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Abstract: The new mathematical model is proposed that enable calculation 
of true stress – true strain dependence from the results of tensile tests 
also after appearing of necking. Based on this model the computer 
program was developed which from the measured final shapes of the 
tensile specimens and from tensile testing data automatically deter-
mine the time evolution of the specimen’s contour, strain rate and 
stress-strain relation. In order to tests and validate the model tensile 
tests at different prescribed strain rates and temperatures on speci-
mens made of nickel alloy Alloy201 were carried out on thermo-me-
chanical simulator Gleeble 1500D. It was found that after occurrence 
of neck the true strain rate is constantly increasing throughout the 
test. Further it was found that plastic part of the rod can be well ap-
proximated with constant and with catenary but Bridgman correction 
can be determined only if catenary is used. Comparison of predicted 
evolution of minimal radius at the neck with measured one showed 
excellent agreement.

Izvleček: V delu je opisan nov matematični model, s katerim je mogoče na 
podlagi rezultatov nateznih preizkusov tudi po pojavu skrčka določiti 
odvisnost prava napetost – prava deformacija. Na osnovi modela je bil 
narejen računalniški program, ki na podlagi izmerjenih končnih oblik 
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nateznih palic in podatkov nateznih preizkusov avtomatično določi 
časovni razvoj kontur nateznih vzorcev in izračuna hitrost deforma-
cije ter zvezo med napetostjo in deformacijo. Model je bil preizku-
šen in preverjen z nateznimi preizkusi, ki so bili za nikljevo zlitino 
Alloy201 pri različnih predpisanih konstantnih hitrostih deformacije 
in konstantnih temperaturah narejeni na simulatorju termomehanskih 
metalurških stanj Gleeble 1500D. Ugotovljeno je bilo, da prava hi-
trost deformacije po pojavu skračka začne naraščati in narašča vse 
do konca preizkusa. Nadalje je pokazano, da lahko del palice, ki je 
v plastičnem stanju, zelo dobro aproksimiramo tako s konstanto kot 
tudi z verižnico, vendar pa je Bridgmanov popravek mogoče določiti 
le pri aproksimaciji z verižnico. Rezultati razvoja minimalnega radija 
v skrčku, dobljeni s predlaganim modelom, se odlično ujemajo z me-
ritvami.

Key words: tensile test, necking, hot deformation, strain-stress curves.
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deformacija – napetost

IntroductIon 

From the test for determination of hot 
workability of metallic materials it is 
required to enable measurement of 
force applied on sample as a function 
of its deformation at constant strain 
rate and constant temperature. There 
are three most important tests, i.e. 
compression test, torsion test and ten-
sile test. Each of the tests has its own 
problems, i.e. weaknesses, which im-
peded gaining of reliable data about 
stress, strain, strain rate, deformability, 
etc. Compression test has seemingly 
the most advantages: geometry of cy-
lindrical specimens is easy for machin-
ing and higher strains as well as strain 
rates can be achieved in comparison 
to tensile test, but due to the presence 

of friction between compression anvil 
and specimen buckling can occur es-
pecially at slightly higher strains. Thus 
uniaxial stress state in deformed speci-
men is present only up to the begin-
ning of its buckling when also reliable 
value related to hot deformation can be 
obtained. In case of exceeding of men-
tioned compression strain additional 
software is needed for gaining of more 
reliable data. Hot torsion testing takes 
place without presence of friction; 
moreover this test is very appropriate 
for assessment of hot workability since 
higher strain can be achieved by this 
type of testing that increase the reli-
ability. But its weakness is in control 
(maintenance) of constant tempera-
ture during test, inhomogeneity of de-
formation so along working length of 
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specimen as well as in radial direction. 
Especially due to the latest weakness 
strain and strain rate can be expressed 
as equivalent strain and strain rate. At 
hot tensile testing also non-homoge-
neity of deformation occurs on speci-
men working length that is expressed 
by its necking. It is well known, that 
for tensile test homogenous deforma-
tion takes place only untilappearance 
of necking which occurs at strains of 
approximately between 0.2 and 0.3, 
depending on precision of manufactur-
ing of the tensile samples, onmaterials 
inhomogeneity, on temperature gradi-
ent along the tensile axis, etc.

