TABLES, FORMULAS AND EXERCISES WITH KEY FOR BIOMETRICS assist. prof. Tadeja Kraner Šumenjak, Ph.D. and assist. Vilma Sem, Ph.D. Maribor, June 2018 Title: Tables, formulas and exercises with key for biometrics Authors: assist. prof. Tadeja Kraner Šumenjak, Ph.D. (University of Maribor, Faculty of Agriculture and Life Sciences) assist. Vilma Sem, Ph.D. (University of Maribor, Faculty of Agriculture and Life Sciences) Review: assoc. prof. Jože Nemec, Ph.D. (University of Maribor, Faculty of Agriculture and Life Sciences) assist. prof. Aleksandra Tepeh, Ph.D. (University of Maribor, Faculty of Electrical Engineering and Computer Science) Proofreading: Katja Težak (University of Maribor, Faculty of Agriculture and Life Sciences) Technical editor: sen. lect. Peter Berk, M.S. (University of Maribor, Faculty of Agriculture and Life Sciences) and Jan Perša, M.D. (University of Maribor Press). Cover designer: Jan Perša, M.D. (University of Maribor Press) Other Graphics Authors. Co-published by / Izdajateljica: University of Maribor, Faculty of Agriculture and Life Sciences Pivola 10,2311 Hoče, Slovenia http://fkbv.um.si, fkbv@um.si Published by / Založnik: University of Maribor Press Slomškov trg 15, 2000 Maribor, Slovenia http://press.um.si, zalozba@um.si Edition: 1st Publication type: e-publication Available at: http://press.um.si/index.php/ump/catalog/book/336 Published: Maribor, June 2018 © University of Maribor Press All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publisher. CIP - Kataložni zapis o publikaciji Univerzitetna knjižnica Maribor 57.087.1:631.421(075.8) KRANER Šumenjak, Tadeja Tables, formulas and exercises with key for biometrics [Elektronski vir] : for biometrics / Tadeja Kraner Šumenjak and Vilma Sem. - 1st ed. - Maribor : University of Maribor Press, 2018 Način dostopa (URL): http://press.um.si/index.php/ump/catalog/book/336 ISBN 978-961-286-166-7 doi: 10.18690/978-961-286-166-7 1. Sem, Vilma COBISS.SI-ID 94606337 ISBN: 978-961-286-166-7 (PDF) DOI: https://doi.org/10.18690/978-961-286-166-7 Price: Free copy For publisher: full prof. dr. Žan Jan Oplotnik, Vice-rector (University of Maribor) TABLES, FORMULAS AND EXERCISES WITH KEY FOR BIOMETRICS T. Kraner Šumenjak & V. Sem Tables, formulas and exercises with key for biometrics TADEJA KRANER ŠUMENJAK & VILMA SEM1 Abstract This publication includes some materials we use in the one semester bachelor course entitled Biometrics, at the Faculty of Agriculture and Life Sciences. In the last few years, several foreign students came to study at the University of Maribor. A certain number of them came to study at the Faculty of Agriculture and Life Sciences, and because the foreign students are not able to follow the lectures in Slovene, we organized lectures in English. Since there was no learning material in English that would deal with the basics of statistics through solving real problems from agriculture using the statistical program SPSS, we decided to translate and publish these materials, and thus make them more available. Keywords: • biometrics • statistical tables • statistical formulas • SPSS • exercises • CORRESPONDENCE ADDRESS: Tadeja Kraner Šumenjak, Ph.D., Assistant Professor, University of Maribor, Faculty of Agriculture and Life Sciences, Pivola 10,2311 Hoče, Slovenia, e-mail: tadeja.kraner@um.si. Vilma Sem, Ph.D., Assistant, University of Maribor, Faculty of Agriculture and Life Sciences, Pivola 10,2311 Hoče, Slovenia, e-mail: vilma.sem@um.si. DOI https://doi.org/10.18690/978-961-286-166-7 ISBN 978-961-286-166-7 © 2018 University of Maribor Press Available at: http://press.um.si. TABLE OF CONTENTS 1 FORMULAS ................................................................................................................................................................ 1 1.1 RELATIVE NUMBERS .................................................................................................................................................. 1 1.1.1 STRUCTURES ......................................................................................................................................................... 1 1.1.2 INDICES ................................................................................................................................................................. 1 1.2 DESCRIPTIVE STATISTICS ........................................................................................................................................... 2 1.2.1 FREQUENCY DISTRIBUTIONS ................................................................................................................................. 2 1.2.2 QUANTILES ............................................................................................................................................................ 2 1.2.3 MEASURES OF CENTRAL TENDENCY ..................................................................................................................... 2 1.2.4 MEASURES OF VARIABILITY .................................................................................................................................. 3 1.3 INFERENTIAL STATISTICS ........................................................................................................................................... 4 1.3.1 ONE POPULATION ................................................................................................................................................. 4 1.3.2 TWO POPULATIONS .............................................................................................................................................. 4 1.3.3 MORE POPULATIONS – ANALYSIS OF VARIANCE ................................................................................................. 5 1.3.4 CORRELATION ....................................................................................................................................................... 6 1.3.5 LINEAR REGRESSION ............................................................................................................................................. 8 2 TABLES ....................................................................................................................................................................... 