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Abstract

We give some insight into Tutte’s definition of internally and externally active edges
for spanning forests. Namely we prove, that every edge subset can be constructed from the
edges of exactly one spanning forest by deleting a unique subset of the internally active
edges and adding a unique subset of the externally active edges.
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1 Introduction
The Tutte polynomial originally defined by a sum over spanning forests using (the number
of) internally and externally active edges [12], can also be given as a sum over edge subsets
[14, Equation (9.6.2)]. We show how both representations, as sum over spanning forests
and as sum over edge subsets, are directly connected to each other.

Namely we prove, that every edge subset can be constructed from the edges of exactly
one spanning forest by deleting a unique subset of the internally active edges and adding a
unique subset of the externally active edges.

While seeking a generalization to matroids we observed that the statement is already
given by Björner [4, Proposition 7.3.6]. It seems that this result is not well known in
graph theory. Hence we state it explicitly in the special case of graphs and verify it graph-
theoretically.

We apply this in some direct proofs for the equivalence of different representations
of the Tutte polynomial, the chromatic polynomial, the reliability polynomial and the
weighted graph polynomial.

Definition 1.1. A graph G = (V,E) is an ordered pair of a set V , the vertex set, and a
multiset E, the edge set, such that the elements of the edge set are one- and two-element
subsets of the vertex set, e ∈

(
V
1

)
∪
(
V
2

)
for all e ∈ E.
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For a graphG = (V,E), we denote the number of connected components ofG by k(G)
and refer to G with the edge e ∈ E deleted and with the edge f ∈

(
V
1

)
∪
(
V
2

)
added by

G−e and G+f , respectively.

Definition 1.2. Let G = (V,E) be a graph and A ⊆ E an edge subset of G. A graph
G〈A〉 = (V,A) is a spanning subgraph ofG. A tree T = (V,A) is a spanning tree ofG. A
forest F = (V,A) is a spanning forest ofG, if k(G) = k(F ). The set of spanning trees and
the set of spanning forests of the graph G are denoted by T (G) and F(G), respectively.

While the term “spanning tree” is unambiguous, the term “spanning forest” is not,
because not every spanning subgraph, which is a forest, is a “spanning forest”. A spanning
forest is the union of spanning trees of each connected component.

In the following we consider graphs G = (V,E) with a linear order < on the edge
set E. This linear order can be represented by a bijection β : E → {1, . . . , |E|} for all
e, f ∈ E with

e < f ⇔ β(e) < β(f). (1.1)

Definition 1.3 (Section 3 in [12]). Let G = (V,E) be a graph with a linear order < on the
edge set E and F = (V,A) ∈ F(G) a spanning forest of G. An edge e ∈ A is internally
active in F with respect to G and <, if there exists no edge f ∈ E \A, such that e < f and
F−e+f ∈ F(G). We denote the set of internally active edges and the number of internally
active edges of F with respect to G and < by Ei(F,G,<) and i(F,G,<), respectively.

An edge e in the spanning forest F is internally active, if it is the maximal edge of
all edges in the cut crossed by itself (connecting the vertices in the connected components
arising by deleting e from F ). In other words, the edge e can not be replaced by a greater
edge (not in the spanning forest), such that F remains a spanning forest.

Definition 1.4 (Section 3 in [12]). Let G = (V,E) be a graph with a linear order < on
the edge set E and F = (V,A) ∈ F(G) a spanning forest of G. An edge f ∈ E \ A is
externally active in F with respect to G and <, if there exists no edge e ∈ A, such that
f < e and F−e+f ∈ F(G). We denote the set of externally active edges and the number
of externally active edges of F with respect to G and < by Ee(F,G,<) and e(F,G,<),
respectively.

An edge f not in the spanning forest is externally active, if it is the maximal edge of all
edges in the cycle closed by itself. In other words, there is no greater edge (in the spanning
forest), which can be replaced by f , such that F remains a spanning forest.

