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Abstract

We discuss functions from the edges and vertices of a directed graph to an Abelian
group. A function is called balanced if the sum of its values along any cycle is zero. The
set of all balanced functions forms an Abelian group under addition. We study this group in
two cases: when we are allowed to walk against the direction of an edge taking the opposite
value of the function and when we are not allowed to walk against the direction.
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weighted graphs.
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1 Introduction
Let A be an Abelian group with the group operation denoted by + and the identity element
denoted by 0. Let G be a graph. Roughly speaking, an A-valued function f on vertices
and/or edges of G is called balanced if the sum of its values along any cycle of G is 0. Our
cycles are not permitted to have repeating edges.

The study of balanced functions can be conducted in three cases:
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1. The graph G is directed with the set of vertices V and the set of directed edges E.
When traveling between the vertices, we are allowed to travel with or against the
direction of the edges. The value of a function f on ē, which represents traveling the
edge e against its direction, is equal to −f(e). In this context, when the function is
defined on edges only, the pair (G, f) is called a network or a directed network. In
this paper we shall call this the flexible case, meaning that the direction of an edge
does not forbid us to walk against it. The notion of balanced functions on edges for
the flexible case, for functions taking values only on the edges, is introduced in the
literature under different names. Thus, for example, in [1] the set of such functions is
exactly Im(d), where d is the “exterior differential”, which maps a function f defined
on vertices to the function df on edges defined by the equality (df)(e) = f(e+) −
f(e−), where e− and e+ are the origin and the end of a directed edge e. In [11], in
somewhat different language, that set is referred to as the set of consistent graphs.
In [13] such functions have been introduced under the name “color-coboundaries”.
They also appear in literature under the name “tensions”. They have been extensively
studied, recent examples include [3, 4, 6, 10, 14]. In [5] balanced functions on edges
appear in a certain connection with geometric representations of the Coxeter group
associated to a graph. In a rather common terminology introduced by Zaslavsky, [15],
a pair of a graph and such a function on the edges of a graph is called a “gain graph”.

2. The graph G is directed with the set of vertices V and the set of directed edges E,
but we are only allowed to travel with the direction of the edges. In this paper we
shall call this the rigid case. When f takes values only on the edges then in some
literature, following Serre, [12], the flexible case is described as a particular instance
of the rigid case by introducing the set E as the new set of directed edges of G (the
cardinality of E is twice that of E), denoting by ē ∈ E the inverse of the directed
edge e ∈ E and requiring f(ē) = −f(e), [1, 12].

3. The graph G is undirected. The value of a function f on an edge e does not depend on
the direction of the travel on e. The case of balanced functions f : E → R is studied
in [2], where these functions are called “cycle-vanishing edge valuations”. The case
of balanced functions f : E → A is studied in [7]. The case of balanced functions
f : V

⋃
E → A is first introduced and studied in [9]. The group structure of the

groups of balanced functions on the edges, balanceable functions on the vertices and
balanced functions on the vertices and edges of an undirected graph with values in
an Abelian group is studied in [7].

The subject of this paper is the group structure and the relations between groups of
functions associated with the notion of balance on a directed graph. Namely, we study the
group structures of the groups of balanced functions for the flexible and the rigid cases and
the relations between these two cases.

In this article we calculate the groups of balanced functions on the edges, balanceable
functions on the vertices and balanced functions on the vertices and edges of a directed
graph with values in an Abelian group for both flexible and rigid cases.

In what follows, we say that a directed graph is connected if its underlying undirected
graph is connected, and strongly connected whenever there exists a directed path between
any ordered pair of vertices.

For the basics of Graph Theory we refer to [8].
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2 The flexible case
Let G = (V,E) be a connected directed graph, possibly with loops and multiple edges. Let
v and w be two vertices connected by an edge e; v is the origin of e and w is the endpoint
of e. For e ∈ E denote by ē the same edge as e but taken in the opposite direction. Thus ē
goes from w to v. Let E = {e, ē | e ∈ E}.

Definition 2.1. A path from a vertex x to a vertex y is an alternating sequence v1, e1, v2,
e2,...,vn, en of vertices from V and different edges from E such that v1 = x and each ej ,
for j = 1, ..., n − 1, goes from vj to vj+1 and en goes from vn to y. We permit the same
edge e to appear in a path twice - one time along and one time against its direction, since
this is regarded as using two different edges from E.

We require our graphs to be connected. Namely, any two different vertices of the graph
G can be connected by a path.

Definition 2.2. A cycle is a path from a vertex to itself.

We permit the trivial cycle, which is the empty sequence containing no vertices and no
edges.

Definition 2.3. The length of a cycle is the number of its edges.

Definition 2.4. A function f : E → A such that f(ē) = −f(e) is balanced if the sum
f(e1) + ... + f(en) of the values of f over all the edges of any cycle of G is equal to 0.

