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Artūras Dubickas
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24,

LT-03225 Vilnius, Lithuania

Received 20 March 2017, accepted 18 April 2017, published online 10 August 2017

Abstract

In this paper we show that the relative normalised size with respect to a number field
K of an algebraic integer α 6= −1, 0, 1 is greater than 1 provided that the number of real
embeddings s of K satisfies s ≥ 0.828n, where n = [K : Q]. This can be compared
with the previous much more restrictive estimate s ≥ n − 0.192

√
n/ log n and shows

that the minimum m(K) over the relative normalised size of nonzero algebraic integers
α in such a field K is equal to 1 which is attained at α = ±1. Stronger than previous
but apparently not optimal bound for m(K) is also obtained for the fields K satisfying
0.639 ≤ s/n < 0.827469 . . . . In the proof we use a lower bound for the Mahler measure
of an algebraic number with many real conjugates.

Keywords: Algebraic number field, relative size, relative normalised size, Mahler measure, Schur–
Siegel–Smyth trace problem.

Math. Subj. Class.: 11R04, 11R06

1 Introduction
Let K be a number field with signature (s(K), t(K)) = (s, t) having s real embeddings σi :
K → R, i = 1, . . . , s, and t conjugate pairs of complex embeddings σi+j , σi+j : K → C,
j = 1, . . . , t. Clearly,

n = n(K) := [K : Q] = s+ 2t.

For any α ∈ K we define

‖α‖K :=
( s∑
i=1

σi(α)
2 +

t∑
j=1

|σs+j(α)|2
)1/2

, (1.1)
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and

mK(α) :=
‖α‖2K
s+ t

. (1.2)

Also, put
m(K) := min

α∈OK\{0}
mK(α), (1.3)

where OK is the ring of integers of K.
For any number field K we have ±1 ∈ OK and ‖ ± 1‖K = s(K) + t(K), so that

mK(±1) = 1 (see (1.1) and (1.2)). By (1.3), this yields m(K) ≤ 1. The lower bound

m(K) ≥ 1

1 + s/n
,

where n = [K : Q] and s = s(K), follows from [19, Lemma 1.1(ii)]. The stronger bound

m(K) ≥ 2s/n

1 + s/n
(1.4)

is given in [16, Theorem 5.11]. In particular, the inequality (1.4) implies m(K) = 1 if K is
a totally complex field (s(K) = 0) or a totally real field (t(K) = 0).

A motivation for introducing and studying the quantities ‖α‖K, mK(α) and m(K) is
given in [7]; see also a subsequent paper [6]. There, we call ‖α‖K the relative size of αwith
respect to the number field K and

√
mK(α) the relative normalised size of α (with respect

to K again). Briefly speaking, it is related to some earlier work on certain lattices defined
by number fields, when in the ring of integersOK of a number field K with signature (s, t),
one considers the vectors

(σ1(α), . . . , σs(α),<(σs+1(α)),=(σs+1(α)), . . . ,<(σs+t(α)),=(σs+t(α)))

in Rn defined for α ∈ OK (see [2, Chapter 8, Section 7]). This can be applied to show
that the class number of a number field is finite [11]. The norm defined in (1.1) has been
considered by Pethő and Schmitt [13]; see also a subsequent paper [5]. A different but at
the same time quite similar to (1.1) norm related to certain number field codes has been
also considered in [9]; see also [3].

Since the minimum of the function h(x) := 2x/(1 + x) in the interval x ∈ [0, 1] is
attained at x0 := 1/ log 2− 1 /∈ Q and equals h(x0) = (e log 2)/2, the inequality

2s/n

1 + s/n
>
e log 2

2
= 0.942084 . . .

holds for any integers s ≤ n, where s ≥ 0 and n ≥ 1. Hence, by (1.4),

e log 2

2
< m(K) ≤ 1.