Definition 1.5 (Section 3 in [12]). Let G = (V,E) be a graph with a linear order < on the
edge set E. The Tutte polynomial is defined as

T (G, x, y) =
∑

F∈F(G)

xi(F,G,<)ye(F,G,<). (1.2)

The primal usage of “a linear order on the edge set” seems to be by Whitney [18,
Section 7]. Internally and externally active edges were probably first defined by Tutte
[12, Section 3] to state the Tutte polynomial. This polynomial was originally introduced
under the name “dichromate” for connected graphs [12, Equation (13)] and extended to
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disconnected graphs by the multiplicativity with respect to components [12, Equation (18)].
It was shown, that the value of the polynomial is independent of the linear order on the edge
set [12, page 85-88]. For some background to the definition of internally and externally
active edges and the Tutte polynomial we refer to [1, 9, 15]. For surveys on the Tutte
polynomial and its applications we refer to [5, 7, 11].

2 Main theorem
The spanning forests and their internally and externally active edges can be used to generate
all edge subsets. We use the disjoint union ", the union of pairwise disjoint sets, in the
statement of this main theorem below to indicate its bijectivity.

Theorem 2.1. Let G = (V,E) be a graph with a linear order < on the edge set E. Then

#
F=(V,Af )∈F(G)

#
Ai⊆Ei(F,G,<)
Ae⊆Ee(F,G,<)

{(Af \Ai) ∪Ae} =
⋃

A⊆E

{A} = 2E . (2.1)

Proof. We prove that the function m : {(Af , Ai, Ae) | F = (V,Af ) ∈ F(G), Ai ⊆
Ei(F,G,<), Ae ⊆ Ee(F,G,<)} → 2E with m((Af , Ai, Ae)) = (Af \ Ai) ∪ Ae is a
bijection.

First, we show that the function m is injective by an indirect proof. Assume it is not,
that means there are two different triplesA1 = (A1

f , A
1
i , A

1
e) andA2 = (A2

f , A
2
i , A

2
e), such

that m(A1) = m(A2) = A.
If A1 6= A2, then A1

f 6= A2
f , because otherwise A1

i = A1
f \ A = A2

f \ A = A2
i and

A1
e = A \A1

f = A \A2
f = A2

e and the triples would not be different.
As A1

f and A2
f are the edges of different spanning forests, there is an edge g ∈

A1
f \ A2

f . Furthermore, for any choice of g, there is an edge h ∈ A2
f \ A1

f , such that
(V,A1

f )−g+h, (V,A
2
f )−h+g ∈ F(G). (There is at least one edge in the path connecting

the incident vertices of g in (V,A2
f ), which is in the cut crossed by g in (V,A1

f ). These
conditions ensure that we can “compare” the edges g and h, because g is in the cycle closed
by adding h to A1

f and, equivalently, in the cut crossed by h in A2
f , and vice versa.)

We distinguish whether g (g ∈ A1
f but g /∈ A2

f ) and h (h /∈ A1
f but h ∈ A2

f ) are in A or
not:

• Case 1: g ∈ A, h ∈ A: We have a contradiction by

– g ∈ A⇒ g ∈ A2
e ⇒ h < g,

– h ∈ A⇒ h ∈ A1
e ⇒ g < h.

• Case 2: g ∈ A, h /∈ A: We have a contradiction by

– g ∈ A⇒ g ∈ A2
e ⇒ h < g,

– h /∈ A⇒ h ∈ A2
i ⇒ g < h.

• Case 3: g /∈ A, h ∈ A: We have a contradiction by

– g /∈ A⇒ g ∈ A1
i ⇒ h < g,

– h ∈ A⇒ h ∈ A1
e ⇒ g < h.
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• Case 4: g /∈ A, h /∈ A: We have a contradiction by

– g /∈ A⇒ g ∈ A1
i ⇒ h < g,

– h /∈ A⇒ h ∈ A2
i ⇒ g < h.

Consequently there are no such triples A1 and A2, hence the function m is injective.
Second, we show that the functionm is surjective by proving that for each edge setA ⊆

E there is a spanning forest F ∈ F(G) and a triple (Af , Ai, Ae) with F = (V,Af ), Ai ⊆
Ei(F,G,<), Ae ⊆ Ee(F,G,<) such that m((Af , Ai, Ae)) = A.

