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Abstract

We give necessary and sufficient conditions for lobe-transitivity of locally finite and
locally countable graphs whose connectivity equals 1. We show further that, given any
biconnected graph Λ and a “code” assigned to each orbit of Aut(Λ), there exists a unique
lobe-transitive graph Γ of connectivity 1 whose lobes are copies of Λ and is consistent with
the given code at every vertex of Γ. These results lead to necessary and sufficient condi-
tions for a graph of connectivity 1 to be edge-transitive and to be arc-transitive. Countable
graphs of connectivity 1 the action of whose automorphism groups is, respectively, vertex-
transitive, primitive, regular, Cayley, and Frobenius had been previously characterized in
the literature.
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1 Introduction
Throughout this article, Γ denotes a connected simple graph. Consider the equivalence
relation ∼= on the edge-set EΓ of Γ whereby e1

∼= e2 whenever the edges e1 and e2 lie
on a common cycle of Γ. A lobe is a subgraph of Γ induced by an equivalence class with
respect to ∼=. Equivalently, a lobe is a subgraph that either consists of a cut-edge with its
two incident vertices or is a maximal biconnected subgraph1. A vertex is a cut-vertex if it
belongs to at least two different lobes. Connected graphs other than K2 have connectivity
1 if and only if they have a cut-vertex. Clearly no finite vertex-transitive graph admits a
cut-vertex.

E-mail addresses: jegraver@syr.edu (Jack E. Graver), mewatkin@syr.edu (Mark E. Watkins)
1The term “lobe” is due to O. Ore [6]. We eschew the term “block” for this purpose, as it leads to ambiguity

when discussing imprimitivity.
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Graphs of connectivity 1 whose automorphism groups have certain given properties
have been characterized. Those whose automorphism groups are, respectively, vertex-
transitive, primitive, and regular were characterized in [5]. In particular, primitive planar
graphs of connectivity 1 were characterized in [11]2. Cayley graphs of connectivity 1 were
characterized in [9]. Graphs of connectivity 1 with Frobenius automorphism groups were
characterized in [10]. In the present work, we complete this investigation; we characterize
graphs of connectivity 1 whose automorphism groups act transitively on their set of lobes.
As a consequence, we obtain characterizations of edge-transitive graphs and arc-transitive
graphs of connectivity 1.

The conditions for a graph of connectivity 1 to be lobe-transitive or to be vertex-
transitive are independent; such a graph may have either property or neither one or both.
Such is not the case for edge- and arc-transitivity. In Section 3 we give necessary and
sufficient conditions for a graph to be lobe-transitive. We further show that, given any
biconnected graph Λ and a “list” of orbit-multiplicities of copies of Aut(Λ), one can con-
struct a lobe-transitive graph of connectivity 1 all of whose lobes are isomorphic to Λ and
locally respects the given list. We give necessary and sufficient conditions for a countable
graph of connectivity 1 to be edge-transitive in Section 4 and to be arc-transitive in Sec-
tion 5. As the sets of conditions for these latter two properties are more intertwined with
lobe-transitivity than the characterization of vertex-transitivity (for graphs of connectiv-
ity 1), scattered throughout are examples that illustrate some algebraic distinctions among
these various properties.

2 Preliminaries
Throughout this article, the symbol N denotes the set of positive integers. The symbols
I, J, and K, often subscripted, denote subsets of N of the form {1, 2, . . . , n} or the set N
itself; they appear as sets of indices. All graphs (and their valences) in this article are finite
or countably infinite. The symbol δi,j (the so-called “Kronecker delta”) assumes the value
1 if i = j and 0 if i 6= j. For a graph Λ and any subgroup H ≤ Aut(Λ), the set of orbits of
H acting on V Λ is denoted by O(H).