When the neck appears, the stress state 
change from uniaxial to multi-axial-
must be taken into account. The cor-
rection due to multi-axiality is usual-
lydone by Bridgman correction, which 
presumes that portion of the contour 
inclose neighborhood of the minimal 
cross-section of the neck may be char-
acterized by a single parameter, the 
radius of curvature of the circle oscu-
lating the profile at the neck.[1] But ob-
taining reliable data on stress – strain 
relation from tensile tests after ap-
pearance of necking is very difficult 

task especially if testing is conducted 
at elevated temperatures, which is ex-
actly the case if one wants to study hot 
workability of metallic materials.

The aims of this study are therefore to 
evaluate the possibility of applicability 
of tensile test for determination of hot 
working properties of metallicmateri-
als also after the appearance of necking 
and to introduce appropriatemodel for 
calculation of stress-strain dependence 
from the final shapes ofcontours of ten-
sile loaded specimens.

ExpErImEntal procEdurE

A commercially produced Ni alloy 
Alloy201 was supplied by Thyssen-
Krupp Gmbh as hot drowned rods with 
chemical composition given in Table 
1 and equiaxed grain structure with an 
average grain size of about 16 μm. 

Cylindrical specimens with dimen-
sions of 25 mm of effective length and 
of 8 mm in diameter where machined 
from supplied rods for hot tensile tests 
(see Figure 1 for specimen’s geometry 
and dimensions).

Table 1. Chemical composition of the commercially pure Ni (Alloy201) tested in mass 
fractions w/%

Mo Cr Si S Mg Co Cu P
0.001 0.004 0.05 0.001 0.03 0.07 0.006 0.006
Mn Ti Fe Sn C V Al Ni
0.13 0.04 0.13 0.01 0.02 0.002 0.023 rest
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The hot tensile tests were carried out 
on Gleeble 1500D thermomechanical 
testing machine. The samples were de-
formed between 8 mm and 11 mm at 
temperatures from 800 °C to 1000 °C 
under prescribed constant strain rates 
between 10–3 s–1 and 10–1 s–1 assuming 
that deformation was homogeneous on 
entire working length. The temperature 
as a function of time during tensile tests 
is shown on Figure 2a, and specimen 
during testing is shown on Figure 2b.

dEscrIptIon of thE mathEmatIcal ap-
proach

Model for description of contour of 
tensile specimen

Essentially the deformed shape-of-
the-rod after tensile testing represents 
the history of traveling of the cross-
section that separates the elastic and 
plastic state of material.[3, 4] The por-
tion of material that in a given moment 
left the plastic state preserves its shape 
until the end of the experiment.Based 
on this fact, in what follows, the new 
model for description of evolution of 
specimen’s contours during tensile 
testing will be introduced.

A cylindrical rod of radius, r, main-
tains its rotational symmetry around 
the longitudinal axis, z, during a ten-
sile test, and thus its shape at given 
time, t, is determined by the rotational 
curve r = r(z, t), which forms its sur-

Figure1. Dimension of specimen’s for tensile testing.

Figure2. Schematic representation of temperature control (left), and 
shaping of contour (right) during hot tensile testing of Alloy201.

(a)  (b)  



335Calculation of stress-strain dependence from tensile tests at high temperatures using ...

RMZ-M&G 2012, 59

face after rotation around longitudinal 
axis, z, of the rod. Before the test this 
curve is a cylinder r(z, 0) = r0, where 
r0 is the initial radius of the rod. After 
the test is finished this curve must be 
carefully measured to obtain results in 
the form

(1)

where tk is the duration of the experi-
ment. Initial volume of the rod of 
length, lo, is V0 = πr2l0. The volume is 
conserved during plastic deformation, 
and thus volume for an arbitrary time 
can be expressed as

(2)

where l(t) is the length of the rod at 
time t. By comparison between final 
shape of the rod and its shape at arbi-
trary moment after occurrence of neck, 
but before the end of the test, we as-
certain that both shapes differ only in 
the middle, but the end parts are the 
same. Namely, the rod at the interme-
diate time is shorter and it has a smaller 
neck. Thus, we can conclude that the 
parts of the rod, which have the same 
shape as it is at the end of the test, were 
at that moment in an elastic state and 
the part, which is different, was in plas-
tic state. Consequently, on deformed 
rod there are always two points that at 
given moment separate the plastic and 

elastic parts of the rod. These two 
points were moving along the curve 
r = r(z, tk), during tensile test. Thus, 
the rod may be at any time divided 
into three parts 