We arrange the edges of A and E \A in a sequence e1, . . . , e|E|, such that the edges of
A appear before the edges of E \ A, that the edges of A are increasing, and that the edges
of E \A are decreasing, both with respect to <.

We start with the edgeless graph on the vertex set V and successively add the edges of
E as they appear in the sequence to the graph, if the graph remains cycle-free. That means
G0 = (V, ∅) and for i ∈ {1, . . . , |E|} we have

Gi =

{
Gi−1

+ei if Gi−1
+ei is a forest,

Gi−1 if Gi−1
+ei is not a forest.

Thus, G|E| = F = (V,Af ) ∈ F(G) is a spanning forest of G.
An edge, which is in A but not in Af , is not added to Gi, meaning that it would close a

cycle consisting of earlier added and thus lesser edges ofA, hence this edge is an externally
active edge (maximal edge of the cycles closed by itself), A \Af = Ae ⊆ Ee(F,G,<).

An edge, which is not in A but in Af , is added to Gi, meaning that it is the first and
thus greatest edges of E \A crossing the according cut and hence this edge is an internally
active edge (maximal edge of the cut crossed by itself), Af \A = Ai ⊆ Ei(F,G,<).

Consequently, for each edge subset A ⊆ E there is a spanning forest F ∈ F(G)
and an according triple (Af , Ai, Ae) with (Af \ Ai) ∪ Ae = A, hence the function m is
surjective.

Corollary 2.2. LetG = (V,E) be a graph with a linear order< on the edge setE,A ⊆ E
an edge subset of G and f(G,A) a function mapping in a commutative semigroup. Then∑

F=(V,Af )∈F(G)

∑
A=(Af\Ai)∪Ae

Ai⊆Ei(F,G,<)
Ae⊆Ee(F,G,<)

f(G,A) =
∑
A⊆E

f(G,A). (2.2)

Proof. The equation follows directly from Theorem 2.1.

Corollary 2.3 (Theorem 3 in [7]). Let G = (V,E) be a graph with a linear order < on the
edge set E. Then ∑

F∈F(G)

2i(F,G,<)+e(F,G,<) = 2|E|. (2.3)

Proof. The equation follows directly from Corollary 2.2 with f(G,A) = 1.
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To apply Theorem 2.1, the following lemma stating some kind of independence of the
internally and externally active edges of a given spanning forest seems useful: Deleting
an internally active edge splits a connected component, which can not be reconnected by
adding externally active edges. Adding an externally active edge connects vertices already
connected by a path, which can not be destroyed by deleting internally active edges.

Lemma 2.4. Let G = (V,E) be a graph with a linear order < on the edge set E and
F ∈ F(G) a spanning forest of G. For all e ∈ Ei(F,G,<) and f ∈ Ee(F,G,<) it holds

k(F ) = k(F+f ) > k(F−e+f ) = k(F−e) = k(F )− 1. (2.4)

Proof. The first part, k(F ) = k(F+f ) > k(F−e) = k(F ) − 1, follows directly from the
definition of a spanning forest. The idea to prove the rest, k(F−e+f ) = k(F−e), is already
used in the case distinction in the proof of Theorem 2.1: The edge f can not reconnect the
connected components arising from the deletion of e, because otherwise each of the two
edges must be greater than the other.

3 Applications of the main theorem
As an application of Theorem 2.1 we prove the equivalence of representations using sums
over spanning forests/trees (spanning forest/tree representation) and sums over edge sub-
sets (edge subset representation) for the Tutte polynomial, the chromatic polynomial, the
reliability polynomial and (a derivation of) the weighted graph polynomial.

3.1 Edge subset representation of the Tutte polynomial

The edge subset representation of the Tutte polynomial was first given by Tutte stating the
relation to the dichromatic polynomial [13, Equation (21)]. In this article, the dichromatic
polynomial is defined by an edge subset representation and it is shown, that it satisfies re-
currence relations [13, Equations (18) - (20)] analogous to the recurrence relations satisfied
by the Tutte polynomial [12, Equations (18) - (20)].

