ACTA GEOGRAPHICA GEOGRAFSKI ZBORNIK SLOVENICA 2020 60 1 ACTA GEOGRAPHICA SLOVENICA GEOGRAFSKI ZBORNIK 60-1 • 2020 Contents Mojca POKLAR Comparison of the sonar recording method and the aerial photography methodfor mapping seagrass meadows 7 Vanja PAVLUKOVIĆ, Uglješa STANKOV, Daniela ARSENOVIĆ Social impacts of music festivals: A comparative study of Sziget (Hungary) and Exit (Serbia) 21 Péter János KISS, Csaba TÖLGYESI, Imola BÓNI, László ERDŐS, András VOJTKÓ,István Elek MAÁK, Zoltán BÁTORI The effects of intensive logging on the capacity of karst dolines to provide potential microrefugia for cool-adapted plants 37 Radu SĂGEATĂ Commercial services and urban space reconversion in Romania (1990–2017) 49 Kristina IVANČIČ, Jernej JEŽ, Blaž MILANIČ, Špela KUMELJ, Andrej ŠMUC Application of a mass movement susceptibility model in the heterogeneous Miocene clastic successions of the Slovenj Gradec Basin, northeast Slovenia 1 Andrej GOSAR Measurements of tectonic micro-displacements within the Idrija fault zone in the Učjavalley (W Slovenia) 79 Piotr RAŹNIAK, Sławomir DOROCKI, Anna WINIARCZYK-RAŹNIAK Economic resilienceofthe command andcontrolfunctionof citiesin Centraland EasternEurope 95 Mateja FERK, Rok CIGLIČ, Blaž KOMAC, Dénes LÓCZY Management of small retention ponds and their impact on flood hazard prevention in the Slovenske Gorice Hills 107 Gregor KOVAČIČ Sediment production in flysch badlands: A case study from Slovenian Istria 127 Vesna LUKIĆ, Aleksandar TOMAŠEVIĆ Immigrant integration regimes in Europe: Incorporating the Western Balkan countries 143 Mitja DURNIK Community development: LocalImmigrationPartnershipsin Canadaand implications forSlovenia 155 ISSN 1581-6613 9 771581 661010 THE EFFECTS OF INTENSIVE LOGGING ON THE CAPACITY OF kARST DOLINES TO PROVIDE POTENTIAL MICROREFUGIA FOR COOL-ADAPTED PLANTS Péter János Kiss, Csaba Tölgyesi, Imola Bóni, László Erdős, András Vojtkó, István Elek Maák, Zoltán Bátori Snow cover in the bottom of a large doline in the Mecsek Mountains, in the spring of 2018 (11th March, 2018). DOI: https://doi.org/10.3986/AGS.6817 UDC: 911.2:581.9(439) 581.9:551.448(439) COBISS: 1.01 PéterJánosKiss1,CsabaTölgyesi2,ImolaBóni2,LászlóErdős3,AndrásVojtkó4,IstvánElekMaák5,Zoltán Bátori2 The effects of intensive logging on the capacity of karst dolines to provide potential microrefugia for cool-adapted plants ABSTRACT: Dolines are local depressions of karst surfaces. They can be considered potential microrefu­gia for various species. We investigated the plant species composition and vegetation pattern of two medium-sized dolines in Hungary before and 10 years after logging, and analysed how different species groups (oak forest species, beech and ravine forest species and disturbance-tolerant species) were affect­ed.Thecoverandnumberofoakforestspeciesanddisturbance-tolerantspeciesincreased,whilethecover and number of beech and ravine forest species decreased within dolines due to logging. Therefore, their speciescompositionandvegetationpatternhavechangedsubstantially,anddolineshavepartiallylosttheir capacity to act as safe havens for plant species adapted to cooler conditions. KEY WORDS: biology, geography, climate change, logging, cool-adapted plants, karst area, vegetation pattern, Hungary Vpliv intenzivne sečnje na sposobnost kraških vrtač za zagotavljanje potencialnih mikrozatočišč za hladnoljubne rastline POVZETEK:Vrtačesokraškekotanjenakraškempovršju,kilahkozagotavljajomikrozatočiščarazličnim vrstam. Preučili smo vrstno sestavo in razporeditev vegetacije v dveh srednje velikih vrtačah na Madžar­skem pred sečnjo gozda in deset let po njej ter analizirali vpliv sečnje na različne skupine rastlinskih vrst (vrstev hrastovih gozdovih,vrste v bukovih gozdovihin vrstev gozdovih plemenitih listavcev ter vrste, ki soodpornenarazličnemotnje).Pokrovnostinštevilovrstvhrastovihgozdovihtervrst,odpornihnamot­nje se je povečalo, pokrovnost in število vrst v bukovih gozdovih ter v gozdovih plemenitih listavcev pa se je zaradi sečnje lesavvrtačah zmanjšalo. Zatosta se močno spremenili vrstnasestava in razporeditev veg-etacijevtehgozdovih,vrtačepasodelnoizgubilefunkcijovarnihzatočiščzahladnoljubnerastlinskevrste. KLJUČNEBESEDE:biologija,geografija,podnebnespremembe,sečnja,hladnoljubnerastline,kraškisvet, razporeditev vegetacije, Madžarska The paper was submitted for publication on June 24th, 2018. Uredništvo je prejelo prispevek 24. junija 2018. 