ACTAGEOGRAPHICA GEOGRAFSKI ZBORNIK SLOVENICA 2019 59 1 ACTA GEOGRAPHICA SLOVENICA GEOGRAFSKI ZBORNIK 59-1 • 2019 Contents Maja KOCJANČIČ, Tomislav POPIT, Timotej VERBOVŠEK Gravitational sliding of the carbonate megablocks in the Vipava Valley, SW Slovenia 7 Małgorzata KIJOWSKA-STRUGAŁA, Anna BUCAŁA-HRABIA Flood types in a mountain catchment: the Ochotnica River, Poland 23 Irena MOCANU, Bianca MITRICĂ, Mihaela PERSU Socio-economicimpactofphotovoltaicpark:TheGiurgiucountyruralarea,Romania 37 Andrej GOSAR The size of the area affected by earthquake induced rockfalls: Comparison of the1998 Krn Mountains (NW Slovenia) earthquake (Mw 5.6) with worldwide data 51 Matej GABROVEC, Peter KUMER Land-use changes in Slovenia from the Franciscean Cadaster until today 63 Mojca FOŠKI Using the parcel shape index to determine arable land division types 83 Mateja FERK, Matej LIPAR, Andrej ŠMUC, Russell N. DRySDALE, Jian ZHAO Chronology of heterogeneous deposits in the side entrance of Postojna Cave, Slovenia 103 Special issue – Green creative environments Jani KOZINA, Saša POLJAK ISTENIČ, Blaž KOMAC Green creative environments: Contribution to sustainable urban and regional development 119 Saša POLJAK ISTENIČ Participatory urbanism: creative interventions for sustainable development 127 Jani KOZINA, Nick CLIFTON City-region or urban-rural framework: what matters more in understandingthe residential location of the creative class? 141 Matjaž URŠIČ, Kazushi TAMANO The importance of green amenities for small creative actors in Tokyo: Comparing natural and sociocultural spatial attraction characteristics 159 ISSN 1581-6613 9 771581 661010 ACTA GEOGRAPHICA SLOVENICA 2019 ISSN: 1581-6613 COBISS: 124775936 UDC/UDK: 91© 2019, ZRC SAZU, Geografski inštitut Antona Melika Internationaleditorialboard/mednarodniuredniškiodbor: DavidBole(Slovenia),MichaelBründl(Switzerland),RokCiglič(Slovenia), Matej Gabrovec (Slovenia), Matjaž Geršič (Slovenia), Peter Jordan (Austria), Drago Kladnik (Slovenia), BlažKomac (Slovenia), Andrej Kranjc (Slovenia), Dénes Lóczy (Hungary), Simon McCharty (United Kingdom), SlobodanMarković (Serbia), Janez Nared (Slovenia), Drago Perko (Slovenia), Marjan Ravbar (Slovenia), Nika Razpotnik Visković(Slovenia), Aleš Smrekar (Slovenia), Annett Steinführer (Germany), Mimi Urbanc (Slovenia), Matija Zorn (Slovenia) Editor-in-Chief/glavni urednik: Blaž Komac; blaz@zrc-sazu.si Executive editor/odgovorni urednik: Drago Perko; drago@zrc-sazu.si Chief editor for physical geography/glavni urednik za fizično geografijo: Matija Zorn; matija.zorn@zrc-sazu.siChief editor for human geography/glavna urednica za humano geografijo: Mimi Urbanc; mimi@zrc-sazu.si Chief editor for regional geography/glavni urednik za regionalno geografijo: Drago Kladnik; drago.kladnik@zrc-sazu.si Chief editor for spatial planning/glavni urednik za regionalno planiranje: Janez Nared; janez.nared@zrc-sazu.si Chiefeditorforruralgeography/glavnaurednicazageografijopodeželja:NikaRazpotnikVisković;nika.razpotnik@zrc-sazu.si Chief editor for urban geography/glavni urednik za urbano geografijo: David Bole; david.bole@zrc-sazu.si Chief editor for geographic information systems/glavni urednik za geografske informacijske sisteme: Rok Ciglič; rok.ciglic@zrc-sazu.siChief editor for environmental protection/glavni urednik za varstvo okolja: Aleš Smrekar; ales.smrekar@zrc-sazu.si Editorial assistant/uredniški pomočnik: Matjaž Geršič; matjaz.gersic@zrc-sazu.si Issued by/izdajatelj: Geografski inštitut Antona Melika ZRC SAZUPublished by/založnik: Založba ZRC Co-published by/sozaložnik: Slovenska akademija znanosti in umetnosti Address/Naslov: Geografski inštitut Antona Melika ZRC SAZU, Gosposka ulica 13, SI – 1000 Ljubljana, Slovenija The papers are available on-line/prispevki so dostopni na medmrežju: http://ags.zrc-sazu.si (ISSN: 1581–8314) Ordering/naročanje: Založba ZRC, Novi trg 2, p. p. 306, SI – 1001 Ljubljana, Slovenija; zalozba@zrc-sazu.si Annual subscription/letna naročnina: 20 € for individuals/za posameznike, 28 € for institutions/za ustanove. Single issue/cena posamezne številke: 12,50 € for individuals/za posameznike, 16 € for institutions/za ustanove. Cartography/kartografija: Geografski inštitut Antona Melika ZRC SAZU Translations/prevodi: DEKS, d. o. o. DTP/prelom: SYNCOMP, d. o. o. Printed by/tiskarna: Tiskarna Present, d. o. o. Print run/naklada: 350 copies/izvodov The journal is subsidized by the Slovenian Research Agency and is issued in the framework of the Geography of Slovenia coreresearchprogramme(P6-0101)/revijaizhajaspodporoJavneagencijezaraziskovalnodejavnostRepublikeSlovenijein nastajav okviru raziskovalnega programa Geografija Slovenije (P6-0101). The journal is indexed also in/revija je vključena tudi v: SCIE – Science Citation Index Expanded, Scopus, JCR – Journal Citation Report/Science Edition, ERIH PLUS, GEOBASE Journals, Current geographical publications, EBSCOhost,Geoscience e-Journals, Georef, FRANCIS, SJR (SCImago Journal & Country Rank), OCLC WorldCat, Google scholar,and CrossRef. Oblikovanje/Design by: Matjaž Vipotnik. Front cover photography: Stone bridge over the Rak River on the outskirts of the Rakov Škocjan polje, which is otherwiseknown for its beautiful natural bridges (photograph: Matej Lipar).Fotografija na naslovnici: Kamniti most čez reko Rak na obrobju kraškega polja Rakov Škocjan, ki je sicer bolj znano počudovitih naravnih mostovih (fotografija: Matej Lipar). GRAVITATIONALSLIDINGOFTHE CARBONATEMEGABLOCKSINTHE VIPAVAVALLEY,SWSLOVENIA Maja Kocjančič, Tomislav Popit, Timotej Verbovšek Photograph of carbonate gravitational blocks, Slano blato landslide and Gradiška gmajna fosil landslide on the southern slopes of