Theorem 3.1 (Equation (9.6.2) in [14]). Let G = (V,E) be a graph with a linear order <
on the edge set E. The Tutte polynomial has the edge subset representation

T (G, x, y) =
∑
A⊆E

(x− 1)k(G〈A〉)−k(G)(y − 1)|A|−|V |+k(G〈A〉). (3.1)

Proof. First, we expand the definition of the Tutte polynomial (Definition 1.5) using the
binomial theorem:

T (G, x, y) =
∑

F∈F(G)

xi(F,G,<)ye(F,G,<)

=
∑

F∈F(G)

(x− 1 + 1)|Ei(F,G,<)|(y − 1 + 1)|Ee(F,G,<)|

=
∑

F∈F(G)

∑
Ai⊆Ei(F,G,<)
Ae⊆Ee(F,G,<)

(x− 1)|Ai|(y − 1)|Ae|.

Second, we represent for each spanning forest F the number of internally and externally
active edges in terms of the graph G and the spanning subgraph G〈A〉 = (V,A) with
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A = (Af \Ai) ∪Ae using Lemma 2.4: If G〈A〉 has more connected components than the
graph G, each “additional” connected component results from deleting an internally active
edge, i.e., |Ai| = k(G〈A〉)−k(G). IfG〈A〉 is not a forest, each “additional” edge (closing
a cycle) results from adding an externally active edge, i.e., |Ae| = |A| − |V | + k(G〈A〉).
Thus we have

T (G, x, y) =
∑

F=(V,Af )∈F(G)

∑
A=(Af\Ai)∪Ae

Ai⊆Ei(F,G,<)
Ae⊆Ee(F,G,<)

(x− 1)|Ai|(y − 1)|Ae|

=
∑

F=(V,Af )∈F(G)

∑
A=(Af\Ai)∪Ae

Ai⊆Ei(F,G,<)
Ae⊆Ee(F,G,<)

(x− 1)k(G〈A〉)−k(G)(y − 1)|A|−|V |+k(G〈A〉).

Finally, the statement follows by Corollary 2.2:

T (G, x, y) =
∑
A⊆E

(x− 1)k(G〈A〉)−k(G)(y − 1)|A|−|V |+k(G〈A〉).

3.2 Spanning forest representation of the chromatic polynomial

Definition 3.2 ([3]). Let G = (V,E) be a graph. The chromatic polynomial χ(G, x) is the
number of proper (vertex) colorings of G with at most x colors.

The spanning forest representation of the chromatic polynomial can be easily derived
from its relation to the Tutte polynomial, which follows from the recurrence relations both
polynomials satisfy. But the direct proof points out more clearly why internally and exter-
nally active edges make different contributions to the chromatic polynomial.

Theorem 3.3 (Theorem 14.1 in [2]). Let G = (V,E) be a graph with a linear order < on
the edge set E. The chromatic polynomial has the spanning forest representation

χ(G, x) = (−1)|V |(−x)k(G)
∑

F∈F(G)
e(F,G,<)=0

(1− x)i(F,G,<). (3.2)

Proof. We start with the representation of the chromatic polynomial as sum over edge
subsets [17, Section 2] and apply Corollary 2.2:

χ(G, x) =
∑
A⊆E

xk(G〈A〉)(−1)|A|

=
∑

F=(V,Af )∈F(G)

∑
A=(Af\Ai)∪Ae

Ai⊆Ei(F,G,<)
Ae⊆Ee(F,G,<)

xk(G〈A〉)(−1)|A|.