1 UniversityofSzeged,DepartmentofEcology,DoctoralSchoolofEnvironmentalSciences,Szeged,Hungary kisspeterjanos003@gmail.com 2 University of Szeged, Department of Ecology, Szeged, Hungary festuca7@yahoo.com, imolaboni@gmail.com, zbatory@gmail.com 3 MTA Centre for Ecological Research, Department of Terrestrial Ecology, Vácrátót, Hungary erdos.laszlo@okologia.mta.hu 4 Eszterházy Károly University of Applied Sciences, Department of Botany, Eger, Hungary vojtkoa@gmail.com 5 University of Szeged, Department of Ecology, Szeged, Hungary, and Polish Academy of Sciences, Museum and Institute of Zoology, Warsaw, Poland bikmakk@gmail.com 1 Introduction Stable habitats buffered from climate changes are known as refugia (Ashcroft 2010; Keppel et al. 2012). Microrefugia are small sites with locally favourable environmental conditions (e.g., microclimate and soil moisture)amidstunfavourableregionalenvironments(Rull2009;Gentilietal.2015).Therefore,theyfacil­itate the in situpersistence of species. Convergent environments (e.g., basins, ravines and valleys) may act asmicrorefugia(Dobrowski2010;Bátorietal.2014a),sincetheirtopographiccomplexityprovidesadiver­sity of microclimates (Whiteman et al. 2004), allowing species to track suitable conditions with minimal movement.InEurope,dolines(localdepressionsofkarstsurfaces)mayalsoconstitutemicrorefugia(Bátori et al. 2009), as cold-air pooling occurs within them and north-facing slopes receive less insolation than surroundingareas(Bárány-Kevei1999).Forinstance,dolinesinCentralandSoutheasternEuropeareknown tomaintainrelictpopulationsofborealandhigh-mountainplantspecies(RitterBeckvonMannagetta1906; Horvat 1953; Kobal et al. 2015). Therefore, they have the capacity to harbour many plant and animal taxa that are rare or absent in the surrounding areas (Modrić Surina and Surina 2010; Kemencei et al. 2014; Raschmanová et al. 2015; Růžička et al. 2016; Bátori et al. 2019a). This capacity depends on small- and large-scaleenvironmentalfactors(Keppeletal.2015),suchasmacroclimate,depth/diameterratio,slopeaspect andvegetationcover(Bátorietal.2012;2017).Althoughdolinesactaskeyhabitatsforvarioustaxa,theeffects of human activity on their species-holding capacity have rarely been assessed and raise further questions. Expansiveeconomicgrowthandurbanizationposeaseriousthreattokarstlandforms(BregValjavec, Zorn and Čarni 2018; Bátori et al. 2019b). For instance, many dolines have been filled up with construc­tionwasteandrockdebrisinSloveniaduringtheexpansionofsettlementsandhighwayconstructions(Breg 2007;KovačičandRavbar2013).Consequently,theshapeanddepthofthesedolineshavechangedmarked­ly(Cernatič-GregoričandZega2010;BregValjavec2014;BregValjavec,RibeiroandČarni2017)andmany of them have lost their capacity to act as safe havens for biodiversity in changing climate. In Crete, road construction,overgrazingandnutrientadditionbysheeparethemainthreatstotheendemicplantspecies of dolines (Egli 1991; Iatroú and Fournaraki 2006). Human-induced changes in forest cover also have the potential to negatively influence the species diversity of karst depressions (Bárány-Kevei 2011). Deforestation is a serious threat to the biological diversity of karst surfaces (Calo and Parise 2006). Species respond to changes in light, nutrient, soil moisture and temperature individualistically (Stewart 2010),however,whenchangesarestrongandfast,functionallysimilarspeciesmayrespondsimilarly(Birks and Ammann 2000). Microhabitat changes induced by logging are especially pronounced in dolines (Lehmann 1970), where environmental conditions vary considerably from slope to slope and from top to bottom (Whiteman et al. 2004; Bátori et al. 2011). Previous studies revealed that the diurnal fluctuations in temperature, humidity and wind speed are less extreme in forested dolines than in non-forested ones (Lehmann1970).Tobetterunderstandtheimpactofloggingonthespecies-holdingcapacityofkarstdolines, we need to document the changes in species composition and vegetation pattern over