Definition 2.5. The set of all the balanced functions f : E→ A is denoted by HF(E, A).
HF(E, A) is a subgroup of the Abelian group AE of all the functions from E to A.

Definition 2.6. A function g : V → A is balanceable if there exists some f : E→ A such
that f(ē) = −f(e) and the sum of all the values g(v1) + f(e1) + g(v2) + f(e2) + ... +
g(vn) + f(en) along any cycle of G is zero. We say that this function f : E→ A balances
the function g : V → A.

Definition 2.7. The set of all the balanceable functions g : V →A is denoted by BF(V,A).
The group BF(V,A) is a subgroup of the free Abelian group AV of all the functions from
V to A.

Definition 2.8. A function h : V
⋃
E → A, which takes both vertices and edges of G to

some elements of A, is balanced if h(ē) = −h(e) and the sum of its values h(v1)+h(e1)+
h(v2) + h(e2) + ... + h(vn) + h(en) along any cycle of G is zero.

Definition 2.9. The set of all the balanced functions h : V
⋃
E → A is denoted by

WF(G,A). The group WF(G,A) is a subgroup of the Abelian group AV
⋃

E of all the
functions from V

⋃
E to A.

Clearly, any balanced function f ∈ HF(E, A) can be viewed as a balanced function
from V

⋃
E to A, which takes zero value on every vertex of G. Thus, we will regard

HF(E, A) as a subgroup ofWF(V
⋃
E, A).

Proposition 2.10. The quotient WF(V
⋃
E, A)/HF(E, A) is naturally isomorphic to

BF(V,A).
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Proof. The natural isomorphism is defined by “forgetting” the values of h ∈ WF(V
⋃

E,
A) on the edges of G and regarding it just as a balanceable function from V to A.

We review some basic definitions and facts regarding Abelian groups.

Definition 2.11. A natural number k is the order of an element a ∈ A if it is the minimal
positive integer such that k · a = 0.

Definition 2.12. The set of all elements of A of order 2 is denoted by A2. The set A2 is a
subgroup of A.

We provide a proof of a folklore result which describes the structure of the group
HF(E, A).

Proposition 2.13. The groupHF(E, A) is isomorphic to A|V |−1.

Proof. Select a vertex v and consider the following bijection between the group of all A-
valued functions g on V with g(v) = 0 and the group HF(E, A). For any such g, since
each edge e ∈ E goes from some vertex x to some vertex y, we define f(e) = g(y)− g(x).
A straightforward calculation shows that f ∈ HF(E, A). In the other direction of the
bijection, for f ∈ HF(E, A) we inductively construct the function g as follows: we set
g(v) = 0; if g(u) has been defined for a vertex u then for every vertex w, for which there
exists some edge e from u to w, we define g(w) = g(u) + f(e). Since f ∈ HF(E, A),
any two calculations of the value of g on any vertex u will produce the same result. The
connectivity implies that every vertex indeed receives a value. Thus, our g is well-defined.
Obviously, the bijection, constructed above, is a group isomorphism.

Now we can state and prove one of our main results.

Theorem 2.14. Let G = (V,E) be a connected directed graph and G′ be its underlying
undirected graph. Then:

1. If G′ is bipartite, then the groupWF(V
⋃
E, A) is isomorphic to A|V |.

2. If G′ is not bipartite, thenWF(V
⋃
E, A) is isomorphic to A2 ×A|V |−1.

Proof. If G consists only of one vertex then part (1) of our theorem is trivial. Otherwise,
let us look at any one non-loop edge of G as it is depicted in Fig. 1:

a b
p //

Figure 1: An edge with values on it and on its origin and end.

The letters on the edge and the vertices denote the values of a function h : V
⋃

E→ A.
Assume that h is balanced, that is, h ∈ WF(V

⋃
E, A). Then for the cycle obtained by

walking along this edge and returning back along it we have the following equation:

a + p + b− p = 0 ,

which immediately implies that
b = −a .
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Thus h must have opposite values on any two vertices of G connected by an edge. Assume
that G′ is bipartite, which implies that G has no cycles of odd length. Then h, restricted to
the edges, must be equal to some balanced function f ∈ HF(E, A) on the edges, since val-
ues a and −a on the vertices of an even-length cycle appear equally often. Now select any
vertex v ∈ V . We can construct a balanced function h on vertices and edges by: for any el-
ement a ∈ A define h(v) = a and then define h for all the neighbors of v to be−a and then
for all the neighbors of the neighbors of v define h to be a and so on. Continuing this way
we will assign values a or−a to all the vertices of G. Since all the cycles are of even length,
we will not get a contradiction in that process. Next we choose any function f ∈ HF(E, A)
and we set h on the edges to be equal to f . Hence, we have constructed a bijection between
WF(V

⋃
E, A) and the group of pairs {(a, f) | a ∈ A, f ∈ HF(E, A)}. This bijection is

obviously also a group isomorphism. In addition, {(a, f) | a ∈ A, f ∈ HF(E, A)} is iso-
morphic to A|V |, since the groupHF(E, A) is isomorphic to A|V |−1 by Proposition 2.13.