The set of lobes of a graph Γ is denoted by L (Γ). We let {Lk : k ∈ K} denote the
partition of L (Γ) into isomorphism classes of lobes. For given k ∈ K and a lobe Λ ∈ Lk,
we let O(Aut(Λ)) = {(V Λ)j : j ∈ Jk}, and we understand that if σ : Λ → Θ is an
isomorphism between lobes in Lk, then σ((V Λ)j) = (VΘ)j for all j ∈ Jk. Finally, for
each k ∈ K and j ∈ Jk, we define the function τ (k)

j : V Γ→ N by

τ
(k)
j (v) = |{Λ ∈ Lk : v ∈ (V Λ)j}|. (2.1)

For Λ0 ∈ L (Γ) and n ∈ N, we recursively define the subgraphs

Γ0(Λ0) = Λ0,

Γn+1(Λ0) =
⋃
{Λ ∈ L (Γ) : V Λ ∩ V Γn(Λ0) 6= ∅}.

Lemma 2.1 ([5, Lemma 3.1]). Let Λ,Θ ∈ L (Γ) and let n ∈ N. If for each k ∈ K and
j ∈ Jk, the function τ (k)

j is constant on V Γ, then any isomorphism σn : Γn(Λ) → Γn(Θ)
admits an extension to an automorphism σ ∈ Aut(Γ).

2For a short algebraic proof that all 1-ended planar graphs with primitive automorphism group are biconnected,
see [8].
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This lemma was used in [5] to prove the following characterization of vertex-transitive
graphs of connectivity 1.

Theorem 2.2 ([5, Theorem 3.2]). Let Γ be a graph of connectivity 1. A necessary and
sufficient condition for Γ to be vertex-transitive is that all the functions τ (k)

j be constant on
V Γ.

Notation. When all the lobes of the graph Γ are pairwise isomorphic, that is, the index set
K has but one element, then in Equation (2.1) the index k is suppressed; we simply replace
Jk by J and τ (k)

j by τj .

3 Lobe-transitivity
Let Γ be a graph of connectivity 1. It is immediate from the above definitions that the
edge-sets of the lobes of Γ are blocks of imprimitivity of the group Aut(Γ) acting on EΓ.
Hence any automorphism of Γ must map lobes onto lobes, and therefore, if Aut(Γ) is to
act transitively on L (Γ), then all the lobes of Γ must be pairwise isomorphic. However,
pairwise-isomorphism of the lobes alone is not sufficient for lobe-transitivity, even when
every vertex of Γ lies in the same number of lobes.

Let us first dispense with trees; the proof is elementary and hence omitted.

Proposition 3.1. A finite or countable tree is lobe-transitive (and simultaneously, edge-
transitive) if and only if there exist n1, n2 ∈ N∪{ℵ0} such that every edge has one incident
vertex of valence n1 and the other of valence n2. If n1 = n2, the tree is also arc-transitive.

For graphs of connectivity 1 other than trees, we have the following characterization of
lobe-transitivity.

Theorem 3.2. Let Γ be a graph of connectivity 1, and let Λ0 be an arbitrary lobe of Γ.
Let {Pi : i ∈ I} be the set of orbits of Aut(Γ), and let Q = {Qj : j ∈ J} be the set of
those orbits of the stabilizer in Aut(Γ) of Λ0 that are contained in Λ0. Then necessary and
sufficient conditions for the graph Γ to be lobe-transitive are:

(1) For each lobe Λ ∈ L (Γ), there exists an isomorphism σΛ : Λ0 → Λ.

(2) For each j ∈ J, there exists a function τj : V Γ→ N ∪ {0,ℵ0} such that

(a) for all v ∈ V Γ,

τj(v) = |{Λ ∈ L (Γ) : v ∈ σΛ(Qj)}| (3.1)

and

(b) for each i ∈ I, τj is constant on Pi and is nonzero if and only if Qj ⊂ Pi.

Proof. (Necessity) Suppose that Γ is lobe-transitive. For each lobe Λ ∈ L (Γ), there is an
automorphism σΛ ∈ Aut(Γ) that maps the fixed lobe Λ0 onto Λ. The restriction to Λ0 of
σΛ is an isomorphism σΛ : Λ0 → Λ that satisfies condition (1).

