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Abstract

In this article we describe a recursive structure for the class of 4-connected triangula-
tions or – equivalently – cyclically 4-connected plane cubic graphs.
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Introduction
A recursive structure for a class C of graphs is a base set B ⊂ C of initial graphs together
with a set of operations on graphs that transform a graph in C to another graph in C so that
each graph in C can be constructed from a graph in B by a sequence of these operations.
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An operation is typically the replacement of a finite substructure by another – larger –
substructure. In the ideal case, the set B as well as the set of operations are finite and
small. All graphs discussed in this article are simple.

The two main applications for recursive structures are structure generation programs
and inductive proofs, where the recursive structures describe the induction step. In this
paper we discuss planar triangulations – that is plane graphs where every face is a triangle.
For several classes of triangulations, recursive structures have been published: for all tri-
angulations (that is: 3-connected triangulations) [6], for 5-connected triangulations [1][5],
for triangulations with minimum degree 4 [2], for 3- and 4- connected triangulations with
minimum degree 5 [3], and for Eulerian triangulations [2]. In the dual, these are con-
structions for 3-connected planar cubic graphs, cyclically 5-connected planar cubic graphs,
3-connected planar cubic graphs with girth 4, 3- resp. cyclically 4-connected planar cubic
graphs with girth 5 and 3-connected bipartite planar cubic graphs.

In this article we will add the missing link between 3-connected triangulations and 5-
connected triangulations and give a recursive structure for 4-connected triangulations. The
operations necessary to construct all 4-connected triangulations are in fact the same as the
ones used in [4] to construct all triangulations with minimum degree 4 – except for the
operation inducing separating triangles. While it is obvious that an operation introducing
separating triangles does not lead to 4-connected triangulations, it is not obvious that all
4-connected triangulations can be obtained with the remaining two operations.
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Figure 1: Two of the operations used by Eberhard [6] to generate all triangulations. Edges
and vertices outside of the bounding 4-, or 5-cycle in the figure are not drawn.

Two of the operations given by Eberhard to construct all triangulations are given in
Figure 1. We will show:

Theorem 0.1. The class C4 of all 4-connected triangulations can be generated from the
octahedron graph (depicted in Figure 2) by operations O4 and O5.
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Figure 2: The octahedron graph.

Proof. We will write C̄4 for the class C4 without the octahedron graph.
The operations O4 and O5 are in fact similar to special cases of the edge expansion

operation used by Batagelj in [2]. This can best be seen when looking at the reduction –
that is the inverse of the construction operation. If one compresses the edges marked with
an x (that is: removes the edge and identifies the endpoints) in Figure 1, the resulting graph
is the same as after replacing the vertices and their adjacent edges by one, resp. two edges.

To prove this theorem, note first that in a triangulation being 4-connected is equivalent
to not having a separating – that is: non-facial – 3-cycle. We will show that for each element
of the class C̄4 an inverse operation can be applied that does not introduce separating 3-
cycles and therefore leads to an element of C4.

This is the consequence of 3 observations;

(a) In a 4-connected triangulation no two edges in the same facial triangle belong to the
same separating 4-cycle.

This follows immediately as in that case the other edges of the separating 4-cycle to-
gether with the third edge of the triangle would form a separating 3-cycle.

(b) In a 4-connected triangulation that is not the octahedron graph, no two edges in the
same facial triangle with a common vertex v of degree 4 belong to different separat-
ing 4-cycles C,C ′.

Suppose that this was the case. Then – due to (a) – the two separating 4-cycles must
cross each other and there is an edge {v, y1} belonging to (w.l.o.g.) C so that the next
edges {v, x1}, {v, x2} in counterclockwise, resp. clockwise direction around v belong to
the separating 4-cycle C ′ formed by the vertices x1, v, x2, a. This situation is depicted in
Figure 3.

From the previous observation it follows that C cannot contain x1 or x2, so the Jordan
curve theorem gives that it must contain a and that the situation is as with the dotted edges
in Figure 3. This implies the presence of 8 triangles which must all be facial triangles – as
no non-facial triangles exist – and implies that there are no more edges than those depicted.
So the graph was the octahedron graph.

(c) In a 4-connected triangulation without vertices of degree 4, for each edge {v, x1} con-
taining a vertex v of degree 5 that belongs to a separating 4-cycle C, either the
previous or the next edge in the cyclic order around v or both do not belong to a
separating 4-cycle.
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Figure 3: Two separating 4-cycles crossing in a vertex of degree 4.

By choosing the neighboring edge as the one that shares a triangle with both edges of C
containing v, we can follow the same line of arguments as before to get – up to symmetry –
the situation in Figure 4. In this case we don’t have 8 triangles, but we do have the triangles
(a, y1, x2), (x1, y1, a), (v, y1, x1) and (x2, y1, v) which must all be facial. This implies
that the degree of y1 is 4 – contradicting the assumption.
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Figure 4: Two separating 4-cycles crossing in a vertex of degree 5 in a triangulation with
minimum degree 5.

As in a 4-connected triangulation there are always vertices with degree 4 or degree 5,
(a),(b),(c) together imply that a triangulation in C̄4 contains an edge adjacent to a vertex of
degree 4 or 5 that does not lie on a separating 4-cycle. Using this edge as the edge x in
Figure 1 we can reduce such a triangulation to a smaller one without separating triangles.
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