the Trnovo Plateau from Ajdovščina, Vipava Valley (view towards NW). DOI: https://doi.org/10.3986/AGS.4851 UDC: 551.435.6(497.473) COBISS: 1.01 Gravitational sliding of the carbonate megablocks in the Vipava Valley, SW Slovenia ABSTRACT:TheareaofLokavecintheVipavaValley,SWSlovenia,consistsofMesozoiccarbonatesthrust overPaleogenesiliciclasticflysch.Overthrustingandtectonicdamageofcarbonatesacceleratedtheirmechan­ical disintegration. As a result, accumulations of slope gravel and large carbonate gravitational blocks are deposited on the slopes. Based on previous research, basic geological mapping and analysis of the DEM, ten carbonate blocks were identified. The aim of our research was to map lithology, measure and analyse the dip of carbonate strata and to determine transport mechanisms for individual blocks. The displace­ment of blocks from the source area ranged from 80m to 1950m. With the displacement of gravitational blocks, changes in dip direction and dip angle werealso observed. The differences between the strata dip of carbonate source area and gravitational megablocks are from 4° to 59°. KEYWORDS:massmovement,slopedeposits,gravitationalcarbonateblocks,lidar,VipavaValley,Slovenia Gravitacijski karbonatni megabloki v Vipavski dolini POVZETEK:ŠiršeobmočjenaseljaLokavecvVipavskidolinigradijomezozojskikarbonatinarinjenipreko paleogenskegasiliciklastičnegafliša.Zaradinarivnezgradbeintektonskepretrtosti,kipospešujemehansko razpadanje karbonatov, se na pobočjih med Trnovskim gozdom in Vipavsko dolino odlagajo večje koli-činepobočnihgruščevmedkaterimiizstopajotudivelikikarbonatnibloki.Napodlagipredhodnihraziskav, osnovnega geološkega kartiranja in analize digitalnega modela višin, ki je bil pridobljen z lidarsko tehnologijo,jebilo identificiranih10blokov. Namenraziskovalnegadelajebildoločitevlitologijeblokov, meritve in analize vpada karbonatnih plasti ter določitev mehanizmov transporta posameznega karbo­natnega bloka. Rezultati meritev so pokazali, da so razdalje premikov blokov po pobočju znašali od 80m do 1950m. Vpadi plastnatih karbonatnih blokov so pri premiku, glede na karbonatne plasti izvornega območja, spremenili smer in naklon. Razlike pri vpadu karbonatnih plasti izvornega območja in karbo­natnih blokov so od 4° do 59°. KLJUČNEBESEDE:masnitransport,pobočnisediment,gravitacijskikarbonatniblok,lidar,Vipavskadolina, Slovenija Maja Kocjančič HGEM, d.o.o. kocjancic.maja@gmail.com Tomislav Popit, Timotej Verbovšek University of Ljubljana, Faculty of Natural Sciences and Engineering tomi.popit@ntf.uni-lj.si, timotej.verbovsek@ntf.uni-lj.si The paper was submitted for publication on 25th April, 2016. Uredništvo je prejelo prispevek 25. aprila 2016. 1 Introduction TheVipavaValleyisaSE-NWorientedvalleyinSWSlovenia,borderingItaly,andnamedafterthe49km long riverVipava.Thevalley isgeomorphologicallyverydiverse,withelevationsfrom60mtoalmost 1500m.a.s.l. Large differences in elevation occur due to overthrusting of Mesozoic carbonates over fly-sch.Fracturedcarbonateseasilydisintegrateand,inadditiontothelargeamountofsediment(screedeposits), formhugedetachedtranslationalorrotationalcarbonateslideblocks.Suchlargecarbonateblocksaremost­lyknowninsubmarinemassmovements(Alves2015;AlvesandLourenço2010;Jo,EberliandGrasmueck 2015; Reijmer, MulderandBorgomano2015) and less in terrestrial settings (Benac et al. 2005; Davis and Friedmann2005;Huntley,Duk-RodnikandSidwell2006;DiMaggio,MadoniaandVattano2014).Movement of large individual blocks is a known phenomenon and has been documented early for the Alps region (Moser2002).Thepurposeofourresearchwastoinvestigatethepositionandspatialdistributionofthese gravitational blocks, their outline and lithology, to investigate their mass transport mechanisms. 1.1 Geological and geomorphological setting Thestudyareacoversapproximately18km2(4.0×4.5km)onthesouthernslopesofthehighTrnovoplateau (Trnovskigozd;withelevationsofmajorpeaks:Kucelj–1237m,Malagora–1032mandMaliModrasovec– 1306m),overlookingtheVipavaValley.HighreliefdifferencesinthenortheasternpartoftheVipavaValley occur due to overthrusting of the Trnovo Nappe composed mostly of stratified Mesozoic carbonate plat­form limestone and dolomite, over Paleogene flysch composed of an alternation of sandstone, shale, and marloftheHrušicaNappe(Figure1).BothnappesbelongstructurallytotheExternalDinarides(Placer1981; Placer 2008), with carbonates belonging to former Adriatic Carbonate Platform (Vlahović et al. 2005). TheTrnovoplateauisinthisregioncomposedofUpperTriassic(Norian-Rhetian)MainDolomite(appear­ingon the eastern side of the study area)and Lower and UpperJurassiclimestones (on the western side). Besidesthetectonicthrustcontact,themajorSE-NWorientedPredjamafaultpassesthroughtheeastern part of the area (Figure 1), also responsible for mechanical disintegration of carbonates (Buser 1968). Overthrustingandconsequenterosionofcarbonateshasproducedverysteepslopesincarbonatescom­paredtolow-lyingflyschwithmoregentleslopes.Asaresult,largedepositsoflimestoneanddolomitescree haveaccumulatedontheslopesinthetransitionzonebetweensteepcarbonatesandlow-reliefflysch,and they cover the carbonate-flysch thrust contact. In some places, unconsolidated carbonate scree has con­solidatedintoaslopebreccia(Leban1950;Melik1960;Habič1968;Jež2007;PopitandKošir2010). Such mechanicalweatheringofcarbonateswasprobablymorepronouncedduringPleistocene,buttheprocess isstillactivenow(Melik1959;Habič1968;KomacandRibičič2006;ZornandKomac2008;Komac2009;Kodelja, Žebre and Stepišnik 2013; Žebre, Stepišnik and Kodelja 2013; Ribičič 2014). AverageyearlyprecipitationisveryhighinthebroaderareaoftheVipavaValley,from1500mm/year inthevalleytomorethan3000mm/yearonthehigherTrnovoplateau(Janežetal.1997;AgencijaRepublike