(3)

The first and last sections belong to 
the elastic part and the middle section 
to the plastic part of the rod. The final 
shape of the rod represents the line 
of movements of the points which 
separate plastic and elastic state of 
the material. The portion of the curve 
r = r(z, tk), that lies left of the mini-
mal cross-section is a monotonically 
decreasing function and the portion on 
the right is a monotonically increasing 
function. Thus for the prescribed value 
of ll(t) the value of ld(t) can be calcu-
lated from the condition

(4)

From those two values the volume 
which is at given time in plastic state 
can be calculated

(5)
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𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
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− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)
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 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)
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+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)
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𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
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 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)
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𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0
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𝑙𝑙

𝑙𝑙𝑑𝑑
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 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =
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𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)
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𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
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�
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�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)
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 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
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𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑
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 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
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𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
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− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)
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+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)
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𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)
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𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
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𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
1
𝑙𝑙
�𝑆𝑆
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)

) 

 

𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2

�
−1

�1 + �
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
2

�

3
2�

�

𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
1
𝑙𝑙
�𝑆𝑆
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

0 
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The idea for reconstruction of the 
intermediate shapes of the rod is 
now to find the approximate func-
tion f(z,t) ≈ r(z,t), for which

(6)

where lc(t) is the length from the begin-
ning of the rod to the end of the plastic 
part. Since the contour of deformed rod 
is smooth, it immediately follows for 
the left end side

(7)

and for the right end one

(8)

Due to the constancy of the volume 
during plastic deformation, it also fol-
lows

(9)

The value of lc(t) which must be greater 
than the length of cylinder of the same 
volume and radius r = r(ll , tk) on one 
hand and must be smaller than ld(t) on 
the other hand, is determined iterative-
ly. For the function model that fulfils 
the conditions (6), (7), (8) and (9), the 
polynomial or any other suitable func-
tion could be used. In any case due to the 
mentioned conditions in every iteration 

step the system of linear or non-linear 
equations must be solved depending on 
selected function. The simplest choice 
for the selection of function is certain-
ly the constant, which upon rotation 
around its axes forms cylinder. Unfor-
tunately the conditions (7) and (8) can-
not be fulfilled for approximation with 
cylinder. Besides that, the radius of 
curvature of the contour at the minimal 
cross-section is needed for calculation 
of the Bridgman stress correction,[1] but 
for the approximation by cylinder this 
radius is infinite. On the other hand, for 
an arbitrary function this radius, R,can 
be calculated from

(10)

where rmin is the minimal radius at time t.

Calculation of stress-strain depend-
ence
After hot tensile testing the measure-
ments of deformed rods were carried 
out by the measurement microscope, 
which automatically save the measured 
table of data ri = ri(zi). From measured 
data only those N points for which ri ≤  
ro, where ro is radius of non-deformed 
rod, are taken into account. Addition-
ally two points which are the nearest 
to the interval of N points are also con-

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)

) 

 

𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2

�
−1

�1 + �
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
2

�

3
2�

�

𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
1
𝑙𝑙
�𝑆𝑆
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)

) 

 

𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2

�
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𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧
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�

𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
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𝑑𝑑𝜀𝜀
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𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)

) 

 

𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2
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𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
1
𝑙𝑙
�𝑆𝑆
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)

) 

 

𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2
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𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
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+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)
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sidered. For reconstruction of contour 
the continuous function is needed and 
thus, cubic splines were applied for 
interpolation which yields continu-
ous function r = r(z). The next step is 
now the calculation of the volume of 
the rod which undergoes plastic defor-
mation. Here the Simpson integration 
method[2] was employed for numeri-
cal integration of equation (2). In the 
present work two different functional 
models were chosen, namely catenary 
and constant. On deformed part of the 
rod K equidistant points separated for 
Δz, were selected and from that for the 
final length of deformed rod, l(tk), we 
find

(11)

After a number of trials we found that 
the value of Δz = 0.5 mm is most suit-
able. In order to meet the condition (4), 
we find for each value of ll = iΔz cor-
responding value of ld in every step 
i∈[1, K] by bisection. For those two 
values which are at that particular 
moment in elastic state we calculated 
volume of the rod, Ve, as

(12)

The above integrals (12) were also cal-
culated by the Simpson’s integration 
method. The volume of the part of the 
rod which is in plastic state the follow-

ing is true Vp = Vo–Ve. For the part of 
the rod which is in the plastic state two 
additional conditions are valid, namely 
it cannot be longer than s1Vp  ⁄πr2(ll) 
and cannot be shorter than s2 = ld –ll, 
respectively. 

