. As d increases (d > 1), frequency (scale) resolution improves, whereas time 

resolution deteriorates. We do not impose the condition that the wavelets must be orthogonal, as we 

wish to choose the frequencies in the analysis procedure freely, and not restricted to s e {2n}. This 

implies a certain redundancy in the wavelet transform coefficients, which must be taken into account 

upon interpreting the results. 

The parameter d is calculated so that the Gauss function decays to 0.001 for each scale (d is between 

2.5 and 2.6). A high value of d causes a non-zero value of Morlet window at its edges that results in 

side lobes in wavelet bispectrum. If d would be infinite, than Morlet window would become a unit 

window, and wavelet transform would become Selective Discrete Fourier Transform (SDFT) [47]. 

Parameters am and cn are discussed in the following text. 

Frequency resolution for high frequencies is yet insufficient. It is necessary to increase the length of 

the Morlet wavelet for high frequencies. This can be obtained in different ways. Fig. 7.2 shows the 

hyperbolicous decay of the Morlet wavelet length with the increasing frequency (solid line). The 

wavelet length can be multiplied by a factor am, that is for the one with the lowest frequency of 

interest, and then increases with the increasing frequency 
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am = 2 / m a x /mm , (7.24) 
where/= l/s is the frequency of observation, and/min andfmax define the frequency range of interest. In 

this way, we obtain a dotted line on Fig. 7.2. As the wavelet length is prolonged for high frequencies, 

the frequency resolution increases, whereas the tirne resolution deteriorates. Other ways to obtain the 

necessary frequency resolution is by using a fixed wavelet length for ali high frequencies - Fig. 7.2, 

dash-dot line. We propose to use a 20-80 s long vvavelet in the čase of analysing the human 

cardiovascular blood flow signal of a normal, healthy subject at rest. 

Fig. 7.2: Length of the Morlet wavelet 7VW depended from frequency (scale). Morlet wavelet (solid line), adapted 
Morlet wavelet (dotted line), and flxed vvavelet length for high frequencies (dash-dot line). 

WB estimation using the proposed Morlet vvavelet as a mother vvavelet encounters a normalization 

problem. For each scale, a vvindovv of different length is used. In the čase of a signal composed of 

different frequency components, but equal Fourier povvers, this vvould result in different vvavelet 

spectral energies for separate frequencies. Tvvo couplings among different frequencies with the same 

Fourier povvers and the same nature of coupling, vvould result in different coupling strength in vvavelet 
I 1—1/2 

bispectrum. In (7.2), a factor \s\ is used to ensure energy preservation. We choose to use a factor 

l/iVw instead, vvhere 7VW is the Morlet vvindovv length. Constant cn, Eq. (7.23), equals to 3.9487- n~ 

In this way, vve can compare results obtained by FB and WB, since both preserve energy. 

Normalization of the WB is applied in the same way as on the FB, discussed in Sec. 3.3. The 

normalized WB indicates the average level of quadratic nonlinear phase coupling and, in a way, serves 

as an indicator of hovv non-Gaussian the signal is [31]. The critical values for the WB and biamplitude 

estimates vvere normalized to 1. If the estimated value is higher than the average value of WB in the 

IT, then it is taken as valid. By critical value, it is meant that a value exceeds the noisy background 

(other than Gaussian), rounding, and estimation errors. 
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7.3 Wavelet bispectrum example of test signal 

Results of WB are illustrated on a numerically generated test signal of two Poincare oscillators 

quadratically coupled in the presence of additive Gaussian noise - Eq. (4.6), Sec. 4.4, test signal xm, 

presented in Fig. 4.7 (a). Test signal JCID was already analysed using Fourier based bispectrum in Sec. 

4.4. 

Results obtained using WB, depend on the choice of parameters set for WB calculation. In the first 

step, the WB is calculated for the whole bifrequencies domain. Similarly, as in the čase of FB, one has 

to set the parameters: K - number of segments into which the signal X\D is divided to try to obtain 

statistical stability of the estimates; O - percentage of segments overlapping; and L - L • L area for 

bispectrum frequency averaging. These parameters have already been discussed in detail in [39]. In 

čase of FB, one chooses tapering window (Hamming, Hanning, Blackman or other), vvhereas WB ušes 

the Morlet mother vvavelet. Parameters that can further be chosen are: 

• Tm - Morlet mother vvavelet length. By choosing^o = 1, a simple relation betvveen scale 

and frequency is obtained: / = \/s. Mother vvavelet f o r / = 1Hz is then stretched and 

compressed. The prevailing choice of the Tm is from 8 s (i.e., ± 4 s) to 12 s [6, 7]. 

• d - exponential decay of Gaussian function of Morlet vvavelet. Rather than setting the 

parameter d, we set Gaussian function of Morlet vvavelet edge value to Ge, so that it 

decays to some small value. The prevailing choice is from 0.01 to 0.0001 (see Sec. 7.2.1 

for details). 

• A/- frequency (scale) step. It can be chosen arbitrarily, vvhereas, to be able to comply vvith 

the (7.18) frequency (scale) sum-rule, the prevailing choice is to be at least 1/10 of the 

slovvest frequency in the bifrequency pair of our interest. 

• am - multiplication factor for additional Morlet wavelet stretching (see Sec. 7.2.1 for 

details). One can set basis, and the constant in the povver. Morlet vvavelet length is 

multiplied by a factor am. The factor equals the one of lovvest frequency of interest and 

then increases vvith the increasing frequency. Either one chooses to use factor am vvhose 

prevailing choice for basis is 2, and the constant in the povver is 1.8, or one chooses to fix 

the Morlet mother vvave length for high frequencies Tw. The prevailing choice of the 

fixed vvindovv length for higher frequencies is from 20 s to 80 s. One should start vvith a 40 

s long vvindovv. If the peaks at the bifrequencies of our interest are distinct than shorter 

fixed window can be used, othervvise longer fixed vvindovv must be used. 
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Once WB is obtained, and longer lasting (bispectral averaging over K segments eliminates short lasting 

couplings) phase and/or frequency coupling are detected, biphase and biamplitude tirne evolution are 

estimated for bifrequencies of our interest (see Tab. 5.2 for details). Parameters K, O and L do not 

influence the estimation. Additional parameters can be chosen: 

• At - tirne step. Minimum tirne step is defined with sampling frequency fs and equals 

Mnin=l//^ It should be set to such a value that epochs of constant biphase of 

approximately 10 times the slovvest period (1/ f2) of the bifrequency pair (fufi) c a n De 

detected, i.e., at least 1/10 of the epoch length. 

• Lt - number of samples for tirne averaging. In the čase of signals with non-Gaussian noise, 

one can reduce the noise by averaging in the tirne domain over Zt samples, before and 

after the tirne of observation. 

WB for the test signal x\D is presented in Fig. 7.3 (a). Parameters are set according to prevailing choice 

for CV signal analysis as described above (Tm = 8 s, Ge = 0.001, Af= 0.01 Hz, TH¥ = 40 s and At = 0.1 

s). Averaging is neither used in frequency, nor in tirne domain (L = 0, Zt = 0). Peaks appear at 

bifrequencies (1.1 Hz, 0.24 Hz), (0.86 Hz, 0.24 Hz), (0.62 Hz, 0.48 Hz), (0.86 Hz, 0.48 Hz), (1.1 Hz, 

0.48 Hz), (1.1 Hz, 0.86 Hz) and (1.34 Hz, 0.86 Hz). 

Fig. 7.3: Results for quadratic couplings in the presence of additive Gaussian noise, test signal xw, obtained with 

the wavelet bispectrum for comparison with the Fourier bispectrum, See. 4.4. (a) The wavelet bispectrum \WB\ 

calculated with K = 33 segments, 66 % overlapping, Tm = 8 s, Ge = 0.001 and using fixed Morlet wavelet length 

of 7HF = 40 s for high frequencies calculation and (b) its contour view. The part of the wavelet bispectrum above 

fi > 1.0 Hz is removed, because the triplet (1.1 Hz, 1.1 Hz, 1.1 Hz) produces a high peak that is physically 

meaningless. (c) The biphase (j) and (d) biamplitude A for bifrequency (1.1 Hz, 0.24 Hz), with a 0.1 s tirne step. 
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As before, the self-coupling peaks at (1.1 Hz, 1.1 Hz) and (0.24 Hz, 0.24 Hz) are of no interest, so they 

are removed from the wavelet bispectrum. We obtain the same information as with the FB, Fig. 4.7 

(c). The most obvious difference is in the shape of the peaks. They are much wider than in the čase of 

FB. This is expected, since frequency resolution for high frequencies is lower than in the čase of FB. 

Fig. 7.3 (c) shovvs biphase and (d) biamplitude for the peak of our principal interest at bifrequency (1.1 

Hz, 0.24 Hz). We obtain the same information as with FB, Fig. 4.7 (e) and (f). The biphase is constant 

in the presence of quadratic coupling. Coupling strength can be determined from the biamplitude by 

normalization. The WB possesses the FB conceraing the noise robustness. The results for non-zero 

coupling are quite different from those where coupling is absent, Fig. 7.3 (d). From the biphase tirne 

dependence, it can be seen that the WB is better at detecting biphase changes, since its tirne resolution 

is higher than in the čase of FB. 

7.4 Discussion 

In the čase of bispectral analysis of cardiovascular interaction, the time-dependent biphase/biamplitude 

estimate was estimated with an STFT, using a window of constant length. The optimal window length 

depends, hovvever, on the frequency being studied. The effective length of the window used for each 

frequency can be varied by applying the wavelet transform. If natural frequencies of the oscillators lie 

within a relatively narrow frequency interval, then STFT is sufficient for good tirne and 

phase/frequency localization. With broader frequency content, however, the vvavelet transform, or 

selective discrete Fourier transform, needs to be applied. 

The vvavelet and cross-wavelet bispectrum was defined analogous to the deflnitions used in Fourier 

based bispectrum and cross-bispectrum. By doing this time-dependant biphase/biamplitude estimate 

with higher frequency resolution at low frequencies, higher tirne resolution at higher frequencies was 

obtained. The vvavelet bispectral analysis was adopted for analysing cardiovascular signals. For a 

mother vvavelet modulated Gauss function, the Morlet mother vvavelet vvas used. 

The vvavelet bispectral analysis vvas illustrated on a test signal. Since the tirne resolution of vvavelet 

bispectrum is higher, and the frequency resolution is poorer at high frequencies compared to FB, it is 

necessary to ensure sufficient frequency resolution before interpretation of the results. Poor frequency 

resolution vvould result in poor/incorrect localization of characteristic frequencies. Too high of a tirne 

resolution could result in extremely high sensitiveness to noise and statistical error, that vvould result 

in phase slips and incorrect oscillator coupling determination. It vvas necessary to raise frequency 

resolution for high frequencies, as vvell as to preserve the scale (frequency) sum condition necessary 
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for bispectrum estimation. Wavelet bispectrum results are parameter set dependant. Parameter impact 

on wavelet bispectrum estimation and detailed comparison with Fourier based bispectrum are 

discussed in the subsequent chapter. 
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B F D U R I E R A N D VVAVELET B I S P E C T R U M C D M P A R I S D N 

In the follovving section, wavelet bispectrum is compared in detail with Fourier based bispectrum. 

First, vvavelet bispectrum is applied to CV blood flovv signals that were alreadv used for studving 

cardio-respiratorv interactions using the Fourier based bispectrum method in Sec. 5. Its benefits and 

vveakness over the Fourier based bispectrum method are then compared in detail and discussed. 

8.1 VVavelet bispectrum of CV blood flovv signals 

For the comparison of WB and FB, we illustrate results obtained for the blood flovv signal ba(t), 

shovved on Fig. 5.1 (a), left column in Sec. 5, used for cardio-respiratorv interactions analvsis. Data 

analvsis vvas preformed in the same manner as in Sec. 5, vvhereas instead of using FB, WB vvas used. 

Parameters for WB evaluation vvere set according to the prevailing choice recommended in section 

7.3. 

8.1.1 Results 

WB for the vvhole frequency domain for signal ba(t) is presented in Fig. 8.1 (a). A very high peak 

located at bifrequency (0.11 Hz, 0.11 Hz), belonging to the respiratorv self-coupling, can be seen in 

the \WBha\, Fig. 8.1 (b). At least three other peaks are clearlv evident: at (0.98 Hz, 0.11 Hz) attributable 

to cardio-respiratorv coupling; at (0.87 Hz, 0.11 Hz), vvhich vve presume to be coupling betvveen the 
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respiratory components and the difference f\ - f2; and peak attributable to interaction with lovver 

cardiovascular characteristic components. Their positions can be seen in the | WBha\ contour view shown 

in Fig. 8.1 (c). 

Close inspection of \lVBha\, Fig. 8.1 (b), resolves that ali the necessarv peaks, according to Tab. 5.2, 

arise as a possible result of a nonlinear interaction betvveen the two oscillators f\ and f2 are present. 

Characteristic frequency at ~0.98 Hz belongs to cardiac activitv, f\\ that at ~0.11 Hz to respiratory 

activity, f2, Peaks 1 to 6 are presented in Fig. 8.2, left column. Time evolution for biamplitude and 

biphase for ali the peaks are shown in Fig. 8.2, mid and right columns. 

Fig. 8.1: (a) The wavelet bispectrum \WBha\ for signal bjj), calculated vvith K= 33 segments, 87 % overlapping, 

Tm = 8 s, Ge = 0.001, and using a THF = 80 s long fixed Morlet wavelet for estimating high frequencies. (b) Part 

of the wavelet bispectrum/j, ̂  < 1.4 Hz that is of our interest, and (c) its contour view. 

The tirne interval Tqc, during which quadratic coupling persisted, was determined. If ali 6 peaks 

fulfilled our conditions (see Sec. 5.3 for details), then the Tqc interval was calculated for ali peaks, and 

the boundaries were defined such that the biamplitude for ali the peaks in Tqc interval would be above 

the condition. It can be seen that the biamplitude during the tirne interval from 77.1 s to 170.4 s meets 

our criterion of being more than tvvice as large as the average wavelet bispectrum in the IT domain; 
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Fig. 8.2: Wavelet bispectrum results for blood flow signal bt(t), calculated with K = 33 segments, 87 % 

overlapping, using a 0.1 s tirne step, Tm = 8 s, Ge = 0.001, and THV = 80 s long fixed Morlet wavelet for 

estimating high frequencies for peaks (a) 1, (b) 2, (c) 3, (d) 4, (e) 5 and (f) 6; left column, the wavelet bispectrum 

| WBba| with its corresponding contour plots; middle, the biamplitude Aba; and right, the biphase <foa. 

