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Abstract

Some new infinite families of simple, indecomposablem-factorizations of the complete
multigraph λKv are presented. Most of the constructions come from finite geometries.
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1 Introduction
The complete multigraph λKv has v vertices and λ edges joining each pair of vertices. An
m-factor of the complete multigraph λKv is a set of pairwise vertex-disjoint m-regular
subgraphs, which induce a partition of the vertices. An m-factorization of λKv is a set of
pairwise edge-disjoint m-factors such that these m-factors induce a partition of the edges.
An m-factorization is called simple if the m-factors are pairwise distinct. Furthermore, an
m-factorization of λKv is decomposable if there exist positive integers µ1 and µ2 such
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that µ1 + µ2 = λ and the factorization is the union of the m-factorizations µ1Kv and
µ2Kv , otherwise it is called indecomposable. There is no direct correspondence between
simplicity and indecomposability.

Many papers deal with m-factorizations of graphs and multigraphs. This is an interest-
ing problem in its own right, but it is motivated by several applications, too. In particular
if m = 1, then a one-factorization of Kv corresponds to a schedule of a round robin tour-
nament. For a comprehensive survey on one-factorizations we refer to [29]. A special case
of 2-factorizations is the famous Oberwolfach problem, see e.g. [2, 8]. Several authors in-
vestigated 3-factorizations of λKv with a certain automorphism group, see e.g. [1, 24]. In
general, decompositions of λKv is also a widely studied problem, see e.g. [12, 13, 18, 27].
As m increases, the structure of an arbitrary m-factor of λKv can be much more compli-
cated and the existence problem becomes much more difficult. In this paper we restrict
ourselves to construct factorizations in which all factors are regular graphs of degree m
whose connected components are complete graphs on (m+ 1) vertices. In the case m = 1
an indecomposable one-factorization of λK2n is denoted by IOF(2n, λ). Only a few con-
ditions on the parameters are known: if IOF(2n, λ) exists, then λ < 1 · 3 · ... · (2n − 3)
[4]; each IOF(2n, λ) can be embedded in a simple IOF(2s, λ), provided that λ < 2n < s
[16]. Six infinite classes of indecomposable one-factorizations have been constructed so
far, namely a simple IOF(2n, n− 1) when 2n− 1 is a prime [16], IOF(2(λ+ p), λ) where
λ > 2 and p is the smallest prime wich does not divide λ [3] (an improvement of this
result can be found in [15]), a simple IOF(2h + 2, 2) where h is a positive integer [28],
IOF(q2 + 1, q − 1) where q is an odd prime number [26], a simple IOF(q2 + 1, q + 1)
for any odd prime power q [25], and a simple IOF(q2, q) for any even prime power q [25].
Most of these constructions arise from finite geometry.

The aim of this paper is to construct new simple and indecomposable m-factorizations
of λKv for different values of m, λ and v. In Section 2 we recall the basic combinatorial
properties of designs and the geometric properties of finite affine and projective spaces. We
also describe a general construction method of m-factorizations which is based on spreads
of block designs. In Sections 3 and 4 affine spaces and projective spaces, respectively,
are the key objects. We present several new multigraph factorizations using subspaces,
subgeometries and other configurations of these structures.

2 Preliminaries
In this section we collect some concepts and results from design theory. For a detailed
introduction to block designs we refer to [14].

2.1 Designs

Let v, b, k, r and λ be positive integers with v > 1. LetD = (P,B, I) be a triple consisting
of a set P of v distinct objects, called points ofD, a set B of b distinct objects, called blocks
ofD, and an incidence relation I, a subset of P×B. We say that x is incident with y (or y is
incident with x) if and only if the ordered pair (x, y) is in I. D is called a 2− (v, b, k, r, λ)
design if it satisfies the following axioms.

(a) Each block of D is incident with exactly k distinct points of D.

(b) Each point of D is incident with exactly r distinct blocks of D.

(c) If x and y are distinct points of D, then there are exactly λ blocks of D incident with
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both x and y.