Let construct the function

(13)

which on the interval s1 ≤ s ≤ s2 has the 
root, which is found by bisection. Fur-
ther, the parameters of the functional 
model which fulfil the conditions 
(6)–(8) must be determined in every 
bisection step. We have the system of 
linear equations for the polynomial 
model (constant in the present work) 
and the system of non-liner equations 
for the catenary; where the last one is 
solved by the Newton method [2]. The 
iteration is interrupted when g(s) < ε, 
where ε is prescribed accuracy. First 
we determine rmin and then from (10) 
the radius of curvature of the contour 
at the minimal cross-section, R. Both 
of them are combined into the vector. 
Described procedure is iterated until 
Vp > ε1 or ll + ld + s <l(tk). At that point 
we only need two continuous functions 
for rmin(l) and R(l). Again interpola-
tion by cubic splines is employed. By 
means of  rmin and R(i), which are writ-
ten as vectors, the second derivatives 
are calculated. Thus, the values of in-
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Figure 3. Schematic of the algorithm that from measured final contours of deformed 
rods and from force-displacement data enables calculations of stress-strain dependence, 
time evolution of contours and strain rates.
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terpolation function for any l are cal-
culated.Finally, from the experimental 
results of the tensile test, which was 
conducted at constant temperature, the 
true stress is determined, that is further 
corrected by Bridgman formula[1]. 
Thus, we have

(14)

and for the corresponding strain

(15)

Since the dependence of strain on time 
is known, the dependence of strain rate 
on time during the test can be easily 
determined as

(16)

The computer program which takes as 
an input the final shape of the contour 
of tensile rod and data from tensile 
test, i.e. force and length of the rod as 
a function of time and which executes 
all the above described steps and en-
able determination of true stress – true 
strain curves and time evolution of true 
strain rate was written in programming 
language C++. The schematic of this 
program and algorithm is given on Fig-
ure 3. 

rEsults and dIscussIon

Technical curves and contour 
shapes of deformed rods
Tensile tests were carried out by uniax-
ial tension at prescribed displacements 
rates of anvils and at constant tempera-
tures, where the tension force and dis-
placement were continually recorded. 
After the test the contours for every de-
formed rod were carefully measured by 
microscope. The number of measured 
points on each section of the contour 
of deformed rod depended on its local 
curvature, but it always exceeded 100 
points. Obtained technical curves for 
temperatures (800, 900, 1000) °C, and 
strain rates of (0.001, 0.01, and 0.1) s–1 
with corresponding final shapes of rods 
are shown in Figure 4.

After the transition of the material 
from elastic to plastic state the stress 
remains uniaxial, but the strain is 
three-axial; namely the elongation is 
uniform at uniformly decreasing of di-
ameter. Uni-axiality of the stress is pre-
served until the occurrence of the neck. 
During the test the measured force is 
initially increasing until it reaches the 
maximum, and afterwards decreasing 
up to the end of the test. The amount of 
strain where the force is at maximum 
depends on material and on constitu-
tive relation σ = σ(ε, ε, T, ...) as well as 
on changing of cross-section of speci-
men. Technical curve reaches the max-
imum when dF/dl = 0, where F stands 
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𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2

�
−1

�1 + �
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧
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�
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�

𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
1
𝑙𝑙
�𝑆𝑆
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)

) 

 

𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2
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�1 + �
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧
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�

𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
1
𝑙𝑙
�𝑆𝑆
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)

) 

 

𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2
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𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
1
𝑙𝑙
�𝑆𝑆
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)

) 

 

𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2

�
−1

�1 + �
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
2

�

3
2�

�

𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
1
𝑙𝑙
�𝑆𝑆
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)

) 

 

𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2

�
−1

�1 + �
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
2

�

3
2�

�

𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
1
𝑙𝑙
�𝑆𝑆
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

.
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for force and l is elongation. From F =  
σS, it follows that 

(17)

where the constancy of the volume has 
been taken into account. Therefore the 
force is maximal when dσ/dε = σ.