In particular, for any number field K we have either m(K) = 1 or m(K) < 1.
A large class of fields for which m(K) = 1 was described in [7, Theorem 3.3], where

we showed that for a number field K with signature (s, t) we have m(K) = 1 if

t ≤ 0.096
√
s/ log s. (1.5)

The following theorem relaxes the bound (1.5) on t to the bound t ≤ 0.086n with the
same conclusion and so strengthens the above result considerably. (Note that in view of
n = s+ 2t the bound (1.5) is essentially equivalent to t ≤ 0.096

√
n/ log n.)
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Theorem 1.1. For each number field K of degree n and signature (s, t) satisfying t ≤
0.086n we have m(K) = 1.

Observe that t ≤ 0.1038s implies t ≤ 0.086n which is also equivalent to s ≥ 0.828n.
On the other hand, by [7, Theorem 3.5], for each integer s ≥ 2 there exist infinitely many
number fields K with signature (s, s) (so that t = s = n/3) for which m(K) < 1. This
shows that Theorem 1.1 is best possible up to the constant. Moreover, the constant 0.086
cannot be replaced by the constant 1/3.

Below, the bound (1.4) will also be improved for fields K of degree n with signa-
ture (s, t) satisfying 0.639 ≤ s/n < 0.828 (see Corollary 2.4 in Section 2). Here,
the constants 0.639 and 0.828 are just three decimal digit approximations from above of
some presumably transcendental constants (see Proposition 2.1 below for the definition of
λ0 = 0.827469 . . . ).

In the next section we state Theorem 2.2 which is the main result of this paper. Sec-
tion 3 contains some auxiliary results. The proofs of Proposition 2.1, Theorem 2.2 and
Theorem 2.5 will be given in Sections 4, 5 and 6, respectively.

2 Main results
Throughout, we shall use the following notation for fixed λ > 0:

g(λ) :=
(
2−1/λ +

√
1 + 2−2/λ

)λ
, (2.1)

F (λ, x) := xg(λ)1/x + 2(1− x)g(λ)−1/(1−x) − 2 + x, (2.2)

where 0 < x ≤ 1 and, by definition, F (λ, 1) = g(λ) − 1. Finally, the function ϕ(λ) is
defined for positive λ as follows

ϕ(λ) := min
0<x≤1

F (λ, x). (2.3)

Here, the minimum in (2.3) is attained, since F (λ, x) → +∞ as x → 0+ in view of
g(λ) > 1.

With this notation, we will show that

Proposition 2.1. The function ϕ(λ) is increasing for λ ≥ 0.581 and positive for λ > λ0 :=
0.827469 . . . . Here, ϕ(λ0) = 0, ϕ(0.828) = 0.000389 . . . and ϕ(1) = 0.176732 . . . .

More values of the function ϕ(λ) are given in Table 1. Here, for each λ ∈ [0.83, 1] the
constant x0(λ) is the point of absolute minimum of F (λ, x) in the interval 0 < x ≤ 1, so
that ϕ(λ) = F (λ, x0(λ)).

Now, we can state the main result of this paper.

Theorem 2.2. Let K be a number field with signature (s(K), t(K)) and degree n = s(K)+
2t(K) over Q satisfying s(K) ≥ 0.581n, and let α 6= −1, 0, 1 be an algebraic integer in
K. Then,

mK(α) ≥ 1 +
ϕ(λ)

1 + λ
, (2.4)

where λ := s(K)/n and the function ϕ(λ) is defined in (2.1)-(2.3). In particular, the
inequality ϕ(λ) > 0 holds for each λ ∈ (λ0, 1], that is, for s(K) > λ0n, where λ0 =
0.827469 . . . .
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Table 1: Values of ϕ(λ) in the range 0.83 ≤ λ ≤ 1.

λ g(λ) x0(λ) ϕ(λ) ϕ(λ)
1+λ

0.83 1.418557 0.529769 0.001865 0.001019
0.84 1.429308 0.532299 0.009447 0.005134
0.85 1.440180 0.534841 0.017362 0.009385
0.88 1.473522 0.542547 0.043126 0.022939
0.90 1.496362 0.547749 0.061991 0.032627
0.93 1.531545 0.555648 0.092837 0.048102
0.95 1.555624 0.560980 0.115104 0.059027
0.98 1.592687 0.569077 0.151060 0.076292
0.99 1.605296 0.571802 0.163726 0.082274
1.00 1.618033 0.574542 0.176732 0.088366

In fact, the inequalities (5.7) and (5.8) which will be proved in Section 5 can be stronger
than (2.4) under some additional assumptions.

