ALGORITEM ZA IZBIRO USTREZNEGA EMI FILTRA ^Marko Podberšič, ^Matjaž Šegula, ^Vojko Matko ^Ministrstvo za obrambo, Uprava RS za zaščito in reševanje, Ljubljana, Slovenija ^ISKRAEMECO d.d. Razvoj in raziskave, Kranj, Slovenija ^Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, Maribor, Slovenija Ključne besede: EMC, EMI filter, kritična dolžina linije, tipična frekvenca. Izvleček: Članek opisuje način izbire ustreznega EMI filtra za določeno signalno linijo. Do sedaj smo EMI filtre izbirali na osnovi meritve sevanja celotnega CPU modula. V tem članku pa opisujemo izbiro filtra na osnovi meritve FfH" signala. Takšna izbira je zagotovo optimalnejša od prve saj optimiziramo filter za vsako signalno linijo posebej. To smo pokazali na primeru CPU modula. A Suitable EMI Filter Selection AIghoritm Key vi(ords; EMC, EMI filter, electrically long trace, critical frequency Abstract: The article describes a new method of selection of a suitable EMI filter for a signal line. This method is based on measurement of FFT of a signal. The selection is rather good, because we optimise EMI filter for each signal line separately This was presented on an example of a CPU module. We know actually three EMI filter selection methods. The first EMI filter selection method is based on a realization of EMI filters with a help of ground planes. All signal lines must be surrounded with ground (fig. 1). We can get so rather good capacitive draining of high frequency noise to the ground. Such capacitive draining is some sort of EMI filter This capacitive draining is better if the coupling path between the signal line and the ground plan is longer Many times this filter is not good enough. In these cases real EMI filters must be used. The second EMI filter selection method is based on a measurement of a radiation of whole equipment. At this method, we measure the radiation of whole equipment and get a discrete frequency component with maximum amplitude. We select EMI filters with maximum insertion loss at frequency, which is close by this frequency We use EMI filters with similar characteristics on the whole equipment. The third EMI filter selection method is based on a measurement of a FFT on a single signal line. This method is described in this article. Some technical expressions are described in first chapters of this article. Such expressions are a critical line length. S parameters of two-input circuit, a typical frequency - observed as EMI, an input impedance of EMI filter, adjustment and filtering. An expression "critical line length" is known in the high-speed transmission-line theory. We determine a critical line length with help of the frequency Fknee (equation 14). At this critical line length the rise-time, Tr, exactly matches the propagation delay time, Tpd. This means that the transient phenomenon formed by the low-to-high signal transition precisely fits the line length. For that reason, this distance is called the "length of the rising edge". We must stress that the critical line length Imax means two-way propagation delay (source-load-source). A line length equal to or longer as the critical length certainly behaves as a transmission-line. This means that you must consider characteristic impedance, delay and reflections in that case. S parameters are almost always presented because EMI filters are usually two-input circuits. The letter S comes from an english word "Scattering". S parameters describes that an incoming power in one input is distributed among all inputs of multi-input linear circuit. We are using these 8 parameters for an input impedance of the EMI filters calculation. Typical