Formation of contours during 
straining
The key parameters that for the se-
lected functional model determine how 
accurate the shape of contour can be 
determined are the volume Vo, which 
undergo plastic deformation, and the 
local slopes of the final contour. Of 
course, the last condition is not valid 
for the simplest i.e. cylindrical model, 
since the boundary conditions (7) and 
(8) cannot be fulfilled. Consequently, 
the shapes of contours calculated by 
cylindrical model are unrealistic (see 
Figures. 5a and c), but nevertheless, as 
it will be demonstrated later, this mod-
el gives surprisingly good prediction 
of the evolution of the minimal radius 
of the rod within the neck during entire 
tensile test.

As we mentioned earlier the volume, 
Vo, is obtained by integration of the 
final contour of the rod along the z-
axis considering condition r(z) ≤ ro, 
where ro is initial radius of the work-

ing area of the rod. Since some plas-
tic deformation occurs always also 
outside of the working area, this con-
tributes to error. Namely, the slope 
of the contour at boundary between 
outside and inside area is very high. 
Therefore the calculated lengths of 
rods at initial steps of deformation 
are too long, and cross-sections are 
even smaller than those obtained 
at the end of deformation. Moving 
along the deformed contour results 
in shortening of calculated length 
as well as in increasing the mini-
mal cross-section. According to the 
present model the length of the rod 
initially increases with strain, which 
is nonsense. To avoid this inconsist-
ency the contour was calculated with 
our model only after the calculated 
length begins to increase with strain, 
before that the contour was calcu-
lated assuming homogeneous defor-
mation. The examples of calculation 
of the rod shapes evolution during 
deformation for cylinder and for ca-
tenary at temperatures 1000 °C and 
900 °C, and prescribed strain rate of 
0.1 s–1 are shown on Figure 5. If one 
wants to calculate the dependence 
of true stress on strain, the minimal 
cross-section, which is obtained from 
reconstruction of contour of the rod, 
must be given for every strain. The 
dependence of minimal radius on 
elongation for two temperatures cal-
culated by catenary model is given 
on Figures 6a and 6b.

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)

) 

 

𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2

�
−1

�1 + �
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
2

�

3
2�

�

𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
1
𝑙𝑙
�𝑆𝑆
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 

𝑟𝑟 = 𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘) 

 𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 = 𝜋𝜋� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

0

 

 𝑉𝑉0 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙(𝑡𝑡)

0

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

+ � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙(𝑡𝑡)

𝑙𝑙𝑑𝑑(𝑡𝑡)

) 

 

𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) = 𝑟𝑟(𝑙𝑙𝑑𝑑(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 𝑉𝑉𝑝𝑝 = 𝜋𝜋 � 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑑𝑑(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 

𝑓𝑓(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡) = 𝑓𝑓(𝑙𝑙𝑐𝑐(𝑡𝑡), 𝑡𝑡) = 𝑟𝑟(𝑙𝑙𝑙𝑙(𝑡𝑡), 𝑡𝑡𝑘𝑘) 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑐𝑐(𝑡𝑡)

= 𝜕𝜕𝑟𝑟(𝑧𝑧, 𝑡𝑡𝑘𝑘)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑙𝑙𝑑𝑑(𝑡𝑡)

 

 𝑉𝑉𝑝𝑝(𝑡𝑡) = 𝜋𝜋 � 𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑐𝑐(𝑡𝑡)

𝑙𝑙𝑙𝑙(𝑡𝑡)

 

 𝑅𝑅 = ��
𝜕𝜕2𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧2

�
−1

�1 + �
𝜕𝜕𝑓𝑓(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑧𝑧

�
2

�

3
2�

�

𝑧𝑧=𝑧𝑧(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)

 

 

𝑙𝑙(𝑡𝑡𝑘𝑘) = 𝐾𝐾∆𝑧𝑧 

 𝑉𝑉𝑒𝑒 = 𝜋𝜋(� 𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧

𝑙𝑙𝑙𝑙

0

+ �𝑟𝑟2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑙𝑙

𝑙𝑙𝑑𝑑

) 

