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Abstract

A face of an edge colored plane graph is called e-loose if the number of colors used
on its edges is at least three. The e-looseness of a plane graph G is the minimum positive
integer k such that any edge coloring of G with k colors involves an e-loose face. In this
paper we determine tight lower and upper bounds for the e-looseness of connected plane
graphs. These bounds are expressed by linear polynomials of the number of faces.
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1 Introduction
We use the standard terminology according to Bondy and Murty [1]. All considered graphs
are undirected, finite, loopless, multiple edges are allowed.

Let G = (V,E, F ) denote a connected plane graph with the vertex set V , the edge set
E and the face set F . We say that two edges of G are face-independent if they are not
incident with the same face. Two edges of G are face-adjacent if they are consecutive
edges of a facial trail of some face. The medial graph M(G) of G is the simple graph
obtained as follows. For each edge e of G insert a vertex m(e) in M(G). Join two vertices
of M(G) if the corresponding edges are face-adjacent in G. The embedding of G induces
the embedding of M(G).

Edge colorings of graphs embedded on surfaces with face-constrains have recently
drawn a substantial amount of attention, see [5, 6, 7, 12] and references therein. There are
two questions derived from hypergraph colorings that one may ask in this setting:

Question 1.1. What is the minimum number of colors needed to color the edges of a
connected plane graph in such a way that each of its faces is incident with edges of at least
two different colors?
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Question 1.2. What is the maximum number of colors that can be used in an edge coloring
of a connected plane graph in such a way that each of its faces is incident with edges of at
most two different colors?

The following result gives the answer to Question 1.1.

Theorem 1.3. Every connected plane graph (on at least two edges) has an edge coloring
with at most 3 colors such that each of its faces is incident with edges of at least two different
colors. Moreover, if G is simple, then 2 colors are sufficient.

Proof. First we show that every connected plane graph without faces of size two has an
edge coloring with 2 colors such that these two colors appear on every face. Let G be such
a plane graph and let M(G) be its medial graph. Add edges to M(G) to obtain a plane
triangulation T . By the Four Color Theorem, T has a proper vertex coloring which uses 3
or 4 colors. Combine the first color class with the second, and combine the third with the
fourth. This yields a 2-coloring of the graph T . It is easy to check that each face of T is
incident with vertices of two different colors. This vertex coloring induces a required edge
coloring of G.

Now assume that the claim does not hold for a connected plane graph with faces of size
two. Let G be a counterexample on minimum number of edges. Let e be an edge which
is incident with faces f and g, where f has size two. Let G − e be the graph obtained
from G by removing the edge e. The graph G − e is not a counterexample because it has
fewer edges than G. Consequently, it has a required coloring. Let h be the face in G − e
corresponding to the faces f and g in G. Extend the coloring of G− e to a coloring of G in
the following way. If two colors appear on h, then color e with the third color. Otherwise
(three colors appear on h) we color e with a color which does not appear on the second
edge of f . This means that the minimum counterexample does not exist.

There are graphs which require three colors for such a coloring, for example the
connected graph on two vertices and three edges.

In this paper, we focus on Question 1.2. A face of an edge colored plane graph is called
monochromatic or bichromatic if the number of colors used on its edges is one or two,
respectively. A face which is neither monochromatic nor bichromatic is called edge loose
(or shortly e-loose). The edge looseness (or shortly e-looseness) of a plane graph G is the
minimum positive integer k such that any surjective k-edge-coloring involves an e-loose
face. This parameter of G will be denoted by els(G). The e-looseness is well defined for
all plane graphs having at least one face incident with at least three different edges. (Note
that every connected plane graph on at least four vertices has such a face.) Throughout the
paper, we will consider only such graphs.

2 Upper bounds
2.1 1-connected plane graphs

Theorem 2.1. Let G = (V,E, F ) be a connected plane graph. Then els(G) ≤ |F | + 2.
Moreover, this bound is sharp.