time. ThewesternpartoftheMecsekMountains(Hungary)hastypicalkarstlandformfeatures,suchasdolines, withfunnel-shaped geometry and unique microclimate (Bátori et al. 2011). Our previous studies showed that larger dolines have the capacity to enable the persistence of cool-adapted plant species and diverse foresttypesthatareabsentfromthesurroundingplateau(Bátorietal.2012;2014a;2014b;2017).Intensive loggingbeganabout10yearsagointhisregion,andmatureforestcoverhasbeenreducedtoapproximately 30–40 percent of its original extent in some dolines. In the present study, we investigated the changes in the species-holding capacity of karst dolines induced by logging. Specifically, we studied the plant species compositionandvegetationpatternintwodolinesintheMecsekMountainsbeforeandafterlogging,and compared the focal species groups to each other. 2 Methods 2.1 Study area Thestudyareaisalimestonekarstlandscapeofabout30km2inthewesternpartoftheMecsekMountains (Figure 1), located at an altitude between 250–500m. The climate is continental with sub-Mediterranean influences: moderately warm (mean annual temperature is 9.5°C) and moderately humid (mean annual precipitation is 740mm) (Dövényi 2010). The number of dolines is about 2200 (Hoyk 1999). Beech and oak-hornbeamforestscovertheslopesofdolinesandthemajorpartoftheplateausbetweendolines,while ravine forests cover the bottom of larger dolines (Bátori et al. 2012). 2.2 Vegetation resurvey Twomedium-sizeddolineswereselected(doline1:WGS46.13359N,18.16589E;doline2:WGS46.13131N, 18.17164 E) with a funnel-shaped geometry. Dolines were about 70m in diameter and about 14m deep. Both dolines were sampled before logging (about 110 years old forests, in 2007) and 10 years after log­ging (in 2017), using the same method. The cover of mature trees within dolines has been reduced to approximately 30–40 percent of its original extent (Figure 1). Because the greatest differences in species compositionwereexpectedbetweenthenorth-andsouth-facingslopes(Bátorietal.2012),weestablished atransectwithnorth-to-southorientationacrossthedolines,traversingthedeepestpoints.Transectsbegan and ended on doline rims. Each transect consisted of 1m×1m plots spaced at 2-m intervals. We record-edthecoverofallherbs,shrubsandtreesaplingsinallplots.Atotalof114plotsweresurveyed.Nomenclature follows The Plant List (2018). 2.3 Species grouping Weclassifiedallplantspeciesaccordingtotheirhabitatpreference(Horváthetal.1995).Threelargerfunc­tional groups (cf. Troiani et al. 2016) were established: • »oakforestspecies«(i.e.typicalspeciesofturkeyoak–sessileoakforestsanddrieroak-hornbeamforests), • »beech and ravine forest species« and • »disturbance-tolerant species« (i.e. ruderals). All three functional groups were analysed using both the cover and presence/absence data of species. Since beech and ravine forest species are the best indicators of cool microhabitats in our study area, this functionalgroupwasconsideredtobeparticularlyrelevanttodetectchangesinthespecies-holdingcapac­ity of dolines. 2.4 Data analyses We used permutational multivariate analysis of variance (PERMANOVA) to test the effect of logging on plant assemblages. We used the raw cover data of species for each sampling plot in the source matrices. We applied the Bray–Curtis index, and performed 5,000 permutations. PERMANOVAs were calculated inRstatisticalenvironment(RCoreTeam2018)usingtheadonisfunctionofthe»vegan«package(Oksanen et al. 2018). We prepared non-metric multidimensional scaling (NMDS) ordinations (cover values and Bray–Curtis index) to visually illustrate differences in vegetation pattern. The diagnostic species of the dolines before and after logging were determined by calculating the phi (.) coefficient of association between species and habitat (Chytrý et al. 2002). Species with .