Acta Chim. Slov. 2002, 49, 365-376. 365 STUDIES ON THIAZOLOPYRIDINES. PART 2. SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF NOVEL THIAZOLO[3,2–a] PYRIDINE AND THIAZOLO[3,2 – a] [1,8] NAPHTHYRIDINE DERIVATIVES HAVING TWO DIFFERENT ARYL MOIETIES G. A. M. El-Hag Ali,a A. Khalil,b A. H. A. Ahmed,a M. S. A. El-Gabyc* aChemistry Department, Faculty of Science, Al – Azhar universitY, Nasr City, Cairo, Egypt. bChemistry Department, Faculty of Science, Ain Shams university, Cairo, Egypt. cChemistry Department, Faculty of Science, Al -Azhar university, at Assuit, Assuit 71524 , Egypt. Received 24-10-2001 Abstract Condensation of thiazolinone 1 with aromatic aldehydes in ethanol / piperidine solution furnished the novel thiazolidinone derivatives 2a-e. Ternary condensation of 2, malononitrile and aromatic aldehydes (1: 1: 1 molar ratio) in absolute ethanol containing a catalytic amount of piperidine yielded the thiazolo[3,2–a]pyridines 3a-h in good yields. Thiazolo[3,2 – a][1,8]naphthyridines 6a-c were obtained by treatment of 3a, d,h with malononitrile in ethanol in the presence of piperidine as a basic catalyst. Refluxing of compounds 3b, g, h in formic acid furnished the novel thiazolo[2`,3`:1,6] pyrido[2,3– d]pyrimidines 8a–c. Interaction of 8c with malononitrile in ethanol / piperidine solution produced the pyrano[2`,3`:4,5]thiazolo[3`,2:1,6]pyrido[2,3-d]pyrimidine 9. Structures of the synthesized compounds have been established by elemental analyses and spectral data. Compounds 3a-h, 6a-c and 8a-c have been screened for antimicrobial activity. Introduction Our search of the literature revealed that, some thiazolo[3,2–a]pyridine derivatives have been reported to possess antibacterial,1 bactericide,2 coronary dilator, antihypertensive and muscle relaxant3 activities. Also, it is observed from the literature4-7 that,7H-thiazolo[3,2-a] pyridines were synthesized from 2-alkoxycarbonyl -methylidene-5-(arylmethylidene)-1,3-thiazolidin-4-one and arylmethylidenemalono-nitriles . In view of the above and in continuation of our research programme8-12 on the synthesis of heterocyclic compounds for antimicrobial activity, we reported here the synthesis and antimicrobial activity of some novel thiazolo[3,2 –a]pyridine, thiazolo[3,2 –a][1,8]naphthyridine and thiazolo[2`,3` :1,6]pyrido[2,3 – d]pyrimidine derivatives. Results and discussion Thiazolidinones 2a-e were obtained by refluxing of 2-cyanomethyl-4- thiazolinone 1 with aromatic aldehydes in ethanol / piperidine mixture. Ternary condensation of 2, malononitrile and aromatic aldehydes (1:1:1 molar ratio) in absolute ethanol containing G. A. M. El-Hag Ali, A. Khalil, A. H. A. Ahmed, M. S. A. El-Gaby: Studies on thiazolopyridines. Part 2. 