Proof. Let ϕ be an edge coloring of G such that each of its faces is either monochromatic
or bichromatic. First we show that ϕ uses at most |F |+ 1 colors. Clearly, we can assume
that ϕ uses at least two colors. This means that at least one face is bichromatic, say f1. Let
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f2 be a face of G adjacent to f1. There is at most one color which appears on f2 and does
not appear on f1, since the faces f1 and f2 share an edge and at most two colors occur on
f2. The graphG is connected, therefore we can number the faces f1, f2, . . . , f|F | ofG such
that for every i ≥ 2 the face fi is adjacent to a face fj for some j < i. Using the argument
described above, there is at most one color which appears on fj and does not appear on
f1, . . . , fj−1. Consequently, ϕ uses at most 2 + (|F | − 1) colors. This means that every
edge coloring with at least |F |+ 2 colors involves an e-loose face.

Now we prove that this upper bound is tight. Let H be a connected plane graph on at
least three vertices. We insert a new vertex into each face ofH and join each new vertex by
an edge inside the corresponding face to exactly one of its vertices. In this way we obtain
a 1-connected plane graph H̃ . Clearly, we added |F (H)| edges to H and these new edges
are face-independent in H̃ . If we color these face-independent edges with distinct colors
and all other edges with the same color, then we obtain an edge coloring of H̃ such that
every face is bichromatic. Hence, els(H̃) ≥ |F (H)|+ 2 = |F (H̃)|+ 2.

2.2 2-connected plane graphs

When G is 2-connected, the bound from Theorem 2.1 can be improved by one.
Let us recall that the (geometric) dual G∗ = (V ∗, E∗, F ∗) of a plane graph G =

(V,E, F ) can be defined as follows: Corresponding to each face f of G there is a vertex
f∗ of G∗, and corresponding to each edge e of G there is an edge e∗ of G∗; two vertices f∗

and g∗ are joined by the edge e∗ in G∗ if and only if their corresponding faces f and g are
separated by the edge e in G (an edge separates the faces incident with it).

Theorem 2.2. Let G = (V,E, F ) be a 2-connected plane graph. Then els(G) ≤ |F |+ 1.
Moreover, this bound is sharp.

Proof. Let ϕ be an edge coloring of G such that every face is either monochromatic or
bichromatic. This coloring induces a coloring of the dual G∗ in a natural way. Observe
that at most 2 colors appear at any vertex of G∗. Let us choose one edge from each
color class, and let the chosen edges induce the subgraph H of G∗. Each component of
H is either a path or a cycle, since the graph G∗ does not contain any loop. Therefore,
2|E(H)| =

∑
v∈V (H) degH(v) ≤ 2|V (H)| ≤ 2|V (G∗)| = 2|F (G)|. Since the number of

colors used by ϕ equals |E(H)|, we deduce that ϕ uses at most |F (G)| colors.
To see that the bound is tight consider the plane embedding of the complete bipartite

graph K2,n, see Figure 1. This plane graph has n faces and an n-edge-coloring such that
every face is bichromatic.
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Figure 1: A plane drawing of K2,n.
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2.3 3-connected plane graphs

Lemma 2.3. Let G = (V,E, F ) be a 3-connected plane triangulation. Let t denote the
maximum number of disjoint cycles in its dual. Then els(G) = 1

2 |F |+ 1 + t.

Proof. AnyM2-edge coloring (being an edge coloring of a graph such that at most 2 colors
appear at any vertex, see [2, 3]) of the dual graph G∗ corresponds to an edge coloring of G
with property that every face ofG is incident with edges of at most two different colors and
vice versa. The graph G∗ is cubic, since G is a plane triangulation. In [3], it was proved
that the maximum number of colors that can be used in an M2-edge coloring of a cubic
plane graph H is equal to |V (H)|

2 + t, where t is the maximum number of disjoint cycles in
H . Consequently, els(G) = |V (G∗)|

2 + t+ 1 = |F (G)|
2 + t+ 1.

Theorem 2.4. Let G = (V,E, F ) be a 3-connected plane triangulation. Let g denote the
girth of its dual. Then

• els(G) ≤ 5
6 |F |+ 1 if g ≥ 3,

• els(G) ≤ 3
4 |F |+ 1 if g ≥ 4,

• els(G) ≤ 7
10 |F |+ 1 if g ≥ 5.