Slovenije…2016).Extremescanreachover300mm/day.Althoughthemovementofthecarbonateblocks cannotberegardedasclassicallandsliding,themovementsareusuallyrelatednotonlytothetotalamount of precipitation, but to the intensity of precipitation during some time period (Komac 2005; Zorn and Komac 2009).Suchalargeamountofrainfallincombinationwithearthquakesandthegeologicalandgeo-morphologicalsettinghasalsotriggeredseveralactiveandfossilmassmovementsinthevalley.Thesemovements are of different types and have already been recorded (Habič 1968; Buser 1968; Zorn and Komac 2009; Popit and Košir 2010; Popit and Jež 2015; Popit 2016). Among the most studied is the large Slano blato landslide on the northern edge of the Vipava Valley (Kočevar and Ribičič 2002; Logar et al. 2005; Placer, JežandAtanackov2008;FiferBizjakandZupančič2009;Mikošetal.2014),andnearbythelandslideStogovce (Petkovšeket al.2011).Otherfossilcomplexlandslides(PopitandKošir2003;Popitet al.2014b)andother massmovements(rockfall,creep,rotationallandslide,debrisflowandavalanche)alsooccurinthebroad­erarea,butarestillnotwellstudied(Jež2007;Ribičič2014).Severaloftheselandslideshavecausedmajor damage in the Nova Gorica statistical region (Zorn and Komac 2011), comprising the Vipava Valley and studied area, and still pose a problem to the infrastructure and residential objects. Figure 1: Geological map of broader area of the Vipava Valley, location of study area and cross-section through Trnovo plateau and the Vipava Valley (Buser 1968; Janež et al. 1997; Placer 1981; Placer 2008; Popit et al. 2014a). p p. 10 Slope deposit: carbonate scree, landslide KOMEN THRUST SHEET A TRNOVO NAPPE HRUŠICA NAPPE B m.a.s.l. 1200 900 600 300 Legend: Slope sediments: carbonatescreeand landslide deposits (Quaternary) Alluvial and uvial deposits (Quaternary) Mapby: TomislavPopit Eoceneand Paleocene ysch and Transitionalbeds KrasGroup,mostly limestone (Upper Cretaceous, Paleoceneand Eocene) Stratigraphicunits oftheMesozoiccarbonate platform(limestoneanddolomite) Jurassic Cretaceous Triassic Nappeandthrustfault Fault(general) Axisof inclinedfold Stratigraphicboundary Studiedarea Source: Buser 1973 in 1968; Placer1981 and 2008;Janež et al. 1997;Popit et al. 2014a © 2017, University of Ljubljana, Faculty of NaturalSciencesandEngineering,DepartmentofGeology Amongthese,hugecarbonategravitationalblocksappearonthegentleflyschslopes.Theyareobserved abovethevillageofLokavec,neartheSlanoblatolandslide,andclearlyvisibleaspositivereliefstructures onaLidar-derived1mdigitalelevationmodel(DEM)map(Figure2).Ithasalreadybeeninterpretedby Placer,JežandAtanackov(2008)thatthesecarbonateblockshavebeentransportedbygravitationalmove­ment.Theyidentified12carbonateblocks.Fivecarbonateblocks(Malagora,Golagorica,Visoko,Križec andGradišče)werenamedbythenearesttopographicalnameintheirvicinity,whileotherblockswere namedbyconsecutivealphabeticlettersfromAtoF(theSlovenianalphabet,includingtheletterČbetween CandD).However,weusedifferentnamesthanproposed(topographicalinsteadofconsecutive),as (describedintheResultssection)theirproposedblocksAandCarenotcarbonateblocksatall,butonly localaccumulationsofcarbonatescree.Therefore,thesetwoblockswereexcludedfromfurtheranalysis andresults,andothercarbonateblockswerenamedaccordingtotopographicnames(withtheformernames ofPlacer,JežandAtanackov(2008)inparentheses):Kovači(B),Platna(Č),Lokavšček(D),Skuk(E)and Lozica(F).Placer,JežandAtanackov(2008)notedthatthemajorcarbonateblockofMalagorawasdetached fromthesourcearea,duetoitsstructuralsettinginasouth-trendingwedge-shapedcarbonateplateau, whichcombinedwithanearbyE-WfaultcausedtheMalagoracarbonateblocktorotateslightlyandset­tlecomparedtotheČavensourcearea.Thisgeologicalsettingwaslaterusedmostlyfortheexplanation ofgroundwaterrelatedtotheSlanoblatolandslide;however,nofurtherdiscussionwasprovidedforthe individualblocks(i.e.nomeasurementsoftheblockmovementormappingoftheindividualblockswere performed). 2 Methods Ourmethodscanbebrieflydividedintofieldmappingandinreliefanalysisasfollows.Fieldmappingformed thebasisfortheidentificationofthecarbonategravitationalblocks.Itwasperformedatascaleof1:10,000, ontopographicmaps(layerswithsettlementsandinfrastructure)ofSlovenia,producedbyTheSurveying andMappingAuthorityoftheRepublicofSlovenia(Internet1).Inaddition,ashadeddigitalelevation model(DEM)wasusedincombinationwiththesemaps.TheDEM(Figure2)wasproducedfromAirborne LidarScanning(ALS)data,widelyusedfortheanalysisoflandslidemovements(Baldoetal.2009;Geist etal.2009;Jaboyedoffetal.2012;PopitandVerbovšek2013;Popitetal.2014b)andusedasatopographic basemapforthefieldmapping.Itturnedouttobeveryhelpfulinthedeterminationofcarbonateblock locations,asthebare-earthDEMata1×1mgridresolutionwasusedtoeliminatethevegetationcover. Also,aLidar-derivedDEMmapwasusefulfordelineationofsomeproblematicpartsofthecarbonateblocks onseveralinaccessiblepoints,astheslopesofsomecarbonateblocksweretoosteepanddangeroustomea­suredirectly. Themainobjectiveoffieldmappingwastooutlinethecarbonateblocks,todeterminetheirlithologi-calcomposition,andtomeasurethedipdirectionanddipangleofthecarbonatestrata.Theresultswere thencomparedtoasourceareainthehinterland,whichweassumetobethereferencecarbonatemasswith nomovement.ThetypeofmovementwasthereforedeterminedontheDEMlayerbyahorizontaldistance ofthecarbonateblockfromthisstablesourcearea(Figure1)andbythedifferencebetweenthedipdirec­tionanddipangleofthestrataofthecarbonateblockandsourcearea.Inthisway,bothchangesindipdirection anddipanglecouldbedefined.Changeindipdirection(azimuth)wasdefinedwithrotationofacarbon­ateblockarounditsverticalaxis.Apositivevaluewasassignedtoclockwiserotation(greatervalueofazimuth) andnegativevaluetoanticlockwiserotation(lowervalueofazimuth).Similarly,changeindipanglewas