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OPTIMIZACIJA NAČRTOVANJA VODOOSKRBNIH SISTEMOV Z
UPORABO GENETSKIH ALGORITMOV

OPTIMIZATION OF DESIGN OF WATER DISTRIBUTION SYSTEMS
USING GENETIC ALGORITHMS

Angus R. SIMPSON

V članku je podrobno predstavljen relativno nov pristop k načrtovanju vodooskrbnih sistemov.
Optimizacijska tehnika, ki jo imenujemo genetski algoritmi, je uporabljena za spreminjanje in
izboljšanje populacije rešitev. Le zelo zelo majhen del celotnega obsega rešitev je treba raziskati,
da bi našli rešitve z nizkimi stroški, ki zadovoljujejo kriterije načrtovanja. Genetski algoritmi (GA)
uporabljajo operatorje selekcije, križanja in mutacije na skupini nizov, ki predstavljajo odločitvene
spremenljivke, ki jih je treba določiti kot del načrtovalnega procesa. Ti operatorji omogočajo
procesom genetskih algoritmov, da hitro poiščejo poceni optimalne rešitve. Obsežna testiranja
procesa optimizacije s pomočjo genetskih algoritmov na dejanskih načrtih omrežij so pokazala, da
so GA učinkoviti pri iskanju poceni rešitev. Ta tehnika je konsistentno našla cenejše rešitve kot
poizkusi in pogreši pristop, ki ga načrtovalci običajno uporabljajo. Poleg tega je ta tehnika
učinkovitejša in preprostejša za uporabo kot tradicionalne optimizacijske tehnike.
Ključne besede: vodovodni sistemi, genetika, genetski algoritmi, metode optimiranja, oblikovanje,
obnova, obratovanje sistema

This paper presents details of a relatively new approach to the design of water distribution systems. An
optimization technique called genetic algorithms is used to evolve an improving population of designs.
Only a very, very small proportion of the total possible search space needs to be explored in order  to
find low cost solutions that satisfy all of the specified design criteria. The genetic algorithm (GA) uses
operators of selection, crossover and mutation applied to a set of strings that represents the decision
variables to be selected as part of the design process. These operators enable the genetic algorithm
process to quickly seek out low cost optimal solutions. Many tests of the application of the genetic
algorithm optimization process to real-life network designs has shown that the GA is effective at
finding low cost solutions. The technique has consistently found lower cost solutions than the trial-and-
error simulation approach typically used by design engineers. In addition, the technique is more
effective and easier to apply than traditional mathematical optimization techniques.
Key words: water distribution systems, genetics, genetic algorithms, optimization methods, design
rehabilitation, network operation

1. INTRODUCTION

Water distribution systems provide communities with adequate water for drinking, domestic
household usage, garden use, fire fighting and irrigation. Simulation of water distribution systems
using computer models has reached a mature stage of development. Many elements can be
modelled, including pipes, tanks, pumps and valves. A set of non-linear equations is solved within
the simulation model. Many sophisticated and extremely capable models are available
commercially or from government agencies (for example, EPANET, Stoner Synergee, WaterCAD,
Cybernet and Piccolo). Excellent user interfaces plus links to geographical information systems
(GIS) are provided with many of these simulation models. These models permit simulation of the
peak hour demand loading case as well as extended period simulation and fire demand loading
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cases. A trial-and-error approach is usually adopted in using simulation models for the design of
water distribution systems. The user chooses all of the sizes of the various components based on
engineering judgement and experience (e.g. diameters of pipes, whether a pipe should be cleaned or
not, locations of tanks, optimal normal water reservoir or tank operating elevations, pump location and
size and pump operation schedules). The selected combination of sizes of elements is then run in the
computer simulation model for all of the design demand loading cases. The results, including low
and high-pressure areas, are analysed and then changes are made to the sizes of elements in the
simulation model. The simulation model is then re-run for all the demand loading cases in an
attempt to find lower cost solutions that satisfy the design criteria. This process is repeated over and
over.