9 2.1 STANDARD NORMAL DISTRIBUTION TABLE .............................................................................................................. 9 2.2 CRITICAL VALUES OF STUDENTS’ 𝑇-DISTRIBUTION ................................................................................................. 10 2.3 CRITICAL VALUES OF THE F-DISTRIBUTION (FISHER’S DISTRIBUTION) ..................................................................... 11 2.4 CRITICAL VALUES OF THE CHI-SQUARE DISTRIBUTION ............................................................................................ 12 2.5 CRITICAL VALUES OF PEARSON'S CORRELATION COEFFICIENT ............................................................................... 13 2.6 CRITICAL VALUES OF SPEARMAN'S CORRELATION COEFFICIENT ............................................................................ 14 3 EXERCISES ................................................................................................................................................................ 15 3.1 DESCRIPTIVE STATISTICS ......................................................................................................................................... 15 3.2 NORMAL DISTRIBUTION .......................................................................................................................................... 16 3.3 CONFIDENCE INTERVAL ........................................................................................................................................... 17 3.4 ONE SAMPLE T-TEST ................................................................................................................................................ 17 3.5 INDEPENDENT SAMPLES T-TEST .............................................................................................................................. 18 3.6 PAIRED SAMPLES T-TEST ......................................................................................................................................... 19 3.7 ANALYSIS OF VARIANCE .......................................................................................................................................... 20 3.8 PEARSON' S CORRELATION COEFFICIENT ................................................................................................................ 21 3.9 SPEARMAN' S CORRELATION COEFFICIENT ............................................................................................................. 22 3.10 CHI-SQUARED TEST ................................................................................................................................................. 23 3.11 LINEAR REGRESSION................................................................................................................................................ 24 i 4 ANSWERS TO EXERCISES .......................................................................................................................................... 26 4.1 DESCRIPTIVE STATISTICS ......................................................................................................................................... 26 4.2 NORMAL DISTRIBUTION .......................................................................................................................................... 27 4.3 CONFIDENCE INTERVAL ........................................................................................................................................... 28 4.4 ONE SAMPLE T-TEST ................................................................................................................................................ 28 4.5 INDEPENDENT SAMPLES T-TEST .............................................................................................................................. 29 4.6 PAIRED SAMPLES T-TEST ......................................................................................................................................... 29 4.7 ANALYSIS OF VARIANCE .......................................................................................................................................... 30 4.8 PEARSON' S CORRELATION COEFFICIENT ................................................................................................................ 30 4.9 SPEARMAN' S CORRELATION COEFFICIENT ............................................................................................................. 31 4.10 CHI-SQUARED TEST ................................................................................................................................................. 31 4.11 LINEAR REGRESSION................................................................................................................................................ 32 5 REFERENCES ............................................................................................................................................................ 34 6 INDEX ...................................................................................................................................................................... 36 ii 1 FORMULAS 1.1 RELATIVE NUMBERS 1.1.1 STRUCTURES PROPORTION PERCENTAGE ANGLE of units in the ith group of units in the ith group which corresponds to the ith group f f f f 0 i i i i = f ⋅ 100 φ ⋅ 360° ∑K f i% = ∑K i = ∑K i=1 i f i=1 i f i=1 i where K is the number of groups where K is the number of groups where K is the number of groups 1.1.2 INDICES FIXED BASE INDEX NUMBER COMPUTING Yj fixed base index number from the chain index number Ij = ⋅ 100 Y 0 CHAIN INDEX NUMBER V After base period: I j⋅Ij−1 j = 100 Y I j j V Before base period: Ij−1 = ⋅ 100 j = ⋅ 100 Y Vj j−1 NOTATIONS AVERAGE OF RELATIVES I k j fixed base index number for the jth year I = √V1V2 … Vk, k is the number of chain indices Vj chain index number for the jth year or Yj data for the jth year k−1 Y I = 100 ⋅ √ k , k is the number of years in the time Y0 data for the base period Y1 Yj−1 data for the ( j − 1) th year series Ij−1 fixed base index number for the ( j − 1) th year GROWTH RATE Sj = Vj − 100 1 1.2 DESCRIPTIVE STATISTICS 1.2.1 FREQUENCY DISTRIBUTIONS COMULATIVE FREQUENCY