Moreover, these bounds are sharp.

Proof. It follows from Lemma 2.3, since the number of disjoint cycles in the dual G∗ is
not greater than |V (G∗)|

g = |F (G)|
g .

By Lemma 2.3 we can easily prove that the bounds are attained on the duals of graphs
shown in Figure 2.

Figure 2: The duals of these graphs show that the bounds are tight.

Conjecture 2.5. Let G = (V,E, F ) be a 3-connected plane graph. Then els(G) ≤
5
6 |F |+ 1.

3 Lower bounds
A matching of G is a set of pairwise disjoint edges, and a maximum matching is one of
maximum cardinality.

Let c(H) denote the number of components of a graph H .

Lemma 3.1. Let G be a connected plane graph and let G∗ be its dual. Let M∗ be a
matching in G∗. Then els(G) ≥ |M∗|+ c(G∗ −M∗) + 1. Moreover, this bound is sharp.
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Proof. We color the edges of the matching M∗ with distinct colors and use an additional
new color for the edges of each component of G∗−M∗. Thus, we obtain an edge coloring
of the dual graph G∗ such that at most 2 colors appear at any vertex of G∗. This coloring
induces a coloring of G in which every face is either monochromatic or bichromatic.

To see that the bound is sharp, letG be a plane graph whose dual is a 2r-sided prism. The
2r-sided prismH2r, r ≥ 2, consists of the vertex setV = {u1, u2, . . . , u2r, v1, v2, . . . , v2r}
and the edge set E = {uiui+1, vivi+1, uivi|i = 1, . . . , 2r}, where 2r + 1 := 1. The set
of faces consists of two 2r-gonal faces f1 = [u1, . . . , u2r] and f2 = [v1, . . . , v2r] and 2r
quadrangles [uiui+1vi+1vi] for i = 1, 2, . . . , 2r, see Figure 3 for illustration.

Figure 3: A 2r-sided prism.

Let M = {uiui+1, vivi+1|i = 1, 3, 5, . . . , 2r− 1} be a matching of H2r. Observe that
|M | = 2r and c(H2r −M) = r. Therefore els(G) ≥ 3r+1. On the other hand, the graph
H2r is a simple 3-connected cubic plane graph, hence its dual (the graph G) is a simple
triangulation. By Theorem 2.4 we have els(G) ≤ 3

4 · 4r + 1.

Corollary 3.2. Let G be a connected plane graph and let G∗ be its dual. Let M∗ be a
maximum matching in G∗. Then els(G) ≥ |M∗|+ 2.

Proof. It immediately follows from Lemma 3.1, since c(G∗ −M∗) ≥ 1.

Since there are 2-connected (and 1-connected) graphs G with arbitrarily many faces
which have els(G) ≤ 4 (Take a plane drawing of the cycle C = v1v2 . . . v3n. Add n
vertices u1, u2, . . . , un to the inner part of C and join ui with v3i−2 and v3i as it is depicted
in Figure 4. It is easy to see that the e-looseness of the obtained graph is four.), there is
no nontrivial lower bound on els(G) expressed by a linear polynomial of |F | if G is not
3-connected. Hence, in the remaining part of the paper we will investigate e-looseness
of 3-connected plane graphs G. Since the dual of G is a simple plane graph, we may
apply structural properties of planar graphs on the dual graph; in particular, we will use the
following one.
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Figure 4: A graph G with ”many” faces and els(G) = 4.
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Theorem 3.3. [11] Let G be an n-vertex 3-connected planar graph with n ≥ 78. Let δ
denote the minimum degree of G and let M be a maximum matching in G. Then,

• |M | ≥ n+4
3 if δ ≥ 3,

• |M | ≥ 3n+8
7 if δ ≥ 4,

• |M | ≥ 9n+20
19 if δ ≥ 5.

Note that, if a planar graph G is 4-connected, then it has a matching of size
⌊
|V (G)|

2

⌋
.