A 2− (v, b, k, r, λ) design is called a balanced incomplete block design and is denoted
by (v, k, λ)-design, too. The parameters of a 2 − (v, b, k, r, λ) design are not all indepen-
dent. The two basic equations connecting them are the following:

vr = bk and r(k − 1) = λ(v − 1). (2.1)

These necessary conditions are not sufficient, for example no 2 − (43, 43, 7, 7, 1) design
exists.

2.2 Resolvability

A resolution class (or, a parallel class) of a (v, k, λ)-design is a partition of the point-set of
the design into blocks. In general, an f -resolution class of a design is a collection of blocks,
which together contain every point of the design exactly f times. A resolution of a design
is a partition of the block-set of the design into r resolution classes. A (v, k, λ)-design with
a resolution is called resolvable.

Necessary conditions for the existence of a resolvable (v, k, λ)-design are λ(v−1) ≡ 0
(mod (k − 1)), v ≡ 0 (mod k) and b ≥ v + r − 1, (see [9]).

Let D = (P,B, I) be a (v, k, λ)-design, where P = {p1, p2, . . . , pv} is the set of its
points and B = {B1, B2, . . . , Bb} is the set of its blocks. Identify the points of D with
the vertices of the complete multigraph λKv . Then in the natural way, the set of points of
each block of D induces in λKv a subgraph isomorphic to Kk. For Bi ∈ B, let Gi be the
subgraph of λKv induced by Bi. Then it follows from the properties of D that a resolution
class of D gives a (k−1)-factor of λKv and a resolution of D gives a (k−1)-factorization
of λKv . Hence we get the following well-known fact.

Lemma 2.1 (Basic Construction). The existence a resolvable (v, k, λ)-design is equivalent
to the existence of a (k − 1)-factorization of the complete multigraph λKv .

2.3 Projective and affine spaces

Most of our factorizations come from finite geometries. In this subsection we collect the
basic properties of these objects. For a more detailed introduction we refer to the book of
Hirschfeld [22].

Let Vn+1 be an (n + 1)-dimensional vector space over the finite field of q elements,
GF(q). The n-dimensional projective space PG(n, q) is the geometry whose k-dimensional
subspaces for k = 0, 1, . . . , n are the (k+ 1)-dimensional subspaces of Vn+1 with the zero
deleted. A k-dimensional subspace of PG(n, q) is called k-space. In particular subspaces
of dimension zero, one and two are respectively a point, a line and a plane, while a subspace
of dimension n− 1 is called a hyperplane.

The relation ∼
x ∼ y⇔ ∃ 0 6= α ∈ GF(q) : x = αy

is an equivalence relation on the elements of Vn+1 \ 0 whose equivalence classes are the
points of PG(n, q). Let v = (v0, v1, . . . , vn) be a vector in Vn+1 \0. The equivalence class
of v is denoted by [v]. The homogeneous coordinates of the point represented by [v] are
(v0 : v1 : . . . : vn). Hence two (n + 1)-tuples (x0 : x1 : . . . : xn) and (y0 : y1 : . . . : yn)
represent the same point of PG(n, q) if and only if there exists 0 6= α ∈ GF(q) such that
xi = αyi holds for i = 0, 1, . . . , n.
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A k-space contains those points whose representing vectors x satisfy the equation
xA = 0, where A is an (n+ 1)× (n− k) matrix of rank n− k with entries in GF(q). In
particular a hyperplane contains those points whose homogeneous coordinates (x0 : x1 :
. . . : xn) satisfy a linear equation

u0x0 + u1x1 + · · ·+ unxn = 0

where ui ∈ GF(q) and (u0, u1, . . . , un) 6= 0.
The basic combinatorial properties of PG(n, q) can be described by the q-nomial coef-

ficients. [nk]q equals to the number of k-dimensional subspaces in an n-dimensional vector
space over GF(q), hence it is defined as[

n

k

]
q

:=
(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)
.

The proof of the following proposition is straightforward.

Proposition 2.2.

• The number of k-dimensional subspaces in PG(n, q) is
[
n+1
k+1

]
q
.

• The number of k-dimensional subspaces of PG(n, q) through a given d-dimensional
(d ≤ k) subspace in PG(n, q) is

[
n−d
k−d
]
q
.