Optimization of water distribution systems has two main design objectives. The first is to
minimise the sum of the capital costs plus the operating costs of the water distribution system. The
second is to satisfy the design criteria. The most common design criteria are to satisfy the minimum
allowable pressure constraints. There have appeared many papers on the traditional mathematical
optimization of water distribution systems in the research literature since the mid-1960s (for
example, linear, dynamic and non-linear programming). However, there has been virtually no
transfer from the world of academia to the professional practice of the techniques developed in
these technical publications. The focus of this paper is the application of genetic algorithm
optimization to the design of water distribution systems. Genetic algorithms appear to have the
potential to be extremely useful in engineering practice in the optimization of the design and
operation of water distribution systems.

2. AN OVERVIEW OF GENETIC ALGORITHMS

A genetic algorithm (GA) is a powerful population-orientated search algorithm based upon
mechanisms of natural selection and genetics (Holland 1975, Goldberg 1989).  Application of
genetic algorithms to the design of water distribution systems was pioneered at the University of
Adelaide, South Australia in the early 1990s (Murphy and Simpson 1992). "Survival of the fittest"
relentlessly drives the genetic algorithm towards improving the design of a water distribution
network. The genetic algorithm selects, combines and manipulates possible solutions in a search for
the lowest cost network. The operators within a genetic algorithm search are analogous to survival
in nature, reproduction and the combination of chromosomes in the search of the best adaptation in
natural systems. GAs are not constrained by requirements such as continuity, derivative existence,
unimodality or linearity which are often necessary in other traditional mathematical optimization
techniques. An essential element of GA optimization as applied to pipe networks is the ability to
simulate the water distribution system in a hydraulic solver. The genetic algorithm optimizer and
the hydraulic simulator are separate, but are linked by the transfer of information between the two.

In applying the genetic algorithm (GA) technique to the particular design problem being
optimized, a GA deals with a population of solutions. Decision variables that are to be selected as
part of the design in a piped distribution design problem are coded as strings in the genetic
algorithm technique. Choices for each decision variable are provided. For example, a new pipe may
be selected as one of four pipe diameters of say, for example, 150, 200, 250 and 300 mm. Table 1
shows 8 pipe diameter choices. The genetic algorithm also requires cost information (material cost
plus installation), as well as head loss characteristics of the pipe (e.g. relative roughness height or
Hazen-Williams C value).
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Table 1. A decoding lookup table.

Nominal
Diameter
(mm)

Actual or
Internal
Diameter
(mm)

Binary
Coding

Integer
Coding

Roughness height
(mm) for Darcy-
Weisbach friction
factor

Unit Cost
($/m)

150 151 000 1 0.25 49
200 199 001 2 0.25 63
250 252 010 3 0.25 95
300 305 011 4 0.25 133
375 384 100 5 0.25 171
450 464 101 6 0.25 220
500 516 110 7 0.25 270
600 615 111 8 0.25 330

A genetic algorithm starts with a population of strings representing pipe network designs, and
thereafter generates successive populations of strings. The GA relies on the diversity of the initial
population to move generation by generation in a parallel fashion towards improved solutions. One
of the advantages of a genetic algorithm is the robustness of the technique.

2.1 COMBINATORIALLY LARGE DESIGN PROBLEMS

The number of possible options in designing a water distribution system is usually unbelievably
enormous. The New York City tunnels problem (Schaake & Lai 1969) involved 21 decision
variables representing a new pipe in parallel to each of the 21 existing pipes. For 16 allowable
choices for each for the duplications (including zero diameter), the number of possible
combinations is:

1621 = 284 = 1.934 x 1025

Even if a computer were able to evaluate 1 million different design combinations per second,
complete enumeration of every possible alternative for the New York City tunnels problem would
take 613 billion years. Thus complete enumeration of the entire search space to find the global
optimum solution is usually infeasible even for small design problems. As a result, effective
optimization techniques are required in order to be able to quickly search for low-cost designs. Most
water distribution systems problems involve search space sizes that are much bigger than the
example given for the New York City tunnels problem outlined above.

2.2 STEPS IN USING GENETIC ALGORITHMS FOR NETWORK OPTIMIZATION

The following steps summarise an implementation of a genetic algorithm for optimizing the
design of a water distribution network system (based on Simpson et al. 1993; Simpson et al., 1994):
1. Develop a coding scheme to represent the decision variables to be optimised, and the

corresponding lookup tables for the choices for the design variables.
2. Choose the form of the genetic algorithm operators; e.g. population size (say N=100 or 500);

selection scheme - tournament selection or biased Roulette wheel; crossover type - one-point, two-
point or uniform; and mutation type - bit-wise or creeping.
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3. Choose values for the genetic algorithm parameters (e.g. crossover probability - pc; mutation
probability - pm; penalty cost factor K).