In particular, selecting (in Theorem 2.2) K := Q(α), we obtain the following:

Corollary 2.3. Let α 6= −1, 0, 1 be an algebraic integer of degree d = s + 2t with s real
conjugates αi, i = 1, . . . , s, and t pairs of complex conjugates αs+j , αs+j , j = 1, . . . , t.
Then, for λ = s/d > λ0 we have

mQ(α)(α) =
|α1|2 + · · ·+ |αs+t|2

s+ t
≥ 1 +

ϕ(λ)

1 + λ
,

where ϕ(λ) > 0 is defined in (2.1)-(2.3).

By (1.3), Theorem 2.2 immediately implies Theorem 1.1 stated in Section 1. In the
range 0.581 ≤ λ = s/n ≤ λ0 Theorem 2.2 implies the following:

Corollary 2.4. For a number field K of degree n and signature (s, t) satisfying 0.581 ≤
λ = s/n ≤ λ0 we have

m(K) ≥ 1 +
ϕ(λ)

1 + λ
.

Note that for each λ satisfying 0.639 ≤ λ ≤ λ0 the inequality of Corollary 2.4 strength-
ens the bound (1.4). In particular, for λ = 0.639 we have

m(K) ≥ 1 +
ϕ(λ)

1 + λ
= 0.950175 . . . ,

whereas the bound (1.4) yields the weaker inequality

m(K) ≥ 2λ

1 + λ
= 0.950121 . . . .

For further comparison of the functions 1 + ϕ(λ)/(1 + λ) and 2λ/(1 + λ) see Table 2.
If the number of complex conjugates 2t of an algebraic integer is very small compared

to its degree d (which is large) then the constant 1.088366 corresponding to the case λ = 1
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Table 2: Values of 1 + ϕ(λ)
1+λ vs 2λ

1+λ for 0.64 ≤ λ ≤ 0.82.

λ g(λ) 2λ

1+λ 1 + ϕ(λ)
1+λ

0.64 1.237064 0.950200 0.950299
0.65 1.245534 0.951011 0.951621
0.70 1.289701 0.955591 0.960509
0.75 1.336871 0.961024 0.973167
0.80 1.387027 0.967278 0.989505
0.82 1.407927 0.970003 0.997042

in Corollary 2.3 (see Table 1) can be improved, by using the results on the so-called Schur–
Siegel–Smyth trace problem. The problem is named after the authors of the first three
estimates of the trace of a totally positive algebraic integer [15], [17], [18]. The method of
auxiliary functions introduced by Smyth in [18] was used in all subsequent papers on this
subject. Specifically, we shall use the result of Liang and Wu [12] (see Lemma 3.5 below).
See also some recent related papers [4] and [14].

Theorem 2.5. There exist two absolute positive constants D and δ such that if d ≥ D and
t < δd/ log d then for each algebraic integer α of degree d = s+2t with s real conjugates
αi, i = 1, . . . , s, and t pairs of complex conjugates αs+j , αs+j , j = 1, . . . , t, the inequality

mQ(α)(α) =
|α1|2 + · · ·+ |αs+t|2

s+ t
> 1.79192 (2.5)

holds.

For large d Theorem 2.5 not only gives a better bound, but also the condition t <
δd/ log d is less restrictive than the corresponding condition t ≤ 0.096

√
d/ log d of [7,

Theorem 3.3].

3 Auxiliary results
Lemma 3.1. Let α 6= −1, 0, 1 be an algebraic number of degree d over Q with signature
(s, t), where λ = s/d > 0. Then,

M(α) ≥
(
2−1/λ +

√
1 + 2−2/λ

)s/2
. (3.1)

In particular, for s ≥ 0.581d we have

M(α) > 1.090691d. (3.2)

Proof. The inequality (3.1) was proved by Garza (it is the main result in [8]). In [10], Höhn
gave an alternative proof of this result.