NOTATIONS F𝑘+1 = Fk + f𝑘 xk,min lower bound of the kth class x FREQUENCY DENSITY k,max upper bound of the kth class fk frequency of the kth class 𝒇 𝒈 𝒌 𝒌 = xk midpoint of the kth class 𝒊𝒌 𝑖𝑘 width of the kth class CLASS WIDTH i𝑘 = xk,max − xk,min 1.2.2 QUANTILES RELATIVE RANK RANK r−0.5 p = r = n ⋅ p + 0.5 n LINEAR INTERPOLATION NOTATIONS x−x0 x = 1−x0 n number of units rx−r0 r1−r0 x value, for which the rank is computed QUANTILE 𝒙, WHICH CORRESPONDS TO 𝒓𝒙 x0 value in the array one place before x x1 value in the array one place after x x = x0 + (rx − r0)(x1 − x0) rx rank, which corresponds to x RANK 𝒓𝒙, WHICH CORRESPONDS TO 𝒙 r0 rank, which corresponds to x0 x−x r 0 + r r1 rank, which corresponds to x1 x = x 0 1−x0 1.2.3 MEASURES OF CENTRAL TENDENCY SAMPLE MEAN NOTATIONS 1 1 x̅ = (x ∑n x 𝑥𝑖 ith observation of variable 𝑋 n 1 + x2 + ⋯ + xn) = n i=1 i 𝑓𝑖 frequency of the ith group 1 ∑k f 𝑛 sample size Grouped data: x̅ = ∑k f = i=1 ixi n i=1 ixi ∑k f i=1 i 𝑘 number of groups SAMPLE GEOMETRIC MEAN SAMPLE MODE (𝒎𝒐) g = √ n x is the value that occurs most frequently in a data set. 1 ⋅ x2 … xn SAMPLE HARMONIC MEAN SAMPLE MEDIAN (𝒎𝒆) 𝑛 ℎ = is a quantile with a relative rank of 𝟎. 𝟓 or central value 1 1 1 + +⋯+ 𝑥1 𝑥2 𝑥𝑛 in the array. Note: For computation of population parameters the same expressions can be used, only the mean, geometric mean and harmonic mean are computed over all members of the population. 2 1.2.4 MEASURES OF VARIABILITY SAMPLE RANGE NOTATIONS vr = x𝑚𝑎𝑥 − x𝑚𝑖𝑛 𝑥max observed maximum 𝑥𝑚𝑖𝑛 observed minimum 𝑞 SAMPLE QUARTILE DEVIATION OR SEMI- 1 first quartile 𝑞 INTERQUARTILE RANGE 3 third quartile x̅ sample mean 1 𝑞0 = (𝑞3 − 𝑞1) me sample median 2 𝑥 SAMPLE INTERQUARTILE RANGE 𝑖 ith observation of variable 𝑋 𝑓𝑖 frequency of the ith class 𝑞𝑟 = 𝑞3 − 𝑞1 N population size OUTLIERS M population mean n sample size are observations that are out of interval: k number of groups (𝑞1 − 1.5𝑞𝑟, 𝑞1 + 1.5𝑞𝑟) VARIANCE MEAN ABSOLUTE DEVIATION AROUND A CENTRAL 1 POINT Population: σ2 = ∑N x2 − M2 N i=1 i 1 1 ∑ Sample: s2 = ∑n (x = Around mean: ADx̅ = |x n i − x ̅| n−1 i=1 i − x ̅) 1 1 n ∑| = ∑n x2 − x̅2 Around median: 𝐴𝐷𝑚𝑒 = 𝑥 𝑛 𝑖 − 𝑚𝑒| n−1 i=1 i n−1 Grouped data: STANDARD DEVIATION 1 𝜎2 = ∑𝑁 𝑓 2 − 𝑀2 Population: σ = √σ2 𝑁 𝑖=1 𝑖𝑥𝑖 𝑛 1 𝑛 Sample: 𝑠 = √𝑠2 𝑠2 = ∑ 𝑓 2 − 𝑥̅2 𝑛 − 1 𝑖𝑥𝑖 𝑛 − 1 𝑖=1 3 1.3 INFERENTIAL STATISTICS 1.3.1 ONE POPULATION CONFIDENCE INTERVAL FOR THE POPULATION MEAN NOTATIONS s s x̅ − t M population mean α ≤ M ≤ x̅ + tα 2 √n 2 √n MH hypothetical mean Degrees of freedom for t-distribution (Table 2.2): df = x̅ sample mean s2 sample variance n  1. s sample standard deviation ONE SAMPLE T-TEST tα critical t-value for a two-tailed area 2 a) Hypotheses n sample size 𝐻0: 𝑀𝐻 = 𝑀 𝐻1: 𝑀𝐻 ≠ 𝑀 b) Sample test statistic (𝑥̅ − 𝑀 𝑡 = 𝐻) 𝑠 √𝑛 This test statistic follows a t-distribution (Table 2.2) with degrees of freedom: df = n − 1. 1.3.2 TWO POPULATIONS INDEPENDENT SAMPLES T-TEST PAIRED SAMPLES t-TEST a) Hypotheses a) Hypotheses 𝐻0: 𝑀1 = 𝑀2 𝐻0: 𝑀1 = 𝑀2 or 𝑀1 − 𝑀2 = 0 𝐻1: 𝑀1 ≠ 𝑀2 𝐻1: 𝑀1 ≠ 𝑀2 or 𝑀1 − 𝑀2 ≠ 0 b) Sample test statistic b) Sample test statistic 𝑛 𝑠2(𝑛 2(𝑛 1 𝑛 𝑠2 = 1 1 − 1) + 𝑠2 2 − 1) 𝑠2 = ∑ 𝑑2 − 𝑑̅2 𝑛 𝑑 𝑖 1 + 𝑛2 − 2 𝑛 − 1 𝑛 − 1 𝑥̅ 𝑖=1 𝑡 = 1 − 𝑥̅2 , 𝑑̅ 𝑛 𝑡 = √𝑠2 ⋅ 1 + 𝑛2 𝑠𝑑 𝑛1𝑛2 √𝑛 This statistic follows a t-distribution (Table 2.2) with This statistic follows a t-distribution (Table 2.2) with degrees of freedom: df = n1 + n2  2. degrees of freedom: df = n − 1. NOTATIONS s pooled standard deviation M1 mean of population 1 s2 sample variance from population 1 M 1 2 mean of population 2 s2 x̅ 2 sample variance from population 2 1 sample mean from population 1 d n i pair difference 1 sample size from population 1 x̅ d̅ mean of the differences di 2 sample mean from population 2 2 n sd sample variance of the differences di 2 sample size from population 2 s2 pooled variance n number of data pairs 4 1.3.3 MORE POPULATIONS – ANALYSIS OF VARIANCE a) HYPOTHESES H0: M1 = M2 = ⋯ = Mk H1: The means are not all equal. b) ANOVA TABLE Source of Sums of Degrees of Mean square F-statistic variation squares freedom Between groups SSB df SSB MSB 1 = k – 1 MSB = F = df1 MSW SSW This statistic follows an F-distribution (Tab. 2.3 ) Within groups SSW df2 = N − k MSW = df2 F(k − 1, N − k) Total SST df = N – 1 c) NOTATIONS Mi mean of the ith population ni number of observations in the ith group SST sum of squares total xij jth observation at ith group SSB sum of squares between N total number of observations 𝑆𝑆𝑊 sum of squares within MSB mean square between groups k number of groups (treatments) MSW mean square within groups d) COMPUTING SUMS OF SQUARES AND DEGREES OF FREEDOM FOR GROUPS WITH EQUAL SIZES 𝑛1 = 𝑛2 = ⋯ = 𝑛𝑘 = 𝑛 2 k n 1 C = (∑ ∑ x ) 2 N ij 𝑘 𝑛 1 i=1 j=1 𝑆𝑆𝐵 = ∑ (∑ 𝑥𝑖𝑗) − 𝐶 𝑘 𝑛 𝑛 𝑖=1 𝑗=1 𝑆𝑆𝑇 = ∑ ∑ 𝑥2𝑖𝑗 − 𝐶 𝑆𝑆𝑊 = 𝑆𝑆𝑇  𝑆𝑆𝐵 𝑖=1 𝑗=1 5 1.3.4 CORRELATION PEARSON'S CORRELATION COEFFICIENT NOTATIONS a) Hypotheses n number of pairs H x 0: ρ = 0 (no linear correlation between X and Y) i ith observation of variable 𝑋 H x̅ sample mean of variable X 1: ρ ≠ 0 (linear correlation between X and Y) y i ith observation of variable 𝑌 y̅ sample mean of variable Y b) Sample Pearson's correlation coefficient ∑n (x r i=1 i − x ̅)(yi − y̅) xy = = √∑n (x n i=1 i − x ̅)2 ∑ (y i=1 i − y ̅)2 n ∑n x (∑n x )(∑n y ) = i=1 iyi − i=1 i i=1 i √n ∑n (x n n n )2 i=1 i)2 − (∑ x )2 i=1 i √n ∑ (y i=1 i)2 − (∑ y i=1 i c) Compare your obtained correlation coefficient to the critical values in the table 2.5 or use the approximation rxy√n − 2 t = , √1 − r2xy that follows a t-distribution (Table 2.2) with the following degrees of freedom: df = n − 2. SPEARMAN'S CORRELATION COEFFICIENT NOTATIONS a) Hypotheses n number of pairs H0: ρS = 0 (no monotone correlation between X and Y) di difference in ranks H1: ρS ≠ 0 (monotone correlation between X and Y) x̅ sample mean of ranked variable X y̅ sample mean of ranked variable Y b) Sample Spearman's correlation coefficient Convert the raw data on each variable into ranks. If there are no ties in the ranks: 6 ∑n d 2 r i=1 i S = 1 − n(n2 − 1) otherwise: ∑n (x r i=1 i − x ̅)(yi − y̅) S = √∑n (x n i=1 i − x ̅)2 ∑ (y i=1 i − y ̅)2 Compare your obtained correlation coefficient’s 𝑟𝑆 against the critical values in the table 2.6 (Critical values of the Spearman's correlation coefficient). 