frequency - observed as EMI, depends upon used logic elements and microcontroller Precisely it depends upon rise time of signals, which are transmited by these elements (equation 35). We must be attentive when we select appropriate logic elements and microcontroller If we use, for example, faster HCT instead of slower LS-TTL, the electromagnetic emission increases for up to three times. Of course this typical frequency finds expression at certain line length (emission radiation problem). These typical frequencies - observed as EMI are very important when we develop an electronic circuit. A procedure of the new EMI filter selection method is as following: Measuring the rise time tr of the signal; Calculating (or measuring) the typical frequency - observed as EMI; Selecting a suitable EMI filter family with regard to an application; Selecting an EMI filter from the family We select the filter with maximum insertion loss at frequency, which is close by the typical frequency The need of the EMI filters is conditional on the critical line length. This is verified by our experiences. If a two-way line length is shorter to the previously calculated Imax (critical line length) and there is no vias on the line, the usage of an EMI filter is not necessary We have shown ona example of a CPU module that this new EMI filter selection method based on FFT measurements of signals is better then the old one based on a measurement of a radiation of the whole CPU module. 1 Uvod Zelo velikega pomena pri reševanju EMC problemov je pravilna izvedba ozemljitve. Pri tem je pomembno, da so posamezne signalne vezi tesno obdane z ozemljitveno površino (slika 1). Tako dobimo dokaj dober kapacitivni odvod visokofrekvenčnih motenj na zemljo /1 /. Ra/dniji) ituj hi) niininialitit EU li tiT,. 10 71 - llns = 265,258M/fe (36) Tipično frekvenco, opazovano kot EMI lahko torej dokaj enostavno izračunamo. Pravilnost izračuna smo potrdili z meritvijo. 6 Prilagoditev in filtriranje Do sedaj na prilagoditve nismo izrecno pazili, pa tudi vhodne impedance filtrov nismo preračunavali. To smo si nekako lahko privoščili, saj smo imeli opravka s sorazmerno počasnimi procesorji (do 24 MHz) in majhnimi ploščicami tiskanega vezja (kratke antene). Izvajanja v poglavju 3, so torej plod razmišljanj za bližnjo prihodnost, saj se temu verjetno ne bomo mogli dolgo izogibati. Seveda pa smo na linije, ki so daljše od kritične dolžine linije (Imax) namestili EMI filtre. Postavili smo jih blizu izvora motenj. S filtri smo poleg filtriranja signala izboljšali tudi prilagoditev. Pri tem smo morali paziti na strukturo uporabljenih EMI filtrov. V katalogih podajamo dušenje EMI filtrov pri vhodni in izhodni impedanci 50Q /6/. Običajno pa v realnih vezjih nimamo take impedance. Znano je, da je učinkovitost filtrov močno odvisna od vhodne in izhodne impedance, to je od impedanc vezja, kamor je filter vgrajen. Veljajo neka splošna pravila, ki se jih običajno držimo /7/. Ta pravila prikazuje slika 7. Izhodna impedanca (Zo) /77 Kondenzator -j- K- tip IN ^ OUT o—MiP—r-° ^ L-„p nnr\ ^ L- .,p o-'TRT*-° Tuljava ■^-^^^iJVIKr^ T- tip Slika 1: Izbira ustreznega EMI filtra Vemo, daje kondenzator bolj učinkovit pri dušenju motenj v visoko impedančnih vezjih, tuljava pa je bolj učinkovita v nizko impedančnih vezjih. Slika 7 prikazuje tabelo, s pomočjo katere izberemo ustrezen filter glede na vhodno in izhodno impedanco. 