By (2.1), (3.1), and s = λd, we deduce that

M(α) ≥
(
2−1/λ +

√
1 + 2−2/λ

)λd/2
= g(λ)d/2. (3.3)

Evidently, the function g(λ) is increasing in λ > 0, so its smallest value in the interval
[0.581, 1] is attained at λ = 0.581. Thus, (3.3) implies (3.2) in view of g(0.581)1/2 =
1.090691 . . . .
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We will also need the following inequality.

Lemma 3.2. For any number fields L ⊆ K with signatures (s(L), t(L)) and (s(K), t(K)),
respectively, we have s(K)t(L) ≤ s(L)t(K).

Proof. By the primitive element theorem, write L = Q(α) and K = Q(β). Then, α =
P (β) with some P ∈Q[x]. Without restriction of generality we may assume that β1, . . . , βs
are the real conjugates of β and βs+1, βs+1, . . . , βs+t, βs+t are the complex conjugates of
β. Here, s = s(K) and t = t(K). Note that in the list σ(P (β)), where σ runs through
all s + 2t automorphisms of the field K, each conjugate of α appears [K : L] times. In
particular, each of the numbers P (βi), where 1 ≤ i ≤ s, is real, so the number of real
conjugates of α is at least s/[K : L]. This yields

s(L) ≥ s

[K : L]
=

s[L : Q]

[K : L][L : Q]
=
s[L : Q]

[K : Q]
=
s(s(L) + 2t(L))

s+ 2t
.

Multiplying both sides by s+ 2t we obtain the required inequality.

Lemma 3.3. Let k ≤ d be two positive integers and let S ≥ 1, ρ and y1 ≥ · · · ≥ yk ≥
1 ≥ yk+1 ≥ · · · ≥ yd be real numbers such that

y1 + · · ·+ yk + S(yk+1 + · · ·+ yd) ≥ S(d− k) + k + ρ.

Then, for any positive numbers w1, . . . , wd satisfying

max
1≤i≤d

wi ≤ S min
1≤i≤d

wi

and w1 + · · ·+ wd = 1 we have

w1y1 + · · ·+ wdyd ≥ 1 + ρ min
1≤i≤d

wi.

Proof. Put zi := yi − 1 for each i = 1, . . . , d. Then,

z1 ≥ . . . zk ≥ 0 ≥ zk+1 ≥ · · · ≥ zd (3.4)

and
z1 + · · ·+ zk + S(zk+1 + · · ·+ zd) ≥ ρ. (3.5)

Now, by (3.4), the bound 0 < max1≤i≤d wi ≤ Smin1≤i≤d wi and (3.5), it follows that

d∑
i=1

wizi =

k∑
i=1

wizi +

d∑
i=k+1

wizi ≥ min
1≤i≤k

wi

k∑
i=1

zi + max
k+1≤i≤d

wi

d∑
i=k+1

zi

≥ min
1≤i≤d

wi

k∑
i=1

zi + max
1≤i≤d

wi

d∑
i=k+1

zi

≥ (z1 + · · ·+ zk + S(zk+1 + · · ·+ zd)) min
1≤i≤d

wi

≥ ρ min
1≤i≤d

wi.

Combined with zi = yi − 1 and
∑d
i=1 wi = 1 this implies the required estimate.
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Lemma 3.4. Let k ≤ d be two integers, where k ≥ 0, d ≥ 2, and let α be an algebraic
integer of degree d with signature (s, t) satisfying s ≥ 0.581d whose conjugates α1, . . . , αd
are labeled so that

|α1| ≥ · · · ≥ |αk| ≥ 1 ≥ |αk+1| ≥ · · · ≥ |αd|.

Then,
|α1|2 + · · ·+ |αk|2 + 2(|αk+1|2 + · · ·+ |αd|2) ≥ 2d− k + dϕ(λ), (3.6)

where λ = s/d and ϕ(λ) defined in (2.1)-(2.3).