definedwithrotationofacarbonateblockarounditshorizontalaxis,withapositivevalueforadownward rotationfromthehorizontalplanewithincreaseindipangleandviceversa.Withmeasureddipdirection anddipangle,wewereabletocalculatedthedifferencesbetweentheanglesofcarbonatesofthesourcearea andofindividualblocks.Insuchway,wewereabletodeterminetheindividualblockmovement. Thelithologicalcompositionofindividualcarbonateblockswasalsocomparedtothesourcearea,to checkforchangesinmeasuredangles.TheaccuranceofTriassicdolomiteandJurassiclimestoneinthe sourceareaandofindividualblockwasmapped.Researchpointsweretakenoncarbonateblocksandthe sourcearea.PointswereassignedauniqueID,blockname/sourcearea,WGS84pointcoordinates(lati-tude,longitude)andlithologicalanddirectionalmeasurements.Todeterminetheposition,ahandheld GPSreceiverwithhorizontalprecisionofabout±5meterswasused. Lozica Skuk Gola Gorica Platna Lokavšček Visoko Kovači Figure A by: Tomislav Popit Figure B by: Maja Kocjančič, Timotej Vrbovšek © 2017, University of Ljubljana, Faculty of Natural SciencesandEngineering,Department ofGeology Figure 2: A: Photograph of carbonate gravitational blocks from Navrše hill (view towards W). B: DEM of studied area (same viewpoint). Thesefielddataweretransferredto ESRIArcGISv. 10.0 (ESRI2012). The GISenvironmentservedto produce a map, to measure the transport distance from the source area, to produce the longitudinal pro­files for each carbonate block and to visualize the blocks in 3D on the Lidar DEM surface. The distance oftransportwasdefinedfromtheuppermarginofeachcarbonateblocktothesupposedscarpofthecar­bonate source area. Finally, the mean value of dip direction and dip angle for individual carbonate blocks and the source areawereobtainedinthestereographicprogramStereo32(RöllerandTrepmann2013)bydirectional(cir­cular)statistics.Consequently,differencesofmeandipdirectionandmeandipanglebetweenagravitational carbonateblockandthesourceareacouldbeobtainedinstereologicalprogramStereonet9(Allmendinger2014). Values have been rounded to 5° for dip directions and dip angles, distances to 10m, and areas to 100m2. 3 Results Thecalculateddipanglesofcarbonatestrataarepresentedforthesourcearea,followedbyresultsforeach carbonateblock.TheblocksareclearlyvisibleinthefieldfromthevalleyandontheDEM(Figure2),asthey stand out as positive topographic anomalies of carbonate mass on the flysch slope. At the source area, 15measurementswereperformedalongthecarbonateescarpmentinthestable,undisturbedarea(Table 1). The eastern part of the source area belongs to Upper Triassic dolomite (measurement points T02–T08), and western part to Jurassic limestones (points T01, T09–T15). Table 1: Results for source area. Average dip direction and dip angle are 225/25. Point Latitude Longitude Dip direction Dip angle Lithology (°, WGS84) (°, WGS84) (°) (°) T01 45.92703 13.85022 235 25 limestone T02 45.92858 13.85583 220 20 dolomite T03 45.93103 13.85858 220 20 dolomite T04 45.92994 13.85878 220 20 dolomite T05 45.93767 13.86292 220 20 dolomite T06 45.93828 13.86064 230 30 dolomite T07 45.94111 13.86250 230 25 dolomite T08 45.94225 13.86683 230 25 dolomite T09 45.92853 13.85178 220 30 limestone T10 45.92467 13.83242 220 15 limestone T11 45.92828 13.83236 240 35 limestone T12 45.92839 13.82897 230 35 limestone T13 45.92881 13.82689 230 30 limestone T14 45.92878 13.82608 230 20 limestone T15 45.92869 13.82503 220 20 limestone Carbonate blocks are briefly described below, as Table 2 summarizes most of the results that are dis­cussedinthenextsection.ThelargestcarbonateblockofMalagora(Figure3),lyingbetween650–1040m a.s.l.,hasbeentransportedabout100msouthwardsfromthesourcearea.Itcoversanareaofabout174.7ha (Table 2). The eastern part of the block is composed of Triassic dolomite and the western part of Jurassic limestone, similar to the composition of the source area. In the most western part of the block, strata are notvisible,andblockismostlydisintegratedintocarbonategravel.Theaveragedipdirectionanddipangle are 215/25, giving the angular difference from the source area of only 4o. ThecarbonateblockGolagoricaiscomposedofJurassiclimestoneandhasbeendisplacedmuchmore than the Mala gora block from the source area, about 850m. Due to inaccessible steep parts of the block, sixmeasurementswereperformed,buttheirvariationisminimal.Apartfromlimestone,somebrecciaappears on the western side of the carbonate block Visoko. Carbonate strata are visible only in the south-eastern side,wherethemeasurementsweremade.Weatheredflyschwasobservedatthebaseoftheblock.Carbonate blocksKrižec,Kovači,Platna,LokavščekandSkukarecomposedofdolomiteandsomecarbonatebreccia; weatheredflyschalsoappearsatthebaseoftheseblocks.OnthecarbonateblockGradišče,measurements wereperformedonlyontheaccessiblesouthwesternpart.Thisblockiscomposedonlyofdolomite.Dolomite layers and the contact of dolomitic block Lozica with the underlying flysch are well exposed in two road cuts; otherwise the block is mostly difficult to access. The smallest difference between the strata dip was obtained for the carbonate block Mala gora (4°), whichliesveryclosetothesourceareaandhasbeenamongthosewiththesmallestdisplacement.Incon­trast, the largest change between source area dip angle and block dip angle was observed for carbonate block Visoko, about 59°. This block has also one of the largest displacements, so it rotated greatly during the transport (Figure 4). This can be straightforwardly explained by the fact that blocks can change their rotation from clockwise to counter-clockwise during the transport and vice versa. 