6 PEARSON'S CHI-SQUARE TEST NOTATIONS a) Hypotheses 𝑋 variable with categories 𝐴1, 𝐴2, … , 𝐴𝑟 H0: Variable 𝑋 and variable 𝑌 are independent. 𝑌 variable with categories 𝐵1, 𝐵2, … , 𝐵𝑐 H1: Variable 𝑋 and variable 𝑌 are not independent. Contingency table of observed frequencies: B1 B2 … Bc Sum b) Sample test statistic A1 O11 O12 … O1c O1. 𝑟 𝑐 A (𝑂 2 O21 O22 … O2c O2. 𝜒2 = ∑ ∑ 𝑖𝑗 − 𝐸𝑖𝑗 )2 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 𝐸𝑖𝑗 A 𝑖=1 𝑗=1 r Or1 Or2 … Orc Or. Sum O.1 O.2 … O.c N c) This statistic follows a chi-square distribution (Table 2.4) with 𝑂 the following degrees of freedom: 𝑑𝑓 = (𝑟 − 1)(𝑐 − 1). 𝑖𝑗 observed frequency 𝑂 𝐸 𝑖.⋅𝑂.𝑗 𝑖𝑗 = expected frequency 𝑁 N total number of observations YATES CORRECTION NOTATIONS a) Hypotheses Contingency table for H0: Variable 𝑋 and variable 𝑌 are independent. variable X (with categories A1 and A2) and H1: Variable 𝑋 and variable 𝑌 are not independent. variable Y (with categories B1 and B2 ). b) Sample test statistic B1 B2 Sum 𝑛 2 A1 N11 N12 L1 𝑛 (|𝑁11𝑁22 − 𝑁21𝑁12| − A 𝜒2 = 2) 2 N21 N22 L2 𝐿1𝐿2𝑆1𝑆2 Sum S1 S2 N c) This statistic follows a chi-square distribution (Table 2.4) with the following degrees of freedom: 𝑑𝑓 = 1. 7 1.3.5 LINEAR REGRESSION LEAST-SQUARES LINE NOTATIONS Population: Y = α + βX n number of pairs Sample estimate: Y ̂ = a + bX xi ith observation of variable 𝑋 x̅ sample mean of variable X 𝑛 ∑𝑛 𝑥 (∑𝑛 𝑥 ∑𝑛 𝑦 y 𝑏 = 𝑖=1 𝑖𝑦𝑖 − 𝑖=1 𝑖)( 𝑖=1 𝑖) i ith observation of variable 𝑌 2 𝑛 ∑𝑛 𝑥2 − (∑𝑛 𝑥 ) y̅ sample mean of variable Y 𝑖=1 𝑖 𝑖=1 𝑖 𝑎 = 𝑦̅ − 𝑏𝑥̅ b slope of the line (sample) n ∑n x (∑n x ∑n y r i=1 iyi − i=1 i)( i=1 i) a intercept of the line (sample) xy = √n ∑n (x n 2 √ n n 2 β slope of the line (population) i=1 i)2 − (∑ x i=1 i) n ∑ (y i=1 i)2 − (∑ y i=1 i) α intercept of the line (population) ∑𝑛 (𝑦 − 𝑦̂)2 ∑𝑛 𝑦2 − 𝑎 ∑𝑛 𝑦 − 𝑏 ∑𝑛 𝑥 r 𝑠 𝑖=1 𝑖=1 𝑖 𝑖=1 𝑖 𝑖=1 𝑖𝑦𝑖 xy correlation coefficient 𝑒 = √ = √ 𝑛 − 2 𝑛 − 2 r2xy coefficient of determination se standard error of estimate TESTING 𝜷 NOTATIONS a) Hypotheses H0: β = 0 (variable X has no effect on Y) β slope of the line (population) H1: β ≠ 0 (variable X has linear effect on Y) se standard error of estimate b slope of the line (sample) b) Sample test statistic n number of pairs n n 2 𝑏 1 𝑡 = √∑ x2 − (∑ x ) 𝑠 i i 𝑒 n i=1 i=1 c) This statistic follows t-distribution (Table 2.2) with degrees of freedom: 𝑑𝑓 = 𝑛 − 2. 8 2 TABLES 2.1 STANDARD NORMAL DISTRIBUTION TABLE This table presents the area under the standard normal curve between the z score and infinity: p = P(Z ≥ z). Example: Area under the standard normal curve for z = 0.75 is p = 0.2266. Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 9 2.2 CRITICAL VALUES OF STUDENTS’ 𝑇-DISTRIBUTION α The table entry is the value of tα, having an area to the right of 2 2 under t-distribution with df degrees of freedom (two-sided test): α p = P (T ≥ tα) = P (T ≤ −tα) = . 2 2 2 Example: α α = 0.05 ⟹ = 0.025 and df = 10 2 tα(10) = 2.228 2 df 0.1 0.05 0.025 0.01 0.005 0.001 0.0005 1 3.078 6.314 12.706 31.821 63.656 318.289 636.578 2 1.886 2.920 4.303 6.965 9.925 22.328 31.600 3 1.638 2.353 3.182 4.541 5.841 10.214 12.924 4 1.533 2.132 2.776 3.747 4.604 7.173 8.610 5 1.476 2.015 2.571 3.365 4.032 5.894 6.869 6 1.440 1.943 2.447 3.143 3.707 5.208 5.959 7 1.415 1.895 2.365 2.998 3.499 4.785 5.408 8 1.397 1.860 2.306 2.896 3.355 4.501 5.041 9 1.383 1.833 2.262 2.821 3.250 4.297 4.781 10 1.372 1.812 2.228 2.764 3.169 4.144 4.587 11 1.363 1.796 2.201 2.718 3.106 4.025 4.437 12 1.356 1.782 2.179 2.681 3.055 3.930 4.318 13 1.350 1.771 2.160 2.650 3.012 3.852 4.221 14 1.345 1.761 2.145 2.624 2.977 3.787 4.140 15 1.341 1.753 2.131 2.602 2.947 3.733 4.073 16 1.337 1.746 2.120 2.583 2.921 3.686 4.015 17 1.333 1.740 2.110 2.567 2.898 3.646 3.965 18 1.330 1.734 2.101 2.552 2.878 3.610 3.922 19 1.328 1.729 2.093 2.539 2.861 3.579 3.883 20 1.325 1.725 2.086 2.528 2.845 3.552 3.850 21 1.323 1.721 2.080 2.518 2.831 3.527 3.819 22 1.321 1.717 2.074 2.508 2.819 3.505 3.792 23 1.319 1.714 2.069 2.500 2.807 3.485 3.768 24 1.318 1.711 2.064 2.492 2.797 3.467 3.745 25 1.316 1.708 2.060 2.485 2.787 3.450 3.725 26 1.315 1.706 2.056 2.479 2.779 3.435 3.707 27 1.314 1.703 2.052 2.473 2.771 3.421 3.689 28 1.313 1.701 2.048 2.467 2.763 3.408 3.674 29 1.311 1.699 2.045 2.462 2.756 3.396 3.660 30 1.310 1.697 2.042 2.457 2.750 3.385 3.646 40 1.303 1.684 2.021 2.423 2.704 3.307 3.551 60 1.296 1.671 2.000 2.390 2.660 3.232 3.460 120 1.289 1.658 1.980 2.358 2.617 3.160 3.373 ∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291 10 2.3 CRITICAL VALUES OF THE F-DISTRIBUTION (FISHER’S DISTRIBUTION) The table entry is the value of Fα, having an area to the right of α under F-distribution with df1and df2 degrees of freedom: p = P(F ≥ Fα) = α. Example: α = 0.05, df1 = 2, df2 = 10 F0.05(2, 10) = 4.103 df df 1 2 1 2 3 4 5 6 7 8 10 12 20 25 ∞ 2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.40 19.41 19.45 19.46 19.50 3 10.13 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.785 8.745 8.660 8.634 8.527 4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.964 5.912 5.803 5.769 5.628 5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.735 4.678 4.558 4.521 4.365 6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.060 4.000 3.874 3.835 3.669 7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.637 3.575 3.445 3.404 3.230 8 5.318 4.459 4.066 3.838 3.688 3.581 3.500 3.438 3.347 3.284 3.150 3.108 2.928 9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.137 3.073 2.936 2.893 2.707 10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 2.978 2.913 2.774 2.730 2.538 11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.854 2.788 2.646 2.601 2.405 12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.753 2.687 2.544 2.498 2.297 13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.671 2.604 2.459 2.412 2.207 14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.602 2.534 2.388 2.341 2.131 15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.544 2.475 2.328 2.280 2.066 16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.494 2.425 2.276 2.227 2.010 17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.450 2.381 2.230 2.181 1.961 18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.412 2.342 2.191 2.141 1.917 19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.378 