Proof. Note that k ≥ 1. Indeed k = 0 can only happen if all αi, i = 1, . . . , d, are of
modulus 1. So, by Kronecker’s theorem, α must be a root of unity which is not the case.
If k = d then, by the arithmetic and geometric mean inequality (referred to as AM-GM
below) and (3.3), the left side of (3.6) is at least

d|Norm(α)|2/d = dM(α)2/d ≥ dg(λ),

where g(λ) is defined in (2.1). Since g(λ) is increasing in λ > 0 and g(0.581) =
1.189607 . . . , we find that the left side of (3.6) is at least 1.189d. This is greater than
its right side, since

2d− k + dϕ(λ) = d+ dϕ(λ) ≤ d+ dϕ(1) < d+ 0.18d = 1.18d

(see Proposition 2.1 and Table 1). In all what follows we thus assume that 0 < k < d.
By AM-GM, estimating

|α1|2 + · · ·+ |αk|2 ≥ kM(α)2/k

and

|αk+1|2 + · · ·+ |αd|2 ≥ (d− k)
( |Norm(α)|

M(α)

)2/(d−k)
≥ (d− k)M(α)−2/(d−k)

we find that the left side of (3.6) is at least

kM(α)2/k + 2(d− k)M(α)−2/(d−k).

Hence, it suffices to show that

kM(α)2/k + 2(d− k)M(α)−2/(d−k)

d
− 2 +

k

d
≥ ϕ(λ). (3.7)

Note that the function ky2/k + 2(d − k)y−2/(d−k) is increasing in y in the interval
[2d/8,∞), since its derivative 2y2/k−1−4y−2/(d−k)−1 is positive for y > 2k(d−k)/(2d) and
the maximum of k(d− k) is attained at k = d/2. Also, by (3.2) and 21/8 = 1.090507 . . . ,
the inequality M(α) > 1.090691d > 2d/8 holds. Thus, replacing M(α) in (3.7) by its
estimate from below as in (3.3) and setting x := k/d, we see that it suffices to prove the
inequality

xg(λ)1/x + 2(1− x)g(λ)−1/(1−x) − 2 + x ≥ ϕ(λ) (3.8)

for 0 < x < 1. However, (3.8) clearly holds, by the definition of the function ϕ(λ) in
Theorem 2.2 as the minimum of the left side of (3.8) in the interval (0, 1].
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The next result is given [12].

Lemma 3.5. There exist m (explicitly given) polynomials with integer coefficients Q1, . . . ,
Qm and m (explicitly given) positive numbers e1, . . . , em such that the inequality

y −
m∑
i=1

ei log |Qi(y)| > 1.79193

holds for each y > 0 which is not a root of Q1 . . . Qm.

We remark that each improvement of the constant of this lemma leads to the corre-
sponding improvement in Theorem 2.5. However, although the conjectural lower bound
for the trace of a totally positive algebraic integer α is (2 − ε)d, where ε is an arbitrary
positive number and the degree d of α is at least d(ε), Serre has shown that the method of
auxiliary functions as in the above lemma cannot give a constant greater than 1.8983021
(see the appendix in [1]).

4 Proof of Proposition 2.1
Note that y = g(λ) > 1 for λ > 0. Consider the function

f(y) := xy1/x + 2(1− x)y−1/(1−x)

in the interval 1 < y <∞ (here, 0 < x < 1). Its derivative

f ′(y) = y1/x−1 − 2y−1/(1−x)

is positive if y1/x+1/(1−x) > 2, that is, y > 2x(1−x). In particular, since x(1 − x) ≤ 1/4,
the function f(y) is increasing in the interval 21/4 < y <∞.