• In particular the number of k-dimensional subspaces of PG(n, q) through two dis-
tinct points in PG(n, q) is

[
n−1
k−1
]
q
.

IfH∞ is any hyperplane of PG(n, q), then the n-dimensional affine space over GF(q)
is AG(n, q) = PG(n, q) \H∞. The subspaces of AG(n, q) are the subspaces of PG(n, q)
with the points of H∞ deleted in each case. The hyperplane H∞ is called the hyperplane
at infinity of AG(n, q), and for k = 0, 1, . . . , n − 2 the k-dimensional subspaces in H∞
are called the k-spaces at infinity of AG(n, q). Let 1 < d < n be an integer. Two d-spaces
of AG(n, q) are called parallel, if the corresponding d-spaces of PG(n, q) intersectH∞ in
the same (d − 1)-space. The parallelism is an equivalence relation on the set of d-spaces
of AG(n, q). As a straightforward corollary of Proposition 2.2 we get the following.

Proposition 2.3. In AG(n, q) each equivalence class of parallel d-spaces contains qn−d

subspaces.

Projective and affine spaces provide examples of designs.

Example 2.4. Let i < n be positive integers. The projective space PG(n, q) can be con-
sidered as a 2-design D = (P,B, I), where P is the set of points of PG(n, q), B is the
set of i-spaces of PG(n, q) and I is the set theoretical inclusion. The parameters of D are
v = qn+1−1

q−1 , b =
[
n+1
i+1

]
q
, k = qi+1−1

q−1 , r =
[
n
i

]
q

and λ =
[
n−1
i−1
]
q
.

Example 2.5. Let i < n be positive integers. The affine space AG(n, q) can be considered
as a 2-design D = (P,B, I), where P is the set of points of AG(n, q), B is the set of i-
spaces of AG(n, q) and I is the set theoretical inclusion. The parameters of D are v = qn,
b = qn−i

[
n
i

]
q
, k = qi, r =

[
n
i

]
q

and λ =
[
n−1
i−1
]
q
.
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In the rest of this paper Examples 2.4 and 2.5 will be denoted by PG(i)(n, q) and by
AG(i)(n, q), respectively. We will use the terminology from geometry. An i-spread, Si,
of PG(n, q) (or of AG(n, q)) is a set of pairwise disjoint i-dimensional subspaces which
gives a partition of the points of the geometry. In general, an f -fold i-spread, Sif , is a set
of i-dimensional subspaces such that every point of the geometry is contained in exactly f
subspaces of Sif . An i-packing, Pi, of PG(n, q) (or of AG(n, q)) is a set of spreads such
that each i-dimensional subspace of the geometry is contained in exactly one of the spreads
in Pi, i.e., the spreads give a partition of the i-dimensional subspaces of the geometry. The
i-spreads, f -fold i-spreads and i-packings induce a resolution class, an f -resolution class
and a resolution in PG(i)(n, q) (or in AG(i)(n, q)), respectively.

It is easy to construct spreads and packings in AG(i)(n, q), because each parallel class
of i-spaces is an i-spread. The situation is much more complicated in PG(i)(n, q). There
are only a few constructions of spreads. The following theorem summarizes the known
existence conditions.

Theorem 2.6 ([22], Theorems 4.1 and 4.16).

• There exists an i-spread in PG(i)(n, q) if and only if (i+ 1)|(n+ 1).

• Suppose that i, l and n are positive integers such that (l+1)| gcd(i+1, n+1). Then
there exists an f -fold i-spread in PG(i)(n, q), where f = (qi+1 − 1)/(ql+1 − 1).

There exist several different 1-spreads (line spreads) in PG(1)(3, q). We briefly men-
tion two types. Let `1, `2 and `3 be three skew lines in PG(3, q). The set of the q + 1
transversals of `1, `2 and `3 is called regulus and it is denoted by R(`1, `2, `3). The clas-
sical construction of a line spread comes from a pencil of hyperbolic quadrics (see e.g.
[20], Lemma 17.1.1) and it has the property that if it contains any three lines of a regulus
R(`1, `2, `3), then it contains each of the q + 1 lines of R(`1, `2, `3). This type of spread
is called regular. A line spread in PG(3, q) is called aregular, if it contains no regulus. An
example of an aregular spread can be found in [20], Lemma 17.3.3.