366 Acta Chim. Slov. 2002, 49, 365-376. a catalytic amount of piperidine furnished the novel 5-amino–2–arylmethylidene-7– aryl–6,8-dicyano-3-oxo-2,3–dihydro–7H–thiazolo[3,2–a]pyridines 3a-h in good yields. The structures of the synthesized compounds 3a-h are in agreement with analytical and spectroscopic data (IR, 1H NMR and MS). The IR spectra of compounds 3a-h exhibited characteristic absorption bands for NH2, C?N and C=O (thiazolidinone) groups. 1H-NMR spectrum of 3b recorded in deuterated dimethylsulfoxide revealed a signal in the region ? 4.67 ppm, attributed to the pyridine –H. The molecular ion of thiazolopyridine 3b was observed at m/z = 479 (5; 7%) corresponding to the molecular formula C22H12BrFN4OS, (Chart 1). Also, a further conformation of the prepared compounds 3a– h was obtained by an independent synthetic route by treatment of compounds 2 with arylidene malononitriles 4 in refluxing ethanol and triethylamine (Scheme 1). Scheme 1 NC H Ar CHO Mc / ------------*- iS O 2 N 3 Ar2 CH=C _^CN O Ar.CH 2a-e CH2(CN)2 Arl * H Ar2CHO y iS N4 NH 1 -/2 ArCH A3 O CN Ar^ CN CN O NC >=N Ar1CH NC N)—NH 3a-h S Ar1CH O 2a; Ar1 = C6H4 Br-p 2b; Ar1 = C6H4 F-p 2c; Ar1=C6H3 (OCH3)(OH)-3,4 2d; Ar1 = C6H4 Cl-p 2e; Ar1 = C6H4 CH3 -p 3a; Ar1 = C6H4 Br-p 3b; Ar1 = C6H4 F-p 3c; Ar1 = C6H3 (OCH3)(OH)-3,4 3d; Ar1 = C6H4Cl-p 3e; Ar1 = C6H4CH3 -p 3f; Ar1 = C6H4 F-p 3g; Ar1 = C6H4 F-,p 3h; Ar1 = C6H4 F-p Ar2 = C6H4 F-p Ar2 = C6H4 Br-p Ar2 = C6H4 F-p Ar2 = C6H4 F-p Ar2 = C6H4 F-p Ar2 = C6H3 (OCH3) (OH) –3,4 Ar2 = C6H4 Cl-p Ar2 = C6H4 CH3 - p 4 1 G. A. M. El-Hag Ali, A. Khalil, A. H. A. Ahmed, M. S. A. El-Gaby: Studies on thiazolopyridines. Part 2. Acta Chim. Slov. 2002, 49, 365-376. 367 Chart 1 Br A NC CN S N NH2 ^A ^-----V o F— 300 C26H17 F N6 OS 64.99 3.57 17.49 (480.52) 65.10 3.40 17.60 8a 90 DMF > 300 C23H12 Br F N4 O2S 54.45 2.42 11.04 (507.34) 54.40 2.30 11.10 8b 67 D 232-4 C23H12 Cl F N4 O2S 59.68 2.61 12.10 (462.88) 59.60 2.50 12.20 8c 82 DMF > 300 C24H15 F N4 O2S 65.15 3.42 12.66 (442.47) 65.10 3.40 12.70 9 64 E 132-4 C27H17 F N6 O2S 63.77 3.37 16.53 (508.53) 63.80 3.30 16.40 10 84 DMF > 300 C23H13 Br FN5 OS 54.56 2.59 13.83 (506.35) 54.50 2.56 13.80 11 72 B 130 C28H16 Br F N4O3S2 54.29 2.60 9.04 (619.49) 54.10 2.50 9.10 B = benzene , H = n-hexane, E = ethanol , DMF = dimethylformamide , D = dioxane Table (3): Spectral data for compounds 2, 3, 7, 8, 9, 10,and 11 Cmp. No IR ( cm-1) (KBr disc) 1HNMR (DMSO-d6) ? (ppm) 2a 2b 2c 2d 2e 3a 3b 3c 2950 (CH-aliph.), 2199 (C=N),1715 (C=0; thiazolidinone ). 2900 (CH-aliph.), 2200 (C=N), 1719 (C=0; thiazolidinone ). 3483-2958 (broad; OH), 2200 (ON), 1707 (C=0; thiazolidinone) 293 4 (CH-aliph.), 2200 (C=N), 1718 (C=0; thiazolidinone). 2924 (CH-aliph.), 2200 (C=N), 1711 (C=0; thiazolidinone) 3400, 3290 (NH2), 2200 (C=N), 1712 (C=0; thiazolidinone ) 3410, 3350 (NH2), 2200 (C=N), 1708 (C=0; thiazolidinone ) 3400 - 2400 (NH2 + OH), 2200 (C=N), 1705 (C=0; thiazolidinone) 4.04 (s, 2H, CH2CN), 7.12-7.85 (m, 5H, 4H-Ar and methine-H). 