4 Discussion Ourobservationsconfirmthatblocklithologycorrespondstothelithologyofthesourcearea.Blockslying belowtheeasterndolomiticpart(blocksMalagora,Križec,Gradišče,Kovači,Platna,Lokavšček,Skukand Lozica)arealsocomposedofdolomite,andthoseonthesouthernlimestoneside(blocksMalagora,Gola gorica in Visoko) are composed of limestone. Some breccia was also mapped on blocks Visoko, Križec, Kovači,Platna,LokavščekandSkuk(seeFigure3).Thisindicatesaformerscreethatwasconsolidatedbehind the blocks (Figure 5), and was in some cases moved with the blocks to be present now in different posi­tions. Flysch and carbonate scree appear in all areas around the blocks. The length of the transport was quite different: the minimum travel distance was about 80m for carbonate block Lozica, with high ele­vationsandclosetosourcearea,andmaximumabout2050mforcarbonateblockGradišče,withthelowest elevation near the levelled bottom of the valley. Such a runout distance is quite long, but not unusual, Figure 3: Lithology of the wider source area and studied carbonate blocks, locations of dip directions and dip angle measurements, springs on DEM Lidar surface stereographic plots of strata in individual carbonate blocks and in source area. Area without symbology (colours) belongs to flysch. Table 2: Results of measurements for individual carbonate blocks and source area. Block Elevation Lithology Area Horizontal travel Number of Average dip Change of Change of Difference between[ma.s.l.] [ha] distance[m] measurements directionanddip dipdirection dipangle sourceareadip [–] angle [°/°] [°] [°] and block dip [°] Source area / dolomite & limestone / / 15 225/25 / / / Mala gora 650–1040 dolomite & limestone 174.7 100 23 215/25 –10 0 4 Gola gorica 580–650 limestone 7.5 950 6 205/40 –20 +15 18 Visoko 440–510 limestone 15.2 1460 10 355/40 +130 +15 59 Križec 540–660 dolomite 23.5 850 10 250/40 +25 +15 20 Gradišče 260–380 dolomite 16.8 2050 10 230/50 +5 +25 25 Kovači 330–400 dolomite 9.9 1720 10 180/40 –45 +15 28 Platna 480–660 dolomite 20.9 750 10 255/25 +30 0 13 Lokavšček 470–620 dolomite 16.7 1000 10 325/25 +100 0 38 Skuk 580–700 dolomite 18.7 800 27 255/50 +30 +25 30 Lozica 700–930 dolomite 10.0 80 10 260/40 +35 +15 24 asthetransportdistanceshavebeenobservedfromsomekmtomorethan15kmelsewhereinsimilargeo­morphological and geological settings (DavisandFriedmann2005). InthenearbygeologicallysimilarareainCroatia (DugonjićJovančević andArbanas2012),severalmassmovementsoccuronthecontactbetweensteeperPaleogeneandCretaceous carbonatesandflysch(Đomlijaetal.2014;Jovančević,VivodaandArbanas2015),butsuchcarbonateblocks have not been documented. We assume that the transport mechanism is a combination of translational and rotational block-type slopemovements,drivenonlybygravity,sothetransportdirectionisdownslope(mostlytowardsthesouth or southeast) with rotation of blocks around the horizontal and vertical axes. Some possible deviations fromthisdirectioncouldappearduetoirregularitiesoftheflyschslopes,whichservedasslidingsurfaces Content by: Maja Kocjančič, Tomislav Popit, Timotej Verbovšek Map by: Timotej Verbovšek © 2017, University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology Figure4:Plotsofallstratapolesonstereographicprojectionplot(smalldots),withFishermeanvectors(largerdots)andonecircularstandarddeviation(ellipses). 16 for the blocks. The slope of the flysch terrain, measured below the blocks Visoko, Gola gorica and Mala gora,isonaverage10o(9.5–12.6o).Themovementofblockscanberelatedtotectonicandstructuralpara­meters in bedrock formation and some major triggering events (e.g. earthquakes). The wider region is seismically still active, as earthquakes with magnitudes above 5.5 have been recorded in 10s km radius aroundthestudiedarea(obtainedfromtheearthquakecatalogueofSlovenianEnvironmentAgency(Internet2 and3)andcomprisingearthquakesyoungerthan 1348). Such largeeventsare known tobe a majorcause formajorlandsliding(Benacet al.2005;Shroderet al.2011;EsperAngillieriandPerucca2013).Thestudyarea lies in an active seismic zone (Poljak, Živičič and Zupančič 2000; Placer, Vrabec and Celarc 2010), very close to the Predjama fault, between the Raša and Idrija faults (Vrabec and Fodor 2006). These are active faults, as it was recently found that the Raša fault has slip-rates of about 1.3–2.8mm/year and the Predjama fault has a mean slip-rate of about 1.4±0.1mm/year (Moulin 2014). The Idrija fault has been activesinceMiocene(reactivatedfromoblique-normaltodextralstrikeslipfromMiocenetoPliocenetime) (Bavecet al.2012;Moulinet al.2014),withamajorearthquakein1511(magnitude6.8;(Bavecet al.2013). Beforethisevent,severalearthquakesofsimilarmagnitudemostprobablyoccurred(oneofthemajorland-slide events in the Vipava Valley probably related to earthquakes (Popit and Košir 2003) was dated to at least 40,000 years BP). Also, tectonic uplift of the Trnovo Nappe area is believed to be still active and is estimatedtobeabout2.0mm/year(Rižnar,KolerandBavec2007).Mapsfortheseismicaccelerationwith a1000-yearreturnperiod(Internet4)showabout0.225gforthestudyarea,andforthe10,000-yearreturn period about 0.45 g. The latter acceleration is very close to thevalue of 0.5 g,being the lower limit for the sliding of large blocks (Davis and Friedmann 2005). Therefore, in such a time span, it is possible that the blockmovementsweretriggeredduetogroundshakingandconsequentmovement(s)duetoseismicactiv-ity.TheminimalearthquakemagnitudetocausethemovementisestimatedasML.4.0(Keefer1984)andmagnitudes of this order and larger have been documented historically in broader area (Poljak, Živičič and Zupančič 2000). Another important factor is the river incision of the flysch bedrock (Huntley, Duk-Rodnik and Sidwell 2006), which could have