Thus, by (2.3) and (2.1) (which implies that g(λ) is increasing in λ), for every fixed x
in the range 0 < x < 1 the function

xg(λ)1/x + 2(1− x)g(λ)−1/(1−x) − 2 + x

in increasing (in λ) for λ satisfying g(λ) > 21/4. In particular, ϕ(λ) is increasing in λ for
λ satisfying g(λ) > 21/4. Therefore, using the fact that g(λ) is increasing in λ for λ > 0
and the actual expression (2.1), we find that

g(0.581) = 1.189607 · · · > 1.189207 · · · = 21/4.

Consequently, the functionϕ(λ) is increasing for λ ≥ 0.581. Evaluatingϕ(λ) at λ = 0.828
gives the positive value ϕ(0.828) = 0.000389 . . . , so ϕ(λ) > 0 for λ ≥ 0.828. This,
combined with evaluation of ϕ(1) = 0.176732 . . . and λ0 satisfying ϕ(λ0) = 0 completes
the proof of the proposition.

5 Proof of Theorem 2.2
Let α ∈ K and L = Q(α). Assume that the signature of α is (s, t) and the signature of
K is (s(K), t(K)). Here, λ = s(K)/n, where n = s(K) + 2t(K) = [K : Q]. Put also
λ1 := s(L)/d = s/d, where d = s+ 2t = [L : Q]. We will show that

λ1 ≥ λ. (5.1)
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Observe first that t(L) = 0 implies that s(L) = d, so that λ1 = 1, which yields (5.1).
Also, t(K) = 0 implies t(L) = 0, which leads to the situation we have just considered.
So assume that t(K) 6= 0 and t = t(L) 6= 0. Then, in view of Lemma 3.2 we have
s(K)/t(K) ≤ s/t. Adding 2 to both sides we deduce

n

t(K)
=
s(K) + 2t(K)

t(K)
= 2 +

s(K)

t(K)
≤ 2 +

s

t
=
s+ 2t

t
=
d

t
.

Therefore, t/d ≤ t(K)/n. This implies (5.1), since t/d = (1 − λ1)/2 and t(K)/n =
(1− λ)/2.

Let α1, . . . , αs be the real conjugates of α. Put

C(α) :=
t∑

j=1

|αs+j |2 =
1

2

d∑
i=s+1

|αi|2.

Assume that for each real αi, 1 ≤ i ≤ s, it appears ui times under the s(K) real embeddings
of K and 2vi times under the 2t(K) complex embeddings of K. Here, we have ui + 2vi =
[K : L] for each i. Also,

s(K) = u1 + . . .+ us and t(K) = [K : L]t+ v1 + . . .+ vs. (5.2)

So, in view of (1.2) we can write

(s(K) + t(K))mK(α) =

s∑
i=1

(ui + vi)α
2
i + [K : L]C(α). (5.3)

Here, C(α) = 1
2

∑d
i=s+1 |αi|2. Setting

wi :=
ui + vi

s(K) + t(K)

for i = 1, . . . , s and

wi :=
[K : L]

2s(K) + 2t(K)
(5.4)

for i = s+ 1, . . . , d, in view of (5.2) and (5.3), we derive that

mK(α) =

d∑
i=1

wi|αi|2,

where
∑d
i=1 wi = 1 and

[K : L]
2s(K) + 2t(K)

≤ wi ≤
[K : L]

s(K) + t(K)

for each i = 1, . . . , d. Hence, by Lemma 3.3 with S = 2, ρ = dϕ(λ1), yi = |αi|2 for
i = 1, . . . , d, and Lemma 3.4 (with λ1 = s/d instead of λ), it follows that

mK(α) =

d∑
i=1

wi|αi|2 ≥ 1 + dϕ(λ1) min
1≤i≤d

wi.
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Now, in case s = d we have λ1 = 1, so ϕ(λ1) is positive and using

min
1≤i≤d

wi ≥
[K : L]

2s(K) + 2t(K)
(5.5)

we derive that

mK(α) ≥ 1 +
d[K : L]ϕ(λ1)
2s(K) + 2t(K)

. (5.6)

Otherwise, when s < n, in view of (5.4) we have equality in (5.5). Thus, (5.6) also holds
(even if ϕ(λ1) is negative).