 𝑔𝑔(𝑠𝑠) = 𝑉𝑉𝑝𝑝 − 𝜋𝜋�𝑓𝑓2(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑧𝑧
𝑠𝑠

0

) 

 
𝜎𝜎𝐵𝐵𝑟𝑟(𝑡𝑡𝑖𝑖) =

𝐹𝐹(𝑡𝑡𝑖𝑖)
𝜋𝜋𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚2 (𝑙𝑙(𝑡𝑡𝑖𝑖))[1 + 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖)) 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ] ln(1 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖)) 2𝑅𝑅(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

 

𝜀𝜀𝑖𝑖 = ln(𝑟𝑟0 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚(𝑙𝑙(𝑡𝑡𝑖𝑖))⁄ ) 

  
𝜀𝜀�̇�𝚤 =

𝜀𝜀𝑖𝑖+1 − 𝜀𝜀𝑖𝑖−1
𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−1

 

𝑑𝑑𝐹𝐹
𝑑𝑑𝑙𝑙

=
𝑑𝑑𝐹𝐹
𝑑𝑑𝜀𝜀

𝑑𝑑𝜀𝜀
𝑑𝑑𝑙𝑙

=
1
𝑙𝑙
�𝑆𝑆
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

+ 𝜎𝜎
𝑑𝑑𝑆𝑆
𝑑𝑑𝜀𝜀
� =

𝑆𝑆
𝑙𝑙
�
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀

− 𝜎𝜎� 



341Calculation of stress-strain dependence from tensile tests at high temperatures using ...

RMZ-M&G 2012, 59

Figure 4. Technical curves force-elongation obtained wit tensile tests for strain rates 
of (0.001, 0.01 and 0.1) s–1 at temperatures of 800 °C (a), 900 °C (b), and 1000 °C (c) 
together with corresponding measured final shapes of deformed rods (d)–(f).

Figure 5. The calculated shapes of tensile rods for various stages of deformations at 
temperature of 1000 °C and strain rate of 0.1 s–1 for cylindrical (a) and for catenary 
model (b). Calculation for cylindrical (c) and catenary (d) models at T = 900 °C and 
strain rate of 0.1 s–1.
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Figure 6. Comparison of dependence of minimal radius of deformed rod on elongation 
calculated by models for catenary, cylinder, and for assumption of homogeneous defor-
mation for ε = 0.1 s–1at T = 1000 °C (a), and T = 900 °C (b). Evolution of the radius of 
the circle osculating the profile at the neck, RB, and corresponding dependence of Bridg-
man correction coefficient, kB, on elongation calculated by catenary model at T = 1000 
°C (c), and T = 900 °C (d).

Figure 7. Comparison of dependence of minimal radiuses on elongation between meas-
urements conducted by digital camera and calculated by studied models (catenary, cyl-
inder, homogeneous deformation) for ε = 0.1 s–1at T = 950 °C (a), and at T = 900 °C (b).

.

.
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For comparison the minimal radiuses 
calculated by cylindrical model and by 
assumption of homogeneous deforma-
tion are also given. It can be seen that 
the radius obtained by cylindrical mod-
el is very close to one obtained by ca-
tenary, whereas as expected the radius 
according to homogenous deformation 
model after occurrence of necking start 
do deviate from values predicted by our 
models. Deformation is homogeneous 
approximately up to elongation of 2 
mm that corresponds to strain ≈0.2. As 
it was already mentioned, the transition 
from homogeneous to nonhomogene-
ous deformation leads to transition of 
uniaxial to three-axial stress state. For 
calculation of Bridgman correction, kB, 
the radius of the circle osculating the 
profile at the neck, RB, is needed. The 
RB is calculated by equation (10) from 
reconstructed contours. The evolution 
of RB and kB are given on Figure 6c, 
and 6d, respectively. When the con-
tours are calculated by the homogene-
ous deformation model, we set kB ≡ 1, 
consequently the dependence of kB(Δl) 
is discontinued at transition between 
both areas, with negligible error.