easily been eroded by the Vipava River). Even apart from the river incision, erosion in flysch of the SW Slovenia is high and exceeds the European average for the Mediterranean part of Europe (Zorn 2009). On a micro level, erosion depends also on the steepness of theflyschslopes,withsteeperreliefallowingbetterdrainageduetowater-retainingclaymineralswashedintolowerparts(JamšekRupnik,ČušandŠmuc2016). Also,watercanaccumulateasgroundwaterinthe carbonateblocks,astheyarestronglyfractured,karstifiedandpermeable(Verbovšek2008;Verbovšekand Veselič 2008), and some water can also be accumulated in carbonate scree, depositing above the blocks. In both cases, the presence of water can intensify the weathering of flysch below the blocks and deterio­rateitsmechanicalproperties.Thepresenceofwateraccumulationisdocumentedastheexistenceofseveral springsbelowtheblocks(Figure3)onthelesspermeableflysch.Onlymajorspringsarelistedinthetable: thosethatdonotdryupduringtheyear,withanaverageoutflowofeachspringaround3–5l/s(Janežet al. 1997).Someunknownquantityofgroundwateralsoflowstothemorepermeableflyschundergroundand doesnotemergeinsprings,aswasdocumentedfortheSlanoblatolandslide(Placer,JežandAtanackov2008). Theinfiltratedsurfacewaterandgroundwatercontributestotheweatheringoftheflysch,actingasaslid­ingbaselayerforthecarbonateblocks.DuringthePleistocene,especiallyinclimaticconditionsprevailing inthelastglacialmaximum(Monegatoet al.2015),climaticandhydrologicsettingwasverydifferentfrom thepresent,andmechanicalweathering,sedimentaccumulationandalsocarbonateblockmovementsmay have been greatly accelerated compared to recent mass movement processes. However, there is no proof for such influence in the research area. Finally, the weight of accumulated scree can act as an additional force on the blocks. During some extreme rainfall and earthquake events, transport of gravitational carbonate blocks is possible, so they would require monitoring. By observing the movement of a block, the velocity could be determined. Velocities of blocks are presently unknown, as no measurements have been performed, but can lie over a very large value range (Davis and Friedman 2005). Most importantly, it would be possible toassesswhetherthe movementismoreorlessslowandconstantduringtheyear,oronlyoccasionaland related to extreme catastrophic events (tectonically or climatically conditioned). Regardless if the move­ments are mostly controlled by climatic factors and/or the seismic events, transport of carbonate blocks could continue in the future, as neither of these factors can be neglected in the future. The region is seis­mically active with earthquakes of magnitudes above 6, and due to probable vertical uplift of the Trnovo Nappe (Rižnar, Koler and Bavec 2007). Legend Limestone Dolomite Mala gora Breccia Križec F Flysch Talus of scree deposit Mudow (Slano blato landslide) Boundary of Gola gorica Trnovo nappe Kovači Curved shear 0 0,5 1 2 km surface Major springs height above Content by: Maja Kocjančič, sea level (m) Tomislav Popit, Timotej Verbovšek Map by: Timotej Verbovšek, Mali Modrasovec Tomislav Popit 1200 Source: Popit 2016 © 2017, University of Ljubljana, Mala gora 1100 Faculty of Natural Sciences and Engineering, Department of 1000 Geology 225/25 900 215/15 800 Gola gorica 700 600 F F 205/40 500 A 0 200 400 600 800 1000 1200 1400 1600 1800 B height above distance (m) sea level (m) 1100 Mala Gora 1000 900 215/15 800 Križec 700 600 F 250/40 500 Kovači 400 F 180/40 300 distance (m) D 200 400 600 800 1600 1800 2000 C0 1000 1200 1400 Figure 5: Two selected longitudinal profiles through the source area and Mala gora, Gola gorica, Križec and Kovači carbonate blocks. 18 5 Conclusion Themainconclusionscanbesummarizedinthefollowingstatements: •Inthestudyarea,tenseparatecarbonategravitationalblockshavebeendetachedfromthesteepcarbonate edgeoftheTrnovoplateau.Movementwasbothtranslationalandrotational,provedbycorrelatinglithol­ogybetweentheblocksandthesourceareaandsignificantchangeinelevationoftheblockscompared toflyschinthelongitudinalprofiles. •Thedistanceofthetransportrangesfrom80mtoabout2km,andblockareasrangefrom7.5–175ha. ThesmallestdifferencebetweenthestratadipwasobtainedforcarbonateblockMalagora,4°andthe largestchangeinstratadipwasforcarbonateblockVisoko,about59°.Thereisnodirectcorrelationof traveldistancewiththerotation/tiltangles. •Asseenfromtheearthquakemagnitudesrecordsandseismicaccelerationmapstheareaisseismically stillactive,withtheactivenearbyPredjama,RašaandIdrijafaults,andtheblockscanbetransported atthemajorearthquakesevents. •Theblocksandcarbonatescree,accumulatingbehindtheblocks,actas(ground)wateraccumulations, andseveralsmallspringsappearbelowtheblocksandonthecontactbetweenthepermeablecarbonate screeandthelesspermeableflysch. •Thevelocityofthemovementisunknownanditshouldbemonitored,asseveralbuildingsliebelow someoftheblocks.Transportofblockscouldcontinueinthefuture,duetoverticalupliftandincreas­ingpotentialenergyoftheblocks,andinthescenarioofchangedclimaticconditions,whichwillchange thequantityandintensityofprecipitation. ACKNOWLEDGEMENT:WethankthecompanyGeoin,d.o.o.forprovidinguswiththelidardataand JožeJanežfromGeologija,d.o.o.Idrijaforprovidingthedataonspringsandthegeologicalmap(Figure1). 