3 Factorizations arising from affine spaces
In this section, we investigate the spreads and packings of AG(n, q) and the corresponding
factorizations of multigraphs. In each case we apply Lemma 2.1, so we identify the points
of AG(n, q) with the vertices of the complete multigraph.

Theorem 3.1. Let q be a prime power, i < n be positive integers and λi = [n−1
i−1 ]q. Then

there exists a simple (qi − 1)-factorization F i of λiKqn . F i is decomposable if and only if
there exists an f -fold (i− 1)-spread in PG(i−1)(n− 1, q) for some 1 ≤ f < λi.

Proof. Consider the n-dimensional affine space as AG(n, q) = PG(n, q)\H∞ whereH∞
is isomorphic to PG(n − 1, q). Take the design D = AG(i)(n, q) and apply Lemma 2.1.
If Πi−1

j is an (i− 1)-space ofH∞, then the set of the qn−i parallel affine i-spaces through
Πi−1

j is an i-spread of D. This spread induces a (qi − 1)-factor F i
j for j ∈ {1, . . . , r}. If

Πi−1
1 ,Πi−1

2 , . . . ,Πi−1
g are distinct (i − 1)-spaces of H∞ and they form an f -fold spread,

then f = (g(qi − 1))/(qn − 1), and the union of the corresponding (qi − 1)-factors F i
j ,

for j = 1, 2, . . . , g, gives a (qi − 1)-factorization of fKqn . Distinct (i− 1)-spaces of H∞
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obviously define distinct (qi− 1)-factors, so this factorization is simple. In particular if we
consider all (i− 1)-spaces ofH∞, then

g =

[
n

i

]
q

, f =

[
n

i

]
q

qi − 1

qn − 1
=

[
n− 1

i− 1

]
q

= λi,

hence the union of the corresponding factors gives a simple (qi − 1)-factorization F i of
λiKqn .

Suppose that F i is decomposable, then there exist two positive integers µ1 and µ2 such
that µ1 + µ2 = λi and F i can be written as the union F i = F1 ∪ F2; F1 and F2 are
(qi − 1)-factorizations of µ1Kqn and µ2Kqn , respectively, having no (qi − 1)-factors in
common, since F i is simple. For h = 1, 2, the relation µh

(
qn

2

)
=
(
qi

2

)
qn−i|Fh| holds,

hence µh(qn − 1) = (qi − 1)|Fh|. Without loss of generality we can set F1 = ∪f1j=1F
i
j

with f1 = (µ1(qn − 1))/(qi − 1), and F2 = F i \ F1, f2 = |F2|.
Let u1 and u2 be two affine points and let w be the point at infinity of the line u1u2.

SinceFh is a factorization of µhKqn , there are exactly µh factors ofFh containing the edge
[u1, u2], say F i

j1
, F i

j2
, . . . , F i

jµh
. The edge [u1, u2] belongs the F i

js
if and only if w ∈ Πi−1

js

for every 1 ≤ s ≤ µh. This happens if and only if ∪fhj=1Πi−1
j contains each point of

H∞ exactly µh times, which means that ∪fhj=1Πi−1
j is a µh-fold spread in H∞, for every

h = 1, 2. It is thus proved that if F i is decomposable, then PG(i−1)(n− 1, q) posesses an
f -fold spread for some 1 ≤ f < λi.

Vice versa, suppose that there exists a µ1-fold spread in PG(i−1)(n − 1, q) for some
1 ≤ µ1 < λi. Let F1 = ∪f1j=1F

i
j be a µ1-fold spread in H∞. Then |F1| = f1 = µ1(qn −

1)/(qi − 1). Let T be the set of all (i − 1)-dimensional subspaces in H∞ and let F2 =
T \ F1. Then |T | =

[
n
i

]
q
, hence

|F2| =
[
n

i

]
q

− µ1(qn − 1)/(qi − 1) =

([
n− 1

i− 1

]
q

− µ1

)
qn − 1

qi − 1
,

so if µ2 =
[
n−1
i−1
]
q
− µ1, then F2 is a µ2-fold spread inH∞ and 1 ≤ µ2 < λi holds.