>0.1 were considereddiagnostic.Non-diagnosticspecieswereexcludedwithFisher’sexacttest(p<0.05).Calculations were done with the JUICE 7.0.25 program (Tichý 2002). Weusedlinearmixed-effectmodels(LMMs)withGaussianerrortermforthecomparisonofthecover of functional groups, and generalized linear mixed-effects models (GLMMs) with Poisson error term for thecomparisonofthespeciesnumbersoffunctionalgroups.AllanalyseswerecarriedoutinR(RCoreTeam 2018).Inthemodels,themanagementtypes(unloggedandlogged)wereincludedasfixedfactors,thecover andnumberofspeciesasdependentvariables,andthelocation(i.e.doline1and2)asrandomfactor.LMMs wereperformedusingthelmefunctionfromthe»nlme«package(Pinheiroetal.2018),whileGLMMswere performed using the glmer function from the»lme4« package (Bates, Maechler and Bolker2013). Figure 1: Location of the study site (a) and studied dolines (b) in the Mecsek Mountains (Hungary). Dolines were sampled before logging (c) and 10 years after logging (d). Red lines indicate the position of transects. p 3 Results Atotalof72vascularplantspecieswererecordedintheplots.Fivediagnosticspecies(oneoakforestspecies andfourbeechandravineforestspecies)wereidentifiedbeforeloggingand15(sixoakforestspecies,three beech and ravine forest species, and six disturbance-tolerant species) after logging (Table 1). NMDS ordi­nations (stress factor:0.24 and0.22,respectively) showedthatthecompositional patternof thevegetation changed significantly (PERMANOVA: F=6.8 and 7.8, respectively, p<0.001) after logging (Figure 2). The cover and number of oak forest species (e.g., common bugle (Ajuga reptans), fragrant hellebore (Helleborusodorus)andbutcher’sbroom(Ruscusaculeatus))anddisturbance-tolerantspecies(e.g.,dead­lynightshade(Atropabelladonna),Americanburnweed(Erechtiteshieracifolia)andJapanesehedgeparsley (Torilisjaponica))werehigherafterlogging(p<0.001andp<0.05,respectively),whilethecoverandnum­ber of beech and ravine forest species (e.g., enchanter’s nightshade (Circaea lutetiana), common lungwort (Pulmonaria officinalis) and spineless butcher’s broom (Ruscus hypoglossum)) were higher before logging (p<0.001 and p=0.06, respectively) (Figure 3). 4 Discussion Karstdepressionsprovidesuitablemicrohabitatsforavarietyofspecies,buthuman-activitymayinfluence their species-holding capacity. To our knowledge, this is the first study to report evidence of a decrease in species-holding capacity within forested dolines confirmed with repeated sampling. We have shown that 10 years after logging (30–40 percent of the original forests remained intact) the vegetation pattern and speciescompositionchangedsubstantiallywithindolines,andtheyhavepartiallylosttheircapacitytoact as safe havens for a number of plant species adapted to cooler conditions. Aspreviousstudieshaveshown,coolandhumiddolinesinEurasiahavethecapacitytosupportanimal and plant populations outside their main distribution ranges (Raschmanová etal. 2015; Bátori et al. 2017; Su et al. 2017), and microclimate is a significant predictor of the species diversity within them (Růžička etal.2016).Althoughmicroclimaticdifferencesbetweentheslopesofforesteddolinesarelesspronounced Table 1: Diagnostic species of the dolines before and after logging (p<0.05). Species are listed by decreasing values of the phi (.) coefficient of association between species and habitat. Letters in parenthesis indicate functional groups: (a) oak forest species, (b) beech and ravine forest species and (c) disturbance-tolerant species. Ivy – Hedera helix (a) 0.47 Yellow archangel – Lamium galeobdolon s.l. (b) 0.37 Wood speedwell – Veronica montana (b) 0.33 Woodruff – Galium odoratum (b) 0.28 Dog’s mercury – Mercurialis perennis (b) 0.28 Hairy blackberry – Rubus hirtus agg. (c) 0.42 Stinging nettle – Urtica dioica (c) 0.42 European hornbeam – Carpinus betulus (b) 0.35 Wood small-reed – Calamagrostis epigejos (c) 0.34 Wood sedge – Carex sylvatica (b) 0.27 Annual fleabane – Stenactis annua (c) 0.24 Hairy St Johns-wort – Hypericum hirsutum (c) 0.23 Turkey oak – Quercus cerris (a) 0.23 Lady fern – Athyrium filix-femina (b) 0.21 Wall lettuce – Lactuca muralis (a) 0.21 Goat willow – Salix caprea (c) 0.21 Silver linden – Tilia tomentosa (a) 0.21 Germander speedwell – Veronica chamaedrys (a) 0.21 Wood melick – Melica uniflora (a) 0.20 Sessile oak – Quercus petraea (a) 0.19 Figure 2:Non-metricmultidimensionalscaling(NMDS)ordination(covervaluesandBray–Curtisindex)diagramsofdoline1(a)anddoline 2(b)before and after logging (stress factor: 0.24 and 0.22, respectively). Figure 3: Cover and species number of the different functional groups (a: oak forest species; b: beech and ravine forest species and c: disturbance-tolerant