This immediately follows from Tutte’s result [14]: every 4-connected planar graph contains
a Hamiltonian cycle.

Lemma 3.4. LetG = (V,E, F ) be a 3-connected plane graph. Then it has at least |V |2 +2
faces. Moreover, this bound is tight.

Proof. The minimum degree of G is at least 3, since it is 3-connected. Using the hand-
shaking lemma we have 2|E| =

∑
v∈V deg(v) ≥ 3|V |. Consequently, |E| ≥ 3

2 |V |. Using
this fact and the Euler’s polyhedral formula |V | − |E|+ |F | = 2 we obtain |F | ≥ 2 + |V |2 .

This bound is attained for every 3-connected cubic plane graph.

Using Corollary 3.2, Theorem 3.3 and Lemma 3.4 we can prove the following.

Theorem 3.5. Let G = (V,E, F ) be a 3-connected plane graph on at least 152 vertices.
Let g be the girth of G. Then,

• els(G) ≥ |F |+4
3 + 2 if g ≥ 3,

• els(G) ≥ 3|F |+8
7 + 2 if g ≥ 4,

• els(G) ≥ 9|F |+20
19 + 2 if g ≥ 5.

Moreover, these bounds are sharp.

Proof. The 3-connectedness of G implies that its dual G∗ is also 3-connected, hence we
can use Theorem 3.3 for G∗. By Lemma 3.4, |V (G∗)| = |F (G)| ≥ |V (G)|

2 + 2 ≥ 78. It is
easy to check that n+4

3 ≤ 3n+8
7 ≤ 9n+20

19 for n ≥ 2. As g(G) ≤ δ(G∗), the result follows
from Corollary 3.2 and Theorem 3.3. The sharpness of these bounds follows from Theorem
3.6.

Theorem 3.6. For any integer n ≥ 4 there exists a 3-connected cubic plane graph G =
(V,E, F ) with girth g such that

• g = 3, |F | = 3n− 4 and els(G) = n+ 2,

• g = 4, |F | = 7n− 12 and els(G) = 3n− 2,

• g = 5, |F | = 19n− 36 and els(G) = 9n− 14.

Proof. Let T be a simple plane triangulation on n ≥ 4 vertices. Let Gi be the graph
obtained from T by inserting the configurationHi, shown in Figure 5, into each of its faces,
for i = 3, 4, 5.

Any plane triangulation on n vertices has 2n− 4 faces, therefore
|F (G∗3)| = |V (G3)| = n+ 2n− 4 = 3n− 4,
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H3 H4 H5

Figure 5: A construction of triangulations with edge-connectivity 3, 4 and 5.

|F (G∗4)| = |V (G4)| = n+ 3(2n− 4) = 7n− 12 and
|F (G∗5)| = |V (G5)| = n+ 9(2n− 4) = 19n− 36.
In [2] it was proved that K2(G3) = n+1, K2(G4) = 3n− 3 and K2(G5) = 9n− 15,

where K2(Gi) denotes the maximum number of colors used in an M2-edge coloring of
Gi, i = 3, 4, 5. Consequently, for the duals of these graphs it holds els(G∗3) = n + 2,
els(G∗4) = 3n− 2 and els(G∗5) = 9n− 14.

Observe, that each minimum edge-cut of size g in Gi corresponds to a cycle in G∗i and
vice versa, therefore, the edge connectivity of the graph Gi is equal to the girth of the dual
graph G∗i . The edge connectivity of Gi is equal to i, for i = 3, 4, 5, since the tetrahedron,
octahedron and icosahedron have edge connectivities 3, 4 and 5, respectively.

Finally, note that the vertex version of Question 1.2 was investigated in [4], where it
was proved that the vertex looseness of a connected plane graph G equals the maximum
number of vertex disjoint cycles in the dual graph G∗ increased by 2. Vertex looseness of
triangulations on closed surfaces was studied in [8, 9, 10, 13].
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of graphs, Discrete Appl. Math. 181 (2015), 193–200.
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