93 



T B I S P E C T R U M C D M P A R I 5 D N 

see middle column of Fig. 8.2 (a) to (f). The biphase in this tirne interval, 93.3 s long (shaded area), 

remains constant within a 3.02 rad interval, i.e., there are no phase slips. The biphases at bifrequencies 

1, 2, 3 and 5 are very constant; those at 4 and 6 are less so, but they stili remain vvithin the n rad 

interval. 

8.1.2 Fourier and vvavelet bispectrum results comparison 

Results obtained using WB are most similar to the ones obtained with Fourier based bispectrum. Ali 

peaks, 1 to 6; (0.98 Hz, 0.105 Hz), (0.87 Hz, 0.105 Hz), (0.87 Hz, 0.21 Hz), (0.98 Hz, 0.21 Hz), (0.98 

Hz, 0.87 Hz), (1.08 Hz, 0.87 Hz), are detected at the same bifrequencies. Characteristic respiratory 

activity, f2, is detected at 0.105 Hz, since we used a smaller frequency step for vvavelet bispectrum 

estimation (A/ = 0.005 Hz), than in the čase of Fourier based bispectrum (A/ = 0.01 Hz). 

Similar to the čase of test signal JC1D, the peaks are wider, Fig. 8.2 (a) to (e), left column, than in the 

čase of FB obtained results shown in Fig. 5.3 (a) to (e), left column. 

Biamplitude tirne evolution for peak 1, Fig. 8.2 (a), mid column, exhibits three distinguishable peaks. 

Their tirne appearance coincides with the peaks obtained with FB, Fig. 5.3 (a), mid column. Moreover, 

biamplitude tirne dependence according to it's shape, i.e., number of detectable peaks, their amplitude 

ratio, and tirne of occurrence, is highly similar for ali the peaks, 1-6. The cross-correlation coefficient 

for biamplitude, for peak 1, for Fourier and vvavelet bispectrum, equals 0.95. 

Biphases tirne evolution obtained with WB, Fig. 8.2 (a) to (f), right column, resemble the tirne 

evolution of biphases obtained vvith FB, Fig. 5.3 8.2 (a) to (f), right column. One can notice that small, 

sudden changes of biphase obtained using FB, are much more pronounced vvhen WB is used. These 

changes usually result as sudden biphase slips. Compare biphases at approximately 70 s in Fig. 5.3 (a) 

and Fig. 8.2 (a), both left column. Although the biphases are not as similar in shape as the 

biamplitudes are, epochs of constant biphase do coincide for both cases of estimation. 

Nonlinear - quadratic coupling is detected in both cases, Tab. 8.1. The one detected vvith FB lasts from 

76.8 s to 172.4 s, shaded area in Fig. 5.3 (a) to (e), mid and right columns, and the one detected vvith 

WB lasts from 77.1 s to 170.4 s, shaded area in Fig. 8.2 (a) to (e), mid and right columns. The tirne 

interval of quadratic coupling Tqc is 2.3 s shorter vvhen estimated vvith WB. This is less than a 2.4 % 

difference, Tab. 8.1. 
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Tab. 8.1: Quadratic nonlinear couplings detected in blood flow signal bjj), channel a, for person 1 during paced 

breathing, detected with both bispectral methods based on Fourier and wavelet transform. Tqc is the tirne interval 

during which the bispectral (wavelet) analysis showed that the heart oscillator^,. and the respiratory oscillator^es 

are nonlinear coupled. The product of Tqc • fKS indicates the span of respiratorv periods in vvhich the interaction 

persisted. During Tqc, the maximum biamplitude is calculated for peak 1, that is of our primarv interest. In 

addition, the maximum variation of the biphase A$ its average value </) , and its standard deviation cr^, were 

calculated during Tqc. 

8.1.3 Results interpretation 

Remarkably similar results were obtained with Fourier and wavelet bispectrum. It can be concluded 

from the width of the peaks, that FB has a higher frequency resolution. Detection of fast, sudden 

biphase jumps is a result of higher tirne resolution when using WB. Nevertheless, there were no 

remarkable differences in quadratical phase coupling detection, therefore, we cannot yet conclude that 

one method has evident advantages over another. This is correct when analysing cardio-respiratory 

coupling, where necessary frequency resolution is approximately 1/10 of the lowest interacting 

component - the respiratory one,/i - and where the length of constant biphase episodes that we wish to 

detect, is approximately 10 times the lowest interacting component. On one hand, it is to ensure that 

the frequency resolution window length of at least l/(/i/10) is necessary for Fourier bispectrum 

estimation, and on the other hand, it is to satisfy that the maximum tirne resolution window of 10 • 

(l//i) is necessary. In this particular čase, it is rather an exception, l/(/i/10) = 10 • (l//i), where both 

resolution conditions are satisfied if a window of l/(/i/10) length is used. Moreover, this window 

length is an optimal choice betvveen tirne and frequency resolution. This is the reason why there are no 

remarkable differences among the two different Fourier and wavelet transform based bispectral 

methods. 

Choosing the proper window length and the tapering window are the most crucial parameters when 

applying FB. The parameter choice has already been discussed in detail [39]. WB, adopted for analysis 

of CV signals, allows one to choose among a set of parameters (Tm, d or Ge, THF or a - see Sec. 7.3 for 

details). Proper choice might be crucial when treating the results. Fig. 8.3 illustrates an example of 
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WB results for blood flow signal ba(t), for peak 5, for a modified parameter set. In the first example, 

Fig. 8.3 (a), frequency resolution is emphasized by increasing Morlet mother wavelet length (Tm = 10 

s) and setting a longer window for high frequencies estimation (THF = 50 S). Comparing this to results 

obtained with the prevailing choice of the parameter set, Fig. 8.2 (e), the difference is obvious. The 

peak in the wavelet bispectrum is much narrower, Fig 8.3 (a), left column, whereas time evolution for 

biamplitude, Fig. 8.3 (a), mid column, and biphase, Fig 8.3 (a), right column, are both smoothened out 

as a result of lovver time resolution. In the second example, Fig 8.3 (b), the time resolution is 

emphasized by compressing Morlet mother vvavelet length (Tm = 8 s) and setting a shorter window for 

high frequencies estimation (rHF = 24 s). The peak in the vvavelet bispectrum is much wider, Fig 8.3 

(b), left column, vvhereas biamplitude, Fig. 8.3 (b), mid column and biphase, Fig 8.3 (b), right column, 

are more sensitive to changes. In the first example, Fig. 8.3.(a), mid column, biamplitude has only one 

predominant peak, whereas in the second example, Fig. 8.3 (b), right column, biphase has a longer 

epoch of constant biphase. In the latter čase, one could detect a much longer lasting episode of 

nonlinear cardio-respiratory interaction. 

Fig. 8.3: Wavelet bispectrum results for blood flow signal ba(t), for peak 5, for a modified parameter set. Left 
column, the wavelet bispectrum \WBha\ with its corresponding contour plots; middle column, the biamplitude 
Aba5; and right column, the biphase 0ba5. (a) Calculated with Morlet mother vvavelet (f= 1 Hz) length (a) Tm = 20 
s and THF = 50 s long fixed vvavelet for estimating high frequencies, and (b) Tm = 16 s and TU¥ = 24 s long fixed 

Morlet vvavelet for estimating high frequencies. In both cases, a 0.1 s time step, K = 33 segments and Ge = 0.1 

vvas used. 

The question is, vvhich parameter set gives us more realistic results? Let us study two Poincare 

oscillators, vvhere the first /j = 1.1 Hz and the second^ = 0.24 Hz oscillators are quadratically coupled: 
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(8.1) 

Here, č(f) is zero-mean white Gaussian noise, {%t)) = 0, < (̂f), (̂0)> = Z)<5(/), and D = 0.08 is the noise 

intensity. The parameters of the model are set to ct\ = 1, ct\ = 0.5 and a2, a2 = 1. In this way, we obtain 

a test signal Xu(t), presented in Fig. 8.4 (a), with the corresponding power spectrum for two different 

coupling strengths, which are interchanging every 20 s: no coupling r/2 = 0; and weak coupling rj2 = 

0.2, Fig. 8.4(b),(l)and(2). 

100 120 200 Time (s) 300 100 120 200 Time (s) 300 

Fig. 8.4: Results for tirne intermittent quadratic couplings in the presence of additive Gaussian noise analysed 
using Fourier bispectrum. (a) The test signal JCH, variable xx of the flrst oscillator with characteristic frequency/i 
= 1.1 Hz. The characteristic frequency of the second oscillator is f2 = 0.24 Hz. The oscillators are 
unidirectionally and quadratically coupled with two different coupling strengths: r]2 = 0.0 (1); and 0.2 (2). The 
coupling (2) is present every 20 s and lasts for 20 s. The signal is 1200 s long and sampled with sampling 
frequency^ = 10 Hz. Only the first 15 s are shown in each čase. (b) Its power spectrum. (c) The bispectrum \B\ 
calculated with K = 33 segments, 66 % overlapping and using the Blackman window to reduce leakage and (d) 
its contour view. The part of the bispectrum above^ > 1.0 Hz is cut, because the triplet (1.1 Hz, 1.1 Hz, 1.1 Hz) 
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produces a high peak that is physically meaningless. (e) The biphase <f> and (f) biamplitude A for bifrequency (1.1 

Hz, 0.24 Hz), calculated with a 100 s long window for estimating DFTs and (g) biphase ^ and (h) biamplitude A, 

calculated with a 130 s long window for estimating DFTs. In both cases, a 0.3 s time step and the Blackman 

window was used. 

Fig. 8.5: Results for time intermittent quadratic couplings in the presence of additive Gaussian noise analysed 

using vvavelet bispectrum. (a) The wavelet bispectrum |W5| calculated with K = 33 segments and 66 % 

overlapping. The part of the bispectrum abovef2 > 1.0 Hz is removed, because the triplet (1.1 Hz, 1.1 Hz, 1.1 

Hz) produces a high peak that is physically meaningless. (c) The biphase <j> and (d) biamplitude A for 

bifrequency (1.1 Hz, 0.24 Hz), calculated with a Ge = 0.01 and (e) biphase <f> and (f) biamplitude A, calculated 

with a Ge = 0.0001. In both cases, a 0.1 s time step, Tm = 8 s and Tn¥ = 20 s long fixed Morlet wavelet for 

estimating high frequencies was used. 

Fig. 8.5 (a) shows wavelet bispectrum, and Fig. 8.5 (b) shows its contour view, obtained for signal Jtn. 

It gives the same information about the peak's relative amplitude and bifrequency position. Wavelet 

bispectrum parameter set, (THF = 100 s, Tm = 8 s and Ge = 0.01), was deliberately chosen in such a way 

that time resolution for high frequencies was increased. Results of biamplitude and biphase estimates 

are presented in Fig. 8.5 (c) and (d). Biamplitude clearly exhibits episodes when coupling is present 

and when it is not, i.e., every 20 s. From biphase time evolution, episodes of constant biphase can be 

seen. Episodes of constant biphase, i.e., without phase slips, last longer than the coupling between the 
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oscillators, i.e., more than 20 s. By taking into account the biamplitude condition for quadratical 

coupling occurrence, (Sec. 5.3), it is possible to determine the correct quadratic coupling time 

persistence. Increasing time resolution of wavelet bispectrum even higher, (rHF " 100 s, Tm = 8 s and Ge 

= 0.0001), we obtain an even more realistic result. Whereas biamplitude, Fig. 8.5 (f), is estimated to be 

poorer due to lower frequency resolution, but still preserving true information about the time of 

quadratic coupling occurrence. The biphase, Fig. 8.5 (e), correctly exhibits 20 s of constant biphase 

episodes, and then 20 s of constantly growing biphase episodes. 

8.2 Fourier and wavelet bispectrum advantages and weakness 

Time and frequency resolution. To observe a given frequency, the signal must be observed over at 

least one period of this frequency what excludes the time localization. Due to the Heisenberg 

uncertainty principle [43] sharp localization in time and frequency are mutually exclusive 

(8.2) 

where At is time interval and Af frequency band. The equality holds if and only if the window is 

Gaussian. They are defined as [43] 

where w is in general some window function and ||w||2 is its norm. For STFT the representation of 

function g(u) in time-frequency plain G(t, j) has not sharp time and frequency parameters, but 

represents an interval around centre time t or frequency/. Time-frequency window is 

(8.4) 

For wavelet transform the representation of Wg(s, t) in time-frequency plain is 

(8.5) 
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where to and To are mother vvavelet centres of gravitv in tirne and frequency plain and corresponding 

deviations of At0 and A/o- Note that the centre of the tirne window depends only on parameter /, 

vvhereas the centre of the frequency window depends only on parameter s. On the contrary to the 

STFT the vvavelet transform's frequency resolution changes vvith frequency (lovv frequencies have 

better frequency resolution) and so does the tirne resolution (high frequencies have better tirne 

resolution). The ratio betvveen centre frequency f(s) = fo /s and bandvvidth AJ{s) = Afo/s is equal to 

fo /Afo and is scaling independent. 

In general WB detects intermittent phase couplings vvhereas FB averages out most of the tirne relevant 

information. Triplet (/i, fi,fs) results in a high peak in bispectrum if the coupling condition f$ —f\ +f2, 

is satisfied. Nevertheless, the coupling condition needs to be satisfied only vvithin the frequency 

resolution. This condition is less strict in vvavelet bispectral analysis. For example if there is a 

mismatch in coupling frequency A/ such that f3 = f\ + f2 + Af, and A/ is larger than the frequency 

resolution of the Fourier bispectrum but smaller than the vvavelet bispectrum frequency resolution 

corresponding to a high bispectrum value for the triplet (/i, f2, /3), than the vvavelet bispectrum will 

peak vvhereas the Fourier bispectrum vvill not. Increasing the frequency resolution of vvavelet 

bispectrum by increasing the length of the Morlet vvavelet for high frequencies results in gradually 

approximate results as obtained vvith the Fourier bispectrum. 