4. Select a seed for the random number generator.
5. Randomly generate the initial population of water distribution network designs.
6. Decode each string in the population by dividing into its sub-strings and then determining the

corresponding decision variable choices (using the lookup tables).
7. For the decoded strings, compute the network cost of each of the designs in the population.
8. Analyse each network design with a hydraulic solver for each demand loading case to compute

network flows, pressures and pressure deficits (if any).
9. Compute a penalty cost for each network where design constraints are violated.
10. Compute the fitness of each string based on the costs in steps 7 and 9; often taken as the inverse of

the total cost (network cost plus penalty cost).
11. Create a mating pool for the next generation using the selection operator that is driven by the

“survival of the fittest.”
12. Generate a new population of designs from the mating pool using the genetic algorithm operators

of crossover and mutation.
13. Record the lowest cost solutions from the new generation.
14. Repeat steps 6 to 13 to produce successive generations of populations of designs - stop if all

members of the population are the same.
15. Select the lowest cost design and any other similarly low cost designs of different configuration.
16. Check if any of the decision variables have been selected at the upper bound of the possible

choices in the lookup table. If so, expand the range of choices and re-run of genetic algorithm.
17. Repeat steps 4 to 16 for, say, ten different starting random number seeds.
18. Repeat steps 4 to 17 for successively larger and larger population sizes.

Some of the main steps in the genetic algorithm process are now described in more detail.

2.2 CODING SCHEMES

A genetic algorithm coding scheme is required for each of the design variables within the water
distribution system to be selected as part of the design. Examples of design variables that may need
to be selected include:
1. Diameter, material and class of new pipes.
2. Diameter, material and class of duplicate pipes (that is – pipes in parallel to existing pipes).
3. The possibility of cleaning or eliminating existing pipes.
4. Possible locations of source pumps and/or booster pumps.
5. Sizes of pumps (that is –the rated head and rated discharge)
6. The operating schedule for pumps.
7. Possible locations of storage tanks.
8. Sizes and normal operating levels for the tanks.
9. Possible locations of pressure regulating valves (for example, pressure reducing valves, pressure

sustaining valves, flow control valves)
10. Pressure settings for the pressure regulator valves.

Each decision variable to be selected is coded within a finite-length string. As an example,
consider 8 new pipes (3 possible duplicate pipes and 5 new pipes) that are to be sized using genetic
algorithm optimization (for example, the 8-dashed pipes as shown in Figure 1 of the Two-Reservoir
Network). A three-bit substring is used to represent each decision variable for each pipe whose
diameter is to be optimally sized. Thus, the lookup table as shown in Table 1 for each pipe will
contain 8 different diameters. Note that in Figure 1 all the pipe sizes have been assigned the largest
pipe size, and as a consequence, this would lead to the largest possible cost of the network. If all the
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pipes were minimum size pipes represented by sub-string bit combinations of 000, then the least
expensive network would result.

In Table 1, eight choices for pipe [1] are provided. For a binary coding system, the number of
choices must be a multiple of 2n where n = 1, 2, 3, 4,.... etc. (i.e. 2, 4, 8, 16, etc.). A different
decoding table may be specified for each of the decision variables, if necessary. It can be seen that
binary coding is somewhat restrictive when 2n choices must be provided. An alternative to binary
coding is integer coding that allows the number of choices to be any integer number (e.g. 3, 10, 15
etc.). Integer codings are also shown in Table 1.

A string or chromosome for the design problem in Figure 1 is made up of the 8 sub-strings for
the three existing pipes (that can either be cleaned or duplicated – pipes [1], [4] and [5]) - and the 5
new pipes – pipes [6], [8], [11], [13] and [14].

2.3 THE RANDOMLY GENERATED INITIAL POPULATION

Once the coding representation has been selected, an initial population of, say 100 strings or
designs, is generated randomly. The binary coding scheme is used for the 24-bit problem in Figure
1. As an example, consider a population of size N = 4 as shown in Table 2. Each bit position takes
on either a zero (0) or one (1). These four strings of length 24-bits each may be randomly generated
by the toss of a coin: 0 for heads and 1 for tails. In a computer code, a uniform random number
generator would be used with a range of 0.0 and 1.0. For a random number less than 0.5, the bit is
set to a value of zero, while for random numbers greater than or equal to 0.5, the bit is set to a value
of one.