As we have already seen, Fh defines a (qi − 1)-factorization of µhKqn for h = 1, 2.
Then F i = F1 ∪F2, because µ1 +µ2 = λi. Hence the (qi− 1)-factorization F i of λiKqn

is decomposable.

Corollary 3.2. If gcd(i, n) > 1 then the (qi − 1)-factorization F i of λiKqn is decompos-
able.

Proof. Let 1 < l+ 1 be a divisor of gcd(i, n). Then it follows from Theorem 2.6 that there
exists an (qi − 1)/(ql+1 − 1)-fold spread inH∞, so F i is decomposable.

To decide the decomposability of F i in the cases gcd(i, n) = 1 is a hard problem in
general. We prove its indecomposability in the following important case.

Theorem 3.3. The (qn−1− 1)-factorization Fn−1 of (qn−1− 1)/(q− 1)Kqn is indecom-
posable.
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Proof. It is enough to prove that if ∪gj=1Πn−2
j is an f -fold (n − 2)-spread in H∞, then

∪gj=1Πn−2
j consists of all (n − 2)-dimensional subspaces of H∞, because this implies

f = λn−1, so the statement follows from Theorem 3.1.
Each Πn−2

j contains exactly (qn−1−1)/(q−1) points, thus the standard double count-
ing of the point-subspace pairs p ∈ Πn−2

j inH∞ gives

g
qn−1 − 1

q − 1
= f

qn − 1

q − 1
,

hence

f =
g(qn−1 − 1)

qn − 1
.

But gcd(qn − 1, qn−1 − 1) = q − 1 and f is an integer, so g ≥ (qn − 1)/(q − 1) which
implies g = (qn − 1)/(q − 1), hence f = λn−1.

In particular if n = 2, we get the following.

Corollary 3.4. If q is a prime power then there exists a simple and indecomposable (q−1)-
factorization of Kq2 .

If q = 2r then each (qi − 1)-factor in F i is the vertex-disjoint union of 2r−i complete
graphs on 2i vertices. It is well-known that these graphs can be partitioned into one-factors
in many ways (but not in all the ways, it was proved by Hartman and Rosa [19], that there
is no cyclic one-factorization of K2i for i ≥ 3), hence Theorem 3.1 implies several one-
factorizations of λiK2r .

Each of the one-factorizations arising from F i is simple, because distinct (i − 1)-
dimensional subspaces define distinct (qi− 1)-factors of F i, and the one-factors of λiKqn

arising from distinct (qi − 1)-factors of F i are distinct, because they are the union of qn−i

one-factors on qi vertices of a connected component.
There are both decomposable and indecomposable one-factorizations among these ex-

amples. We show it in the smallest case q = 2, n = 3. Let F2 be the 3-factorization of
3K8 induced by AG(3, 2).

Let PG(3, 2) = AG(3, 2) ∪ H∞. Then H∞ is isomorphic to the Fano plane. Let its
points be 0, 1, 2, 3, 4, 5 and 6 such that for j = 0, 1, . . . , 6, the triples Lj = (j, j+ 1, j+ 3)
form the lines of the plane, where the addition is taken modulo 7. Now the 3-factors of F2

can be described in the following way. Let a be a fixed point in AG(3, 2). Then Lj defines
a 3-factor F 2

j whose connected components are complete graphs K2i = K4. Let Lj,a be
the complete graph containing a, and let Lj,a be the other component of F 2

j .
H∞ defines one-factors and a one-factorization of K8 in the following obvious way.

The edge joining two points of AG(3, 2), say b and c, belong to the one-factor Gs if and
only if b, c and s are collinear points in PG(3, 2). Then G = ∪6s=0Gs is a one-factorization
of K8.