On the other hand if there is a short lasting coupling present in the signal the Fourier bispectrum 

cannot detect the coupling due to large tirne vvindovv used, vvhereas the vvavelet bispectrum vvill detect 

the coupling if assuming the coupling has a certain minimum duration. Wavelet bispectrum allovvs 

intermittent couplings to be detected. 

Applying Fourier bispectrum to real data vve have to ensure the necessary frequency resolution to be 

able to distinguish separate frequency components and at the same tirne achieving sufficiently tirne 

resolution to be able to detect the onset of the couplings among CVS oscillators. The scope for choice 

of vvindovv length is limited due to the Heisenberg uncertainty principle [43], and compromise is 

needed betvveen tirne and frequency resolution. 

Wavelet bispectrum based on Morlet mother vvavelet in contrast to the Fourier bispectrum enables us 

to gain the optimum tirne and frequency resolution at the same tirne vvhat is an advantage compared to 

the Fourier bispectrum. 

Since the tirne resolution of the vvavelet bispectrum is higher and the frequency resolution is poorer at 

high frequencies compared to Fourier bispectrum it is necessary to ensure sufficient frequency 
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resolution before interpretation of the results. Poor frequency resolution would result in poor/incorrect 

localization of characteristic frequencies. To high tirne resolution could result in to high sensitiveness 

to noise and statistical error, what would result in phase slips and incorrect oscillators coupling onset 

determination. Setting the tirne and frequency resolution so that episodes of approximately 10 periods 

of the lower coupling frequency are detectable and its characteristic frequency can be estimated to at 

least one tenth or less should be considered. 

Frequency step. Once the window length is chosen the frequency resolution is set and fixed for the 

Fourier based bispectrum. This is not the čase when using vvavelet transform. Since the vvavelet 

transform is continuous vve can choose the frequency step arbitrary. In this way, the transform can be 

over sampled in tirne for large scales but vve are not concerned for the inverse transform. 

Energy preservation. CV signals are power signals [81]. The Fourier bispectrum is based on the DFT 

vvhich gives the signals energy (power). In čase of vvavelet bispectrum the normalization is necessary 

to obtain the signals energy (povver). 

Statistical error. Integrating over finite tirne series in order to calculate the vvavelet bispectrum causes 

noise contribution to it's estimation. It is called statistical noise level since it is the value of vvavelet 

bispectrum that vvould be attained by a vvhite noise input signal, and is caused by finite statistics (i.e., 

using a limited number of values in the integrating or averaging process). Beside the noise 

contribution there is al so error estimate, vvhich is the product of uncertainties in the determination of 

the individual vvavelet bispectrum coefficients [43, 61, 62, 69]. 

To calculate the vvavelet bispectrum Eq. (7.17) the vvavelet coefficients are determinated for each JVw = 

Tfs samples in the interval T: {T0 - T/2 < T < T0 + 772} and averaged Eq. (7.3). Let us assume that ali 

the estimates of the vvavelet bispectrum are independent, than the averaged vvavelet bispectrum suffers 

a statistical error due to summation over 7VW values. Similarly in čase of Fourier 

bispectrum the summation is carried out over NI M ensembles, where M is the number of points in each 

statistically independent ensemble for vvhich M-points Fourier transform is calculated. The statistical 

error in the Fourier bispectrum decays as IN , and a factor of M more points are needed to obtain 

the same statistical error as vvith the vvavelet bispectrum. From this point of view, the vvavelet 

bispectrum represents a significant improvement in the tirne resolution of the bispectrum. 

Hovvever, the vvavelet coefficients are not ali statistically independent, since the chosen vvavelet family 

is not orthogonal. Each coefflcient is calculated by evaluating Eq. (7.3) integrating over the range -oo < 

t < +co. Due to the periodicity s of the vvavelets of scale s (Fig. 7.1), tvvo statistically independent 
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estimates of the wavelet coefficients are separated by a tirne s/2, or a number of points M(s) = sfjl, 

where fs is the sampling frequency. Thus the summation done in the evaluation of the wavelet 

bispectmm is not really carried out over Nw points, but only over 7VW /max(M(s)), where the maximum 

is taken over the values of s that come into account for the evaluation of a specific value of the wavelet 

bispectrum. An estimate for the statistical noise le vel in WB(f\,f?) is 

(8.6) 

The statistical error in the determination of WB(f],f2) can be deduced from Eq. (7.17). Each factor in 

this equation that is obtained by integrating over T suffers an error w , so that the error is 

estimated by 

(8.7) 

Eqs. (8.6) and (8.7) imply that vvavelet bispectral analysis is able to detect coherent signals in 

extremely noisy data, provided the coherency remains constant during sufficiently long times, since 

the noise contribution falls off rapidly with increasing N. 

Bispectrum interpretation. By choosing/0
 = 1 a simple relation betvveen scale and frequency can be 

obtained / = l/s. In this čase the interpretation of the wavelet bispectrum is the same as for the FB 

othenvise it is not straightfonvard. 

Computation. Default wavelet bispectrum window length drops hyperbolically, whereas Fourier 

bispectrum used fixed window length. Wavelet bispectrum is therefore computational less demanding 

and much faster. Also relatively short data sequences are sufficient to perform an analysis, in contrast 

to the Fourier bispectrum that needs long tirne series to obtain both sufficient frequency resolution and 

statistics. 

8.3 Other possible methods for bispectrum estimation 

A hvbrid betvveen Fourier and vvavelet transform is Selective Disctrete Fourier Transform (SDFT) 

which can also be used to perform the bispectrum calculation. It is a modified STFT first introduced 

by Keselbrener and Akselrod [47]. Like STFT it is tirne dependent FT. The time-frequency sensitivity 
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is obtained by windowing with a window of specific length around the analysed data point for 

estimating each spectral component. Low frequencies are expected to vary slowly on the other hand 

high frequencies are expected to show fast or sudden changes. For each frequency of interest, a DFT 

calculation is preformed, while the tirne window around the considered data point is selected inversely 

proportional to the frequency of interest. This is similar to wavelet transform's stretching and 

compressing of the mother wavelet. Therefore narrow windows are used for estimating high 

frequencies and wide ones for low frequencies, what implies estimating low frequencies with good 

frequency resolution and high frequencies with good tirne resolution. 

For each tirne of interest spectral components are calculated using different length of window. The 

window duration is chosen so that T = NJf. Parameter Np, Np e Z, is the number of entire periods 

entering the windowed signal. A high value of Np will lead to poor tirne resolution (wide window), 

while on the contrary, a small value could lead to a less reliable estimation of the spectral components 

in čase of noisy signals. The value is determined experimentally to gain best results, usually betvveen 

the range of 3 and 7 [38]. 

Leakage may appear in the spectrum, if the signal entering the rectangular window is not periodic, or 

at least if the amplitude of the end points is not equal. In order to remove such leakage, the data is 

usually convolved with some kind of smoothing window, such as Hamming, Hanning or Blackman 

windows. Their role is to taper the windowed data in order to make the two end points amplitudes 

smoothly equal. Besides the leakage removal, this tapering windows also improve the tirne resolution 

of the time-dependent spectral analysis. 

SDFT and WT provide similar results. Both transforms are using a specific window length to estimate 

each spectral component. SDFT ušes convolution with Blackman, Hanning, Hamming, or other taper 

window whereas WT ušes different mother vvavelets such as Morlet or other. Both methods enable a 

choice betvveen a good tirne and a good frequency resolution. We can change frequency and tirne 

resolution by changing parameters, but we cannot gain both of them simultaneously, according to the 

Heisenberg uncertainty principle. The WT obtained by Morlet wavelet enables an optimal time-

frequency resolution, while using SDFT it can be approached by an appropriate choice of parameters. 

They can both be normalised to energy. The main difference betvveen the transforms is that the WT is 

continuous whereas the SDFT is not. 

IU J 



8.4 Discussion 

Wavelet bispectrum was applied to CV blood flow signals. Parameters were set to the prevailing 

choice, Sec. 7.3. The WB method is suitable for studving cardio-respiratorv interaction from the CV 

blood flow signals. Results obtained with WB analysis are the same as the ones obtained with the 

Fourier based bispectrum method. There are no obvious advantages of WB over FB when detecting 

cardio-respiratory interaction that fulflls the conditions defined in Sec. 5.3. 

Our motivation was to develop a method that will be able to provide insight into the nature of the CV 

subsystem couplings. Dvnamics of CV blood flow can be considered in terms of coupled oscillators. 

There are at least five subsystems that take part in blood flow regulation: cardiac, respiratorv, 

mvogenic, neural and metabolic svstem [8, 9, 10, 110-112, 117]. Analysing interaction among cardiac 

and respiratory system is thus the first step taken. The effect of respiration on heart rate has been the 

most intensively studied. 

The question, what do the revealed nonlinear cardio-respiratory couplings mean, and how they arise, 

are yet to be resolved. One possibility is that they result from nonlinearity of the carotid baroreceptor-

cardiac reflex [22]; another is that they are attributable to the active involvement of the peripheral 

vessels during cardiac and respiratory wave propagation in the netvvork, or they are due to modulation 

of the cardiac filling pressure during respiratory movements [126]. 

In order to be able to analyse ali other CVS interactions like cardio-myogenic, cardio- neural, cardio-

metabolic, respiratory-myogenic, respiratory-neural, respiratorv-metabolic, myogenic-neural, we need 

to use the wavelet bispectral method. Namely an important feature of CV signals is that they are 

nonlinear, time-varying, and subject to fluctuation [3, 18, 23, 34, 117]. In low frequency range, which 

is of our particular interest, the characteristic frequencies are close to each other, and are therefore 

even harder to separate. The uncertainty principle of the FT, limits its ability to separate harmonic 

components in the frequency domain of the bispectrum [20, 69]. This might cause problems for 

detection of the quadratic phase couplings in the čase of frequency pairs that are close together. To 

ensure good resolution of low frequencies, we need longer sections for calculation of the discrete 

Fourier transform. This immediately decreases the number of sections possible and weakens the 

bispectrum estimation. However, we cannot use longer signals, because they lead to nonstationarity, 

and the variance consequently becomes even larger [69]. Moreover, determining short-lasting 

couplings, shorter than 10 times the lovver period in a bifrequency pair, makes the Fourier based 

bispectrum incapable of coping with the necessary time-frequency resolution, as was also clearly 

demonstrated using a model of coupled oscillators (8.1). 
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Tab. 8.2: Summary of Fourier bispectrum (FB), using STFT and wavelet bispectrum (WB), tirne and frequency 

discretized using adapted Morlet mother wavelet comparison for CV signals analysis. * -denotation in the table 

means that no method is in advantage. 

Aside from WB being able to trace fast changes of high frequency components, and being able to 

locate slov/ frequency components at the same tirne, there are many other advantages of vvavelet 

bispectrum (adopted for CV signals) over the Fourier bispectrum. An overvievv is shown in table 8.2. 

Since WB is continuous, and FB is not, it allows an arbitrary frequency step to be chosen, and thus a 

better frequency component location. It allows intermittent phase couplings to be detected, vvhereas 

Fourier bispectrum averages out most of the tirne relevant information. The Heisenberg uncertainty 

principle, [43], limits simultaneous tirne and frequency resolution. Using the wavelet bispectrum, the 

optimum tirne and frequency resolution can be achieved; there is a simple relation between scale and 

frequency; and it has smaller statistical error; and is computationally less demanding. 

The only drawback of WB, compared to FB, is that it has to be normalized to obtain signal energy, and 

it is not orthogonal. Normalization can be preformed, vvhereas we are not concerned with the inverse 

vvavelet transform. 

A hybrid betvveen Fourier and vvavelet transform, the selective discrete Fourier transform, can also be 

used to perform the bispectrum calculation. It is a modified STFT, that v/as first introduced by 

7 Bispectrum for signal xw(t) (see Sec. 4.4) was computed for the whole IT of the principal domain, Fig. 3.1. 
Fourier bispectrum \B\ was computed with K = 34 segments, 67 % overlapping and using the Blackman window 
to reduce leakage. Wavelet bispectrum | WB\ was computed with K = 34 segments, 67 % overlapping, Tm = 8 s, 
Ge = 0.001 and using fixed Morlet vvavelet length of THF = 40 s for high frequencies calculation. 100 % is the 
number of computations preformed for FB. 81 % less computations are necessary for WB estimation. If we use 
hyperbolically decreasing Morlet vvavelet length then computation of WB is approximately 40 times faster than 
computation of FB (only 2.6 % of FB computations are necessary). 
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Keselbrener and Akselrod [47], but the wavelet transform is more adequate, since it is continuous, 

whereas the SDFT is not. 
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9 D T H E R P O S S I B L E A P P L I C A T I O N S O F VVAVELET B I S P E C T R U M 

M E T H D D 

C V signals are not the only ones relevant for studying CVS. Neural CV subsystem coupling 

information is incorporated in the brain waves. Synchronization among separate brain centres 

indicates an interaction between them. In most cases, it is associated with oscillatory behaviour in 

specific structures, frequencies and behaviour states. Electroencephalogram (EEG) measures electrical 

activity in the brain, i.e., brainwaves of different frequencies, and short-lived evoked potentials that 

occur when the brain responds to sensory input. Generally, low frequency oscillations originate from 

larger structures than do high-frequency oscillations. In certain conditions, such as general 

anaesthesia, svnchronization can be seen in EEG measurements as organized, distinguishable patterns. 

These patterns depend on the anaesthetic agent and the level of anaesthesia [107]. Delta waves are the 

slowest oscillating waves (0-4 cvcles per second). They are associated with a deep dreamless sleep, 

trance state, lucid dreaming, increased immune functions and hvpnosis, and are thus expected to occur 

during anaesthesia. 

In some cases, svnchronization can be observed over large distances in the consistent tirne lags 

between signals, using cross-correlation techniques. However, the cross-correlation techniques might 

encounter problems when compared to signals that are not stationary, or to oscillations that are weakly 

related. In the concept of phase svnchronization of chaotic oscillators [90], the solution is approached 

with the consideration of two tirne series, originating from two coupled oscillators. The amount of 

coupling can be quantified from the phase difference of the signals. Spatial heterogeneity in EEG 

during anaesthesia is often studied by means of amplitude and spectral estimate-based methods [21, 

86, 122]. 