For any lobe Λ, an automorphism α ∈ Aut(Γ) is in the stabilizer of Λ if and only
if σ−1

Λ ασΛ is in the stabilizer of Λ0. It follows that the partition {σΛ(Qj) : j ∈ J} of
V Λ is the set of orbits of the stabilizer of Λ that are contained in Λ. Furthermore, since
the stabilizer of Λ0 is a subgroup of Aut(Γ), the partition {σΛ(Qj) : j ∈ J} of V Λ
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refines the partition {Pi ∩ V Λ : i ∈ I}. If for some indices i and j, the vertex v satisfies
v ∈ σΛ(Qj) ⊂ Pi, then for any lobe Θ, the vertex σΘσ

−1
Λ (v) lies in Pi ∩ σΘ(Qj). This

implies that, for all j ∈ J, the function τj as given in Equation (3.1) is well-defined and
constant on Pi.

Suppose that for an arbitrary index i ∈ I, the vertex v lies inPi. Since by Equation (3.1),
τj(v) counts for each j ∈ J the number of lobes Λ such that v lies in σΛ(Qj), it follows
that τj(v) is positive exactly when σ−1

Λ (v) ∈ Qj ⊂ Pi holds, concluding the proof of
condition (2.b).

(Sufficiency) Assume conditions (1) and (2). To prove that Γ is lobe-transitive, it suffices
to prove that every isomorphism σΘ : Λ0 → Θ is extendable to an automorphism of Γ.
(Note that in this direction of the proof, σΘ is not presumed to be the restriction to Λ0 of
an automorphism σΘ ∈ Aut(Γ) but, in fact, it is.)

Fix a lobe Θ0 and a vertex v ∈ V Λ0 and let w = σΘ0
(v). For some j ∈ J, the vertex

v lies in Qj , and so w ∈ σΘ0
(Qj). Since both τj(v) and τj(w) are therefore positive, both

v and w lie in the same orbit Pi of Aut(Γ) by condition (2.b). Furthermore, since τj is
constant on Pi for each j ∈ J, there exists a bijection βj from the set of lobes Λ such that
v ∈ σΛ(Qj) onto the set of lobes Θ such that w ∈ σΘ(Qj). Let Λ1 be a lobe in the former
set, and let Θ1 = βj(Λ1).

Although v and w lie in the images of the same orbit Qj in lobes Λ1 and Θ1, respec-
tively, the vertices σ−1

Λ1
(v) and σ−1

Θ1
(w) need not be the same vertex of Λ0. However, since

both vertices lie in the same orbit Qj of Λ0, there exists an automorphism α ∈ Aut(Λ0)
such that ασ−1

Λ1
(v) = σ−1

Θ1
(w). Then σΘ1

ασ−1
Λ1

is an isomorphism from Λ1 onto Θ1 that
maps v onto w and therefore agrees with σΘ0 at the vertex v common to Λ0 and Λ1.

The amalgamation of σΘ1ασ
−1
Λ1

with σΘ0 is an isomorphism from Λ0∪Λ1 to Θ0∪Θ1.
By repeating this same technique, we can extend σΘ0

to all lobes adjacent to Λ0 and then
to all of their adjacent lobes and inductively to all of Γ.

Example 3.3. Suppose that the lobes of Γ are copies of some biconnected, vertex-transitive
graph and that every vertex of Γ is incident with exactly m lobes where m ≥ 2. By
Theorem 2.2, Γ is vertex-transitive. By Theorem 3.2, Γ is lobe-transitive, with O(Aut(Γ))
being the trivial partition (with just one big cell P1). Also |J| = 1 and τ1(v) = m for all
v ∈ V Γ.