Now assume that G′ is not bipartite, that is, G has a cycle of odd length. As we have
already seen above, the values of a balanced function h ∈ WF(V

⋃
E, A) on the vertices

must be a and −a for some a ∈ A. But walking along a cycle of odd length with vertices
v1, v2,...,vn, we get h(v1) = a, h(v2) = −a,..., h(vn) = a, h(v1) = −a, so a = −a,
that is, 2a = 0, which exactly means that a ∈ A2. Thus we construct a bijection between
WF(V

⋃
E, A) and the group of pairs {(a, f) | a ∈ A2, f ∈ HF(E, A)} mapping h ∈

WF(V
⋃
E, A) to the pair (a, f), where a ∈ A2 is the value of h on any vertex, and f is a

balanced function on edges defined as f(e) = h(e)+a for every edge e; conversely, from a
given a ∈ A2 and a balanced function f ∈ HF(E, A), we can construct a balanced function
h ∈ WF(V

⋃
E, A) assuming h(v) = a for any vertex v and h(e) = f(e)+a for any edge

e. This bijection is a group isomorphism. In addition, {(a, f) | a ∈ A2, f ∈ HF(E, A)}
is isomorphic to A2 × A|V |−1, since the group HF(E, A) is isomorphic to A|V |−1 by
Proposition 2.13.

Remark 2.15. Let G = (V,E) be a connected directed graph and G′ be its underlying
undirected graph. Notice that if the graph G′ is bipartite, then the group of balanceable
functions BF(V,A) is isomorphic to A and if G′ is not bipartite, then the group of bal-
anceable functions BF(V,A) is isomorphic to A2 - the group of involutions of A.

3 The rigid case
Let G = (V,E) be a connected directed graph. Recall that in the rigid case we are allowed
to walk only in the direction of an edge but not against it. It naturally changes the notion of
a path and of a cycle in comparison with the flexible case.

Definition 3.1. A path from a vertex x to a vertex y is an alternating sequence v1, e1, v2,
e2,...,vn, en of vertices from V and different edges from E (and not E) such that v1 = x
and each ej , for j = 1, ..., n− 1, goes from vj to vj+1 and en goes from vn to y.

For example, the triangle depicted in Fig. 2 is a cycle in the flexible case but is not a
cycle in the rigid case.

Similarly to the flexible case denote by BR(V,A), HR(E,A) and WR(V
⋃
E,A)

the groups of balanceable functions on vertices, balanced functions on edges and balanced
functions of the entire graph G (vertices and edges), respectively.
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Figure 2: A flexible cycle, which is not a rigid cycle.

Proposition 3.2. Every function on the set of vertices is balanceable. That is,

BR(V,A) = AV .

Proof. Let us take a function g : V → A. Define the function h : V
⋃

E → A in the
following way: h(v) = g(v) for each vertex v ∈ V , h(e) = −g(v) for all the edges e ∈ E
which start at v. Obviously h is a balanced function.

Definition 3.3. Two vertices x and y of G are strongly connected if there exists a path P1

from x to y and a path P2 from y to x. We also say that every vertex is strongly connected
to itself.

Notice that we allow P1 and P2 to have common edges.

Definition 3.4. A cycle is a path P from a vertex x to itself.

Notice that, since the paths P1 and P2 mentioned above might have common edges, P1

followed by P2 may not be a cycle. It can even happen, that there exists no cycle, which
contains both x and y. To illustrate it, consider the following.

Example 3.5. Consider the graph G depicted in Fig. 3 with V (G) = {x, v, w, y} and
E(G) = {e1, e2, e3, e4, e5}. The path P1 = x, e1, v, e5, w, e4 is the only path which goes
from x to y and the path P2 = y, e2, v, e5, w, e3 is the only path which goes from y to x.
They have a common edge e5. Thus, according to Definitions 3.1 and 3.4, there exists no
cycle containing both x and y.

x

v y

w

e1

OO

e5

��

e4

OO

e3
oo

e2oo

Figure 3: The vertices x, y are strongly connected but no cycle contains both of them.

Strong connectivity defines an equivalence relation on the vertices of G. The equiva-
lence classes of strongly connected vertices, together with all the edges between the vertices
of each class, are called the strongly connected components of G. We denote the number
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of strongly connected components of G by k̄(G). Obviously, G is strongly connected if
and only if k̄(G) = 1.