The quantification of quadratic phase-coupling betvveen EEG signal components has been established 

since G. DumermuuVs pioneered investigations using bispectral analvsis in 1969 [51]. A number of 
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EEG studies have been published using the mathematical tools of high-order spectra analysis EEG 

[12, 27, 53, 65]. Additionallv, the so-called bispectral index (BIS) [89] is a frequently used parameter 

for the quantification of anaesthesia and sedation depth [84, 88, 98]. The BIS is a statistically based, 

empirically derived complex parameter that is composed of a combination of time domain, frequency 

domain and high-order spectral sub parameters. 

By means of bispectral analysis, non-linear interactions of EEG signal brainwaves can be quantified. 

The stationarity of the signal is one important prerequisite for consistent bispectrum estimation. 

Generally, the mathematical property of stationarity cannot be obtained from real EEG signals. 

Therefore, methods for spectral analysis of non-stationary signals have been introduced. Time-

frequency distributions, vvavelet transform, and time-variant autoregressive moving average (ARMA) 

modelling are the most prominent classes of such approaches with sufficient time and frequency 

resolution. By means of time-frequency analysis, only transient linear relations of, and betvveen, signal 

components can be captured. Transient nonlinear interactions are undetectable. Therefore, approaches 

for time-variant bispectral analysis have been developed [5, 69, 98]. While these approaches 

concentrate on time-frequency domain (second-order spectra) or on shape in (third-order spectra) 

frequency-frequency domain, we extract time information related to coupling from the frequency-

frequency domain of bispectrum, i.e., the biamplitude and the biphase. 

Recently, the svnchronization index technique was applied to signals of rats undergoing anaesthesia 

[63, 64]. EEG signals contain several time-varying frequency components. The most dominant ones 

are in the delta frequency range. Similar signal pattern was observed for ali rats analysed while 

undergoing anaesthesia. At the beginning, there is one dominant, slightly-varying, frequency 

component around the central frequency of 2 Hz. In its surrounding, there are higher frequency 

components that are not distinctly at the beginning. The predominant frequency component in the 

EEG signal vanishes when rats started to move and breath spontaneous. Synchronization indexes have 

been calculated for the čase of delta waves of EEG and ECG, delta waves of EEG and respiratory, and 

ECG and respiratory signals. Synchronization was distinctive only in the latter čase. There is one 

general pattern that occurs in ali cases: 2:1 or 3:1 svnchronization at the beginning, which eventually 

transits to 4:1 or 5:1, and then later returns back to 3:1 or 2:1. At the end of the signal there is no 

svnchronization what is in connection with rat transition from deeper to less deep anaesthesia 

(wakening). Furthermore, direction and strength of the coupling was studied. While there can be seen 

that in the first part the respiratory oscillator drives the oscillations contributed to delta waves of EEG 

signal, there cannot be made any conclusions about cardiac and delta waves of EEG signal direction 

and strength of the interaction. 
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The depth of anaesthesia is related to synchronization states between cardiac and respiratory oscillator 

[63, 64]. Anaesthesia deepness can be extracted from the EEG signal therefore relation betvveen the 

cardio-respiratory synchronization and the bispectrum of EEG signal is expected. In this chapter we 

apply the wavelet bispectrum to EEG signal. For the demonstration of its applicability we use the EEG 

signal from the rat20 as already analysed in Chapter 6. By estimating the biamplitude and the biphase 

we wish to test whether the wavelet bispectrum can extract the same information from the univariate 

EEG signal as can be obtained from svnchrogram of bivariate ECG and respiration signals. 

9.1 Measurements 

Measurements have already been discussed in the Sec. 6.1. In this analysis we use only the EEG signal 

measured on rat20 undergoing the anaesthesia. 

9.2 Data analysis 

The EEG signal was first pre-processed. Both very low and very high frequencies were removed by 

use of moving average windows: drift with a 200 s long window; and high frequencies with a 0.04 s 

window while, and at the same tirne, the signal was resampled to 50 Hz. By using the moving average 

before resampling, we avoid problems of aliasing. The signal has been further normalized betvveen 

zero and one and its mean value was subtracted. 

For clearer interpretation of the results we divided -63 minutes long EEG signal of rat20 to four parts 

a, b, c and d, each of them containing only one phenomenon, i.e., svnchronization or no 

svnchronization. First we calculated the vvavelet bispectrum for each separate EEG part for the whole 

frequency domain. We used fixed, 20 s long, vvavelet for calculation of high frequencies as discussed 

in Sec. 7.2.1. Than we estimated the biphase and the biamplitude for the highest peak appearing in the 

vvavelet bispectrum. For this calculation 80 s long fix vvavelet vvas used to increase frequency 

resolution for high frequencies since the signal EEG is highly complex and the signal povver is 

concentrated at approximately 1 Hz. Frequency step vvas equidistant and set to 0.02 Hz to preserve the 

Eq. (7.18) condition. Morlet window vvas moved along the tirne series vvith a tirne step of 0.1 s. The 

critical value for the biamplitude estimate to be considered valid vvas set in ali cases to 2, i.e., tvvice the 

average value of the WB vvithin its so-called inner triangle (IT). 
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9.3 Results 

Example of detrended, resampled and it's mean value subtracted EEG signal for rat20 undergoing 

anaesthesia is presented on Fig. 9.1 (a) and its power spectrum (b). As it can be seen from the power 

spectrum that it's power is concentrated in range 0.5-5 Hz with maximum between 1 Hz and 2 Hz. 

The synchrogram between the rat20 ECG and respiration signal is presented in Fig. 9.1 (c). Four 

distinctive parts can be seen; a and c where synchronization 4:1 takes plače and b and d where no 

synchronization is evident. The EEG signal was divided according to marked parts and analysed 

separately for the sake of clarity. Figure 9.2 (a) - (d) shows WB for each part separately with its 

contour view. In ali the WB-s there is a dominant peak. In the part a it is located around bifrequency 

(1.1 Hz, 1.1 Hz), in part b around bifrequency (1.3 Hz, 1.3 Hz), in part c around bifrequency (1.4 Hz, 

1.4 Hz) and in the last part around bifrequency (1.6 Hz, 1.6 Hz). For each part biamplitude and 

biphase were calculated for the dominant, the highest peak appearing in the obtained WT. A longer 

fixed Morlet vvavelet was used, JRF = 80 s, for estimating high frequencies as in the čase of \JVBa.d\ 

calculation, where fixed Morlet wavelet of 20 s was used for estimating high frequencies. The reason 

is that \WBa.d\ exhibit reach bispectral contents, therefore higher frequency resolution is necessary. In 

ali the cases the highest peak appears at the so-called self-coupling bifrequencies. We observe self-

phase couplings of delta waves of EEG signal. 

Fig. 9.1: (a) 10 s of detrended, and removed zero mean signal EEG(t) and its power spectrum (b) for the čase of 
rat20 undergoing anaesthesia, -63 minutes long at sampling frequency fs = 50 Hz. (c) Cardio-respiratory 
synchrogram for rat20 divided into four parts a-d. 

Biamplitude Az\, Fig. 9.3 left (a), shows some coupling activity over the whole tirne vvith two higher 

peaks from approximately 7 minutes until approximately 10 minutes. During this tirne the biphase fa, 

Fig. 9.3 right (a), tends to be within n interval. We detect phase coupling Tpc. During part b the 



9 D T H E R P D S S I B L E A P P L I C A T I O N S O F V V A V E L E T B I S P E C T R U M M E T H D 

biamplitude Ahi, Fig. 9.3 left (b), shows three short lasting peaks while the biphase $,i, Fig. 9.3 right 

(b), tends to decrease ali the tirne of observation. In part 3 the biamplitude AcU Fig. 9.3 left (c), shows 

a very distinct and high peak lasting from 35 minutes to 36.17 minutes, when the synchronization is 

the strongest. In this tirne the biphase fa, Fig. 9.3 right (c), changes for 2.43 rad what is within the n 

interval and can be treated as phase coupling. The last part d shows no coupling, biamplitude Adu Fig. 

9.3 left (d), except at the very beginning where the biphase $u, Fig. 9.3 right (d), is also constant 

whereas othervvise is not. 

Fig. 9.2: Results for the rat20 undergoing anaesthesia. (a) The wavelet bispectrum \WBa\ for part a calculated 

with 74 % overlapping and (b) its contour view, (c) | WBh\ for part b calculated with 65 % overlapping and (d) its 

contour view, (e) \WBC\ for part c calculated with 81 % overlapping and (f) its contour view and (g) \WBd\ for part 

d calculated with 49 % overlapping and (h) its contour view. In ali cases of WB K was set to 33 segments, 

whereas Ge = 0.001, Tm = 8 s and TH¥ = 20 s long fixed Morlet wavelet for estimating high frequencies was used. 

By applying the necessary conditions for the nonlinear quadratic coupling to be present to analysis of 

rat20's EEG signal, we consider the conditions only for the peak of observation - the self-coupling 

peak, Sec. 5.3. Ali detected phase couplings are summarized in Tab. 9.1. 
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Fig. 9.3: Left column the biphase <j) and right column the biamplitude A for bifrequencies: (a) part a (1.1 Hz, 1.1 

Hz) calculated with 74 % overlapping, (b) part b (1.3 Hz, 1.3 Hz) calculated with 65 % overlapping, (c) part c 

(1.4 Hz, 1.4 Hz) calculated with 81 % overlapping and (d) part d (1.6 Hz, 1.6 Hz) calculated with 49 % 

overlapping. In ali cases a 0.1 s time step, K = 33 segments, Ge = 0.001, 7,
m = 8 s and rHF = 80 s long fixed 

Morlet wavelet for estimating high frequencies was used. 

Tab. 9.1: Phase couplings detected in rat20 EEG signal. Tpc is the time interval during which the wavelet 

bispectral analvsis showed that the delta waves of EEG signal are self-phase coupled at bifrequency (/i,/i). The 

product of 7pC • /i tells us over how many delta waves of EEG signal periods the phase coupling persisted. 

During Tpc the maximum biamplitude Amax is calculated for the peak. In addition, the maximum variation of the 

biphase A^, its average value (j> , and its standard deviation c^ were calculated during Tpc. 
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9.4 Discussion 

From Tab. 9.1, it can be seen that phase couplings onset mostlv in part a and part c. These couplings 

are the strongest and have the longest lasting tirne, Tpc. If we put ali biamplitudes from Aa\ to Adi 

together as one tirne evolution of biamplitude, and do this similarlv with biphases from fa to fat then 

two (or three) peaks stand out by their biamplitude. At the times where the peaks appear, the biphase 

tends to be constant (within the n interval). The tirne of onset and phase coupling duration is shown in 

Fig. 9.4. These two events can also be detected, as shown in the svnchrogram Fig. 9.1 (c), when the 

svnchronization 4:1 onsets and when it disappears. In the tirne betvveen these events, the svnchrogram 

does not show svnchronization to be present, whereas from the WB, there are visible, short-time phase-

coupling events that cannot svnchronize the interacting oscillations as the biphase decavs uniformly. 
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Fig. 9.4: In Tab. 9.1, phase couplings, Tpc, that stand out by their biamplitude (1000 and more). Their onset times 

and duration are shown. The first and the last Tpc coincide with the onset and disappearance of the phase 

svnchronization between the cardiac and respiratory oscillators, Fig 6.8 (d). 

We can conclude that cardiac and respiratory CV systems and delta waves of EEG signal are coupled 

during the anaesthesia. The question arises vvhether the delta waves of EEG signal drive the cardiac 

and respiratory systems in svnchronization when rat20 is undergoing anaesthesia, or slow respiration 

svnchronizes with the cardiac system that further influences the delta waves of EEG signal. There is 

one applausive hvpothesis of anaesthesia reducing the RSA [83, 84]. Anaesthesia may stimulate 

inhibitory glvcine and GABAergic synapses in the NTS-NA axis, whose projections then inhibit 

higher brain centres, such as the limbic system. It also modulates the level of endogenous 

hvpothalamic peptides, responsible for the natural control of brain metabolism that are known to affect 

vagal control of cardiac rhvthm [82], and which would be affected if anaesthesia artificially reduces 

brain metabolism [1]. That is, anaesthesia may affect the delta waves of EEG signal in such a manner 

that they drive the cardiac and respiratory system to svnchronization. 

Similarly, as we analysed the cardio-respiratory interaction, we could also analyse cardio-delta waves 

of EEG signal and respiratory-delta waves of EEG signal interaction to study their interaction and the 

nature of couplings, whereas this is not the intent of this work. Wavelet bispectrum proved to be a 
•mmm 

IIJ 



» P L I C A T I O N S D F V V A V E L E T B I S P E C T R U M M E T H D D 

promising tool to analyse EEG signals during anaesthesia. It can detect the phase synchronization 

onset and its disappearance. 



The bispectrum is the first high-order spectrum after ordinary spectral analysis, and is useful for the 

investigation of non-linear interactions of the lowest-order (i.e., quadratic interactions). Powerful noise 

reduction is an integral part of the standard technique, as non-coherent contributions are averaged out, 

and weak coherent signals can be detected in very noisy data [68, 69]. The bispectral method has been 

extended to encompass tirne dependence, and has demonstrated the potential of the extended technique 

to determine the type of couplings among interacting nonlinear oscillators [40]. Time-phase couplings 

can be observed by calculating the bispectrum and adapted bispectrum, and obtaining the time-

dependent biphase and biamplitude. The method has the advantage that it allows an arbitrary number 

of interacting oscillatory processes to be studied. 

Recently introduced methods for synchronization analysis among chaotic and noisy oscillations (see 

[79] and references therein) have stimulated applications to a variety of different systems. Methods for 

quantifying the strength and identifying the direction of couplings, based on nonlinear dynamic or 

information theory approaches, have recently been proposed [72, 93, 94, 103]. In this work, the 

question of the type of coupling that may result in synchronization was addressed, and a method was 

proposed for its analysis. It is applicable to both univariate data (a single signal from the coupled 

system) and multivariate data (a separate signal from each oscillator). 