Remark 3.4. There exists a “degenerate” family of lobe-transitive graphs Γ of connectivity
1 that have but a single cut-vertex. For some cardinal K ≥ 2, consider a collection of K
copies of a biconnected graph Λ0, and let v0 ∈ V Λ0. Let σΛ : Λ0 → Λ be an isomorphism
as in Theorem 3.2, and let σΛ(v0) = vΛ for each copy Λ of Λ0 in the collection. We
obtain Γ by identifying v0 and all the vertices vΛ and naming the new amalgamated vertex
w, which forms a singleton orbit {w} of Aut(Γ). Clearly Γ is lobe-transitive and w is its
unique cut-vertex. If Λ0 has finite diameter, then Γ has zero ends (see [3]) when Λ0 is finite
and has K ends when Λ0 is infinite; if Λ0 has infinite diameter, then Γ has at least K ends.
Other than the graphs just described, all countable lobe-transitive graphs of connectivity 1
are “tree-like” with ℵ0 cut vertices and either 2 or 2ℵ0 ends.

Theorem 3.5. Let Λ0 be any biconnected graph. Let H ≤ Aut(Λ0), let Q = O(H) =
{Qj : j ∈ J}, and let R = {Rk : k ∈ K} be a partition of V Λ0 refined by Q. For each
k ∈ K, let the function µk : J→ N∪ {0,ℵ0} satisfy µk(j) > 0 if and only if Qj ⊆ Rk and
(to avoid the triviality of a single lobe)

∑
j∈J µk(j) ≥ 2 for at least one k ∈ K. Then there

exists (up to isomorphism) a unique lobe-transitive graph Γ of connectivity 1 such that
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(1) for each lobe Λ ∈ L (Γ), there exists an isomorphism σΛ : Λ0 → Λ;

(2) for each vertex v ∈ V Γ and each j ∈ J, we have

µk(j) = |{Λ ∈ L (Γ) : σ−1
Λ (v) ∈ Qj ⊆ Rk}|.

Proof. Let Λ0, H, Q, and µk be as postulated. Let Γ0 = Λ0 from which we construct Γ1

as follows.
Let v be any vertex of Λ0. For some j, k, it must hold that v ∈ Qj ⊆ Rk, and so

µk(j) > 0. For each ` such that Q` ⊆ Rk, we postulate the existence of µk(`) copies
Λ of Λ0 (including Λ0 itself when ` = j) such that, if σΛ : Λ0 → Λ is an isomorphism,
then some vertex in σΛ(Q`) is identified with the vertex v. The graph Γ1 is produced by
repeating this process for each vertex of Λ0. We repeat this process starting at each vertex
w ∈ V Γ1 \ V Γ0, the only notational change being that, if specifically w ∈ σΛ(Qj′) for
some j′ ∈ J, then we consider the subset σΛ(Qj′) of V Λ (instead of Qj in Λ0) to which w
belongs. Thus we construct Γ2.

Inductively, suppose that Γn has been constructed for some n ≥ 2. Let w ∈ V Γn \
V Γn−1, and so w ∈ σΛ(Qm) holds for some m ∈ J and a unique lobe Λ ∈ L (Γn) \
L (Γn−1). Supposing that Qm ⊆ Rk, we postulate the existence of µk(m) new copies of
Λ0 that share only the vertex w with Γn according to the above identification. In this way
we construct Γn+1. Finally, let Γ =

⋃∞
n=0 Γn.

It remains only to prove that Γ so-constructed is lobe-transitive. Let Θ be any lobe of
Γ. By the above construction, all lobes of Γ are pairwise isomorphic, and so there exists
an isomorphism σΘ : Λ0 → Θ. Starting with Γ′0 = Θ and by using the technique in the
proof of Sufficiency in Theorem 3.2, one constructs a sequence Γ′0,Γ

′
1, . . . so that for all

n ∈ N, we have Γ′n
∼= Γn, and σΘ is extendable to an isomorphism from Γn to Γ′n. Thus

Γ ∼=
⋃∞

n=0 Γ′n, and σΘ can be extended to an automorphism of Γ.