species) in the dolines of the Mecsek Mountains (Hungary) before (white boxes) and after (green boxes) logging. Significant differences are indicated by asterisks (*p <0.05; ***p <0.001). (Bátori et al. 2011; 2014b), dolines in the Mecsek Mountains introduce great variation in species compo­sitionandmanyplantspeciescanbefoundwithinthemthatarerareortotallyabsentfromthesurrounding karst plateaus (Bátori et al. 2012). In general, changes in vegetation cover should affect the surface albedo (i.e. the amount of reflected solarradiation),windpattern,soilhydrology,soilnutrientcontent,near-surfacetemperatureandhumid-ity,whichinturn,shouldaffectthevegetation(Saikh,VaradachariandGhosh1998;GuariguataandOstertag 2001; Berbet and Costa 2003; Lukić et al. 2017; Stančič and Repe 2018). Our results show that intensive loggingcancausesignificantchangesinlocalspeciesabundanceandcomposition,andhasanegativeeffect on the species-holding capacity of dolines (Figures 2 and 3). Dolines contained fewer beech and ravine forest species (e.g., narrow buckler-fern (Dryopteris carthusiana), herb Paris (Paris quadrifolia) and wood speedwell (Veronica montana)) 10 years after logging, and their cover was much lower than before log-ging.Incontrast,thenumberandcoverofoakforest(e.g.,fieldmaple(Acercampestre),woodmelick(Melica uniflora)andwhiteviolet(Violaalba))anddisturbance-tolerantspecies(e.g.,woodsmall-reed(Calamagrostis epigejos), hairy blackberry (Rubus hirtus agg.) and stinging nettle (Urtica dioica)) increased significantly due to logging. The increase in the number and cover of oak forest species likely resulted from a decrease in albedo and a corresponding increase in absorbed solar radiation, while greater post-disturbance light and nutrient availability, changes in species interactions (such as competition) could increase the num­ber and cover of disturbance-tolerant species. Since different species may recover at different rates during forestregeneration(Dunn2004),itisunclearhowspeciescompositionwillchangeinthesedolinemicrorefu­gia in the future. ExtremeheateventsareincreasinginfrequencyinCentralEurope,andwillcontinuetodosothrough-out the next few decades (Bartholy et al. 2008). Climate warming affects the local abundance, phenology and distribution of species and alters the interactions between populations (Hegland et al. 2009). The dis­tributions of many plant species in Europe are likely to shift upwards (Geßler et al. 2007; Czúcz, Gálhidy andMátyás2011;Hlásnyetal.2011),orspeciescanpersistinenvironmentallystablehabitats(Willis,Rudner and Sümegi 2000; McLaughlin et al. 2017), such as dolines (Bátori et al. 2017). A number of studies indi­cate that forest cover has the potential to mitigate climate warming at local scales and to maintain suitable microclimate, enhancing species persistence (Frey et al. 2016; Keppel et al. 2017). The combined effects of forest cover and topographic complexity may contribute to the long-term persistence of forest species adapted to cooler conditions (beech and ravine forest species) (Figure 3) in the karst region of the Mecsek Mountains,providedthatthecurrentmanagementintensitydecreases.Ifthismanagementpracticecontinues, thespecies-holdingcapacityofthesedolineswouldfurtherdecrease,andmanycurrentlywidespreadplant species may become rare or extinct during forest regeneration in a warming climate. 5 Conclusion We conclude that intensive logging poses a serious threat on the species-holding capacity of karst depres­sions. To meet the demands of preservation of cool-adapted species in dolines, it would be necessary to establish more forest reserves on the karst surfaces where no forestrytakes place. Alternatively, the main­tenanceofcontinuousforestcoverinatleastlargerdolinesandtheirsurroundingswouldbeindispensable to facilitate the recolonization or the in situ persistence of cool-adapted species under global warming. ACKNOWLEDGEMENT: This research was founded by the NKFIH K 124796 grant. We are thankful to Izabella Benczur and Petra Vass for their help in field works. 