We can define a decomposable one-factorization of 3K8 in the following way. Take
Lj,a and Lj,a and let s ∈ Lj be any point. Then Gs gives a one-factor of Lj,a and a
one-factor of Lj,a. Hence Gj = ∪s∈LjGs is the union of three one-factors of 3K8, and
G′ = ∪6j=0Gj is a one-factorization of 3K8.

In H∞ there are three lines through the point s, hence G′ contains each one-factor Gs

three times. Thus G′ is decomposable, because it is obviously the union of three copies of
G.
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But we can define an indecomposable one-factorization, too. Let Lj be a line in H∞,
takeLj,a andLj,a and letM1

j be the one-factor which contains the following pairs of points
in AG(3, 2) :

– (b, c) if b, c ∈ Lj,a and b, c, j are collinear in PG(3, 2).
– (b, c) if b, c ∈ Lj,a and b, c, j + 1 are collinear in PG(3, 2).
Let M2

j be the one-factor which contains the following pairs of points in AG(3, 2) :
– (b, c) if b, c ∈ Lj,a and b, c, j + 1 are collinear in PG(3, 2).
– (b, c) if b, c ∈ Lj,a and b, c, j + 3 are collinear in PG(3, 2).

Finally let M3
j be the one-factor which contains the following pairs of points in AG(3, 2) :

– (b, c) if b, c ∈ Lj,a and b, c, j + 3 are collinear in PG(3, 2).
– (b, c) if b, c ∈ Lj,a and b, c, j are collinear in PG(3, 2).
ThenMj = ∪3t=1M

t
j is a union of three one-factors of 3K8, andM = ∪6j=0Mj is a

one-factorization of 3K8.
Suppose that this one-factorization is decomposable. Then it contains a one-factoriza-

tion E ofK8. E is the union of seven one-factors. We may assume without loss of generality,
that M1

0 belongs to E . It contains an edge through a, let it be (a, b), and a pair (c, d) for
which the lines ab and cd are parallel lines in AG(3, 2). There are two more lines in the
parallel class of ab, say ef and gh. It follows from the definition of the one-factors that
exactly one of them contains the pairs (e, f) and (a, b), another one contains the pairs
(e, f) and (c, d), and a third one contains the pairs (e, f) and (g, h). But E contains each
pair exactly once, hence it must contain the one-factor containing the pairs (e, f) and (g, h).
But this is a one-factor of type M t

0, where t 6= 1. Hence E contains M t
0 where t = 2 or

3. If we repeat the previous argument, we get that E must contain M l
0 for 1 6= l 6= t, too.

Thus E is the union of triples of type M t
j , t = 1, 2, 3, but this is a contradiction, because E

consists of seven one-factors.

4 Factorizations arising from projective spaces
There are two basic types of partitioning the point-set of finite projective spaces. Both types
give factorizations of some multigraphs. In this section we discuss these constructions.

4.1 Spreads consisting of subspaces

It is easy to construct spreads in PG(i)(n, q), Theorem 2.6 gives a necessary and sufficient
existence condition. Packings are much more complicated objects. Only a few packings in
PG(1)(n, q) have been constructed so far. In each case of the known packings either n or q
satisfies some conditions.

Theorem 4.1 (Beutelspacher, [6]). Let 1 < k be an integer and let n = 2k− 1. Then there
exists a packing in PG(1)(n, q).

Theorem 4.2 (Baker, [5]). Let 1 < k be an integer. Then there exists a packing in
PG(1)(2k − 1, 2).

Applying the Basic Construction Lemma, we get the following existence theorems.

Corollary 4.3. Let q be a prime power, 1 < k be an integer and v = q2
k
−1

q−1 . Then there
exists a q-factorization of Kv induced by a line-packing in PG(2k − 1, q).
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Corollary 4.4. Let 1 < k be an integer and v = q2k−1
q−1 . There exists a 2-factorization Kv

induced by a line-packing in PG(2k − 1, 2).

If k = 2 then Corollary 4.4 gives a solution of Kirkman’s fifteen schoolgirls prob-
lem, which was first posed in 1850 (for the history of the problem we refer to [7]), while
Corollary 4.3 gives a solution of the generalised problem in the case of (q2 + 1)(q + 1)
schoolgirls.