Example 3.6. In the notation of Theorem 3.5, let Λ0 be the 5-cycle with one chord as
shown in Figure 1(a), and let H = Aut(Λ), yielding the orbit partition {Q1, Q2, Q3} as
indicated. Let R1 = Q1 ∪Q3 and R2 = Q2, giving J = {1, 2, 3} and K = {1, 2}. Define
µ1(1) = 3, µ1(3) = 1, and µ2(2) = 2. Note that all other values of µ1 and µ2 must equal
0. Then Γ1 is as seen in Figure 1(b).

Q1 Q2 Q3

(a) Λ0

R1 R2

(b) Γ1

Figure 1: Λ0 and Γ1 from Example 3.6.

The pairs of conditions in Theorems 3.2 and 3.5 may appear alike, but there is a notable
difference between them. This occurs when the arbitrarily chosen subgroup H ≤ Aut(Λ0)
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of Theorem 3.5 is a proper subgroup of the stabilizer of Λ0 in Aut(Γ), where Γ is the graph
constructed from Λ0 and the functions µk of Theorem 3.5. We illustrate this distinction
with following example.

Example 3.7. Our initial lobe Λ0 is a copy of K4, with vertices labeled as in Figure 2(a),
and so Aut(Λ0) ∼= Sym(4) of order 24. We use Λ0 to “build” the lobe-transitive graph
Γ shown four times in Figure 2(b). The action on Λ0 by the stabilizer of Λ0 in Aut(Γ) is
the 4-element group 〈g1〉 × 〈g2〉 whose generators have cycle representation g1 = (v1, v2)
and g2 = (v3, v4). The shadings of the vertices in the four depictions of Γ in Figure 2(b)
correspond respectively to the four different subgroups of 〈g1〉×〈g2〉 described below. For
the sake of simplicity, we assume R = Q.

v3 v4

v1 v2

(a)

(i)

(ii)

(iii)

(iv)

(b)

Figure 2: The clothesline graph.

(i) H is the trivial group {ι}. ThusH induces four orbitsQj = {vj} for j ∈ {1, 2, 3, 4}.
The functions µk are then given by µk(j) = 2δj,k for k ∈ {1, 2} and µk(j) = δj,k
for k ∈ {3, 4}.

(ii) H = 〈g1〉. There are three orbits of H: Q1 = {v1, v2}, Q2 = {v3}, and Q3 = {v4},
which give µ1(1) = 2, µ2(2) = µ3(3) = 1. All other functional values are zero.

(iii) H = 〈g2〉. Again there are three orbits of H but not the same ones: Q1 = {v1},
Q2 = {v2}, and Q3 = {v3, v4}. This gives µk(j) = 2δj,k for k ∈ {1, 2} and
µ3(j) = δj,3.

(iv) H = 〈g1〉 × 〈g2〉. Now there are just two orbits: Q1 = {v1, v2} and Q2 = {v3, v4}.
Finally, µ1(1) = 2, µ2(2) = 1, and all other functional values are zero.

All four choices for H , the partition Q, and the functions µk clearly yield the same lobe-
transitive graph Γ of connectivity 1 by the construction of Theorem 3.5

4 Edge-transitivity
Lemma 4.1. If Γ is an edge-transitive (respectively, arc-transitive) graph, then Γ is lobe-
transitive and its lobes are also edge-transitive (respectively, arc-transitive).
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Proof. For i = 1, 2, let Θi ∈ L (Γ), and let ei be an edge (respectively, arc) of Θi. There
exists an an automorphism ϕ ∈ Aut(Γ) such that ϕ(e1) = e2. Since ϕmaps cycles through
e1 onto cycles through e2, ϕ must map Θ1 onto Θ2. If e1 and e2 lie in the same lobe Θ,
then ϕ leaves Θ invariant, and so its restriction to Θ is an automorphism of Θ.

Theorem 4.2. Let Γ be a graph of connectivity 1 with more than one lobe, and let Λ ∈
L (Γ). Necessary and sufficient conditions for Γ to be edge-transitive are the following:

(1) The lobes of Γ are edge-transitive.

(2) For each lobe Θ ∈ L (Γ), there exists an isomorphism σΘ : Λ→ Θ.