First, we analyze the contribution of the externally active edges Ae ⊆ Ee(F,G,<)
to the term xk(G〈A〉)(−1)|A|: Each externally active edge f ∈ Ee(F,G,<) contributes
(independently) the factor −1 if f ∈ Ae (the number of connected components is not
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influenced), and the factor 1 otherwise:

χ(G, x) =
∑

F=(V,Af )∈F(G)

∑
A′=Af\Ai

Ai⊆Ei(F,G,<)
Ae⊆Ee(F,G,<)

xk(G〈A
′∪Ae〉)(−1)|A

′∪Ae|

=
∑

F=(V,Af )∈F(G)

∑
A′=Af\Ai

Ai⊆Ei(F,G,<)
Ae⊆Ee(F,G,<)

xk(G〈A
′〉)(−1)|A

′|(−1)|Ae|

=
∑

F=(V,Af )∈F(G)

∑
A′=Af\Ai

Ai⊆Ei(F,G,<)

xk(G〈A
′〉)(−1)|A

′|
∑

Ae⊆Ee(F,G,<)

(−1)|Ae|

=
∑

F=(V,Af )∈F(G)

∑
A′=Af\Ai

Ai⊆Ei(F,G,<)

xk(G〈A
′〉)(−1)|A

′|(1− 1)e(F,G,<)

=
∑

F=(V,Af )∈F(G)
e(F,G,<)=0

∑
A′=Af\Ai

Ai⊆Ei(F,G,<)

xk(G〈A
′〉)(−1)|A

′|.

Second, we analyze the contribution of the internally active edges Ai ⊆ Ei(F,G,<)
to the term xk(G〈A〉)(−1)|A|: Each internally active edge e ∈ Ei(F,G,<) contributes
(independently) the factor−x if e ∈ Ai (the number of connected components is increased
by 1), and the factor 1 otherwise:

χ(G, x) =
∑

F=(V,Af )∈F(G)
e(F,G,<)=0

∑
Ai⊆Ei(F,G,<)

xk(G〈Af\Ai〉)(−1)|Af\Ai|

=
∑

F=(V,Af )∈F(G)
e(F,G,<)=0

∑
Ai⊆Ei(F,G,<)

xk(G〈Af 〉)x|Ai|(−1)|Af |(−1)|Ai|

=
∑

F∈F(G)
e(F,G,<)=0

xk(G)(−1)|V |−k(G)
∑

Ai⊆Ei(F,G,<)

(−x)|Ai|

= (−1)|V |(−x)k(G)
∑

F∈F(G)
e(F,G,<)=0

(1− x)i(F,G,<).

The proof above also “includes” the Broken-cycle Theorem [18, Section 7], [6, Theo-
rem 2.3.1]: The edge subsets not including any broken cycle are exactly the edge subsets
resulting from spanning forests having no externally active edges by deleting a subset of
internally active edges. Hence the Broken-cycle Theorem can be stated as

χ(G, x) =
∑

F=(V,Af )∈F(G)
e(F,G,<)=0

∑
A′=Af\Ai

Ai⊆Ei(F,G,<)

xk(G〈A
′〉)(−1)|A

′| (3.3)

=
∑

F=(V,Af )∈F(G)
e(F,G,<)=0

∑
A′=Af\Ai

Ai⊆Ei(F,G,<)

x|V |−|A
′|(−1)|A

′|. (3.4)
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The connection between the spanning forest representation and the Broken-cycle The-
orem is also given in [1].

3.3 Spanning tree representation of the reliability polynomial

The set of connected spanning subgraphs of a connected graph can be enumerated from
the spanning trees by only adding externally active edges. We apply this insight to obtain a
spanning tree representation of the reliability polynomial.

For a statement S, let [S] equal 1, if S is true, and 0 otherwise [8].

Lemma 3.4 (Section 5, Item (19) in [16]). Let G = (V,E) be a graph with a linear order
< on the edge set E. The generating function (in the indeterminant y) for the number of
connected spanning subgraphs S(G, y) has the spanning tree representation

S(G, y) =
∑
A⊆E

[k(G〈A〉) = 1]y|A| (3.5)

= y|V |−1
∑

T∈T (G)

(1 + y)e(T,G,<). (3.6)

Proof. We start by applying Corollary 2.2:

S(G, y) =
∑
A⊆E

[k(G〈A〉) = 1]y|A|

=
∑

F=(V,Af )∈F(G)

∑
A=(Af\Ai)∪Ae

Ai⊆Ei(F,G,<)
Ae⊆Ee(F,G,<)

[k(G〈A〉) = 1]y|A|.