6 References Ashcroft, M. B. 2010: Identifying refugia from climate change. Journal of Biogeography 37-8. DOI: https://doi.org/10.1111/j.1365-2699.2010.02300.x Bárány-Kevei,I.1999:Microclimateofkarsticdolines.ActaClimatologicaUniversitatisSzegediensis32/33. Bárány-Kevei, I. 2011: Changes in the vegetation of dolines in Aggtelek and Bükk Mountains. Acta Climatologica et Chorologica 44/45. Bartholy,J.,Pongrácz,R.,Gelybó,G.,Szabó,P.2008:AnalysisofexpectedclimatechangeintheCarpathian Basin using the PRUDENCE results. Időjárás 112, 3-4. Bates, D., Maechler, M., Bolker, B. 2013: lme4: linear mixedeffects models using S4 classes. R package ver­sion 0.999999-2. Internet: http://cran.r-project.org/package=lme4 (26. 4. 2018). Bátori, Z., Csiky, J., Erdős, L., Morschhauser, T., Török, P., Körmöczi, L. 2009: Vegetation of the dolines in Mecsek Mountains (South Hungary) in relation to the local plant communities. Acta Carsologica 38, 2-3. DOI: https://doi.org/10.3986/ac.v38i2-3.125 Bátori,Z.,Csiky,J.,Farkas,T.,Vojtkó,E.A.,Erdős,L.,Kovács,D.,Wirth,T.,Körmöczi,L.,Vojtkó,A.2014a: TheconservationvalueofkarstdolinesforvascularplantsinwoodlandhabitatsofHungary:refugiaand climatechange.InternationalJournalofSpeleology43-1.DOI:https://doi.org/10.5038/1827-806X.43.1.2 Bátori,Z.,Lengyel,A.,Maróti,M.,Körmöczi,L.,Tölgyesi,C.,Bíró,A.,Tóth,M.,Kincses,Z.,Cseh,V.,Erdős, L. 2014b: Microclimate-vegetation relationships in natural habitat islands: species preservation and conservation perspectives. Időjárás 118-3. Bátori, Z., Gallé, R., Erdős, L., Körmöczi, L. 2011: Ecological conditions, flora and vegetation of a large doline in the Mecsek Mountains (South Hungary). Acta Botanica Croatica 70-2. DOI: https://doi.org/ 10.2478/v10184-010-0018-1 Bátori, Z., Körmöczi, L., Erdős, L., Zalatnai, M., Csiky, J. 2012: Importance of karst sinkholes in preserv­ing relict, mountain, and wet-woodland plant species under sub-Mediterranean climate: A case study from southern Hungary. Journal of Cave and Karst Studies 74-1. DOI: https://doi.org/10.4311/ 2011LSC0216 Bátori, Z., Vojtkó, A., Farkas, T., Szabó, A., Havadtői, K., Vojtkó, E. A., Tölgyesi, C., Cseh, V., Erdős, L., Maák, I., Keppel G. 2017: Large- and small-scale environmental factors drive distributions of cool-adaptedplantsinkarsticmicrorefugia.AnnalsofBotany119-2.DOI:https://doi.org/10.1093/aob/mcw233 Bátori, Z., Vojtkó, A., Maák, I. E., Lőrinczi, G., Farkas, T., Kántor, N., Tanács, E., Kiss, P. J., Juhász, O., Módra,G.,Tölgyesi,C.,Erdős,L.,Aguilon,D.J.,Keppel,G.2019a:Karstdolinesprovidediversemicro­habitatsfordifferentfunctionalgroupsinmultiplephyla.ScientificReports9.DOI:https://doi:10.1038/ s41598-019-43603-x Bátori,Z.,Vojtkó,A.,Keppel,G.,Tölgyesi,C.,Čarni,A.,Zorn,M.,Farkas,T.,Erdős,L.,Kiss,P.J.,Módra,G., Breg Valjavec, M. 2019b: Anthropogenic disturbances alter the conservation value of karst dolines. Biodiversity and Conservation. DOI: https://doi.org/10.1007/s10531-019-01896-4 Berbet,M.L.C.,Costa,M.H.2003:Climatechangeaftertropicaldeforestation:seasonalvariabilityofsur­facealbedoanditseffectsonprecipitationchange.JournalofClimate16.DOI:https://doi.org/10.1175/ 1520-0442(2003)016<2099:CCATDS>2.0.CO;2 Birks,H.H.,Ammann,B.2000:Twoterrestrialrecordsofrapidclimaticchangeduringtheglacial–Holocene transition (14,000–9,000 calendar years B.P.) from Europe. PNAS 97-4. DOI: https://doi.org/10.1073/ pnas.97.4.1390 Breg Valjavec, M. 2014: Study of filled dolines by using 3D stereo image processing and electrical resis­tivityimaging.InternationalJournalofSpeleology43-1.DOI:https://doi.org/10.5038/1827-806X.43.1.6 Breg Valjavec, M., Ribeiro, D., Čarni, A. 2017: Vegetation as the bioindicator of human-induced degra­dationinkarstlandscape:casestudyofwaste-filleddolines.ActaCarsologica46-1.DOI:https://doi.org/ 10.3986/ac.v46i1.4712 BregValjavec,M.,Zorn,M.,Čarni,A.2018:Bioindicationofhuman-inducedsoildegradationinenclosed karst depressions (dolines) using Ellenberg indicator values (Classical Karst, Slovenia). Science of the Total Environment 640/641. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.294 Breg,M.2007:DegradationofdolinesonLogaškoPolje(Slovenia).ActaCarsologica36-2.DOI:https://doi.org/ 10.3986/ac.v36i2.191 Calo, F., Parise, M. 2006: Evaluating the human disturbance to karst environments in Southern Italy. Acta Carsologica 35, 2-3. DOI: https://doi.org/10.3986/ac.v35i2-3.227 Cernatič-Gregorič,A.,Zega,M.2010:Theimpactofhumanactivitiesondolines(Sinkholes)–typicalgeo­morphologicfeaturesonkarst(Slovenia)andpossibilitiesoftheirpreservation.GeographicaPannonica 14-4. DOI: https://doi.org/10.5937/GeoPan1004109C Chytrý,M.,Tichý,L.,Holt,J.,Botta-Dukát,Z.2002:Determinationofdiagnosticspecieswithstatisticalfidelity measures.JournalofVegetationScience13-1.DOI:https://doi.org/10.1111/j.1654-1103.2002.tb02025.x Czúcz, B., Gálhidy, L., Mátyás, C. 2011: Present and forecasted xeric climatic limits of beech and sessile oakdistributionatlowaltitudesinCentralEurope.AnnalsofForestScience68-1.DOI:https://doi.org/ 10.1007/s13595-011-0011-4 Dobrowski,S.Z.2010:Aclimaticbasisformicrorefugia:theinfluenceofterrainonclimate.GlobalChange Biology 17-2. DOI: https://doi.org/10.1111/j.1365-2486.2010.02263.x Dövényi, Z., Ambrózy, P., Juhász, Á., Marosi, S., Mezosi, G., Michalkó, G., Somogy, S., Szalai, Z., Tiner, T. 2010: Magyarország kistájainak katasztere (Inventory of microregions in Hungary). Budapest. Dunn, R. R. 2004: Recovery of faunal communities during tropical regeneration. Conservation Biology 18-2. DOI: https://doi.org/10.1111/j.1523-1739.2004.00151.x Egli, B. R. 1991: The special flora, ecological and edaphic conditions of dolines in the mountain of Crete. Botanika Chronika 10. Frey, S. J. K., Hadley, A. S., Johnson, S. L., Schulze, M., Jones, J. A., Betts, M. G. 2016: Spatial models reveal the microclimatic buffering capacity of old-growth forests. Science Advances 2. DOI: https://doi.org/ 10.1126/sciadv.1501392 Gentili, R., Baroni, C., Caccianiga, M., Armiraglio, S., Ghiani, A., Citterio, S. 2015: Potential warm-stage microrefugia for alpine plants: Feedback between geomorphological and biological processes. Ecological Complexity 21. DOI: https://doi.org/10.1016/j.ecocom.2014.11.006 Geßler, A., Keitel, C., Kreuzwieser, J., Matyssek, R., Seiler, W., Rennenberg, H. 2007: Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21-1. DOI: https://doi.org/10.1007/ s00468-006-0107-x Guariguata, M. R., Ostertag, R. 2001: Neotropical secondary forest succession: changes in structural and functionalcharacteristics.ForestEcologyandManagement148,1-3.DOI:https://doi.org/10.1016/S0378­1127(00)00535-1 Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A-L., Totland, O. 2009: How does climate warming affect plant-pollinatorinteractions?EcologyLetters12-2.DOI:https://doi.org/10.1111/j.1461-0248.2008.01269.x Hlásny,T.,Barcza,Z.,FabrikaM.,Balázs,B.,Churkina,G.,Pajtík,J.,Sedmák,R.,Turčáni,M.2011:Climate change impacts on growth and carbon balance of forests in Central Europe. Climate Research 47-3. DOI: https://doi.org/10.3354/cr01024 Horvat, I. 1953: Vegetacija ponikava. Geografski Glasnik 14/15. Horváth, F., Dobolyi, Z. K., Morschhauser, T., Lőkös, L., Karas, L., Szerdahelyi, T. 1995: FLORA database. 1.2. Vácrátót. Hoyk,E.1999:GeoecologicalstudiesonthekarsticsurfacesoftheplannedprotectedareainWesternMecsek, South Hungary. Acta Carsologica 28-2. DOI: https://doi.org/10.3986/ac.v28i2.485 Iatroú, G., Fournaraki, C. 2006: Horstrissea dolinicola. The IUCN Red List of Threatened Species 2006. DOI: http://doi.org/10.2305/IUCN.UK.2006.RLTS.T61613A12522933.en Kemencei,Z.,Farkas,R.,Páll-Gergely,B.,Vilisics,F.,Nagy,A.,Hornung,E.,Sólymos,P.2014:Microhabitat associations of land snails in forested dolinas: implications for coarse filter conservation. Community Ecology 15-2. DOI: https://doi.org/10.1556/ComEc.15.2014.2.6 Keppel,G.,Anderson,S.,Williams,C.,Kleindorfer,S.,O’Connell,C.2017:Microhabitatsandcanopycover moderatehighsummertemperaturesinafragmentedMediterraneanlandscape.PLoSONE12-8.DOI: https://doi.org/10.1371/journal.pone.0183106 Keppel, G., Mokany, K., Wardell-Johnson, G. W., Phillips, B. L., Welbergen, J. A., Reside, A. E. 2015: The capacity of refugia for conservation planning under climate change. Frontiers in Ecology and the Environment 13-2. DOI: https://doi.org/10.1890/140055 Keppel,G.,VanNiel,K.P.,Wardell-Johnson,G.W.,Yates,C.J.,Byrne,M.,Mucina,L.,Schut,A.G.T.,Hopper, S.D.,Franklin,S.E.2012:Refugia:identifyingandunderstandingsafehavensforbiodiversityundercli­matechange.GlobalEcologyandBiogeography21-4.DOI:https://doi.org/10.1111/j.1466-8238.2011.00686.x Kobal, M., Bertoncelj, I., Pirotti, F., Dakskobler, I., Kutnar, L. 