(3) Exactly one of the following descriptions of Γ holds:

(a) Both Γ and Λ are vertex-transitive, in which case every vertex is incident with
the same number ≥ 2 of lobes.

(b) The graph Γ is vertex-transitive but Λ is not vertex-transitive, in which case
Λ is bipartite with bipartition {Q1, Q2}, and there exist constants m1,m2 ∈
N ∪ {ℵ0} such that for j = 1, 2 and all v ∈ V Γ, it holds that

mj = |{Θ ∈ L (Γ) : v ∈ σΘ(Qj)}|.

(c) The graph Γ is not vertex-transitive, in which case Γ is bipartite with bipartition
{P1, P2} and there exist constants m1,m2 ∈ N ∪ {ℵ0}, at least one of which
is at least 2, such that for i = 1, 2, if v ∈ Pi, then

|{Θ ∈ L (Γ) : v ∈ σΘ(Pj ∩ V Λ)}| = mjδi,j .

Proof. (Sufficiency) Assume all the conditions in the hypothesis and let e1, e2 ∈ EΓ be
arbitrary edges in lobes Λ1 and Λ2, respectively. By condition (2), there exists an isomor-
phism σ : Λ1 → Λ2. By condition (1), there exists an automorphism α ∈ Aut(Λ2) such
that e2 = ασ(e1). Each of the three cases of condition (3) is seen to satisfy the hypothesis
of Lemma 2.1, implying that ασ : Λ1 → Λ2 is extendable to an isomorphism of Γ mapping
e1 to e2.

(Necessity) Suppose that Γ is an edge-transitive graph of connectivity 1. By Lem-
ma 4.1, Γ is also lobe-transitive and its lobes are edge-transitive, proving condition (1).
Condition (2), which establishes notation for the remainder of this proof, also follows from
Lemma 4.1.

To prove (3), we continue the notation of Theorem 3.2 with I being the index set for the
set of orbits of Aut(Γ) and J being the index set for the orbits of the stabilizer of Λ that are
contained in Λ. Since both Γ and all of its lobes are edge-transitive, |I| and |J| equal either
1 or 2.

If both Γ and Λ are vertex-transitive, then |I| = |J| = 1, and for every vertex v ∈ V Γ,
τ1(v) = m holds for some m ≥ 2. This is case (3.a).

Since any odd cycle in Γ would be contained in a lobe of Γ, it holds that Γ is bipartite
if and only if every lobe is bipartite. If either Γ or Λ is not vertex-transitive, then each –
and hence both – are bipartite, and the sides of the bipartitions (whether or not they are
entire orbits of the appropriate automorphism group) are blocks of imprimitivity systems.
Let {P1, P2} be the bipartition of V Γ, and so {P1 ∩ VΘ, P2 ∩ VΘ} is the bipartition of
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any lobe Θ. Equivalently, letting {Q1, Q2} denote the bipartition of Λ, we have Pi =⋃
Θ∈L (Γ) σΘ(Qi) for i = 1, 2.

Suppose that Γ is vertex-transitive but Λ is not, and so |I| = 1 and |J| = 2. By
Theorem 2.2, there exist constants m1,m2 ∈ N∪{ℵ0} such that for all v ∈ V Γ and j ∈ J,
we have mj = τj(v) = |{Θ ∈ L (Γ) : v ∈ σΘ(Qj)}|.

Finally, suppose that Γ is not vertex-transitive, and so P1 and P2 are the orbits of
Aut(Γ). Also, Λ is bipartite with bipartition {Q1, Q2}, where Qi = Pi ∩ V Λ. As no
automorphism of Γ swaps P1 with P2, no automorphism of Γ swaps Q1 with Q2 (even
though Λ may be vertex-transitive!). Hence |I| = |J| = 2. Since Γ is lobe-transitive, it
follows now from the “necessity” argument of Theorem 3.2 that, for j = 1, 2, the function
τj satisfies the condition τj(v) > 0 if and only if v ∈ Pj . That means that there exist
constants m1,m2 ∈ N ∪ {ℵ0}, at least one of which is greater than 1, such that, if v ∈ Pi,
then τj(v) = mjδi,j .