The complete classification of packings in PG(i)(n, q) is known only in the case i =
1, n = 3 and q = 2. There are 240 projectively distinct packings of lines in PG(3, 2) (see
[20], Subsection 17.5).

If gcd(q + 1, 3) = 3, then there is a construction of aregular spreads in PG(1)(3, q)
due to Bruen and Hirschfeld [11] which is completly different from the constructions of
Theorems 4.1 and 4.2. It is based on the geometric properties of twisted cubics.

A normal rational curve of order 3 in PG(3, q) is called twisted cubic. It is known
that a twisted cubic is projectively equivalent to the set of points {(t3 : t2 : t : 1) : t ∈
GF(q)} ∪ {(1 : 0 : 0 : 0)}. In [20] it was shown that there exist aregular spreads given by
a twisted cubic. For a detailed description of twisted cubics and the proofs of the following
theorems we refer to [20], Section 21.

Theorem 4.5. Let Gq be the group of projectivities in PG(3, q) fixing a twisted cubic C.
Then

• Gq
∼= PGL(2, q) and it acts triply transitively on the points of C.

• If q ≥ 5 then the number of twisted cubics in PG(3, q) is q5(q4 − 1)(q3 − 1).

Theorem 4.6. Let C be a twisted cubic in PG(3, q). If gcd(q + 1, 3) = 3, then there exists
a spread in PG(1)(3, q) induced by C.

Using the spreads associated to twisted cubics and the Basic Construction Lemma, we get
the following multigraph factorization.

Theorem 4.7. Let q ≥ 5 be a prime power, λ = q5(q4−1)(q−1) and v = q3 + q2 + q + 1.
If gcd(q + 1, 3) = 3, then there exists a simple q-factorization of λKv induced by the set
of twisted cubics in PG(3, q).

Proof. Let C be the set of twisted cubics in PG(3, q). For C ∈ C let LC be the spread in
PG(1)(3, q) induced by C. If ` is a line and c` denotes the number of twisted cubics C with
the property that ` belongs to LC , then it follows from Theorem 4.5 that c` does not depend
on `. Hence

c` =
|{twisted cubics in PG(3, q)}| × |{lines in a spread of PG(3, q)}|

|{lines in PG(3, q)}|

=
q5(q4 − 1)(q3 − 1)× (q2 + 1)

(q2 + 1)(q2 + q + 1)
= q5(q4 − 1)(q − 1).

Thus C induces a |C|-fold spread in PG(1)(3, q). Each spread LC induces a q-factor in
Kv , therefore the Basic Construction Lemma gives that

⋃
C∈C
LC is a q-factorization of λKv .

Any two distinct twisted cubics define different spreads, hence the factorization is simple
by definition.
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4.2 Constructions from subgeometries

If the order of the base field is not prime, then projective spaces can be partitioned by
subgeometries. Let 1 < k be an integer. Since GF(q) is a subfield of GF(qk), so PG(n, q)
is naturally embedded into PG(n, qk) if the coordinate system is fixed. Any PG(n, q)
embedded into PG(n, qk) is called a subgeometry. Using cyclic projectivities one can
prove that any PG(n, qk) can be partitioned by subgeometries PG(n, q). For a detailed
description of cyclic projectivities, subgeometries, and the proofs of the following three
theorems we refer to [22], Section 4.

Theorem 4.8 ([22], Lemma 4.20). Let s(n, q, qk) denote the number of subgeometries
PG(n, q) in PG(n, qk). Then

s(n, q, qk) = q(
n+1
2 )(k−1)

n+1∏
i=2

qki−1
qi−1 .

Theorem 4.9 ([22], Theorem 4.29). PG(n, qk) can be partitioned into θ(n, q, qk) =
(qk(n+1)−1)(q−1)
(qk−1)(qn+1−1) disjoint subgeometries PG(n, q) if and only if gcd(k, n+ 1) = 1.