Figure 1. A pipe network showing genetic algorithm coded sub-strings.
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2.4 COMPUTATION OF FITNESSES OF THE STRINGS

For each string in the randomly generated initial population, the cost of each component in the
water distribution system represented by the string is computed and summed up in order to
determine a total network cost. Annual operating costs can be taken back to a net present value to
be added onto the capital costs. Each network is then simulated in a hydraulic solver for each of the
demand loading cases (peak hour, fire and extended period simulation). A penalty cost (a pseudo-
cost or fictitious-cost) is added to the network cost if any of the design constraints are not satisfied.
Other design criteria may include maximum allowable flow velocities and water quality design
criteria such as chlorine residual requirements. The total cost is the network cost plus the penalty
cost. The fitness is taken as a function of the total cost; for example, the inverse of the total cost.
Once the fitnesses of each string in the initial population have (subject/verb) been determined, the
genetic algorithm operators are applied to the strings representing the water distribution system
designs in order to generate a new population of solutions.

In the general case of a model for an existing system, a calibrated model would need to be
developed. Genetic algorithms have been used to carry out steady state calibration.

3. GENETIC ALGORITHM OPERATORS

The operators within a genetic algorithm provide probabilistic transition rules to guide the search
(Goldberg, 1989). A simple genetic algorithm has three operators including:
− Reproduction or selection to create a mating pool to base the next generation on.
− Crossover.
− Mutation.

There are many variations of these operators.

Table 2. Example of an initial population of size 4.

Pipe Number [1] [4] [5] [6] [8] [11] [13] [14]

String number 1 100 010 011 111 110 001 000 101
Diameter (mm) 384 252 305 615 500 199 151 464

String number 2 110 100 101 010 001 110 111 000
Diameter (mm) 516 384 464 252 199 516 615 151

String number 3 000 000 110 100 010 111 111 100
Diameter (mm) 151 151 516 384 252 615 615 384

String number 4 101 011 110 001 001 111 100 100
Diameter (mm) 464 305 516 199 199 615 384 384

3.1 THE SELECTION OR REPRODUCTION OPERATOR

The selection or reproduction operator selects a mating pool for the next generation from the
current population of pipe network designs based on the fitness values of strings in the previous
generation. The selection process determines which members of the current population will have
copies (usually more than one for the fitter of the strings in the population) in the next generation.
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All selection methods rely on some form of the principle of "survival of the fittest", where more
copies of strings with larger fitness are preferred as candidates to go into the mating pool for the
next generation. Two commonly used operators are proportionate selection (also called Roulette
wheel selection) and tournament selection. Tournament selection has been shown to be much more
effective than proportionate selection (Simpson & Goldberg 1994). Proportionate selection can be
improved by using fitness scaling (Murphy et al. 1993).

3.2 THE CROSSOVER OPERATOR

The crossover operator interchanges bit information between pairs of selected strings. Two strings are
randomly selected from the mating pool (that has been created by applying the selection operator). The
first decision to be made is whether the crossover operator will be applied to this pair of strings. This is
dependent on the value of the probability of crossover (for example, pc = 0.7). A random number is
generated between zero and 1.0. If the random number (for example, 0.4672) is less than the
probability of crossover, then the crossover operator is applied. If the random number (for example,
0.8324) is greater than the probability of crossover, then crossover is not applied and the two strings
pass directly to the next generation from the mating pool.

There are different forms of crossover operator including:
1. One-point crossover.
2. Two-point crossover.
3. Uniform crossover.

In one point crossover, a crossover position along the strings is chosen randomly. The same
position applies to both strings. The bits past the crossover point are swapped between the strings,
as shown in Figure 3. The crossover operator results in an exchange of bits between strings.

Figure 3. The crossover operator.