2.308 2.155 2.106 1.879 20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.348 2.278 2.124 2.074 1.844 21 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2.420 2.321 2.250 2.096 2.045 1.812 22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.297 2.226 2.071 2.020 1.784 23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.275 2.204 2.048 1.996 1.758 24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.255 2.183 2.027 1.975 1.734 25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.236 2.165 2.007 1.955 1.712 26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.220 2.148 1.990 1.938 1.691 27 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.204 2.132 1.974 1.921 1.672 28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.190 2.118 1.959 1.906 1.655 29 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 2.177 2.104 1.945 1.891 1.638 30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.165 2.092 1.932 1.878 1.623 40 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180 2.077 2.003 1.839 1.783 1.510 60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 1.993 1.917 1.748 1.690 1.390 120 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.910 1.834 1.659 1.598 1.255 ∞ 3.842 2.996 2.605 2.372 2.214 2.099 2.010 1.939 1.831 1.752 1.571 1.506 1.025 11 2.4 CRITICAL VALUES OF THE CHI-SQUARE DISTRIBUTION The table entry is the value of 𝜒2 𝛼, having an area to the right of α under chi-square distribution with df degrees of freedom: p = P(χ2 ≥ χ2α) = α. Example: α = 0.05, df = 3 𝜒2 (9) = 7.815 0,05 df 0.995 0.975 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.002 0.001 1 0.000 0.001 1.642 2.706 3.841 5.024 5.412 6.635 7.879 9.550 10.828 2 0.010 0.051 3.219 4.605 5.991 7.378 7.824 9.210 10.597 12.429 13.816 3 0.072 0.216 4.642 6.251 7.815 9.348 9.837 11.345 12.838 14.796 16.266 4 0.207 0.484 5.989 7.779 9.488 11.143 11.668 13.277 14.860 16.924 18.467 5 0.412 0.831 7.289 9.236 11.070 12.833 13.388 15.086 16.750 18.907 20.515 6 0.676 1.237 8.558 10.645 12.592 14.449 15.033 16.812 18.548 20.791 22.458 7 0.989 1.690 9.803 12.017 14.067 16.013 16.622 18.475 20.278 22.601 24.322 8 1.344 2.180 11.030 13.362 15.507 17.535 18.168 20.090 21.955 24.352 26.124 9 1.735 2.700 12.242 14.684 16.919 19.023 19.679 21.666 23.589 26.056 27.877 10 2.156 3.247 13.442 15.987 18.307 20.483 21.161 23.209 25.188 27.722 29.588 11 2.603 3.816 14.631 17.275 19.675 21.920 22.618 24.725 26.757 29.354 31.264 12 3.074 4.404 15.812 18.549 21.026 23.337 24.054 26.217 28.300 30.957 32.909 13 3.565 5.009 16.985 19.812 22.362 24.736 25.472 27.688 29.819 32.535 34.528 14 4.075 5.629 18.151 21.064 23.685 26.119 26.873 29.141 31.319 34.091 36.123 15 4.601 6.262 19.311 22.307 24.996 27.488 28.259 30.578 32.801 35.628 37.697 16 5.142 6.908 20.465 23.542 26.296 28.845 29.633 32.000 34.267 37.146 39.252 17 5.697 7.564 21.615 24.769 27.587 30.191 30.995 33.409 35.718 38.648 40.790 18 6.265 8.231 22.760 25.989 28.869 31.526 32.346 34.805 37.156 40.136 42.312 19 6.844 8.907 23.900 27.204 30.144 32.852 33.687 36.191 38.582 41.610 43.820 20 7.434 9.591 25.038 28.412 31.410 34.170 35.020 37.566 39.997 43.072 45.315 21 8.034 10.283 26.171 29.615 32.671 35.479 36.343 38.932 41.401 44.522 46.797 22 8.643 10.982 27.301 30.813 33.924 36.781 37.659 40.289 42.796 45.962 48.268 23 9.260 11.689 28.429 32.007 35.172 38.076 38.968 41.638 44.181 47.391 49.728 24 9.886 12.401 29.553 33.196 36.415 39.364 40.270 42.980 45.559 48.812 51.179 25 10.520 13.120 30.675 34.382 37.652 40.646 41.566 44.314 46.928 50.223 52.620 26 11.160 13.844 31.795 35.563 38.885 41.923 42.856 45.642 48.290 51.627 54.052 27 11.808 14.573 32.912 36.741 40.113 43.195 44.140 46.963 49.645 53.023 55.476 28 12.461 15.308 34.027 37.916 41.337 44.461 45.419 48.278 50.993 54.411 56.892 29 13.121 16.047 35.139 39.087 42.557 45.722 46.693 49.588 52.336 55.792 58.301 30 13.787 16.791 36.250 40.256 43.773 46.979 47.962 50.892 53.672 57.167 59.703 31 14.458 17.539 37.359 41.422 44.985 48.232 49.226 52.191 55.003 58.536 61.098 32 15.134 18.291 38.466 42.585 46.194 49.480 50.487 53.486 56.328 59.899 62.487 33 15.815 19.047 39.572 43.745 47.400 50.725 51.743 54.776 57.648 61.256 63.870 34 16.501 19.806 40.676 44.903 48.602 51.966 52.995 56.061 58.964 62.608 65.247 35 17.192 20.569 41.778 46.059 49.802 53.203 54.244 57.342 60.275 63.955 66.619 12 2.5 CRITICAL VALUES OF PEARSON'S CORRELATION COEFFICIENT The results are significant if the calculated value of rxy is greater or equal than the table value. n 0.1 0.05 0.01 3 0.988 0.997 0.999 4 0.900 0.950 0.990 5 0.805 0.878 0.959 6 0.729 0.811 0.917 7 0.669 0.754 0.875 8 0.621 0.707 0.834 9 0.582 0.666 0.798 10 0.549 0.632 0.765 11 0.521 0.602 0.735 12 0.497 0.576 0.708 13 0.476 0.553 0.684 14 0.458 0.532 0.661 15 0.441 0.514 0.641 16 0.426 0.497 0.623 17 0.412 0.482 0.606 18 0.400 0.468 0.590 19 0.389 0.456 0.575 20 0.378 0.444 0.561 21 0.369 0.433 0.549 22 0.360 0.423 0.537 23 0.352 0.413 0.526 24 0.344 0.404 0.515 25 0.337 0.396 0.505 26 0.330 0.388 0.496 27 0.323 0.381 0.487 28 0.317 0.374 0.479 29 0.311 0.367 0.471 30 0.306 0.361 0.463 40 0.264 0.312 0.403 50 0.235 0.279 0.361 60 0.214 0.254 0.330 70 0.198 0.235 0.306 80 0.185 0.220 0.286 90 0.174 0.207 0.270 100 0.165 0.197 0.256 13 2.6 CRITICAL VALUES OF SPEARMAN'S CORRELATION COEFFICIENT The results are significant if the calculated value of rs is greater or equal than the table value. 𝑛 0.1 0.05 0.01 1 2 3 4 1.000 5 0.900 1.000 6 0.829 0.886 1.000 7 0.714 0.786 0.929 8 0.643 0.738 0.881 9 0.600 0.700 0.833 10 0.564 0.648 0.794 11 0.536 0.618 0.755 12 0.503 0.587 0.727 13 0.484 0.560 0.703 14 0.464 0.538 0.679 15 0.446 0.521 0.654 16 0.429 0.503 0.635 17 0.414 0.485 0.615 18 0.401 0.472 0.600 19 0.391 0.460 0.584 20 0.380 0.447 0.570 21 0.370 0.435 0.556 22 0.361 0.425 0.544 23 0.353 0.415 0.532 24 0.344 0.406 0.521 25 0.337 0.398 0.511 26 0.331 0.390 0.501 27 0.324 0.382 0.491 28 0.317 0.375 0.483 29 0.312 0.368 0.475 30 0.306 0.362 0.467 31 0.301 0.356 0.459 32 0.296 0.350 0.452 33 0.291 0.345 0.446 34 0.287 0.340 0.439 35 0.283 0.335 0.433 36 0.279 0.330 0.427 37 0.275 0.325 0.421 38 0.271 0.321 0.415 39 0.267 0.317 0.410 40 0.264 0.313 0.405 14 3 EXERCISES 3.1 DESCRIPTIVE STATISTICS 1) The given frequency table describes the weights of bulls (hypothetical data): Weights in kg Number of bulls Above 170 to 190 18 Above 190 to 210 38 Above 210 to 230 68 Above 230 to 250 76 Above 250 to 270 30 Above 270 to 290 16 Above 290 to 310 4 Total 250 a) Express this frequency distribution with a histogram. b) Compute the sample mean, sample variance and sample standard deviation. 