Theorem 4.10 ([22], Theorem 4.35). Suppose that gcd(k, n + 1) = 1. Let p0(n, q, qk)
denote the number of projectivities which act cyclically on a PG(n, q) of PG(n, qk) such
that determine different partitions. Then

p0(n, q, qk) = qk(n+1
2 )

n∏
i=1

(qki − 1)

n+ 1
.

Any given subgeometry PG(n, q) is contained in

ρ0(n, q) = q(
n+1
2 )

n∏
i=1

(qi − 1)

n+ 1

of these partitions.

We can consider the partitions of the point-set of PG(n, qk) by subgeometries
PG(n, q).

Each partition of PG(n, qk) into subgeometries PG(n, q) defines a
(

q(qn−1)
q−1

)
-factor

of Kv, with v = qk(n+1)−1
qk−1 . Each projectivity which acts cyclically on a PG(n, q) defines

a
(

q(qn−1)
q−1

)
-factorizations of the corresponding complete multigraph.

Theorem 4.11. Let q be a prime power, 1 < k and n be positive integers for which

gcd(k, n + 1) = 1 holds. Let λ = q(
n+1
2 )k(qk−1)(qn−1)
qk−1(n+1)(q−1)

n−1∏
i=1

(qki − 1) and v = qk(n+1)−1
qk−1 .

Then there exist a simple
(
q qn−1

q−1

)
-factorization of λKv induced by the set of those projec-

tivities which act cyclically on a PG(n, q) of PG(n, qk) such that they determine different
partitions.
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Proof. It follows from Theorem 4.8 that the number Se of subgeometries PG(n, q) through
two points of PG(n, qk) is

Se =
s(n, q, qk)× |{points in PG(n, q)}| × (|{points in PG(n, q)}| − 1)

|{points in PG(n, qk)}| × (|{points in PG(n, qk)}| − 1)

=
q(
n+1
2 )(k−1)(qk − 1)

qk−1(q − 1)

n−1∏
i=1

qki − 1

qi − 1
.

Each cyclic projectivity determines different partitions, hence it determines different fac-
tors. Thus λ = Se × ρ0(n, q).

We cannot decide the decomposability of the factorization construted in the previous
theorem in general, but we can prove the existence of indecomposable factorizations in
some cases. To do this we need the following result from number theory.

Lemma 4.12 ([22], Lemma 4.24). If r, s and x are positive integers with x > 1, then
(xrs−1)(x−1)
(xr−1)(xs−1) is an integer if and only if gcd(r, s) = 1.

We apply it in a particular case.

Proposition 4.13. Let q be a prime power, 1 < k and n be positive integers for which
gcd(k, n + 1) = 1 and gcd(k, n) 6= 1 hold. Let d = gcd

(
qkn−1
qk−1 ,

qn−1
q−1

)
, v = qk(n+1)−1

qk−1

and m = q qn−1
q−1 . Suppose that F is an m-factorization of λKv for some λ such that each

factor is the disjoint union of θ(n, q, qk) complete graphs on (qn+1 − 1)/(q − 1) vertices.
If f denotes the number of m-factors in F then qn−1

d(q−1) divides λ and qk−1 qkn−1
d(qk−1) divides

f.

Proof. The standard double counting gives

λ×
(
v
2

)
=
(
m+1
2

)
× θ(n, q, qk)× f,

thus λ × qk−1 qkn−1
d(qk−1) = f × qn−1

d(q−1) . Because of Lemma 4.12, qn−1
d(q−1) divides λ, hence

qk−1 qkn−1
d(qk−1) divides f .

As a direct corollary of the previous proposition we get the following result about the
indecomposibility of the factorizations constructed in Theorem 4.11 .

Theorem 4.14. Let q be a prime power, 1 < k and n be positive integers for which
gcd(k, n + 1) = 1 and gcd(k, n) 6= 1 hold. Let d = gcd

(
qkn−1
qk−1 ,

qn−1
q−1

)
, v = qk(n+1)−1

qk−1

and m = q qn−1
q−1 . Then there exist a simple and indecomposable m-factorization of λKv,

where λ = t qn−1
d(q−1) for some t in {1, . . . , d q(

n+1
2 )k(qk−1)

qk−1(n+1)

n−1∏
i=1

(qki − 1)}.
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