6 References AgencijaRepublikeSlovenijezaokolje,2016.Internet:http://gis.arso.gov.si/atlasokolja/(28.4.2016). Allmendinger,R.W.2014:Stereonet9.Internet:http://www.geo.cornell.edu/geology/faculty/RWA/programs/ stereonet.html(22.10.2015). Alves,T.M.2015:Submarineslideblocksandassociatedsoft-sedimentdeformationindeep-waterbasins: Areview.MarineandPetroleumGeology67.DOI:https://doi.org/10.1016/j.marpetgeo.2015.05.010 Alves,T.M.,Lourenço,S.D.N.2010:Geomorphologicfeaturesrelatedtogravitationalcollapse:Submarine landslidingtolateralspreadingonaLateMiocene–Quaternaryslope(SECrete,easternMediterranean). Geomorphology123,1–2.DOI:https://doi.org/10.1016/j.geomorph.2010.04.030 Baldo,M.,Bicocchi,C.,Chiocchini,U.,Giordan,D.,Lollino,G.2009:LIDARmonitoringofmasswasting processes:TheRadicofanilandslide,ProvinceofSiena,CentralItaly.Geomorphology105,3–4.https://doi.org/ 10.1016/j.geomorph.2008.09.015 Bavec,M.,Atanackov,J.,Celarc,B.,JamšekRupnik,P.,Jež,J.,Milanič,B.,Novak,M.,Skaberne,D.,Žibret, G.2013:DokazpotresneaktivnostiidrijskegaprelomaizpaleoseizmološkegajarkavSrednjiKanomlji. 21.posvetovanjeslovenskihgeologov.Ljubljana. Bavec,M.,Car,M.,Stopar,R.,Jamšek,P.,Gosar,A.2012:Geophysicalevidenceofrecentactivityofthe Idrijafault,Kanomlja,NWSlovenia.RMZ–MaterialsandGeoenvironment59,2–3. Benac,Č.,Arbanas,Ž.,Jurak,V.,Oštrić,M.,Ožanić,N.2005:ComplexlandslideintheRječinavalley(Croatia): originandslidingmechanism.BulletinofEngineeringGeologyandtheEnvironment64-3.DOI: https://doi.org/10.1007/s10064-005-0002-5 Buser,S.1968:OsnovnageološkakartaSFRJ1:100.000,listGoricaL33-78.Zveznigeološkizavod.Beograd. Davis,G.,Friedmann,S.2005:Large-scalegravityslidingintheMioceneShadowValleySupradetachment Basin,EasternMojaveDesert,California.Earth-ScienceReviews73,1-4.DOI:https://doi.org/10.1016/ j.earscirev.2005.04.008 DiMaggio,C.,Madonia,G.,Vattano,M.2014:Deep-seatedgravitationalslopedeformationsinwesternSicily: Controllingfactors,triggeringmechanisms,andmorphoevolutionarymodels.Geomorphology208-1. DOI:https://doi.org/10.1016/j.geomorph.2013.11.023 DugonjićJovančević,S.,Arbanas,Ž.2012:RecentlandslidesontheIstrianPeninsula,Croatia.NaturalHazards 62-3. DOI: https://doi.org/10.1007/s11069-012-0150-4 Đomlija,P., Bernat, S., ArbanasMihalić,S.,Benac,Č. 2014: Landslideinventory in theareaof Dubračina river basin (Croatia). Landslide science for a safer geoenvironment 2: Methods of landslide studies. Heidelberg. DOI: https://doi.org/10.1007/978-3-319-05050-8_129 EsperAngillieri,M.Y.,Perucca,L.P.2013:MassmovementinCordóndelasOsamentas,deLaFlechariver basin,SanJuan,Argentina.QuaternaryInternational301.DOI:https://doi.org/10.1016/j.quaint.2013.03.009 ESRI 2012. ArcGIS v.10. ESRI, Inc. Redlands. FiferBizjak,K.,Zupančič,A.2009:SiteandlaboratoryinvestigationoftheSlanoblatolandslide.Engineering Geology 105, 3–4. DOI: https://doi.org/10.1016/j.enggeo.2009.01.006 Geist,T.,Höfle,B.,Rutzinger,M.,Pfeifer,N.,Stötter,J.2009:Laserscanning–aparadigmchangeintopo­graphicdataacquisitionfornaturalhazardmanagement.SustainableNaturalHazardManagementin Alpine Environments. Heidelberg. DOI: https://doi.org/10.1007/978-3-642-03229-5_11 Habič,P.1968:KraškisvetmedIdrijcoinVipavo:prispevekkpoznavanjurazvojakraškegareliefa.Ljubljana. Huntley,D.,Duk-Rodnik,A.,Sidwell,C. 2006:Landslideinventoryofthesouth-centralMackenzieRiver valley region, Northwest Territories. Current Research A10-2006. Internet 1: http://www.gu.gov.si/en (20.12.2016). Internet 2: http://www.arso.gov.si/en/ (20.12.2016). Internet 3: http://gis.arso.gov.si/wfs_web/faces/WFSLayersList.jspx (20.12.2016). Internet 4: http://www.arso.gov.si/potresi/podatki/pospesek_10000.html (20.12.2016). Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A.,Metzger,R., Pedrazzini, A. 2012: Use of LIDAR in landslide investigations: a review. Natural Hazards 61-1. DOI: https://doi.org/10.1007/ s11069-010-9634-2 Jamšek Rupnik, P., Čuš, F., Šmuc, A. 2016: Geomorphology and wine: the case of Malvasia in the Vipava valley, Slovenia. Acta geographica Slovenica 56-1. DOI: https://doi.org/10.3986/AGS.905 Janež,J.,Čar,J.,Habič,P.,Podobnik,R.1997:VodnobogastvoVisokegakrasa:Ranljivostkraškepodzemne vode Banjšic, Trnovskega gozda, Nanosa in Hrušice. Idrija. Jež,J.2007:ReasonsandmechanismforsoilslidingprocessesintheRebrnicearea,Vipavavalley,SWSlovenia. Geologija 50-1. DOI: https://doi.org/10.5474/geologija.2007.005 Jo,A.,Eberli,G.P.,Grasmueck,M.2015:MargincollapseandslopefailurealongsouthwesternGreatBahama Bank. Sedimentary Geology 317. DOI: https://doi.org/10.1016/j.sedgeo.2014.09.004 Jovančević, S. D., Vivoda, M., Arbanas, Ž. 2015: Landslide susceptibility assessment on slopes in flysch deposits:Adeterministicapproach.EngineeringGeologyforSocietyandTerritory2:LandslideProcesses. Heidelberg. DOI: https://doi.org/10.1007/978-3-319-09057-3_287 Keefer, D. K. 1984: Landslides caused by earthquakes. Geological Society of America Bulletin 95-4. DOI: https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2 Kočevar,M.,Ribičič,M.2002:Geološke,hidrogeološkeingeomehanskeraziskaveplazuSlanoblato.Geologija 45-2. DOI: https://doi.org/10.5474/geologija.2002.043Kodelja, B., Žebre, M., Stepišnik, U. 2013: Poledenitev Trnovskega gozda. E-GeograFF 6. Ljubljana. Komac,M.2005:Rainstormsasalandslide-triggeringfactorinSlovenia.Geologija48.DOI:https://doi.org/ 10.5474/geologija.2005.022 Komac, M. 2009: Geološko pogojene nevarnosti. Geologija Slovenije. Ljubljana. Komac, M., Ribičič, M. 2006: Landslide susceptibility map of Slovenia at scale 1:250,000. Geologija 49-2. DOI: https://doi.org/10.5474/geologija.2006.022 Leban, V. 1950: Nanos – gospodarska povezava s sosedstvom. Geografski vestnik 22. Logar, J., Bizjak, K. F., Kočevar, M., Mikoš, M., Ribičič, M., Majes, B. 2005: History and present state of theSlanoblatolandslide.NaturalHazardsandEarthSystemSciences5-3.DOI:https://doi.org/10.5194/ nhess-5-447-2005 Melik, A. 1959: Nova geografska dognanja na Trnovskem gozdu. Geografski zbornik 5. Melik, A. 1960: Slovensko Primorje. Ljubljana. Mikoš,M.,Sodnik,J.,Petkovšek,A.,Maček,M.,Majes,B.2014:WCoE:Mechanismsoflandslidesinover- consolidated clays and flysch and IPL-151 Project: Soil matrix suction in active landslides