Calculated values of the time evolu-
tion of the minimal radius of the ten-
sile specimens were compared with 
the values obtained from analysis of 
the pictures which were recorded by 
a digital camera, and we obtained rea-
sonable agreement. These results are 
shown on Figure 7, were the maximal 

estimated errors for minimal radius 
measured with camera are denoted. 
Due to intensive radiation from hot 
samples, the sharp boundary between 
the rod and surrounding was indistinct, 
thus the determination of real minimal 
radius was hindered.

True stress–true strain curves
From technical force-elongation 
curves the true stress–true strain curves 
were determined by employing all the 
procedures explained in previous sec-
tions. They are shown on Figures 8a–c, 
whereas Figures 8d–e show the actual 
variation of strain rates during the tests.

For higher temperatures and/or lower 
strain rates the flow stress initially 
raises until a maximum is reached 
when hardening and softening are in 
balance. With increasing deformation, 
softening prevails over hardening and 
flow stress decreases. At strains ε > 
0.2 flow stress starts to increase and 
increases until the end of the experi-
ment. This kind of behaviour in the 
later stages of deformation is a con-
sequence of the continuously increas-
ing strain rate after the appearance 
of necking. For the same reason flow 
curves for low temperatures and/or 
higher strain rates do not reach a max-
imum. Thus, we can conclude that 
after necking, the stress-strain curves 
are not flow curves as by definition 
flow curves are stress-strain curves at 
constant temperature and strain rate. 



344 Kugler, g., Terčelj, M., Peruš, I., TurK, r.

RMZ-M&G 2012, 59

Figure 8. True stress-true strain curves, obtained by tensile tests for prescribed strain 
rates of (0.001, 0.01) s–1, and 0.1 s–1 at temperatures of 800 °C (a), 900 °C (b), and 1000 
°C (c) and corresponding variation of actual strain rate during the tests (d)–(f).

But in the future a series of carefully 
chosen testing conditions is planed 
with the aim to examine the possibil-
ity of finding the model that would the 
movements of jaws during the tests in 
such a way that constant true strain rate 
would be maintained during the entire 
test. Then it would be possible to deter-
mine flow curves with tensile testing to 
strains that are comparable with strains 
that can be obtained with compression 
testing.

conclusIons

In this work a new mathematical mod-
el for calculation of true stress – true 
strain dependence from the results of 
tensile tests, which can be used also 
after appearing of necking, was pro-

posed. Furthermore the model was im-
plemented into the computer program 
that enables determination of stress-
strain curves from measurement of 
contours of deformed rods. The model 
and the computer program were vali-
dated by employing tensile tests for 
combinations of three different strain 
rates and temperatures on Gleeble 
1500D testing machine for Ni alloy Al-
loy201. The main findings can be sum-
marized as follows:
1.  It was found that, if the jaws of test-

ing device are controlled in such a 
way that constant strain rate is ob-
tained if homogeneous deforma-
tion is assumed, after appearance 
of necking the true strain rate is no 
longer constant, but it is increas-
ing. Thus, stress-strain curves ob-
tained in this way are not true flow 
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curves, as by definition flow curves 
are stress-strain curves at a constant 
strain rate. 

2.  In the present work two functions 
for description of evolution of the 
part of the contour which is in giv-
en moment in the plastic state, were 
tested, i.e. constant (approximation 
with cylinder) and catenary. Based 
on the comparison of the predicted 
evolution of contour and contours 
obtained by measurements with 
film camera it was found that both 
functions are capable of descrip-
tion of evolution of minimal radius 
of the rod in the neck with accuracy 
within the measurement error. 

3.  The main problem of applying the 
simplest function, i.e. the constant, 
is that it is not possible to deter-
mine the evolution of radius of cur-
vature of the couture at the minimal 
cross-section and consequently 
Bridgman stress correction due to 
three-axiality of the stress cannot 
be applied since for constant this 
curvature is infinite. On the other 
hand using catenary this problem is 

avoided and true stress – true strain 
curves including Bridgman correc-
tion can be determined.

4.  It could be possible to predetermine 
the movements of jaws during the 
tests in such a way that constant true 
strain rate would be maintained dur-
ing the entire test or at least up to 
the true strains up to the value of 1.0, 
but this will require many more tests 
for different materials and at differ-
ent thermo-mechanical conditions.
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