19 RAKOTVORNO DELOVANJE KEMIKALIJ IZ OKOLJA POVZETEK. UVOD za nastanek raka: 20 MEHANIZMI DELOVANJA RAKOTVORNIH KEMIKALIJ 21 22 Absorpcija Majhni, nizkomolekularni DNK-adukti najpogosteje nastanejo po alkilaciji kovalentne vezave funkcionalne alkilne skupine na molekulo DNK. N a splošno je alkilacija dušika nukleinske baze manj mutagena od alkilacije skupino spadajo N-nitrozo spojine in nitrozamini, ki nastajajo tudi endogeno, 23 Reactive Oxygen Species CpG islands 24 RAKOTVORNO DELOVANJE KADMIJA 25 Slika 3. Mehanizem karcinogenega delovanja kadmija prek indukcije poškodb DNK, inhibicije 26 3. Knudson Jr AG. Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68 (4): 820–3. 4. NTP Report on carcinogens. 12 th edition. Research Triangle Park, NC: US Department of health and human services, Public health service, National toxicology program, 2011. 5. Irigaray P, Belpomme D. Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis. 2010; 31 (2): 135–48. 6. Gates KS. An overview of chemical processes that damage cellular DNK: Spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 2009; 22 (11): 1747–60. 7. Hlavin EM, Smeaton MB, Miller PS. Initiation of DNK interstrand cross-link repair in mammalian cells. Environ Mol Mutagen 2010; 51 (6): 604–24. 8. Sczepanski JT, Jacobs AC, Van Houten B, Greenberg MM. Double-strand break formation during nucleotide excision repair of a DNK interstrand cross-link. Biochemistry 2009; 48 (32): 7565–7. 9. Wiencke JK, McDowell ML, Bodell WJ. Molecular dosimetry of DNK adducts and sister chromatid exchanges in human lymphocytes treated with benzo[a]pyrene. Carcinogenesis 1990; 11 (9): 1497–502. 10. van Schooten FJ, Hillebrand MJ, van Leeuwen FE, Lutgerink JT, van Zandwijk N, Jansen HM, et al. Polycyclic aromatic hydrocarbon-DNK adducts in lung tissue from lung cancer patients. Carcinogenesis 1990; 11 (9): 1677–81. 11. Lu AL, Li X, Gu Y, Wright PM, Chang DY. Repair of oxidative DNK damage: Mechanisms and functions. Cell Biochem Biophys 2001; 35 (2): 141–70. 12. Klaunig JE, Wang Z, Pu X, Zhou S. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 2011; 254 (2): 86–99. 13. Schiestl RH, Aubrecht J, Yap WY, Kandikonda S, Sidhom S. Polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin induce intrachromosomal recombination in vitro and in vivo. Cancer Res 1997; 57 (19): 4378–83. 14. Galanis A, Karapetsas A, Sandaltzopoulos R. Metal-induced carcinogenesis, oxidative stress and hypoxia signalling. Mutat Res 2009; 674 (1–2): 31–5. 15. Witkiewicz-Kucharczyk A, Bal W. Damage of zinc fingers in DNK repair proteins, a novel molecular mechanism in carcinogenesis. Toxicol Lett 2006; 162 (1): 29–42. 16. Calvanese V, Lara E, Kahn A, Fraga MF. The role of epigenetics in aging and age-related diseases. Ageing Res Rev 2009; 8 (4): 268–76. 17. Gronbaek K, Hother C, Jones PA. Epigenetic changes in cancer. APMIS 2007; 115 (10): 1039–59. 18. Esteller M. Epigenetics in cancer. N Engl J Med 2008; 358 (11): 1148–59. 19. Weidman JR, Dolinoy DC, Murphy SK, Jirtle RL. Cancer susceptibility: epigenetic mani- festation of environmental exposures. Cancer J 2007; 13 (1): 9–16.