Millingen et al. [61, 62] have analysed multivariate data using a combined wavelet and bispectral 

method, and have discussed its application in the field of chaos analysis. Here we have concentrated 

on univariate data and illustrated the potential of the time-phase bispectral method for the detection of 

higher-order couplings in the presence of noise. The possibility of using univariate data is of particular 

importance when dealing with real signals, as in practice, we often cannot observe and measure the 

separate subsystems directly, but only their combination, which is intrinsically difficult. Most of the 

methods proposed so far for svnchronization analysis and detection of the direction of couplings are 

based on bivariate or multivariate data [72, 79, 93, 94, 103]. In conjunction with frequency or time-

frequency filtering [113, 121] or mode decomposition [36] to obtain two or more "separate" signals, 

these methods can be used for univariate data as well. Svnchronization can also be detected in 

univariate data through an analysis of angles and radii [42] in return tirne maps [119]. 

The time-phase bispectral method proposed in this work is not only applicable to the synchronization 

analysis of univariate data, but also, at the same tirne, allovvs one to determine the nature of the 

couplings among the interacting nonlinear oscillators. Its benefits include: (i) the possibility of 
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observing the whole frequency domain simultaneously; (ii) detecting that two or more subsystems are 

interacting with each other; (iii) quantification of the strength of the interaction; and (iv) determination 

of whether the coupling is additive linear or quadratic, or parametric in one of the frequencies. We 

have shown the method to be suitable for the analysis of noisy signals. 

Although it was shown that the technique works effectively on a well-characterized simple model, 

there are some difficulties to be faced and overcome in applying it to real problems, e.g., to data from 

the cardiovascular system. Understanding the content of the bispectrum, and identification of the 

peaks of interest, are not always straightfonvard. To appreciate which peaks are the ones to focus on, 

one has to be aware of the basic properties of the system and its fundamental frequencies. 

Distinguishing a quadratic interaction from parametric frequency modulation may be easy when the 

coupling/modulation is relatively strong, but becomes more difficult in the čase of relatively weak 

coupling/modulation. In the latter čase, observing each phase in the triplet separately can be helpful. 

Also, it is not always an easy task to distinguish between quadratic interaction and parametric 

frequency modulation in cases when both of them occur simultaneously. Furthermore, where the 

possible basic frequencies are relatively close, it will be hard to detect them separately. This could 

cause particular problems in the detection of quadratic phase couplings where frequency pairs are 

close together. Although it is possible in principle to study an arbitrary number of interacting 

oscillators, it is advisable in practice to study them in pairs: knovvledge of the basic frequency of each 

is necessary. 

The blood flow signal contains a great deal of information and is exceptionally challenging in relation 

to processing. It possesses components whose amplitudes and frequencies vary in tirne. Moreover, the 

interactions among its characteristic oscillations also vary in tirne, and their nature (frequency, phase, 

linear and/or quadratic couplings) also changes, giving rise to the observed complexity of 

cardiovascular dvnamics. 

Bispectral analysis has provided insight into the nature of the couplings. Results in this work support 

the inference that the dvnamics of blood flovv can usefully be considered in terms of coupled 

oscillators. Application to the cardio-respiratory interaction has shown for the first tirne that nonlinear 

coupling is present [41]. Although evidence for couplings bevond second-order has not been sought, 

higher-order coupling may also exist. 

In this work, it was shown that the effect of the coupling between the cardiac and respiratory 

oscillations is episodic, rather than fixed and permanent. Moreover, an interchange between frequency 

and phase couplings is also present, as demonstrated by the evolution of their time-biphase. 
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Nonlinear coupling was revealed, and shown to exist during spontaneous, as well as during paced, 

respiration. Episodes with nonlinear coupling were detected in 11 out of the 22 recordings, and lasted 

between 19 s, in the čase of high respiratory frequency (f2p = 0.34 Hz), and 106 s, in the čase of low 

paced frequency of respiration (/->p = 0.11 Hz). The episodic nature of the cardio-respiratory interaction 

in a healthy human during spontaneous and paced respiration had already been demonstrated using 

quite different techniques of analysis [10, 46, 95, 97, 101, 104]. It allows us to infer that the inter-

oscillator coupling is probably relatively weak. There are, however, compelling arguments suggesting 

that the cardiac and respiratory subsystems should be, in fact, treated as weakly nonlinear oscillators 

that are weakly coupled. (i) In healthy subjects, breathing spontaneously, only occasional and brief 

episodes of synchronization are seen [10, 99-101], indicative of relatively weak coupling. (ii) Sinus 

arrhythmia is small at spontaneous breathing frequencies and only slightly larger at very low breathing 

frequencies [23], again supporting a weak-coupling description. (iii) The couplings can sometimes 

decrease almost to a vanishing point, e.g., in coma [112]. Without couplings, the dynamics become 

drastically simplified - with complete absence of synchronization or modulation. The fact that virtually 

no variability is seen in any of the natural frequencies, despite small amplitude variations attributable 

to internal noise, suggests that the oscillators themselves are, at most, weakly nonlinear. (iv) If there 

were strong oscillator nonlinearity, and strong (but linear) coupling, we would observe many 

combinatorial components around the cardiac frequency, which is not the čase. 

Using bispectral and cross-bispectral analysis, it was also shown that the coupling information among 

cardiac and respiratory processes is inherit from the processes and spatially invariant. Both processes 

are of central origin, and their phase relationships can be observed in ECG, blood flow and blood 

pressure signals derived from widely separated sites. It would appear that the information is 

incorporated within the wave motion of the blood propagating through the vessels. 

It is of interest to compare results of this experiment with that of [19]. They had also studied 

physiological tirne series while respiration was being paced at a constant rate; in addition, they also 

guided the ventilatory amplitude (tidal volume) so as to produce a sinusoidal modulation envelope 

with a period of 60 s. It resulted in oscillations of the same period in several physiological quantities, 

including the R-R intervals, blood pressure, and the cardiac stroke volume and output. In this study, 

the ventilatory amplitude was left to the subjecfs spontaneous choice. The slow amplitude modulation 

of [19] was selected to mimic the pattern of Cheyne-Stokes respiration, which is often associated with 

heart failure. The question addressed in this work was to examine whether or not the relationship 

between cardiac and respiratory oscillations can be nonlinear, without any amplitude modulation. It is 

difficult to decide whether the nonlinear interactions, shown to occur episodically in the present study, 

would or vvould not have occurred if the amplitude of respiratory oscillations had also been controlled, 
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as in the study by [19]. It was shown, however, that quadratic coupling exists even when both the 

frequency and the amplitude of respiration are spontaneous. We may therefore conclude that the 

nonlinear nature of the interaction betvveen the cardiac and respiratory oscillations is inherent, and that 

it becomes more pronounced when the frequency of respiration is kept constant. 

The question of what the nonlinear couplings mean, and how they arise, are yet to be resolved. One 

possibility is that they result from nonlinearity of the carotid baroreceptor-cardiac reflex [22]; another 

is that they are attributable to the active involvement of the peripheral vessels during cardiac and 

respiratory wave propagation in the netvvork. A full understanding of these couplings is essential to 

gain insight into the physiology and pathophysiology of cardiovascular dynamics, as well as for the 

construction of mathematical models that offer novel possibilities for obtaining clinically relevant 

physiological information. It can be concluded that bispectral analysis provides a promising tool for 

the determination of frequency and phase couplings in the processing and understanding of 

cardiovascular signals. 

One of the coupling phenomena that can onset among interacting oscillators is phase svnchronization. 

The most natural way to study the phase relations among interacting oscillators is by using 

svnchronization techniques. As bispectral analyses provides information about frequency and phase 

coupling, and moreover, the nature of the coupling oscillators, we draw its relation to the 

svnchronization. In the čase of strong phase synchronization, the svnchrogram and bispectrum provide 

the same results. The phase svnchronization is indicated with a high biamplitude value and constant 

biphase at bifrequency of our primary interest (f\,fi). Weak phase svnchronization usually does not 

result in obvious horizontal strips in svnchrogram, vvhereas bispectrum results in moderate 

biamplitude and less constant biphase, with more phase slips at the bifrequency of our primary 

interest. No phase svnchronization results in zero biamplitude at the bifrequency of our primary 

interest. Bispectral analysis is more sensitive to interactions than the svnchrogram. It detects the phase 

svnchronization, and nevertheless, yields different information from that which can be resolved from a 

synchrogram. 

Synchronization can take plače simultaneously with other type of interaction, such as frequency 

modulation, forcing and/or nonlinear coupling. Nonlinear coupling can appear while phase 

svnchronization occurs, whereas svnchronization does not necessarily appear while there is nonlinear 

coupling. There is no obvious link between the two phenomena. Analysis of rats undergoing 

anaesthesia shows that nonlinear coupling occurs during svnchronization while analysis of CV blood 

flow signals of humans in resting shows nonlinear coupling while no svnchronization is present. 

118 



1 D S U M M A R Y 

Frequency modulation alone can be detected using bispectrum. Peak of primary interest (f\,fi) and the 

second peak at bifrequency if\-fi,fi) are high in comparison to other peaks (which may not be present 

at ali) that appear in the čase of nonlinear interaction, and their biphase is constant (strong frequency 

modulation). Instantaneous presence of frequency modulation and forcing can be misleading in 

detecting the nonlinear coupling. Thus, it is necessary to check ali the 1-6 peaks, and analyse the peak 

of primary interest (/i, f2) for modified bispectrum, and observe the phases of each frequency 

component in the triplet. When strong frequency modulation and nonlinear coupling are occur 

simultaneously, detection of the frequency modulation is not possible. 

In the čase of bispectral analysis of cardiovascular interaction, the time-dependent biphase/biamplitude 

estimate was estimated with a short tirne Fourier transform, using a window of constant length. The 

optimal window length depends, however, on the frequency being studied. The effective length of the 

window used for each frequency can be varied by applying the wavelet transform, or the selective 

discrete Fourier transform. For demonstration purposes above, the natural frequencies of the 

oscillators were chosen to lie within a relatively narrow frequency interval. An STFT was therefore 

sufficient for good tirne and phase/frequency localization. With broader frequency content, however, 

the wavelet transform or selective discrete Fourier transform needs to be applied. 

Wavelet transform to higher-order spectra was presented in this work. The wavelet and cross-wavelet 

bispectrum was defined analogous to the definitions used in Fourier based bispectrum and cross-

bispectrum. By doing this time-dependant biphase/biamplitude estimate with higher frequency 

resolution at low frequencies, higher tirne resolution at higher frequencies was obtained. The vvavelet 

bispectral analysis was adopted to analyse cardiovascular signals. For a mother wavelet modulated 

Gauss function, the Morlet mother wavelet was used. 

Wavelet bispectral analysis was illustrated using a test signal. Since the tirne resolution of vvavelet 

bispectrum is higher, and the frequency resolution is poorer at high frequencies compared to Fourier 

based bispectrum, it is necessary to ensure sufficient frequency resolution before interpretation of the 

results. Poor frequency resolution vvould result in poor/incorrect localization of characteristic 

frequencies. Too high of a tirne resolution could result in extremely high sensitiveness to noise and 

statistical error, which vvould result in phase slips and incorrect oscillator coupling determination. It 

was necessary to raise frequency resolution for high frequencies, and also to preserve the scale 

(frequency) sum condition necessary for bispectrum estimation. Wavelet bispectrum results are 

parameter set dependant. 

Wavelet bispectrum was applied to CV blood flow signals. Parameters were set to the prevailing 

choice. The vvavelet bispectral method is suitable for studying cardio-respiratory interaction from the 
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CV blood flow signals. Parameter impact on wavelet bispectrum estimation and detailed comparison 

with Fourier bispectrum was preformed. Results obtained with WB analysis resemble the ones 

obtained with Fourier bispectrum method. There are no obvious advantages of WB over FB when 

detecting cardio-respiratory interaction that fulfils the defined necessary conditions for quadratical 

coupling occurrence. 

Our motivation was to develop a method that will be able to provide insight into the nature of the CV 

subsystems couplings. Analysing interaction among cardiac and respiratory systems is thus the first 

step taken. In order to be able to analyse ali other CVS interactions, such as cardio-myogenic, cardio-

neural, cardio-metabolic, respiratory-myogenic, respiratory-neural, respiratory-metabolic, mvogenic-

neural, and others, we need to use the wavelet bispectral method. Namely, an important feature of CV 

signals is that they are nonlinear, time-varying and subject to fluctuation [3, 18, 23, 34, 117]. In the 

low frequency range, which is of our particular interest, the characteristic frequencies are close to each 

other, and are therefore even harder to separate. The uncertainty principle of the Fourier transform 

limits its ability to separate harmonic components in the frequency domain of the bispectrum [20, 69]. 

This might cause problems for detection of the quadratic phase couplings in the čase of frequency 

pairs that are close together. To ensure good resolution of low frequencies, we need longer sections for 

calculation of the discrete Fourier transform. This immediately decreases the number of sections 

possible and weakens the bispectrum estimation. However, we cannot use longer signals, because they 

lead to nonstationarity, and the variance consequently becomes even larger [69]. Moreover, 

determining short-lasting couplings, shorter than 10 times the lower period in a bifrequency pair, 

makes the Fourier based bispectrum incapable of coping with the necessary time-frequency resolution, 

as was also clearly demonstrated using a model of nonlinearly coupled Poincare oscillators. 

Aside from WB being able to trace fast changes of high frequency components, and being able to 

locate slow frequency components at the same tirne, there are many other advantages of wavelet 

bispectrum (adopted for CV signals) over the Fourier bispectrum. Since WB is continuous, and the FB 

is not, it allovvs an arbitrary frequency step to be chosen, and thus a better frequency component 

location. It allovvs intermittent phase couplings to be detected, whereas Fourier bispectrum averages 

out most of the tirne relevant information. The Heisenberg uncertainty principle, [43], limits 

simultaneous tirne and frequency resolution. Using the vvavelet bispectrum, the optimum tirne and 

frequency resolution can be achieved: there is a simple relation betvveen scale and frequency; it has 

smaller statistical error; and is computationally less demanding. 

The only dravvback of WB compared to FB, is that it has to be normalized to obtain signal energy, and 

it is not orthogonal. Normalization can be preformed, whereas we are not concerned with the inverse 

vvavelet transform. 
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A hybrid betvveen Fourier and wavelet transform, the Selective Discrete Fourier Transform (SDFT), 

can also be used to perform the bispectrum calculation. It is a modified STFT, that was first introduced 

by Keselbrener and Akselrod [47], but the wavelet transform is more adequate, since it is continuous, 

whereas the SDFT is not. 