3.84 (s, 3H, OCH3),4.76(s, 2H, CH2CN), 6.67-7.89 (m, 4H, 3H-Ar and methine–H), 10.00 (s, 1H, OH; exchangeable). 2.35 (s, 3H, CH3), 4.02 (s, 2H, CH2CN), 7.06 – 7.87 (m, 5H ,4H-Ar and methine-H,) 4.64( s,1H,pyridine –H ), 7.20-7.82 (m, 9H, 8H – Ar and methine –H), 7.87 (s, 2H, NH2 exchangeable) 4.67 (s, 1H, pyridine-H), 7.22 – 7.85 (m, 9H, 8H Ar and methine-H), 7.89 (s, 2H, NH2; exchangeable). 3.83 (s, 3H, OCH3), 4.46 (s, 1H, pyridine-H), 6.80 (s, 1H, OH; exchangeable), 6.93-7.85 (m, 8H, 7H- Ar-and methine-H), 7.87 (s, 2H, NH2; exchangeable). G. A. M. El-Hag Ali, A. Khalil, A. H. A. Ahmed, M. S. A. El-Gaby: Studies on thiazolopyridines. Part 2. Acta Chim. Slov. 2002, 49, 365-376. 375 Table (3) Continued. Cmp. No. 3f 3d 3g 3e 3h 7a 7b 7c 8a 8b 8c IR ( cm-1) (KBr disc) 10 11 3500, 2450 (NH2 + OH), 2200 (C?N), 1700 (C=0; thiazolidinone ). 3430, 3300 (NH2), 2200 (C?N), 1710 (C=0; thiazolidinone ) 3390, 3300 (NH2), 2200 (C?N), 1710 (C=0 ; thiazolidinone). 3400, 3200 (NH2), 2200 (C?N), 1705 (C=0; thiazolidinone ). 3400, 3300 (NH2), 2200 (C?N), 1710 (C=0; thiazolidinone) 3479, 3363 (NH2), 2985 (CH-aliph.) 2214 (C?N), 1720 (C=0; thiazolidinone) 3409, 3332 (NH2), 2923 (CH-aliph.) 2214 (C?N), 1720 (C=0; thiazolidinone). 3479, 3170 (NH2), 2923 (CH-aliph.), 2214 (C?N), 1720 (C=0; thiazolidinone) 1HNMR (DMSO-d6) ? (ppm) (C?N), 1700 1680 (C=0; (C=0; 3193, (NH), 2198 thiazolidinone), pyrimidinone) 3186, (NH), 2206 (C?N), 1705 (C=0); thiazolidinone), 1658 (C=0; pyrimidinone) 3200, (NH), 2206 (C?N), 1710 (C=0; thiazolidinone), 1666 (C=0; pyrimidinone). 3320, 3201 (NH2), 2931(CH-aliph.) 2214 (C?N), 1666 (C=0; pyrimidinone). 3270, 3200 (NH2), 2200 (C?N), 1704 (C=0; thiazolidinone) . 3350, (NH), 2923 (CH-aliph.), 2214 (C?N), 1705 (C=Q; thiazolidinone) . 4.67 (s, 1H, pyridine-H), 7.23 – 7.68 (m, 9H, 8H-Ar-and methine-H), 7.88 (s,2H, NH2; exchangeable). 2.34 (s, 3H, CH3), 4.67 (s, 1H, pyridine–H), 7.22-7.71 (m, 9H, 8H-Ar, and methine–H), 7.90 (s, 2H, NH2; exchangeable). 4.00 – 4.51 (broad, 3H, pyridine – H+ NH2), 7.42 – 8.03 (m,11H, 8H-Ar, and methine – H and NH2) 4.08 (s, 1H, pyridine-H ), 4.19 (s,2H, NH2; exchangeable) 7.23-7.66 (m, 9H, 8H-Ar and methine– H) 7.96 (s, 2H, NH2; exchangeable ). 2.39 (s, 3H, CH3), 3.36 (b, 2H, NH2), 4.12 (s, 1H, pyridine–H), 7.23–7.56 (m, 11H, Ar-H+ methine-H+NH2) 4.91(s, 1H, pyridine–H), 7.18-7.79 (m, 9H, 8H- Ar and methine–H) , 8.19 (s, 1H, pyrimidine–H ), 11.50 (s, 1H NH ; exchangeable) 2.37 (s, 3H, CH3), 4.67 (s, 1H, pyridine –H), 7.19 – 7.75 (m, 9H, 8H-Ar, and methine–H), 8.15 (s, 1H, pyrimidine-H), 11.66 (broad, 1H, NH, exchangeable). 2.32 (s, 3H, CH3), 4.59 (s, 1H, pyran–H), 4.67 (s, 1H, pyridine –H), 5.81 (s, 2H, NH2), 7.15 – 7.72 (m, 8H, 8H, Ar), 10.85 (s, 1H, pyrimidine –H), 11.60 (s, 1H, NH; exchangeable) 4.80 (s, 1H, pyridine–H), 6.21(s, 2H, NH2; exchangeable), 7.04-7.54 (m, 9H ,8H–Ar and methine-H), 8.00 (s, 1H, pyrimidine – H ) . 