2) The average hourly earnings of production workers for selected periods are given below (hypothetical data). Year 2007 2008 2009 2010 2011 2012 2013 Average hourly earnings (EUR) 6.32 6.57 6.83 7.43 8.28 8.74 9.34 a) From the following data, compute the fixed base index number for 2013 taking 2010 as the base year and interpret the result. b) Calculate the chain index numbers and the average of relatives. Interpret the chain index number for 2010. 3) The table shows chained index numbers for production of wine (hypothetical data). Year 2011 2012 2013 2014 2015 Chained index number – 117.2 113.6 78.8 146.6 Calculate the fixed base index numbers taking 2014 as the base year. 4) A man travels from city A to city B. The first half of the way, he drove at the constant speed of 90 km per hour. Then he (instantaneously) increased his speed and travelled the remaining distance at 130 km per hour. Find the average speed of the motion. 5) A man was travelling from city A to city B. For the first hour, he drove at the constant speed of 90 km per hour. Then he (instantaneously) increased his speed and, for the next hour, kept it at 130 km per hour. Find the average speed of the motion. 15 6) Lentil seed yields (kg/plot) were as shown in the following table: 52.2 34.9 29.7 28.4 28.0 22.8 18.5 19.4 18.8 19.5 13.1 10.1 41.5 36.3 31.7 31.0 28.2 33.0 26.0 30.6 a) From the data compute the sample mean, the sample standard deviation. b) Compute the median, the first quartile, the third quartile and the interquartile range. c) Make a box plot of the data. 7) The following data are the average annual temperatures from 2001-2010 for meteorological station Maribor (Source: ARSO, 2018). Year Average annual temperatures 2001 10.983 2002 11.799 2003 11.249 2004 10.406 2005 10.099 2006 10.781 2007 11.711 2008 11.510 2009 11.277 2010 10.470 a) From the data compute the sample mean, the sample standard deviation and the median. b) Construct a box-plot of the data. c) Find the 35th percentiles. 3.2 NORMAL DISTRIBUTION 8) Assume 𝑋 is normally distributed with a mean of 10 and a standard deviation of 2. Determine the following: a) 𝑃(𝑋 ≤ 13), b) 𝑃(−2 ≤ 𝑋 ≤ 8), c) 𝑃(𝑋 ≥ 11.5). 9) The heights of students (variable X) at the Faculty of Agriculture and Life Sciences in Hoče are normally distributed with a mean of 174 cm and a standard deviation of 8 cm (hypothetical data). a) What percentage of the students are between 165 and 185 cm tall? b) Find 𝑃(𝑋 ≤ 150). c) What is the value that separates the top 1 % of heights from the rest of the population? d) Find 𝑥1 and 𝑥2 for the middle 95 % of the area under the standard normal curve. 16 10) The plant height in a rice crop is normally distributed with a mean of 75 cm and standard deviation 5 cm. Find the probability that a random sample of 𝑛 = 25 rice plants will have sample mean a) less than 73.5 cm. b) between 74 and 75.4 cm. c) more than 77 cm. 3.3 CONFIDENCE INTERVAL 11) A study aims to estimate the mean systolic blood pressure of Slovenian adults by randomly sampling and measuring the blood pressure of 100 adults from the population. From their sample, they estimate the sample mean to be 70mmHg and the sample standard deviation to be 8mmHg (hypothetical data). Find the 95% (99 %) confidence interval. 12) Over the past several months, an adult patient has been treated for tetany. This condition is associated with an average total calcium level. Recently, the patients total calcium tests gave the following readings (Source: Brase and Brase, 2006): 9.3 8.8 10.1 8.9 9.4 9.8 10.0 9.9 11.2 12.1 Assume that the population of values has an approximately normal distribution. Find a 99% confidence interval for the population mean of the total calcium value in the patient’s blood. 3.4 ONE SAMPLE T-TEST 13) A sample of 12 eggs are randomly selected and their weights (in g) recorded, which are as follows: 60.2 53.8 67.2 56.9 58.6 60.0 66.3 50.7 56.0 63.3 58.2 64.1 Can we say that the mean egg weight in the population is different from 62.0 g (α=0.05)? Assume the variable is normally distributed. 14) A grain yield of standard variety of wheat is around 150 kg/plot. A new variety is planted on twenty-five randomly selected plots. The observed sample average for the new variety is 159.4 kg of grain per plot with a standard deviation of 14.1 kg. Should the new variety be used instead of the standard one, by using a 5% level of significance by assuming normal distribution of selected variable? 17 15) The mean length of apple tree roots of apple tree varieties obtained from previous researches is 57.62 cm. Interpret the SPSS output for observed sample which contains 18 trees. a) Write 𝐻0. b) Write the test statistic. c) Determine the level of significance. d) Write the p-value. e) Compare p-value with level of significance and interpret the result. One-Sample Statistics N Mean Std. Deviation Std. Error Mean Length 18 54.8333 19.30331 4.54983 One-Sample Test Test Value = 57.62 t Df Sig. (2-tailed) Mean Difference 95% Confidence Interval of the Difference Lower Upper Length -.612 17 .548 -2.78667 -12.3860 6.8126 3.5 INDEPENDENT SAMPLES T-TEST 16) The experiment was made for comparing grain yields (kg/parcel) for two varieties of corn. The grain yields were as follows: Parcel Variety A Variety B 1 33 27 2 25 43 3 20 36 4 19 20 5 42 22 Test whether these two varieties differ significantly at a 5 percent level of probability with respect to the grain yield (assume that population variances are equal and variables are normally distributed). 17) The difference between two types of fertilizers (organic and chemical) are being observed in order to compare the yield of grapevine. The organic fertilizer was applied on 44 vines with an average grape yield of 3.5 kg per vine and a standard deviation of 1.5 kg. The chemical fertilizer was used on 47 vines with an average grape yield of 3.9 kg per vine and standard deviation of 1.1 kg. Can we say that the chemical fertilizer produces a higher yield than the organic (𝛼 = 0.05)? 