Now, since d[K : L] = [L : Q][K : L] = [K : Q] = n and

n

2s(K) + 2t(K)
=

n

n+ s(K)
=

1

1 + λ
,

from (5.6) we further deduce that

mK(α) ≥ 1 +
ϕ(λ1)

1 + λ
. (5.7)

Here, we have ϕ(λ1) ≥ ϕ(λ), by Proposition 2.1 and the inequality (5.1). Also, by the
same inequality, 1/(1 + λ) ≥ 1/(1 + λ1). So, in particular, (5.7) yields

mK(α) ≥ 1 + max
{ ϕ(λ)
1 + λ

,
ϕ(λ1)

1 + λ1

}
(5.8)

which implies the required bound.

6 Proof of Theorem 2.5
Let α be an algebraic integer with degree d greater than

E := 2 max
1≤i≤m

degQi,

where Qi ∈ Z[x] are given in Lemma 3.5. Applying this lemma to y := α2
j , where

j = 1, . . . , s, and summing up over j we find that

s∑
j=1

α2
j > 1.79193s+

s∑
j=1

m∑
i=1

ei log |Qi(α2
j )|. (6.1)

Note that there is nothing to prove if at least one conjugate of α is greater than
√
2d,

because then the right side of (2.5) is greater than 2d/(s + t) ≥ 2 which is better than
required. So, in all what follows without restriction of generality we may assume that
|αs+j | ≤

√
2d for j = 1, . . . , t.

Clearly,
|Qi(α2

s+j)| ≤ (Di + 1)Hi(2d)
Di ,

where Di and Hi are the degree and the height of the polynomial Qi, respectively. Simi-
larly, |Qi(αs+j2)| ≤ (Di + 1)Hi(2d)

Di . Note that the degree of α2 is either d or d/2, so
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it is greater than any Di = degQi provided that d ≥ D > E. Hence, Qi(α2
j ) 6= 0 for each

i = 1, . . . ,m and each j = 1, . . . , d. Consequently,

1 ≤
d∏
j=1

|Qi(α2
j )| =

s∏
j=1

|Qi(α2
j )|

t∏
j=1

|Qi(α2
s+j)||Qi(αs+j2)|

≤ (2d)2tDiU2t
i

s∏
j=1

|Qi(α2
j )|,

where Ui := (Di + 1)Hi, which yields
s∑
j=1

log |Qi(α2
j )| ≥ −2tDi log(2d)− 2t logUi.

Summing these inequalities with weights ei over i = 1, . . . ,m we derive that
s∑
j=1

m∑
i=1

ei| logQi(α2
j )| =

m∑
i=1

s∑
j=1

ei| logQi(α2
j )|

≥ −
m∑
i=1

(2tDiei log(2d) + 2tei logUi)

≥ −At log(Bd),

where the constants A,B > 2 depend on the constants e1, . . . , em and the polynomials
Q1, . . . , Qm only. Combining this inequality with (6.1) we get

s∑
j=1

α2
j > 1.79193s−At log(Bd).

To complete the proof of the theorem it suffices to show that 1.79193s−At log(Bd) >
1.79192(s+ t), which is equivalent to 10−5s > At log(Bd) + 1.79192t. Multiplying both
sides of this inequality by 105 and adding 2t we obtain the following equivalent inequality:

d = s+ 2t > 105At log(Bd) + 179192t+ 2t = 105At log(Bd) + 179194t.

We will show that the stronger inequality

d > 105(A+ 2)t log(Bd) (6.2)

holds with the constants

δ :=
1

105(2A+ 4)
and D := max{B,E + 1}

depending on e1, . . . , em and Q1, . . . , Qm only.
Indeed, in view of the upper bound on t, namely, t < δd/ log d, the first lower bound

on d, namely, d ≥ D ≥ B, and the choice of δ the right side of (6.2) is less than

105(A+ 2)
δd

log d
log(Bd) ≤ 105(A+ 2)

δd

log d
log(d2) = δ105(2A+ 4)d = d.

This completes the proof of (6.2) and the proof the theorem.
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