Not only CV signals are relevant for studying CVS. Neural CV subsystem coupling information is 

incorporated in the brain waves. Svnchronization among separate brain centres indicates an interaction 

between them. In certain conditions, such as general anaesthesia, svnchronization can be seen in EEG 

signals [107] as the onset of delta braimvaves (0-4 cvcles per second). Generallv, EEG signals do not 

satisfy the stationarity condition, which is generally necessary for high-order spectra estimation. 

Therefore, methods for spectral analysis of non-stationary signals have been introduced. Time-

frequency distributions, wavelet transforms and time-variant autoregressive moving average (ARMA) 

modelling are the most prominent classes of such approaches with a sufficient tirne and frequency 

resolution [12, 27, 51, 53, 65]. Spatial heterogeneity in EEG during anaesthesia is often studied by 

means of amplitude and spectral estimate-based methods [21, 86, 122]. These approaches concentrate 

on time-frequency space (second-order spectra) or on shape in (third-order spectra) frequency-

frequency space. Using the introduced tirne dependant wavelet bispectrum, one can extract tirne 

information related to coupling from the frequency-frequency space of bispectrum, i.e., the 

biamplitude and the biphase. 

Recently, the svnchronization index technique was applied to signals of rats undergoing anaesthesia 

[63, 64]. EEG is a highly complex signal, which contains several time-varying frequency components. 

The signal power is concentrated at delta brainwave range, at approximately 1 Hz - 2 Hz. The 

predominant frequency component in the EEG signal vanishes when rats started to move and breath 

spontaneous. Svnchronization indexes have been calculated for the čase of delta waves of EEG and 

ECG, delta waves of EEG and respiratory, and ECG and respiratory signals. Svnchronization was 

distinctive only in the latter čase. The depth of anaesthesia is related to svnchronization states betvveen 

the cardiac and respiratory oscillators. We applied the vvavelet bispectrum to the EEG signal of rat20 

undergoing anaesthesia, in order to demonstrate its applicability. The analysis showed that the cardio-

respiratory synchronization can be detected in the EEG signal. It can be distinctively seen from the 

evolution of the biamplitude and the biphase, when the svnchronization 4:1 onsets and when it 

disappears. We can conclude that cardiac and respiratory C V systems and delta waves of EEG signal 

are coupled during the anaesthesia. The physiological question arises vvhether cardio-respiratory 

synchronization might be a consequence of, or result in, delta waves of EEG signal when rats are 

undergoing anaesthesia. One possible hvpothesis explains that anaesthesia reduces RS A [83, 84]. 
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Anaesthesia may stimulate inhibitory glycine and GABAergic synapses in the NTS-NA axis, whose 

projections then inhibit higher brain centres such as the limbic system. It also modulates the level of 

endogenous hypothalamic peptides responsible for the natural control of brain metabolism that are 

known to affect vagal control of cardiac rhythm [82], and which would be affected if anaesthesia 

artificially reduces brain metabolism [1]. That is, anaesthesia may affect the delta waves of EEG 

signal in such a manner that they drive the cardiac and respiratory systems to synchronization. 

Similarly, as we analysed the cardio-respiratory interaction, we could also analyse cardio-delta waves 

of EEG signal and respiratory-delta waves of EEG signal interaction to study their interaction and the 

nature of couplings, whereas this is not the intent of this work. Wavelet bispectrum proved to be a 

promising tool to analyse EEG signals during anaesthesia. It can detect the delta waves of EEG signal 

phase coupling states. 

A long-term aim is therefore to develop a coupled oscillator model that can provide a description of 

the system, quantify the couplings and relate their values to its different states of health or disease. The 

vvavelet bispectrum may provide a link betvveen theoretical CVS models and experimental 

measurements. 

Higher order spectral methods can be used to study arbitrary interactions among coupled oscillators: of 

quadratic, cubic, or even higher order. In this work we have concentrated on the lovvest interaction, 

using the third-order spectrum or bispectrum. It has been suggested to proceed to the calculation of 

even higher-order spectra than the third-order bispectrum. For higher orders, the volume of the 

calculations rises substantially, and the method becomes increasingly demanding, numerically. 

However, the difficulty is not mathematical, since the generalization of the bispectrum to higher order 

is straightforward, but practical. The representation and interpretation of such high-order spectra 

become increasingly difficult vvhich is the limiting factor. We aspect new, powerful computer 

visualization tools to open up this direction of development in the coming future. 
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The time-phase bispectral method allows us to determine the nature of the couplings among the 

interacting nonlinear oscillators. Its benefits include: (i) the possibility of observing the whole 

frequency domain simultaneously; (ii) detecting that two or more subsystems are interacting with each 

other; (iii) quantification of the strength of the interaction; (iv) determination of whether the coupling 

is additive linear or quadratic, or parametric in one of the frequencies; and (v) the method is suitable 

for the analysis of noisy signals. 

The effect of the coupling between the cardiac and respiratory osciliations is episodic, rather than 

fixed and permanent. Frequency and phase couplings interchange. Nonlinear coupling exists during 

spontaneous as well as during paced respiration. The inter-oscillator coupling is relatively weak. 

Bispectral and cross-bispectral analysis showed that the coupling information among cardiac and 

respiratory processes is inherit from the processes, and is spatially invariant. Both processes are of 

central origin, and their phase relationships can be observed in ECG, blood flow and blood pressure 

signals derived from widely separated sites. 

The nonlinear nature of the interaction between the cardiac and respiratory osciliations is inherent, and 

it becomes more pronounced when the frequency of respiration is kept constant. 

Bispectral analysis is capable of determination of frequency and phase couplings in the processing and 

understanding of cardiovascular signals. 

Bispectral analysis is more sensitive to interactions and is more noise robust than the synchrogram. It 

detects the phase synchronization, and nevertheless, yields different information from that which can 

be resolved from a synchrogram. A simple relation between the synchrogram and the bispectrum 

revealed information cannot be drawn. 

Results of CV blood flow signals analysed using wavelet bispectral method gave the same results as in 

the čase of using the Fourier based bispectrum method. There are no obvious advantages of wavelet 

bispectral method over the Fourier bispectral method, when detecting cardio-respiratory interaction 

that fulfils the conditions defined for quadratical coupling onset. 
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It is recommended that the wavelet and cross-wavelet bispectrum are applied to cardiovascular signals, 

rather than to the Fourier based bispectrum. They allow intermittent phase couplings to be detected, 

optimum tirne and frequency resolution, simple relation between scale and frequency, direct 

interpretation, normalization to signal energy, smaller statistical error, arbitrary frequency step and are 

computationally less demanding. 

We can conclude that cardiac and respiratory CV systems and delta waves of EEG signal are coupled 

during the anaesthesia. Anaesthesia may stimulate inhibitory glycine and GABAergic synapses in the 

NTS-NA axis, whose projections then inhibit higher brain centres, such as the limbic system. It also 

modulates the level of endogenous hypothalamic peptides, responsible for the natural control of brain 

metabolism that are known to affect vagal control of cardiac rhvthm, and which would be affected if 

anaesthesia artificially reduces brain metabolism. Anaesthesia may affect the delta waves of EEG 

signal in such a manner that it drives the cardiac and respiratory system to svnchronization. 

A long-term aim is therefore to develop a coupled oscillator model that can provide a description of 

the system, quantify the couplings and relate their values to its different states of health or disease. The 

wavelet bispectrum may provide a link betvveen theoretical CVS models and experimental 

measurements. 

124 



R E F E R E N C E S 

R E F E R E N C E S 

[I] M.T. Alkire, C.D.J. Pomfrett, Toward a monitor of depth: Bispectral index (BIS) and respiratory 

sinus arrhythmia (RSA) both monitor cerebral metabolic reduction during isoflurane 

anaesthesia, Anaesthesiology 87, A421 (1997). 

[2] A. Andronov, A. Vitt and S. Khaykin, Theory of oscillations (Pergamon Press, Oxford, 1966). 

[3] R.M. Berne, M.N. Levy (Eds.), Physiology (Mosby, St. Louis, Missouri, 1998). 

[4] I. Blekhman, Synchronization of dynamical systems (Nauka, Moscow, 1971). 

[5] B. Boashash, P.J. 0'Shera, Polynomial Wigner-Ville distributions and their relationship to time-

varying higher order spectra, IEEE Trans. Signal Processing 42, 216 (1994). 

[6] M. Bračič and A. Stefanovska, Wavelet-based analysis of human blood-flow d>namics, Buli. 

Math.Biol. 60,919(1998). 

[7] M. Bračič and A. Stefanovska, Wavelet analysis in studying the dynamics of blood circulation, 

Nonlinear Phenom. Complex Syst. 2, 68 (1999). 

[8] M. Bračič Lotrič, Couplings among Subsystems that regulate Blood Flow, Ph.D. Thesis, University 

of Ljubljana, 1999. 

[9] M. Bračič, P.V.E. McClintock and A. Stefanovska, Stohastic and Chaotic Dynamics in the Lakes 

(Melville, Nevv York: American Institute of Phvsics, 2000). 

[10] M. Bračič Lotrič and A. Stefanovska, Svnchronization and modulation in human 

cardiorespiratory system, Physica A 283, 451 (2000). 

[II] D.R. Brillinger and M. Rosenblatt, Spectral Analysis ofTime Series (Nevv York, Willey, 1967). 

[12] T.H. Bullock, J.Z. Achimovvicz, R.B. Duckrovv, S.S. Spencer, V.J. Iragui-Madoz, Bicoherence of 

intracranial EEG activitv, Electroenceph. Clin. Neurophysiology 103, 661 (1997). 

125 



[13] A.C. Burton and R.M. Taylor, A study of the adjustment of peripheral vascular tone to the 

requirements of the regulation of body temperature, Am. J. Phvsiol. 129, 565 (1940). 

[14] V. Chandran, Two-dimensional Bispectral Analysis and Leakage effects on the Statistics of the 

Bispectrum, Ph.D. Thesis, Washington State University, 1990. 

[15] V. Chandran and S.L. Elgar, Mean and variance of estimates of the bispectrum of a harmonic 

random process - an analysis including leakage effects, IEEE Transactions on Signal Processing 

39,2640(1991). 

[16] A.V. Dandavvate and G.B. Giannakis, Asvmptotic theory of mixed tirne averages and kth-order 

cvclic-moment and cumulant statistics, IEEE Transaction on Information Theory 41, 216 

(1995). 

[17] I. Daubechies, Ten Lectures on JVavelets, (Philadelphia, SIAM, 1992). 

[18] C.T.M. Davies and J.M.M. Neilson, Sinus arrhvthmia in man at rest, J. Appl. Phvsiol. 22, 947 

(1967). 

[19] L.C. Davies, D.P. Francis, A. Crisafulli, A. Concu, A.J.S. Coats and M. Piepoli, Oscillations in 

stroke volume and cardiac output arising from oscillatory ventilation in humans, Exp. Physiol. 

85, 857 (2000). 

[20] V. DeBrunner, M. Ozavdin, and T. Przebinda, Resolution in time-frequency, IEEE Transactions 

on Signal Processing 47, 783 (1999). 

[21] J.C. Drummond, CA. Brann, D.E. Perkins, D.E. Wolfe, A comparison of median frequency, 

spectral edge frequency, a frequency band power ratio, total power, and dominance shift in the 

determination of depth of anesthesia, Acta. Anaesthesiology Scand. 35, 693 (1991). 

[22] D.L. Eckberg, Nonlinearities of the human carotid baroreceptor-cardiac reflex, Circ. Res. 47, 208 

(1980). 

[23] D.L. Eckberg, The human respiratory gate, J. Phvsiol. 548, 339 (2003). 

126 



R E F E R E N C E S 

[24] P. Engel, G. Hildebrandt, and H.-G. Scholz, Die Messung der Phasenkopplung zwischen 

Herzschlag und Atmung beim Menschen mit einem neuen Koinzi-denzmeBgerat, Pflugers Arch. 

298,258(1968). 

[25] J.W.A. Fackrell, Bispectral Analysis of Speech Signals, Ph.D. Thesis, University of Edinburgh, 

1996. 

[26] J.R. Fonollosa, C.L. Nikias, Wigner higher order moment spectra: Defmition, properties, 

computation and application to transient signal analysis, IEEE Trans. Signal Processing 41, 245 

(1993). 

[27] RJ. Gajraj, M. Doi, H. Mantzaridis, G.N.C. Kenny, Analysis of the EEG bispectrum, auditory 

evoked potentials and the EEG power spectrum during repeated transitions from consciousness 

to unconsciousness, Br. J. Anaesthesy 80,46 (1998). 

[28] A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets 

of constant shape, SIAM J. Math. Anal. 15, 723 (1984). 

[29] S. Hales, J. Physiol, Statistical Essays II, Haemastatisticks (London, Innings Manby, 1773). 

[30] C. Hayashi, Nonlinear oscillations inphysical systems (McGraw-Hill, New York, 1964). 

[31] M.J. Hinch, Testing for Gaussianity and linearity of a stationary tirne series, J. Time Ser. Anal. 3, 

169(1982). 

[32] M.J. Hinch, Detecting a transient signal by bispectral analysis, IEEE Transactions on Acoustics. 

Speech. and Signal Processing 38, 1277 (1990). 

[33] M.J. Hinch, On the principal domain of the discrete bispectrum of a stationary signal, IEEE 

Transactions on Signal Processing 43, 2130 (1995). 

[34] J.A. Hirsch and B. Bishop, Respiratory sinus arrhythmia in humans: How breathing pattern 

modulates heart rate, Am. J. Physiol. 241, H620 (1981). 

[35] U. Hoffman, A. Yanar, U.K. Franzeck, J.M. Edvards, A. Bollinger, The frequency histogram: A 

new method for the evaluation of laser Doppler flux motion, Microvascular Res. 40, 293 (1990). 

121 



[36] NE. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N. Yen, C.C. Tung, and H.H. 

Liu, The empirical mode decomposition method and the Hilbert spectrum for non-stationary 

tirne series analvsis, Proč. R. Soc. Lond. A 454, 903 (1998). 

[37] C.H. Hugenii (Huvgens), Horologium Oscillatorium (Apud F. Muguet, Parisiis, France, 1673). 

[38] J. Jamšek, A. Stefanovska, Selektivna diskretna Fourierova analiza, Zbornik sedme 

Elektrotehniške in računalniške konference ERK '98 B, 339 (1998). 

[39] J. Jamšek, Bispectral Analysis ofCardiovascularSignals, M.Se. Thesis, Universitv of Ljubljana, 

2000. 