The spanning subgraphG〈A〉 is connected only if the graphG is connected, that means
the spanning forests are spanning trees with |V |−1 edges, and if no (internally active) edge
is deleted from the spanning tree. It follows:

S(G, y) =
∑

T=(V,At)∈T (G)

∑
A=At∪Ae

Ae⊆Ee(T,G,<)

y|A|

=
∑

T=(V,At)∈T (G)

∑
Ae⊆Ee(T,G,<)

y|At|y|Ae|

=
∑

T=(V,At)∈T (G)

y|At|
∑

Ae⊆Ee(T,G,<)

y|Ae|

= y|V |−1
∑

T∈T (G)

(1 + y)e(T,G,<).

The probability, that all vertices of a graph are connected, if all edges of the graph are
independently available with a probability p, is a polynomial in p, the reliability polynomial
R(G, p) [7, 16].

Definition 3.5. Let G = (V,E) be a graph. The reliability polynomial is defined as

R(G, p) =
∑
A⊆E

[k(G〈A〉) = 1] p|A|(1− p)|E\A|. (3.7)
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Theorem 3.6 (Section 5, Item (15) in [16]). Let G = (V,E) be a graph with a linear
order < on the edge set E. The reliability polynomial R(G, p) has the spanning tree
representation

R(G, p) = (1− p)|E|−|V |+1p|V |−1
∑

T∈T (G)

1

(1− p)e(T,G,<)
. (3.8)

Proof. We rewrite the definition of the reliability polynomial using S(G, y):

R(G, p) =
∑
A⊆E

[k(G〈A〉) = 1]p|A|(1− p)|E\A|

=
∑
A⊆E

[k(G〈A〉) = 1]

(
p

1− p

)|A|
(1− p)|E|

= (1− p)|E|S
(
G,

p

1− p

)
.

From this the statement follows directly by Lemma 3.4.

3.4 Spanning forest representation of a derivation of the weighted graph polynomial

For the graph polynomials above it was possible to derive a spanning forest/tree repre-
sentation that depends only on the number of internally and externally active edges, inde-
pendently of the corresponding edge sets. Obviously, this is not possible for every graph
polynomial, also not for those having an edge subset representation.

The graph polynomial U ′(G, x̄, y), a derivation of the weighted graph polynomial
U(G, x̄, y) [10], is an example where only the contribution of the externally active edges
can be summed up.

Definition 3.7. Let G = (V,E) be a graph and x̄ = (x1, . . . , x|V |). The graph polynomial
U ′(G, x̄, y) is defined as

U ′(G, x̄, y) =
∑
A⊆E

|V |∏
i=1

x
ki(G〈A〉)
i y|A|, (3.9)

where ki(G) denotes the number of connected components including exactly i vertices.

Theorem 3.8. Let G = (V,E) be a graph with a linear order < on the edge set E and
x̄ = (x1, . . . , x|V |). The (derivation of the) weighted graph polynomial U ′(G, x̄, y) has
the spanning forest representation

U ′(G, x̄, y) =
∑

F=(V,Af )∈F(G)

∑
A=Af\Ai

Ai⊆Ei(F,G,<)

|V |∏
i=1

x
ki(G〈A〉)
i y|A|(1 + y)e(F,G,<), (3.10)

where ki(G) denotes the number of connected components including exactly i vertices.
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Proof. We start by applying Corollary 2.2 and then sum up the contribution of the exter-
nally active edges (as in the proofs above):

U ′(G, x̄, y) =
∑
A⊆E

|V |∏
i=1

x
ki(G〈A〉)
i y|A|

=
∑

F=(V,Af )∈F(G)

∑
A=(Af\Ai)∪Ae

Ai⊆Ei(F,G,<)
Ae⊆Ee(F,G,<)

|V |∏
i=1

x
ki(G〈A〉)
i y|A|

=
∑

F=(V,Af )∈F(G)

∑
A=Af\Ai

Ai⊆Ei(F,G,<)

|V |∏
i=1

x
ki(G〈A〉)
i y|A|(1 + y)e(F,G,<).
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