Example 4.3. Suppose in the notation of Theorem 4.2 that Γ is edge-transitive and Λ is
the complete bipartite graph Ks,t with |Q1| = s and |Q2| = t. Suppose that every vertex
of Γ is incident with exactly two lobes isomorphic to Λ. If s = t, then both Γ and Λ are
vertex-transitive, and we have case (3.a) of the theorem. If s 6= t and every vertex lies in
one image of Q1 and one image of Q2, then we have the situation of case (3.b). If again
s 6= t but each vertex lies in either two images of Q1 or two images of Q2, then we have
the situation described in case (3.c).

Remark 4.4. With regard to Example 4.3, we note that having s = t does not assure
vertex-transitivity of edge-transitive bipartite graphs. There exist edge-transitive, non-
vertex-transitive, finite bipartite graphs where the two sides of the bipartition have the
same size. Such graphs are called semisymmetric. The smallest such graph, on 20 ver-
tices with valence 4, was found by J. Folkman [2], who also found several infinite families
of semisymmetric graphs. Many more such families as well as forbidden values for s were
determined by A. V. Ivanov [4].

Example 4.5. This simple example illustrates how the converse of Lemma 4.1 is false, even
though the lobes themselves may be highly symmetric. Let Γ be a graph of connectivity
1 whose lobes are copies of the Petersen graph (which is 3-arc-transitive!). For each lobe
Λ, let (V Λ)1 and (V Λ)2 denote the vertex sets of disjoint 5-cycles indexed “consistently,”
i.e., if Λ and Θ share a vertex v, then v ∈ (V Λ)i ∩ (VΘ)i for i = 1 or i = 2. (Observe that
Γ is not bipartite.) For i = 1, 2 define Pi =

⋃
Θ∈L (Γ)(VΘ)i, and suppose that each vertex

in Pi belongs to exactly mi lobes. The graph Γ is lobe-transitive by Theorem 3.2, and Γ is
both vertex- and edge-transitive whenm1 = m2, but Γ is neither vertex- nor edge-transitive
when m1 6= m2.

5 Arc-transitivity
Theorem 5.1. Let Γ be a graph of connectivity 1. Necessary and sufficient conditions for
Γ to be arc-transitive are the following:

(1) The lobes of Γ are arc-transitive.

(2) The lobes of Γ are pairwise isomorphic.

(3) All vertices of Γ are incident with the same number of lobes.
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Proof. (Necessity) Suppose that Γ is arc-transitive. Conditions (1) and (2) follow from
Lemma 4.1. Since arc-transitivity implies vertex-transitivity, condition (3) holds.

(Sufficiency) Assume that the three conditions hold. For k = 1, 2, let ak be an arc of
Γ, and let Θk be the lobe containing ak. By condition (2), there exists an isomorphism
σ : Θ1 → Θ2. By condition (1), there exists an automorphism α ∈ Aut(Θ2) such that
ασ(a1) = a2. By condition (3), the functions τj of Equation (2.1) are constant on V Γ. (In
fact, since the lobes are vertex-transitive, there is only one such function.) It now follows
from Lemma 2.1 that ασ is extendable to all of Γ.

Remark 5.2. If conditions (1) and (3) of Theorem 5.1 were replaced by the lobes are edge-
transitive and Γ is vertex-transitive, the sufficiency argument would fail. There exist finite
graphs [1] and countably infinite graphs with polynomial growth rate [7] that are vertex-
and edge-transitive but not arc-transitive. Let Λ denote such a graph, and consider a graph
Γ whose lobes are isomorphic to Λ with the same number of lobes incident with every
vertex. Then Γ itself is vertex- and edge-transitive but not arc-transitive.

The following proposition is elementary.

Proposition 5.3. For all k ≥ 2, the only k-arc-transitive graphs of connectivity 1 are trees
of constant valence.
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