7 Izbiranje ustreznih EMI filtrov Postopek izbire optimalnega EMI filtra je sledeč: izmerimo čas porasta signala tr; izračunamo (lahko tudi izmerimo) tipično frekvenco, opazovano kot EMI; glede na aplikacijo izberemo ustrezno družino EMI filtrov; iz izbrane družine EMI filtrov vzamemo tistega, ki ima maksimum dušenja čim bližje tipični frekvenci. Potreba po EMI filtrih je pogojena s kritično dolžino linije. To potrjujejo tudi naše izkušnje /8/. Če je dvosmerna dolžina linije krajša od predhodno izračunane Imax (kritična dolžina linije) in ni na liniji nobene vije razen pri priključkih integriranega vezja (DIP ohišje), uporaba EMI filtra ni nujna. V poglavju 4 na sliki 6 vidimo FFT signala na izhodu iz 74HC245 integriranega vezja. V to signalno linijo smo vstavili EMI filter, ki smo ga izbrali s pomočjo zgoraj opisanega postopka. To je bil EMI filter NFW31SP506X1E4 firme Murata. Maksimalno dušenje ima pri približno 250 MHz. Na sliki 8 vidimo, da se je nivo harmonika pri tipični frekvenci zmanjšal iz 28,64 dB (27,04 V) na 21,20 dB (11,48 V). Uporaba EMI filtra se je torej obrestovala. a: 21.20 dB -69.60 dB liffiTirW 4.00 dE 50.0MHz «ffiV 12 Feb 2002 Slika 8: FFT signala D/3/za Muratinim EMI filtrom NFW31SP506X1E4 - izhod iz 74HC245 logike Opisan postopek izbire EMI filtrov prikazuje slika 9. Slika 9: Diagram poteka izbire EMI filtra 8 Primer CPU modula Na primeru CPU modula smo pokazali, daje metoda izbire EMI filtrov na osnovi meritve FFT signalov dejansko boljša od metode izbire na osnovi meritve sevanja celotnega CPU modula. Najprej smo CPU modul opremili z EMI filtri, ki smo jih izbrali po metodi merjenja sevanja CPU modula. Pomerili smo sevanje tega modula. Rezultat meritve prikazuje višja krivulja na sliki 10. Sevanje je bilo sicer v dopustnih okvirih, vendar še vedno precej opazno. Isti CPU modul smo opremili še z EMI filtri, ki smo jih izbrali po metodi meritve FFT signala. Pričakovali smo boljši rezultat, kot v prejšnjem primeru, saj smo problem sevanja reševali za vsako linijo posebej. Naša pričakovanja so se uresničila. Rezultat meritve prikazuje nižja - modra krivulja na sliki 10. Slika 10:Sevanje CPU modula Literatura /1/ Dugald Campbell, Harald KreidI, "Solving EMC Issues", Motorola, Workshop 36, EMV03, Augsburg, 2003. /2/ Dir. Frits J. K. Buesink, Thomson - CSF Signaal, Hengio, NI, "High Speed Digital Design Topics for Printed Circuit Boards", Workshop 24, EMV'01 Augsburg, 2001, /3/ M. I. Montrose, "EMC and the printed circuit board: Design, Theory, and Layout Made Simple", 1. edition, IEEE Press Editorial Board, New York, 1999, vols 1, 3, 6, 7. /4/ Dick Anderson, Lee Smith, Jeff Gruszynski, „S-Parameter Techniques for Faster, More Accurate Network Design", Hewlett-Paok-ard Company, USA, 1996-1997. /5/ S. Kazama, S. Shinohara, R. Sato, Evaluation of methods of measuring digital IC terminal output, EMC Research Laboratories Co., Ltd., Sendai, Japan, 2000, pp. 329-334. /6/ Vladan D. Desnica, Ljiljana D. Živanov, Obrad S. Aleksio, Mi-loljub D. Lukovic and Miroslav D. Nimrihter, "Comparative Characteristics of Thick-Film Integrated LC Filters", IEEE transactions on instrumentation and measurement, vol.51, no. 4, august 2002, pp. 570-576. /7/ muRata, "Noise Suppression by EMI Filtering: Basics of EMI Filters", No. TE04EA-1, 1998. /8/ Šeguia Matjaž, Podberšič Marko, "Reševanje EMC problematike", Kranj: ISKRAEMECO, d.d., 2002. 56f., ilustr, graf. prikazi. [COBISS.SI-ID 512034160] Marko Podberšič, Ministrstvo za obrambo, Uprava RS za zaščito in reševanje, Kardeljeva ploščad 21, 1000 Ljubljana Email: marko.podbersic@mors.si Matjaž Šegula, ISKRAEMECO d.d. Razvoj in raziskave. Savska loka 4, 4000 Kranj Email: matjaz@rd. iskraemeco. si Vojko Matko, Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko. Smetanova ulica 17, 2000 Maribor Email: vojko.matko@uni-mb.si Prispelo (Arrived): 31.05.2003 Sprejeto (Accepted): 26.08.2003