4.80 ( s, 1H pyridine –H ), 7.28- 7.67 ( m, 9H, 8H–Ar and methine–H), 8.00 (s, 1H, NH; exchangeable). References 1. U. Olthoff, K. Matthey, B. Ditscher, Ger. (East) 84,850 (Cl.C07d), 05 Oct 1971, Appl. WP CO7d/148 314, 16 Jun 1970; Chem. Abstr. 1973, 78, 72121y 2. K. Sato, U. Nagai., Jpn. Kokai Tokkyo Koho JP 62 22,798 [87 22,798] (Cl. Co7K7/00), 30 Jan 1987, Appl. 85/163, 306, 24 Jul 1985; Chem. Abstr. 1987, 107, 115975 s. 3. H. Meyer, F. Bossert, W. Vater, K. Stoepel , Ger. Offen., 2,210, 633 (Cl. Co7d), 20 Sep 1973, Appl. P 2210 633.8, 06 Mar 1972; Chem. Abstr. 1973, 79, 146519 d. 4. S. Kambe , K. Saito , H. Kishi , Synthesis 1977, 839-841 . J. J. Chen, I.. J. Wang , Dyes Pigm. 1996, 30, 173 – 182 . 9 G. A. M. El-Hag Ali, A. Khalil, A. H. A. Ahmed, M. S. A. El-Gaby: Studies on thiazolopyridines. Part 2. 376 Acta Chim. Slov. 2002, 49, 365-376. 5. A. Krauze , J. Popelis G. Duburs , Tetrahedron 1998, 54, 9161-9168 . 6. M. S. Al- Thebeiti, Il farmaco 2000, 55, 109 – 118. 7. M.S.A. El-Gaby, Phosphorus, Sulfur and Silicon 2000, 156, 157.-171. 8. M. S. A. El-Gaby, A. M. Hussein, F. A. Abu-Shanab, A. Z. Sayed, Phosphorus, Sulfur and Silicon 2000, 164, 1-10 . 9. M. S. A. El-Gaby, M. A. Zahran, M. M. Ismail, Y. A. Ammar, IL Farmaco 2000 , 55, 227- 232. 10. M. S. A. El-Gaby, A. M. Sh. EL Sharief, Y. A. Ammar, Y. A. Mohamed, A. A. Abd El-Salam, Indian J. Chem., Sec. B 2001, 40B, 195-200. 11. M. A. Zahran, A. M. SH. El-Sharief, M. S. A. EL- Gaby, Y. A. Ammar, U.H. El-Said, IL Farmaco 2001, 56, 277-283. 12. E. C. Taylor, A. McKillop, “The Chemistry of Cyclic Enaminonitriles and o-Aminonitriles” Interscience, New York, NY, 1970. 13. C. G. Dave, R. D. Shah, J. Heterocyclic Chem. 1998, 35, 1295-1300 . 14. S. M. Abdel-Gawad, M. S. A. El-Gaby, M. M. Ghorab, IL Farmaco 2000, 55, 287-292. 15. L. P.Carrod, F. D. Grady, Antibiotic and Chemotherapy, 3rd ed., Churchill Livingestoner Edinburgh, 1972, 477. 16. P. Courvalin, Am. Soc., Microbial . News 1992, 85, 368-375. 17. M. H. Elnagdi , M. R. H. Elmoghaya , A. G. Hamman, S. A. Khallaf , J. Heterocyclic Chem. 1979 , 16, 1541- 1543. Povzetek S kondenzacijo tiazolina 1 z aromatskimi aldehidi in sledečo ternerno kondenzacijo z malononitrilom in aromatskimi aldehidi smo pripravili tiazolo[3,2–a]piridine 3a-h z dobrimi izkoristki. Le-te smo z nadaljnimi reakcijami pretvorili v tiazolo[2`,3`:1,6] pirido[2,3–d]pirimidine 8a–c. Slednji je z malononitrilom v zmesi etanol-piperidin dal pirano[2`,3`:4,5]tiazolo[3`,2:1,6]pirido[2,3-d]pirimidin 9. Spojine 3a-h, 6a-c in 8a-c smo testirali na antimikrobno učinkovanje. G. A. M. El-Hag Ali, A. Khalil, A. H. A. Ahmed, M. S. A. El-Gaby: Studies on thiazolopyridines. Part 2.