18 18) A newly developed variety of alfalfa was investigated in two different climatic zones to test the significance of the difference in the yield (kg/plot). According to the SPSS output, do the following tasks: a) Write 𝐻0. b) Write the test statistic. c) Determine the level of significance. d) Write the p-value. e) Compare the p-value with the level of significance and interpret the result. Group Statistics N Mean Std. Deviation Std. Error Mean 1 10 24.7000 4.27005 1.35031 Yield 2 10 28.5000 2.75882 0.87242 Independent Samples Test Levene's Test t-test for Equality of Means for Equality of Variances F Sig. t df Sig. (2- Mean Std. 95% Confidence tailed) Differe Error Interval of the nce Differ Difference ence Lower Upper Yield Equal 1.271 0.274 -2.364 18 0.030 -3.800 1.608 -7.177 -0.423 variances assumed Equal -2.364 15.399 0.032 -3.800 1.608 -7.219 -0.381 variances not assumed 3.6 PAIRED SAMPLES T-TEST 19) Two laboratories carry out independent estimates of protein content in rice. Eight estimates were made by each laboratory. Each time one sample was taken. Half the quantity was sent to Lab 1 and the other half to Lab 2. We assume that the differences follow from a normally distributed population. The results are as follows (𝛼 = 0.05). Lab 1 8 10 8 10 10 9 11 9 Lab 2 9 11 9 11 10 8 10 8 Do the two laboratories report the same results? 19 20) Consider the following study in which standing and supine systolic blood pressures were compared. This study was performed on 8 patients. Their blood pressures were measured in both positions. According to the SPSS output, do the following tasks: a) Write 𝐻0. b) Write the test statistic. c) Determine the level of significance. d) Write the p-value. e) Compare the p-value with level of significance and interpret the result. Paired Samples Test Paired Differences t df Sig. (2- Mean Std. Std. Error 95% Confidence Interval of the tailed) Deviation Mean Difference Lower Upper Standing - -3.25000 3.49489 1.23563 -6.17180 -0.32820 -2.630 7 0.034 Supine 3.7 ANALYSIS OF VARIANCE 21) The plot grain yields (kg) of three varieties of oats in an experiment are: Plot Variety A Variety B Variety C 1 22 24 19 2 18 39 22 3 35 19 24 4 17 25 17 5 42 23 28 Assume that ANOVA assumptions are met. Is there any difference in the grain yield produced by these varieties (0.05)? 22) Four diets were formulated, and their effect on weight loss was investigated on people of the same age, sex, and other activities. After a certain period, the weight loss (kg) was recorded and results were analyzed via SPSS. a) Write 𝐻0. b) Write the test statistic. c) Determine the level of significance. d) Write the p-value. e) Compare the p-value with the level of significance and interpret the result. 20 ANOVA weightloss Sum of Squares df Mean Square F Sig. Between Groups 70.245 3 23.415 14.218 0.000 Within Groups 44.464 27 1.647 Total 114.710 30 3.8 PEARSON' S CORRELATION COEFFICIENT 23) Consider the following study in which systolic and diastolic blood pressures were compared. This study was performed on 7 patients. Make a scatter diagram. Can we say, at a 0.05 level of significance, that there is a linear correlation between systolic and diastolic blood pressures? Assumed that the assumptions are met. Systolic blood pressure Diastolic blood pressure 210 130 169 122 187 124 160 104 167 112 176 101 185 121 24) The calculated Pearson's correlation coefficient from a sample of 28 observations between two variables equals 0,5. Is the correlation significant at level 0,01? 25) The ear length and number of grains per ear of maize cultivar MASTER have been investigated in order to study the relationship between variables. On a base of the SPSS output, do the following tasks: a) Write 𝐻0. b) Write the test statistic. c) Determine the level of significance. d) Write the p-value. e) Compare p-value with level of significance and interpret the result. Correlations length number length Pearson Correlation 1 0.896** Sig. (2-tailed) 0.000 N 12 12 number Pearson Correlation 0.896** 1 Sig. (2-tailed) 0.000 N 12 12 **. Correlation is significant at the 0.01 level (2-tailed). 21 3.9 SPEARMAN' S CORRELATION COEFFICIENT 26) The table shows a maximum monthly averaged temperature and monthly averaged sunshine hours for the climate station Oxford, covering the period from 1981 to 2010. (Source: Metoffice. gov.uk, 2018 ). Find out if there is a correlation between both variables. Month Max. temp. (°C) Sunshine (hours) Jan 7.60 62.50 Feb 8.00 78.90 Mar 10.90 111.20 Apr 13.60 160.90 May 17.10 192.90 Jun 20.30 191.00 Jul 22.70 207.00 Aug 22.30 196.50 Sep 19.10 141.20 Oct 14.80 111.30 Nov 10.50 70.70 Dec 7.70 53.80 27) Ten commercial samples (ten different brands) of yoghurt were analyzed. In order to determine whether the two evaluators agree with one another in their evaluation of ten samples (1: dislike extremely to 10: like extremely). Measure the agreement between the evaluators via the Spearman rank correlation coefficient. Commercial samples Evaluator 1 Evaluator 2 1 6 5 2 4 6 3 9 10 4 1 2 5 2 3 6 7 8 7 3 1 8 8 7 9 5 4 10 10 9 28) With a data base for year the 2011 provided by the network of the Farm Accountancy Data (Eng. Abbreviation FADN), researchers studied the correlation between variables of the gross value added and agricultural land in use (Source: Trpin Švikart, 2016). According to SPPS Output, do the following activities: a) Write 𝐻0. b) Write the test statistic. c) Determine the level of significance. d) Write the p-value. e) Compare the p-value with level of significance and interpret the result. 22 Correlationsa land in use gross value added Spearman's rho land in use Correlation 1.000 0.672** Coefficient Sig. (2-tailed) . 0.000 N 2818 2818 gross value added Correlation 0.672** 1.000 Coefficient Sig. (2-tailed) 0.000 . N 2818 2821 **Correlation is significant at the 0.01 level (2-tailed). Year = 2011 3.10 CHI-SQUARED TEST 29) Researchers interviewed consumers of different varieties of apples, asking them why they buy a specific variety of apples (random sample). The following results were obtained. Variety A Variety B Variety C Total Colour 320 18 62 400 Taste 42 13 45 100 Size 110 57 83 250 Durability 28 12 10 50 Total 500 100 200 800 Find if the sale of different apple varieties and different apple properties are independent. 