in flysch – The Slano blato landslide case. Landslide Science for a Safer Geoenvironment 1: The International Programme on Landslides. Heidelberg. DOI: https://doi.org/10.1007/978-3-319-04999-1_16 Monegato,G.,Ravazzi,C.,Culiberg,M.,Pini,R.,Bavec,M.,Calderoni,G.,Jež,J.,Perego,R.2015:Sedimentary evolution and persistence of open forests between the south-eastern Alpine fringe and the Northern DinaridesduringtheLastGlacialMaximum.Palaeogeography,Palaeoclimatology,Palaeoecology436. DOI: https://doi.org/10.1016/j.palaeo.2015.06.025 Moser,M.2002:GeotechnicalaspectsoflandslidesintheAlps.Proceedingsofthe1stEuropeanConference on Landslides. Prague. Moulin,A.2014:ActivetectonicsoftheAlps-Dinaridesjunction:quantitativemorphology,faultkinematics and implications for the Adria microplate geodynamics. Marseille. Moulin,A., Benedetti, L., Gosar,A., Rupnik,P. J., Rizza, M., Bourles, D., Ritz, J.-F. 2014:Determining the present-daykinematicsoftheIdrijafault(Slovenia)fromairborneLiDARtopography.Tectonophysics 628. DOI: https://doi.org/10.1016/j.tecto.2014.04.043 Petkovšek, A., Fazarinc, R., Kočevar, M., Maček, M., Majes, B., Mikoš, M. 2011: The Stogovce landslide in SW Slovenia triggered during the September 2010 extreme rainfall event. Landslides 8-4. DOI: https://doi.org/10.1007/s10346-011-0270-z Placer, L. 1981: Geološka zgradba jugozahodne Slovenije. Geologija 24-2. Placer, L. 2008: Principles of the tectonic subdivision of Slovenia. Geologija 51-2. DOI: https://doi.org/ 10.5474/geologija.2008.021 Placer,L.,Jež,J.,Atanackov,J.2008:StrukturnipoglednaplazSlanoblato.Geologija51-2.DOI:https://doi.org/ 10.5475/geologija.2008.023 Placer,L.,Vrabec,M.,Celarc,B.2010:ThebasesforunderstandingoftheNWDinaridesandIstriaPeninsula tectonics. Geologija 53-1. DOI: https://doi.org/10.5474/geologija.2010.005 Poljak,M.,Živčić,M.,Zupančič,P. 2000:TheseismotectoniccharacteristicsofSlovenia. PureandApplied Geophysics 157-1. DOI: https://doi.org/10.1007/PL00001099 Popit,T.2016:Mehanizmitransportainsedimentacijskiprocesikvartarnihpobočnihsedimentovnaobmočju Rebernic. Doktorska disertacija = Transport mechanisms and depositional processes of Quaternary slope deposit in Rebrnice area. Doctoral thesis. Ljubljana. Internet: http://drugg.fgg.uni-lj.si/5433/ (17.02.2017). Popit,T.,Košir,A.2003:PleistocenedebrisflowdepositsintheVipavaValley,SWSlovenia.22ndIASMeeting of Sedimentology. Zagreb, Opatija. Popit, T., Košir, A. 2010: Kvartarni paleoplazovi na Rebrnicah. 3. slovenski geološki kongres. Ljubljana, Bovec. Popit,T.,Verbovšek,T. 2013:AnalysisofsurfaceroughnessintheSvetaMagdalenapaleo-landslideinthe Rebrnicearea=AnalizahrapavostipovršjafosilnegaplazuSvetaMagdalenanaobmočjuRebrnic.RMZ– Materials and geoenvironment, 60-3. Popit, T., Jež, J., Košir, A., Fifer Bizjak, K., Ribičič, M. 2014a: Kvartarni pobočni sedimenti severnega in vzhodnega roba Vipavske doline. 4. slovenski geološki kongres. Ljubljana, Ankaran. Popit,T.,Rožič,B.,Šmuc,A.,Kokalj,Ž.,Verbovšek,T.,Košir,A. 2014b:Alidar,GISandbasicspatialstatis­ticapplicationforthestudyofravineandpalaeo-ravineevolutionintheupperVipavavalley,SWSlovenia. Geomorphology 204-1. DOI: https://doi.org/10.1016/j.geomorph.2013.09.010 Popit, T., Jež, J. 2015: Mass movement processes in Vipava valley, SW Slovenia. Regional Symposium on Landslides in the Adriatic-Balkan Region. Belgrade. Reijmer,J.J.G.,Mulder,T.,Borgomano,J.2015:Carbonateslopesandgravitydeposits.SedimentaryGeology 315-1. DOI: https://doi.org/10.1016/j.sedgeo.2014.10.011 Ribičič, M. 2014: Zemeljski plazovi. Vipavska dolina. Neživi svet, rastlinstvo, živalstvo, zgodovina, umet­nostna zgodovina, gmotna kultura, gospodarstvo in naravovarstvo. Ljubljana. Rižnar,I.,Koler,B.,Bavec,M.2007:RecentactivityoftheregionalgeologicstructuresinwesternSlovenia. Geologija 50-1. DOI: https://doi.org/10.5474/geologija.2007.009 Röller, K., Trepmann, C. 2013: Stereo32. Bochum. Shroder, J. F., Owen, L. A., Seong, Y. B., Bishop, M. P., Bush, A., Caffee, M. W., Copland, L., Finkel, R. C., Kamp, U. 2011: The role of mass movements on landscape evolution in the Central Karakoram: Discussion and speculation. Quaternary International 236, 1–2. DOI: https://doi.org/10.1016/ j.quaint.2010.05.024 Verbovšek,T.2008:HydraulicconductivitiesoffracturesandmatrixinSloveniancarbonateaquifers.Geologija 51-2. DOI: https://doi.org/10.5474/geologija.2008.025 Verbovšek,T.,Veselič,M.2008:Factorsinfluencingthehydraulicpropertiesofwellsindolomiteaquifers of Slovenia. Hydrogeology Journal 16-4. DOI: https://doi.org/10.1007/s10040-007-0250-5 Vlahović,I.,Tišljar,J.,Velić,I.,Matičec,D. 2005:EvolutionoftheAdriaticCarbonatePlatform:Palaeogeography, maineventsanddepositionaldynamics.Palaeogeography,Palaeoclimatology,Palaeoecology220,3–4. DOI: https://doi.org/10.1016/j.palaeo.2005.01.011 Vrabec,M.,Fodor,L.2006:LateCenozoicTectonicsofSlovenia:StructuralStylesattheNortheasternCorner of the Adriatic Microplate. The Adria Microplate: GPS Geodesy, Tectonics and Hazards. DOI: https://doi.org/10.1007/1-4020-4235-3_10 Zorn, M.2009:ErosionprocessesinSloveneIstria –part 1: Soilerosion.Acta geographicaSlovenica 49-1. DOI: https://doi.org/10.3986/ags49102 Zorn, M., Komac, B. 2008: Zemeljski plazovi v Sloveniji. Georitem 8. Ljubljana. Zorn,M.,Komac,B.2009:TheImportanceofLandslidinginaFlyschGeomorphicSystem:TheExample of the Goriška brda Hills (W Slovenia). Zeitschrift für Geomorphologie, Supplementary Issues 53-2. Zorn,M.,Komac,B.2011:DamagecausedbynaturaldisastersinSloveniaandgloballybetween1995and 2010. Acta geographica Slovenica 51-1. DOI: https://doi.org/10.3986/ags51101 Žebre,M.,Stepišnik,U.,Kodelja,B.2013:SledovipleistocenskepoledenitvenaTrnovskemgozdu.Dela39. DOI: https://doi.org/10.4312/dela.39.9.157-170.