2015: Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover – case study of a high karst area in the Dinaric Mountains. PLoS ONE 10-3. DOI: https://doi.org/10.1371/journal.pone.0122070 Kovačič,G.,Ravbar,N.2013:Analysisofhumaninducedchangesinakarstlandscape–thefillingofdolines in the Kras plateau, Slovenia. Science of the Total Environment 447. DOI: https://doi.org/10.1016/ j.scitotenv.2013.01.002 Lehmann,A.1970:Tarvágásáltalokozottökológiaiváltozásokazabaligetikarszton.PécsiMűszakiSzemle25. Lukić, T., Marić, P., Hrnjak, I., B. Gavrilov, M., Mladjan, D., Zorn, M., Komac, B., Milošević, Z., Marković, B. S., Sakulski, D., Jordaan, A., Đorđević, J., Pavić, D., Stojsavljević, R. 2017: Forest fire analysis and classification based on a Serbian case study. Acta geographica Slovenica 57-1. DOI: https://doi.org/ 10.3986/AGS.918 McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E., Thompson, S. E. 2017: Hydrologic refugia,plants,andclimatechange.GlobalChangeBiology23-8.DOI:https://doi.org/10.1111/gcb.13629Modrić Surina, Ž., Surina, B. 2010: Snowbed vegetation in Croatia: Phytosociology, ecology and conser­vation status. Plant Biosystems 144-4. DOI: https://doi.org/10.1080/11263504.2010.502716 Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin P. R., O’Hara, R. B.,Simpson,G.L.,Solymos,P.,StevensM.H.H.,Szoecs,E.,Wagner,H.2018:Vegan:CommunityEcology Package. Internet: http://CRAN.R-project.org/package=vegan (26.4.2018). Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team 2018: nlme: linear and nonlinear mixed effects models. R package version 3.1-137. Internet: https://cran.r-project.org/web/packages/nlme/ index.html (26.4.2018). R Core Team, 2018: R: A language and environment for statistical computing. Vienna. Internet: http://www.R-project.org/ (6.5.2018). Raschmanová, N., Miklisová, D., Kováč, L’., Šustr, V. 2015: Community composition and cold tolerance of soil Collembola in a collapse karst doline with strong microclimate inversion. Biologia 70-6. DOI: https://doi.org/10.1515/biolog-2015-0095 Ritter Beck von Mannagetta, G. 1906: Die Umkehrung der Pflanzenregionen in den Dolinen des Karstes. Deutsche Universität Prag, Prag. Rull,V.2009:Microrefugia.JournalofBiogeography36-3.DOI:https://doi.org/10.1111/j.1365-2699.2008.02023.xRůžička,V.,Mlejnek,R.,Juřičková,L.,Tajovský,K.,Šmilauer,P.,Zajíček,P.2016:InvertebratesoftheMacocha Abyss(MoravianKarst,CzechRepublic).ActaCarsologica45-1.DOI:https://doi.org/10.3986/ac.v45i1.896 Saikh,H.,Varadachari,C.,Ghosh,K.1998:Changesincarbon,nitrogenandphosphoruslevelsduetodefor­estation and cultivation: A case study in Simlipal National Park, India. Plant and Soil 198-2. DOI: https://doi.org/10.1023/A:1004391615003 Stančič,L.,Repe,B.2018:Post-firesuccession:SelectedexamplesfromtheKarstregion,southwestSlovenia. Acta geographica Slovenica 58-1. DOI: https://doi.org/10.3986/AGS.1942 Stewart,J.R.,Lister,A.M.,Barnes,I.Dalén,L.2010:Refugiarevisited:individualisticresponsesofspecies inspaceandtime.ProceedingsoftheRoyalSocietyB277-1682.DOI:https://doi.org/10.1098/rspb.2009.1272 Su,Y.,Tang, Q.,Mo, F., Xue, Y. 2017: Karsttiankengs asrefugia for indigenous tree flora amidsta degraded landscapeinsouthwesternChina.ScientificReports7.DOI:https://doi.org/10.1038/s41598-017-04592-x The plant list, 2018. Internet: http://www.theplantlist.org (6.5.2018). Tichý, L. 2002: JUICE, software for vegetation classification. Journal of Vegetation Science 13-3. DOI: https://doi.org/10.1111/j.1654-1103.2002.tb02069.x Troiani, N., Tardella, F. M., Malatesta, L., Corazza, M., Ferrari, C., Catorci, A. 2016: Long-term cropland abandonmentdoesnotlead persetothe recoveryofsemi-naturalherbcommunitiesdeemed habitats of community interest. Acta Botanica Croatica 75-2. Whiteman, C. D., Haiden, T., Pospichal, B., Eisenbach, S., Steinacker, R. 2004: Minimum temperatures, diurnal temperature ranges, and temperature inversion in limestone sinkholes of different sizes and shapes. Journal of Applied Meteorology 43. DOI: https://doi.org/10.1175/1520-0450(2004)043<1224: MTDTRA>2.0.CO;2 Willis, K. J., Rudner, E., Sümegi, P. 2000: The full-glacial forests of Central and southeastern Europe. Quaternary Research 53-2. DOI: https://doi.org/10.1006/qres.1999.2119