3.3 THE MUTATION OPERATOR

Mutation involves the occasional flipping of a bit from 1 to a zero or zero to a 1 (for a binary
coding scheme). Mutation ensures no genetic material is irretrievably lost from one particular bit
position. Each string in the new generation (resulting from the selection and crossover operators) is
considered, in turn, for the application of the mutation operator. Each bit in the string is considered
in turn. The probability of mutation is usually very small (for example, pm = 0.01). A decision must
be made as to whether the mutation operator will be applied to a particular bit. If a random number
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between zero and one is generated (for example, 0.00523) and is less than the probability of
mutation, then the mutation operator is applied. If the random number (for example, 0.367) is
greater than the probability of mutation, then the bit is not mutated and the next bit along the string
is then considered.

4. SUCCESSIVE GENERATIONS

For each new generation of solutions or designs that result by successive application of the
selection, crossover and mutation operators, costs are calculated and hydraulic analyses are
performed. The genetic algorithm process is usually continued for many generations. The lowest
cost designs must be remembered along the way. The final result is a range of low cost piped
network designs that are usually significantly cheaper than the cost of networks developed by
designers using traditional trial-and-error techniques based on hydraulic computer simulation
software.

4.1 DRAWBACKS OF GENETIC ALGORITHMS

GAs are expensive computationally, especially if the network being optimised is large. Run
times of a couple of days are common for these large networks. In addition GAs need significant
tuning of parameters. For large networks, no optimisation method can guarantee finding the global
optimum solution. Despite these difficulties, GAs still offer the best hope for the adoption of
optimisation techniques by industry. Hybrid tools may be a further development of the optimisation
concepts that are presented here.

5. OUTCOMES OF THE GENETIC ALGORITHM PROCESS

There are a number of outcomes when genetic algorithm optimization is used. The most
important outcome is the large cost savings that result. The GA process quickly narrows in on
optimal low cost solutions. Offspring in the genetic algorithm process have genetic characteristics
of the parents in the previous generation; however, progressively fitter and fitter solutions are
produced. Genetic algorithm optimization has been applied to numerous real-life designs of water
distribution systems resulting in savings of between 15 and 50% in capital and operating costs. In
addition, the trial-and-error repetitive nature of the design process of simulation modelling is
eliminated when genetic algorithm optimization is used. Optimization allows the engineer to focus
on developing alternative solutions and options instead of having to fiddle with the sizes of
elements in the simulation model. Another outcome is that a series of low cost solutions results
from the genetic algorithm process. Non-quantifiable criteria can then be used to select the
preferable design solution. Some solutions found by the GA optimization process may be just
infeasible, and these may lead to significant cost savings for only a small deficit of pressure.

Genetic algorithm optimization can be applied to the design of the following systems:
− Urban water distribution systems.
− Piped off-farm irrigation systems.
− Design of new water distribution systems.
− Expansion of existing systems.
− Rehabilitation of existing systems.
− Optimizing the operation of existing systems.



Simpson, A.R.: Optimizacija načrtovanja vodooskrbnih elementov z uporabo genetskih algoritmov
- Optimization of Design of Water Supply Systems Using Genetic Algorithms

© Acta hydrotechnica 18/29 (2000), 97-106, Ljubljana

105

6. CONCLUSIONS

Genetic algorithm optimization represents a significant advance in the approach to design and
operation of water distribution systems. A procedure for applying GA optimization to the design of
water distribution systems has been described in this paper. This technique is innovative and
effective. The major advantage of GA optimization is its use of an embedded simulation model
within the technique. All of the sophistication of the hydraulic simulation model can be used
directly in the optimization technique. GA optimization is very flexible and is only limited by what
the hydraulic simulation model can do. Very little usage has been made of traditional mathematical
optimization techniques by the water industry. These techniques have been difficult to apply and
require a high level of expertise by the user. In addition, traditional optimization techniques have
difficulty in dealing with discrete decision variables. On the other hand, genetic algorithm
optimization using operators of selection, crossover and mutation operators based on an analogy to
natural genetics, is very effective at finding low cost optimal solutions. The GA process generates a
range of different low cost solutions. Genetic algorithm optimization offers a practical way for the
use of optimization by the water industry. Its implementation allows the designer to focus and
develop alternative options or configurations, having the GA find low cost combinations of the
components, and thus eliminate the trial-and-error usage of a simulation model.
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OZNAKE - NOTATION

K` penalty cost factor;
N` population size;
n exponent;
pc probability of crossover; and
pm probability of mutation.
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