[40] J. Jamšek, A. Stefanovska, P.V.E. McClintock and I.A. Khovanov, Time-phase bispectral 

analvsis, Phys. Rev. E 68, 016201 (2003). 

[41] J. Jamšek, A. Stefanovska and P.V.E. McClintock, nonlinear cardio-respiratorv interactions 

revealed by time-phase bispectral analvsis, Phvsics in Medicine and Biologv 49, 4407 (2004). 

[42] N.B. Janson, A.G. Balanov, V.S. Anishchenko and P.V.E. McClintock, Phase relationship 

betvveen two or more interaeting processes from one-dimensional tirne series. I. Basic theorv, 

Phys. Rev. E 65, 036211 (2002). 

[43] G. Kaiser, A Friendly Guide to JVavelets (Boston, Birkhauser, 1994). 

[44] D. Kaplan and L. Glass, Understanding Nonlinear Dynamics (New York, Springer, 1995). 

[45] J. Kastrup, J. Bhlow and N.A. Lassen, Vasomotion in human skin before and after local heating 

recorded with laser Doppler flowmetry. A method for introduetion of vasomotion, Int. J. 

Microcirc. 8, 205(1989). 

[46] T. Kenner, H. Passenhofer and G. Schwaberger, Method for the analysis of the entraiment 

betvveen heart rate and ventilation rate, Pflugers Archiv. 363, 263 (1976). 

[47] L. Keselbrener, S. Akselrod, Selective Discrete Fourier Transform Algorithm for Time-

Frequency Analvsis, IEEE Transactions on Biomedical Engineering 43, 789 (1996). 

128 



R E F E R E N C E S 

[48] Y.C. Kim, J.M. Beall, E.J. Powers, and R.W. Miksad, Bispectrum and nonlinear wave coupling, 

Phys. Fluids 32, 258 (1980). 

[49] Y.C. Kin and E.J. Powers, Digital bispectral analysis and its applications to nonlinear wave 

interactions, IEEE Transactions on Plasma Science PS-7, 120 (1979). 

[50] R.I. Kittney, O. Rompelhan, Analysis of the interaction of the human blood pressure and thermal 

system, In: J. Perkins (Ed.), Biomedical Computing, Pitman Medical, London, 49 (1977). 

[51] B. Kleiner, P. J. Huber, G. Dummermuth, Analysis of the interrelations betvveen frequency bands 

of the EEG by means of the bispectrum, Electroenceph clin. Neurophysiology 27, 693 (1969). 

[52] H. Koepchen, Rhythms in Physiological Systems (Springer-Verlag, Berlin, 1991). 

[53] M. Koskinen, T. Seppanen, J. Tuukkanen, A. Yli-Hankala, V. Jantti, Propofol anesthesia induces 

phase synchronization changes in EEG, Clinical Neurophysiology 112, 386 (2001). 

[54] Y. Kuramoto, Chemical Oscillations, JVaves, and Turbulence (Berlin, Springer, 1984). 

[55] J.R. Levick, An Introduction to Cardiovascular Physiology (London, Arnold, 2000). 

[56] C. Ludwig, Beitrage zur Kenntnis des Einflusses des Respirationbewegungen of den Blutumlaf 

im Aortensystem, Arch. Anat. Physiol. Wiss. Med. 13, 242 (1847). 

[57] V.K. Madiseti and D.B. Williams, The Digital Signal Processing Handbook (Florida, CRC Press, 

1998). 

[58] R. Malek-Madani, Advanced Engineering Mathematics, (Reading, Addison Wesley Longman, 

1998). 

[59] A. Malliani, M. Pagani, F. Lombardi and S. Cerutti, Cardiovascular neural regulation explored in 

the frequency domain, Circulation 84, 482 (1991). 

[60] J.M. Mendel, Tutorial on higher-order statistics (spectra) in signal processing and system theory: 

Theoretical results and some applications, Proceedings of the IEEE 79, 278 (1991). 

129 | 



[61] B.Ph. van Milligen, C. Hidalgo, and E. Sanchez, Nonlinear phenomena and intermittency in 

plasma turbulence, Physical Rev. Lett. 74, 395 (1995). 

[62] B.Ph. van Milligen, E. Sanchez, T. Estrada et al., Wavelet bicoherence: a new turbulence analysis 

tool, Phys. Plasmas 2, 3017 (1995). 

[63] B. Musizza, Vzorčne povezave med biološkimi sistemi: Pristop k ugotavljanju globine anestezije, 

B.Sc. Thesis, University of Ljubljana, 2000. 

[64] B. Musizza, F. Bajrovič, P.V.E McClintock, M. Paluš, J. Petrovčič, and A. Stefanovska, Cardio-

respiratory and neural interactions in anaesthesia, Nature, submited. 

[65] J. Muthuswamy, D.L. Sherman, N.V. Thakor, Higher-order spectral analysis of burst patterns in 

EEG, IEEE Trans. Biomed. Eng. 46, 92 (1999). 

[66] A.K. Nadi, Robust estimation of third-order cumulants in applications of higher-order statistics, 

IEE Proceedings-F 140, 380 (1993). 

[67] A.K. Nadi, Higher-order statistics in signal processing (Cambridge, Cambridge University Press, 

1998). 

[68] C.L. Nikias and J.M. Mendel, Signal processing with higher-order spectra, IEEE Signal 

Processing Magazine 7, 10 (1993). 

[69] C.L. Nikias and A.P. Petropulu, Higher-order spectra analysis:A nonlinear signal processing 

framework (Englewood Cliffs, Prentice-Hall, 1993). 

[70] M. Paluš, Kolmorogov entropy from tirne series using information-theoretic functionals, Neural 

Netvvork World 7, 269 (1997). 

[71] M. Paluš and D. Hoyer, Surrogate data in detecting nonlinearity and phase svnchronization, IEEE 

Engineering in Medicine and Biology 17, 40 (1998). 

[72] M. Paluš, V. Komarek, Z. Hrnčif and K. Štebrova, Svnchronization as adjustment of information 

rates: detection from bivariate tirne series, Phys. Rev. E 63, 046211 (2001). 

130 



REFERENCES 

[73] M. Paluš and A. Stefanovska, Direction of coupling from phases of interacting oscillators: an 

information-theoretic approach, Phys. Rev. E 67, 055201 (R) (2003). 

[74] H. Parthasarathv, S. Prasad and S.D. Joshi, An ESPRIT-Like method for quadratic phase coupling 

estimation, IEEE Transactions on Signal Processing 43, 2346 (1995). 

[75] J. Penaz, Maver VVaves: Historv and methodologv, Automedica 2, 135 (1978). 

[76] R.J. Perry and M.G. Amin, On computing and implementing the running bispectra, IEEE 

Transaction on Signal Processing 43, 1017 (1995). 

[77] L.A. Pflug, G.E. loup, and J.W. loup, Sampling requirements and aliasing for higher-order 

correlations, J. Acoust. Soc. Am. 94, 2159 (1993). 

[78] L.A. Pflug, G.E. loup, and J.W. loup, Sampling requirements for nth-order correlations, J. 

Acoust. Soc. Am. 95, 2762 (1994). 

[79] A.S. Pikovskv, M.G. Rosenblum, and J. Kurths, Svnchronization; A universal concept in 

nonlinear sciences (Cambridge, Cambridge Universitv Press, 2001). 

[80] M.B. Priestlev and M.M. Gabr, Multivariate Analysis: Future Directions (North Holland, 1993). 

[81] J.G. Proakis and D.G. Manolakis, Digital Signal Processing (New Jersev, Prentice-Hall, 1996). 

[82] V.M. Pokrovskv, O.E. Osadchiv, Regulatorv peptides as modulators of vagal influence on cardiac 

rhvthm, Can. J. Phvsiol. Pharmacol. 73, 1235 (1995). 

[83] C.J.D. Pomfrett, J.R. Sneyd, M. Beech, T.E.J. Healy, Variation in respiratory sinus arrhvthmia 

may reflect levels of anaesthesia, British Journal of Anaesthesia 67, 6216 (1991). 

[84] C.J.D. Pomfrett, Heart rate variability, BIS and the depth of anaesthesia, British Journal of 

Anaesthesia 82, 659(1999). 

[85] M.R. Raghuveer, Time-domain approaches to quadratic phase coupling estimation, IEEE 

Transactions on Automatic Control 35, 48 (1990). 

131 



[86] I.J. Rampil, A primer for EEG signal processing in anesthesia, Anesthesiologv 89, 815 (1998). 

[87] T.S. Rao and K.C. Indukumar, Spectral and wavelet methods for the analvsis of nonlinear and 

nonstationar tirne series, J. Franklin Inst. 33, 425 (1996). 

[88] M. Renna, R. Venturi, Bispectral index and anaesthesia in the elderv, Minerva Anaesthesiologv 

66, 398 (2000). 

[89] C. Rosow, P.J. Manberg, Bispectral Index Monitoring, Anesthesiol Clin North America 19, 947 

(2001). 

[90] M.G. Rosenblum, A.S. Pikovskv, J. Kurths, Phase svnchronization of chaotic oscillators, Phys. 

Rev. Letters 76, 1804(1996). 

[91] M.G. Rosenblum, A.S. Pikovskv, J. Kurths, From phase to lag svnchronization in coupled chaotic 

oscillators, Phys. Rev. Letters 78, 4193 (1997). 

[92] M.G. Rosenblum, A.S. Pikovskv, C. Schafer, P. Tass, and J. Kurths, Handbook of Biological 

Physics (Elsevier, 2000). 

[93] M.G. Rosenblum, and A.S. Pikovsky, Detecting direction of coupling in interacting oscillators, 

Phys. Rev. E. 64, 045202 (2001). 

[94] M.G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrovvka, Identification of 

coupling direction: Application to cardirespiratory interaction, Phys. Rev. E 65, 041909 (2002). 

[95] F. Rsachke, Temporal Disorder in Human Oscillatory Systems (Springer-Verlag, Berlin, 1987). 

[96] N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, and H.D.I. Abarbanel, Generalized svnchronization 

of chaos in directionally coupled chaotic svstems, Phys. Rev. E. 51, 980 (1995). 

[97] S. Rzeczinski, N.B. Janson, A.G. Balanov and P.V.E McClintock, Regions of cardiorespiratory 

svnchronization in humans under paced respiration, Phys. Rev. E 66, 051909 (2002). 

IJLi 



R E F E R E N C E S 

[98] B. Schack, H. Witte, M. Helbig, Ch. Schelenz, M. Specht, Time-variant non linear phase coupling 

analysis of EEG burst patterns in sedated patiens during electroencephalic burst suppression 

period, Clinical neurophysiology 112, 1388 (2001). 

[99] C. Schafer, Analysis of synchronization in complex systems: Application to physiological data, 

Ph.D. Thesis, University of Potsdam, 1998. 

[100] C. Schafer, M.G. Rosenblum, J. Kurths, H.H. Abel, Heartbeat svnchronized with ventilation, 

Nature 293, 239 (1998). 

[101] C. Schafer, M. G. Rosenblum, H.H. Abel and J. Kurths, Svnchronization in the human 

cardiorespiratory svstem, Phys. Rev. E 60, 857 (1999). 

[102] T. Schreiber and A. Schmitz, Improved surrogate data for nonlinearity tests, Phys. Rev. Lett. 77, 

635(1996). 

[103] T. Schreiber, Phys. Measuring information transfer, Rev. Lett. 85, 461 (2000). 

[104] H. Seidel and H. Herzel, Analysing Entrainment of Heartbeat and Respiration with Surrogates, 

IEEE Eng. Med. Biol. Mag. 17, 54 (1998). 

[105] I. Sharfer and H. Messer, The bispectrum of sampled data: Part I-detection of the sampling jitter, 

IEEE Transactions on Signal Processing 41, 296 (1993). 

[106] M. Small and K. CA. Tse, Detecting determinism in tirne series: The method of surrogate data, 

IEEE Trans, on Circuits and Sys. 50, 663 (2003). 

[107] T.B. Šolan, Anaesthetic effect on electrophysiologic recordings, J. Clin. Neurophysiology 15, 

217(1998). 

[108] T. Soderstrom, A. Stefanovska, M. Veber and H. Svenson, Involvement of svmpathetic nerve 

activity in skin blood flow oscillations in humans, Am. J. Phvsiol. 284, H1638 (2003). 

[109] A. Stefanovska and P. Krošelj, Correlation integral and frequency anlysis of cardiovascular 

functions, Open Sys. & Infomation Dyn. 4, 457 (1997). 

133 



[110] A. Stefanovska and M. Bračič, Physics of the human cardiovascular systems, Contemporary 

Phys. 40,31(1999). 

[111] A. Stefanovska, M. Bračič and H.D. Kvernmo, Wavelet analvsis of oscillations in the peripheral 

blood circulation measured by laser Doppler technique, IEEE Trans. Biol. Med. Eng. 46, 1230 

(1999). 

[112] A. Stefanovska and M. Bračič, Reconstructing cardiovascular dvnamics, Control Eng. Pract. 7, 

161 (1999). 

[113] A. Stefanovska and M. Hožič, Spatial synchronization in the human cardiovascular system, 

Prog. of Theor. Phys. Suppl. 139, 270 (2000). 

[114] A. Stefanovska, H. Haken, P.V.E. McClintock, M. Hožič, F. Bajrovič and S. Ribarič, Reversible 

transitions betvveen svnchronization states of the cardiorespiratory system, Phys. Rev. Lett. 85, 

4831 (2000). 

[115] A. Stefanovska, M. Bračič Lotrič, S. Strle and H. Haken, The cardiovascular system as coupled 

scillators?, Phvsiol. Meas. 22, 535 (2001). 

[116] A. Stefanovska, D.G. Luchinsky and P.V.E. McClintock, Modelling couplings among the 

oscillators of the cardiovascular system, Physiol. Meas. 22, 551 (2001). 

[117] A. Stefanovska, Cardiorespiratory interactions, Nonlinear Phenom. Complex Syst. 5, 462 

(2002). 

[118] K. Stutte and G. Hildebrandt, Untersuchungen iiber die Koordination von Herzschlag und 

Atmung, Pflugers Arch. 289, R47 (1966). 