Lemma 3.6. If G is strongly connected, then the groupHR(E,A) is isomorphic to A|V |−1,
just like in the flexible case.

Proof. Let E = {e1, ..., en}. The edge e1 goes from some x to some y. There is a path P
which goes from y to x and does not contain e1, since if P contains e1 we can just delete
this e1 and all the vertices and edges that come after it from P . Thus, the sum of values
of any f ∈ HR(E,A) along P must be equal to −f(e1). Hence, we can add a new edge
ē1 to G which goes from y to x and we can extend the function f to a balanced function
on the edges of the new G if and only if we set f(ē1) = −f(e1). So the group of the
balanced functions on the edges of G after the addition of ē1 is naturally isomorphic to the
original group of the balanced functions on the edges of G before the addition. Repeating
this process for all the edges of E we reduce G to the flexible case, while not changing the
group of the balanced functions on the edges of G.

Theorem 3.7. The group HR(E,A) is isomorphic to A|V |−k̄(G)+r(G), where k̄(G) is the
number of strongly connected components of G, and r(G) is the number of all the edges
in G which go from a vertex in one strongly connected component of G to a vertex in a
different strongly connected component of G.

Proof. Let V1, ..., Vt be the equivalence classes of vertices of G with respect to strong
connectivity. Denote the set of edges between the vertices of Vj by Ej . Obviously, f ∈
HR(E,A) if and only if f |Ej ∈ HR(Ej , A) for each j, 1 6 j 6 t. Thus, HR(E,A) =
HR(E1, A) × · · · × HR(Et, A) × AU , where U is the set of all the edges between the
vertices in different strongly connected components of G. By Lemma 3.6 we conclude that
HR(E,A) is isomorphic to A|V1|−1+|V2|−1+···+|Vt|−1+r(G) = A|V |−k̄(G)+r(G).

Theorem 3.8. The groupWR(V
⋃
E,A) is isomorphic to A2|V |−k̄(G)+r(G), where k̄(G)

is the number of strongly connected components of G, and r(G) is the number of all the
edges in G which go from a vertex in one strongly connected component of G to a vertex in
a different strongly connected component of G.

Proof. To each h ∈ WR(V
⋃
E,A) there corresponds the pair (g, f), where g ∈ BR(V,

A) is just the restriction of h on the vertex set, and the value of f ∈ HR(E,A) on every
edge e is equal to h(e) + h(v), where the vertex v is the origin of the edge e. Such a
function f is obviously a balanced function on the edge set since its value along any path
is equal to the value of h along that path. This correspondence between the elements of
WR(V

⋃
E,A) and the pairs from BR(V,A) × HR(E,A) is a bijection. Indeed, for a

given pair (g, f), where g is any function on the vertex set and f is a balanced function
on the edge set, we can construct h : V

⋃
E → A as follows: h(v) = g(v) for all

v ∈ V and h(e) = f(e) − g(v) for all e ∈ E, where the vertex v is the origin of the
edge e. The constructed bijection is obviously a group isomorphism between the group
WR(V

⋃
E,A) and the group BR(V,A) × HR(E,A), which is isomorphic to A|V | ×

A|V |−k̄(G)+r(G).

Thus, the flexible problem for a graph G = (V,E) can be regarded as the rigid problem
for the graph G′ = (V,E), where E = {e, ē | e ∈ E}. Vice versa, the rigid problem for a
graph G can be regarded as a free product of the rigid problems for the strongly connected
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components of G also multiplied by Ar(G) where r(G) is the number of edges between
different strongly connected components of G.

The following simple claim connects this work to [7].

Proposition 3.9. Let G be an undirected connected graph and let Gdir be a directed
graph obtained from G by any assignment of directions to the edges of G. Denote by
H(E,A) the group of A-valued balanced functions on edges of G. Choose any order
on edges of G and embed H(E,A) and HR(E(Gdir), A) into A|E|. For an undirected
graph G the group of balanced functions on edges of G is equal to the intersection of
all the groups HR(E(Gdir), A), where Gdir runs over all directed graphs for all 2|E|

possible direction assignments to the edges of G. The same is true for the groups of bal-
anced functions on the entire graph (both vertices and edges). Namely, W (V

⋃
E,A) =⋂

WR(V
⋃
E(Gdir), A).

Proof. Let Cyc = v1, e1, ..., vk, ek be a cycle in the undirected graph G. There exists a
directed graph Gdir for which c is also a cycle. So any f ∈

⋂
HR(E(Gdir), A) must

satisfy the equation
∑k

i=1 f (ei) = 0. Therefore f ∈ H(E,A), since Cyc is an arbitrary
cycle of G. Hence,

H(E,A) ⊇
⋂
HR(E(Gdir), A) .

The opposite inclusion is obvious, since any cycle of any Gdir is a cycle of G. The proof
of the second statement of the proposition is similar.
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