[119] K. Suder, F.R. Drepper, M. Schiek and H.H. Abel, One-dimensional, nonlinear determinism 

characterizes heart rate pattern during paced respiration, Am. J. Physiol. 275, HI092 (1998). 

[120] A. Swami, G.B. Giannakis and G. Zhou, Bibliography on high-order statistics, Signal Processing 

60,65(1997). 

I3H 



[121] P. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, H.-J. 

Freund, Detection of n:m phase locking from noisy data: Application to 

magnetoencephalography, Phys. Rev. Lett. 81, 3291 (1998). 

[122] J. H. Thinker, F.W, Sharbrough, J.D. Michenfelder, Anterior shift of the dominant EEG rhythm 

during anesthesia in the Java monkey, Anesthesiology 46, 252 (1977). 

[123] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer, Testing for nonlinearity in tirne 

series: The method of surrogate data. Physica D 58, 77 (1992). 

[124] J. Theiler, D. Prichard, Using "Surrogate Surrogate Data' to calibrate the actual rate of false 

positives in tests for nonlinearity in tirne series, Fields Inst. Comm. 11, 99 (1997). 

[125] B. van der Pol and J. van der Mark, The heartbeat considered as a relaxation oscillation, and an 

electrical model of the heart, Phil. Mag. 7, 763 (1928). 

[126] M.B. Visscher, A. Rupp, and F.H. Scott, Respiratory wave in arterial blood 

pressure, Am. J. Phvsiol. 70, 586 (1924). 

[127] G. Zhou, and G.B. Giannakis, Retrieval of self-coupled harmonics, IEEE Transactions on Signal 

Processing 43, 1173(1995). 

[128] V.S. Zykov, G. Bordiougov, H. Brandtstadter, I. Gerdes, and H. Engel, Periodic forcing and 

feedback control of nonlinear lumped oscillators and meandering spiral waves, Phys. Rev. E 

68,016214(2003). 

• • • • 
135 



131 



—E— 

ECG See electrocardiogram 

EEG See electroencephalogram 

electrocardiogram 30 

electroencephalogram 3, 107 

—F— 

Fourier transform 79 

frequency locking See frequency 

synchronization 

frequency modulation 52, 71, 75 

frequency resolution See resolution 

frequency step 101 

frequency sum-rule 82 

—G— 

Gaussian noise See noise 

—H— 

harmonics 47 

heart cycle 7 

Heisenberg uncertainty principle 33, 99 

high-order statistics 13 

HOS See high-order statistics 

Huygens 7 

instantaneous phase 51 

—K— 

Kuramoto 59 

—L— 

laser Doppler technique 30 

limit cycle 5, 8 

Poincare 8 

—M— 

magnitude 14, 82 

mechanism 

extrinsic 40 

intrinsic 40 

modulation 

frequency 27 

moments 13 

Morlet See mother wavelet 

mother wavelet 78 

Morlet 80 

mutual prediction approach See 

synchronization 

mutual synchronization See synchronization 

—N— 

noise 10, 60 

Gaussian 21, 97 

nonidentical systems 60 

normalization 16 

null hypothesis 38 

—O— 

oscillator 

forced 53 

Poincare 17 

relaxation 47 

van derPol 47 

—P— 

paced breathing 30 

Parseval identity 79 

periodicity 77 

phase 14, 82 

definition 46 

randomization method 38 

slips 60 

phase locking See phase synchronization 

principal domain 15 

inner triangle 15 

outer triangle 15 

—R— 

relative phase 51 

resampling 32 

resolution 

frequency 81, 100 

tirne 84, 100 

138 



l N D E X 

respiration 

paced 30, 53 

spontaneous 30 

respiratory sinus arrhythmia 2, 52 

RS A See respiratory sinus arrhythmia 

—S— 

scale 78 

scalogram 79 

SDFTSee Selective Discrete Fourier Transform 

selective discrete Fourier transform 102 

Short Time Fourier Transform 14 

STFT See Short-Time Fourier Transform 

stroboscopic technique 51 

subsvstems 8 

cardiac 6 

endothelial 6 

mvogenic 6 

neural 6 

respiratorv 6 

surrogate data 38 

svnchrogram 51 

svnchronization 10, 51, 57, 74 

complete 60 

frequency 58 

generalized 60 

global 59 

high-order 59 

lag 59 

mutual 58 

mutual prediction approach 71 

phase 58 

phase svnchronization 10 

region 58 

strong 74 

weak 74 

—T— 

torus 10 

—U— 

uncertaintv principle See Heisenberg 

uncertaintv principle 

unidirectional 53 

uniformlv 113 

univariate data See data 

—V— 

van der Pol See oscillator 

—W— 

wavelet bispectrum 82 

adopted Morlet vvavelet 84 

biamplitude 83 

biphase 83 

cross-bispectrum 83 

definition 82 

normalization 85 

parameters 86 

scale sum-rule 82 

vvavelet transform 77-80 

definition 78 

discretization 80 

Morlet vvavelet 80 

mother vvavelet 78 

scale 81 

weakly nonlinear 47, 50 



C D N T R I B U T I D N S T D S C I E N C E 

C D N T R I B U T I D N S T O S C I E N C E 

Original contributions to science: 

1. The study of interacting nonlinear oscillators, using time-phase bispectral estimators of 

biamplitude and biphase. 

We have introduced, for the first tirne, time-phase bispectral estimators of biamplitude (3.6) and 

biphase (3.5) for unveiling phase coupling information from univariate data (Chapter 3, pages 

13 to 16). We have shown that the introduced method is suitable for studving interacting 

nonlinear oscillators, and that it is capable of quantifying the strength of the interaction by 

bispectral estimate - biamplitude, whose value is proportional to the coupling coefficient value 

£•(2.6) of coupled nonlinear oscillators (Chapter 2, pages 7 to 12), and revealing the nature of 

the coupling, i.e., whether the coupling is additive linear or quadratic, or parametric in one of 

the frequencies (Chapter 4, pages 17 to 28). 

2. Cardio-respiratory coupling in human cardiovascular svstem hvpothesis conflrmation. 

We have applied, for the first tirne, the time-phase bispectral method to cardiovascular blood 

flow signals, in order to studv the nature of cardio-respiratorv interactions. Despite the 

limitations of the method used to resolve between linear and nonlinear couplings in extreme 

conditions, the method is applicable before the couplings become too complex, considering the 

phvsiological knowledge of the svstem (Chapter 5, pages 29 to 56). Couplings betvveen cardiac 

and respiratorv oscillations are episodic, rather than fixed and permanent. Frequency and phase 

couplings interchange. Nonlinear coupling exists during spontaneous, as well as during paced, 

respiration. It becomes more pronounced vvhen the frequency of respiration is kept constant. 

The inter-oscillator coupling is relatively weak (Chapter 5 and 6, pages 29 to 37 and 57 to 76). 

The coupling information among cardiac and respiratory processes is inherent from the 

processes and is spatially invariant. Both processes are of central origin, and their phase 

relationships can be observed in ECG, blood flow, and blood pressure signals derived from 

widely separated sites (Chapter 5, pages 37 to 46). 

3. Bispectum estimates generalization to wavelets. 

We have generalized bispectum estimates - biphase (7.20) and biamplitude (7.21) - to wavelets. 

The method is suitable for intermittent phase coupling detection, while providing optimum tirne 
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and frequency resolution. It may provide a link bervveen theoretical CVS models and 

experimental measurements (Chapter 7 and 8, pages 77 to 106). 

4. Coupling between cardiac and respiratorv svstems, and delta waves of EEG signals 

determination using generalized bispectral estimates. 

Delta waves of EEG signals of rats undergoing anaesthesia, reveal a phvsiological relation 

between cardiac and respiratorv svstems and delta waves of EEG signals. The cardio-respiratorv 

svnchronization might be a consequence of delta waves of EEG signals of rats undergoing 

anaesthesia (Chapter 9, pages 107 to 114). 

Portions of this thesis were published in the following papers: 
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2. J. Jamšek, A. Stefanovska and P.V.E. McClintock, Nonlinear cardio-respiratory interactions 

revealed by time-phase bispectral analvsis, Phvsics in Medicine and Biology 49, 4407 (2004). 

Portions of this thesis were presented in the follovving scientific meetings: 

1. J. Jamšek and A. Stefanovska, Bispectral analysis of cardiovascular signals, Nonlinear Seminar, 

Department of nonlinear physics, Lancaster University, United Kingdom (7.2. 2002). 

2. J. Jamšek, A. Stefanovska and P.V.E. McClintock, Time-phase bispectral analysis, basic theory and 

applications, Nonlinear Seminar, Department of nonlinear physics, Lancaster University, United 

Kingdom (12.5. 2002). 

3. J. Jamšek, A. Stefanovska and P.V.E. McClintock, Cardiovascular System, Cardiovascular system, 

time-phase bispectral analysis, basic theory and application, 2nd Slovenia-Japan Seminar, Center 

for Applied Mathematics and Theoretical Phvsics University of Maribor, Slovenia (28.5.-5.6 

2003). 

4. J. Jamšek and A. Stefanovska, Quadratic cardio-respiratory coupling?, INTAS international 

Workshop, Department of Phvsics, University of Pisa, Italy (22-24.4. 2003). 

5. J. Jamšek, A. Stefanovska and P.V.E. McClintock, Nonlinear cardio-respiratory interaction, 

INTAS-ESF international Workshop, Ljubljana, Slovenia (10-13.11. 2003). 
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A P P E N D I X 

A P P E N D I X 

A. Variance ofthe bispectrum estimate 

B. Generation ofharmonics 

A. Variance ofthe bispectrum estimate 

In order to interpret bispectral values from a finite length tirne series, the statistics of bispectrum 

estimates must be known [49]. To achieve statistical stabilitv, the tirne series is divided into K 

segments for averaging. Phases of different segments are independent of each other and random 

variables over [0, 2n). When there is a large number of segments, the estimate gains statistical stabilitv 

at the expense of power spectral and bispectral resolution. For a real signal, with a finite number of 

points, the compromise between bispectral resolution and statistical stabilitv may be expected at K 

approximately 30. Estimates are subject to statistical error, such as bias and variance. An estimate 

must be consistent, that is the statistical error must approach zero in the mean-square sense as the 

number of realizations becomes infinite. Here we neglect the effects of finite tirne series length, we 

assume that they are sufficiently long. Let us consider the bias and the variance of the bispectrum 

estimate B(k,l). The expected value of B(kJ) will be 

(Al) 

as K becomes infinite, X\ is the DFT ofthe z-th segment. Thus, B(kJ) can be taken as an unbiased 

estimate [14, 15, 25]. Its variance will be 

m 



Note that the variance is inverselv proportional to K. From a mathematical statistics point of view, it is 

a nontrivial task to compute the quantity in the bracket in terms of low-order spectra, but one may 

write a good approximation [14, 15, 25] 

in which čase the variance will be 

Note that it is a consistent estimate in the sense that the variance approaches zero as K becomes 

infinite. The variance is proportional to the product of the powers (P(k) = E[X(£)Z*(A:)]) at the 

frequencies k, l and k + I. Consequently, a larger statistical variability is introduced in estimating larger 

values in the bispectrum. Finally, the variance is proportional to [1 - b2(k, /)], where the bicoherence b2 

is a normalized bispectrum, b2(k, l) = E[B(k,l)]21 [P(k)P(l)P(k + /)]. That is, when the oscillations at 

k, l and k + l are nonlinearly coupled (b2 - 1), the variance approaches zero, and when the components 

are statistically independent (b2 ~ 0), the variance is proportional to the power at each spectral 

component [14, 15, 25]. 

Brillinger and Rosenblatt [11] have investigated the asvmptotic mean and variance of Fourier-type 

estimates of high-order spectra and proved that under certain assumptions the £-th-order spectral 

estimate is asymptotically unbiased and Gaussian distributed and that estimates of different-order are 

asymptotically independent. The variances of the real and imaginary parts of the bispectrum are 

asymptotically (i.e., for large K) Gaussian and are equal, var{Re[#(&,/)]} = var{lm[ B(k,l)]}. For a 

perfect phase-coupled triplet, the variances of the real and imaginary parts are equal to zero. In the 

čase of no coupling, there is an identical contribution to the variances from the real and imaginary 

parts of the estimate of the bispectrum. 

The total variance is a sum of individual (i = 1,..., K) contributions, because different triplets are 

mutually statistically uncorrelated in the absence of phase coupling. Partial coupling can be expected 

to result in a combination of perfectly phase-coupled oscillations, and oscillations with randomly 

changing phases. 

m 
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B. Generation of harmonics 

In this appendix we show which harmonics appear in the spectrum of a weakly driven weakly 

nonlinear oscillator, and in particular we establish which harmonics correspond to quadratic coupling. 

The analysis that follows is for a Poincare oscillator, but a similar result also follows for, e.g., a van 

der Pol or other oscillators of similar type. 

Consider an oscillator of the form 

x, =-xlrl -oxyx + Q(x2,xl), 

9\ =~y\r\ + ® I * P (B1) 

n =aQxf +y2
y -o), 

where the term Q(x2, x\) corresponds to a coupling of the main oscillator (x\, y\) to another one (x2, j^) . 

If the coupling is non-zero, the system cannot be solved exactly analytically. An approximate solution 

for small coupling and weak nonlinearity can, however, stili be obtained. The amplitude and phase in 

this čase vary only slightly and they can be expanded about (A0, fo) as 
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For small /?, # a the Eq. (B3) corresponding to those for fi and / can be solved approximately. For 

the simplest linear coupling of form 

(B6) 

one obtains 

Then, in the spectrum of the variable 

(B8) 

one observes the following harmonics: a>\, oh, 2co\ ± o>i. In the case of quadratic coupling 

(B9) 

there appear additional harmonics: 2a>i, 2CQ\, 2G>\ ± 2a>i, (0\ ± cfy, 3co\ ± a^. In the limit under 

consideration, with small nonlinearity and weak coupling, the appearance of these additional 

combinational harmonics can confidently be associated with the presence of a nonlinear coupling. 

It is of course the case that, for a nonlinear oscillator, all sorts of combinational harmonics can in 

principle appear even for linear coupling. However, the generation of these harmonics is a second-

order effect which becomes significant only for large nonlinearity and large coupling coefficients. 

Under the latter circumstances, just the appearance of particular combinational harmonics cannot 

necessarily be related to a given type of coupling and some further analysis is then required. 
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