30) Entomologists have investigated yellow, short-leaved and spruce pines in a certain forest to see how many were being seriously attacked by insects. An investigation of 250 randomly selected trees of each species gave the following results (Source: Palaniswamy and Palaniswamy, 2006 ): Species Seriously damaged Not damaged Total Yellow 58 192 250 Short leaved 80 170 250 Spruce 78 172 250 Are insects attacking one of the species more than the others? 31) In an experiment, the following contingency table was obtained. We want to test the association between row and column classification using Yates' correction for continuity. Variable 1 \ Variable 2 Column 1 Column 2 Row 1 7 34 Row 2 16 30 23 3.11 LINEAR REGRESSION 32) In an investigation into the interdependence of water uptake and food intake in egg production, the following records were obtained from a ten day period of observation of 12 birds (hypothetical data). Assume that regression analysis assumptions are met. Water uptake and food intake in (g) per bird/day Egg production (eggs/10days) 265 2 492 5 366 6 514 9 406 6 336 7 343 4 377 6 143 0 204 0 360 2 292 0 a) Express this relation in a scatter diagram and add the best fitting line. b) What is the equation of the least-squares line? c) Calculate the predicted egg production when x=450. d) Compute the coefficient of determination. e) What percentage of the variation in y is explained by the regression line? f) What percentage of the variation in y is not explained by the regression line? g) Use a 1 % level of significance to test the claim that : 𝜌 ≠ 0. h) Use a 1 % level of significance to test the claim that : 𝛽 ≠ 0. 33) In an investigation of the relationship between the amount of addition and chickens’ weight, the following results were obtained using SPSS. a) Express the equation of the line of regression. b) Find the estimated 𝑦 for 𝑥 = 21. c) Test the hypothesis 𝛽 = 0 against : 𝛽 ≠ 0, use ; 𝛼 = 0.01. d) What percentage of the variation in y is explained by the regression line? 24 Model Summary Model R R Square Adjusted R Std. Error of Square the Estimate 1 0.937a 0.878 0.848 9.12871 a. Predictors: (Constant), food amount Coefficientsa Model Unstandardized Coefficients Standardized t Sig. Coefficients B Std. Error Beta 1 (Constant) 487.333 29.307 16.629 0.000 food amount 8.000 1.491 0.937 5.367 0.006 a. Dependent Variable: chicken weight 25 4 ANSWERS TO EXERCISES 4.1 DESCRIPTIVE STATISTICS 1) a) Histogram: b) By using the formulas given in sections 1.2.3 and 1.2.4, the following can be obtained: 𝑥̅ = 230.08; 𝑠2 = 723.69; 𝑠 = 26.9. 2) By using the formulas given in section 1.1.2, the following can be obtained: a) 125.7; from 2010 to 2013 there is 25.7 percent increase. b) V2008 = 104; V2009 = 104; V2010 = 108.8; V2011 = 111.4; V2012 = 105.6; V2013 = 106.9; I = 106.7; this means that from 2009 to 2010 there is an 8.8 percent increase. 3) By using the formulas given in section 1.1.2, the following can be obtained: Year 2011 2012 2013 2014 2015 Fixed base index numbers (2014) 95.3 111.7 126.9 100 146.6 4) By using the formula given in section 1.2.3, it follows that: ℎ = 106.4. 5) By using the formula given in section 1.2.3, it follows that: 𝑥̅ = 110. 6) Using the formulas given in sections 1.2.2, 1.2.3 and 1.2.4, we get: a) 𝑥̅ = 27.685; 𝑠 = 9.826. b) 𝑚𝑒 = 28.3; 𝑞1 = 19.45; 𝑞3 = 32.35; 𝑞𝑟 = 12.90. c) Box-plot: 26 7) Using the formulas given in sections 1.2.2, 1.2.3 and 1.2.4, we obtain: a) 𝑥̅ = 11.0285; 𝑠 = 0.5801; 𝑚𝑒 = 11.115. b) Box-plot: c) 10.78. 4.2 NORMAL DISTRIBUTION 𝑿−𝑴 8) If we define a new continuous random variable 𝒁, in terms of 𝑿 as 𝒁 = and used that 𝑷(𝑿 𝝈 𝟏 ≤ 𝑿 ≤ 𝑿𝟐) = 𝑷(𝒁𝟏 ≤ 𝒁 ≤ 𝒁𝟐), then, by considering the standard normal distribution table 2.1 and symmetry of the normal distribution, we obtain the following areas under the normal curve: a) 𝑧 =1.5; 𝑃(𝑋 ≤ 13) = 𝑃(𝑍 ≤ 1.5) = 0.9332. b) 𝑧1 = −6; 𝑧2 = −1; 𝑃(−2 ≤ 𝑋 ≤ 8) = 𝑃(−6 ≤ 𝑍 ≤ −1) = 0.1587. c) 𝑧 = 0.75; 𝑃(𝑋 ≥ 11.5) = 𝑃(𝑍 ≥ 0.75) = 0.2266. You can easily verify the above results by using the normal distribution calculator. 27 9) You can solve a) and b) by following all hints given in exercise 8): a) 𝑧1 = −1.125; 𝑧2 = 1.375; 78. 5 %. b) 𝑧 = −3; 𝑃(𝑋 ≤ 150) = 0.0013. c) First convert the area of the standard normal curve to 0.01, find the closest value to 0.01 which gives you z-score of 2.33 and then insert it into the equation 𝑋 = 𝑍𝜎 + 𝑀 which equals 𝑥 = 192.64. d) You can get the solution by following hints given in case c) and by considering the symmetry of the normal distribution: 𝑥1 = 158.32; 𝑥2 = 189.68. 10) When we sample from a normal population, then sampling distribution of 𝑋̅ is a normal distribution and the 𝑋̅−𝑀 variable 𝑍 = 𝜎 follows the standard normal curve which, by considering the standard normal distribution √𝑛 table 2.1 and symmetry, gives : a) 𝑧 = −1.5; 0.0668. b) 𝑧1 = −1; 𝑧2 = 0.4; 0.4967. c) 𝑧 = 2; 0.0228. 4.3 CONFIDENCE INTERVAL 11) By using the formulas given in section 1.3.1, it follows that: 68.42 ≤ M ≤ 71.58; 67.91 ≤ M ≤ 72.09. You can verify the above results by using the confidence interval calculator. 12) First calculate the sample mean and sample standard deviation, then, by using the formulas given in section 1.3.1, you get: 8.9 ≤ M ≤ 11. 4.4 ONE SAMPLE T-TEST 13) The solution is obtained by calculating the sample mean and sample standard deviation and then using the formulas given in section 1.3.1: 𝐻0: 𝑀 = 62.0; 𝐻1: 𝑀 ≠ 62.0; 𝛼 = 0.05; 𝑡𝑐𝑜𝑚𝑝 = −1.663; 𝑑𝑓 = 11; 𝑡𝑐𝑟𝑖𝑡 = 2.201; the null hypothesis is retained, thus at the 5% level of significance, the population mean egg weight is not significantly different from 62.0. You can verify the obtained results by using the one sample t-test calculator. 14) By using the formulas given in the section 1.3.1 it follows that: 𝐻0: 𝑀 = 150.0; 𝐻1: 𝑀 ≠ 150.0; 𝛼 = 0.05; 𝑡𝑐𝑜𝑚𝑝 = 3.33; 𝑑𝑓 = 24; 𝑡𝑐𝑟𝑖𝑡 = 2.064; the null hypothesis is rejected, thus at the 5% level of significance, we can claim that the new variety has the higher grain yield. 28 15) a) 𝐻0: 𝑀 = 57.62. b) 𝑡 = −0.612. c) 𝛼 = 0.05. d) 𝑝 = 0.548. e) At a 5% level of significance the population mean does not differ significantly from the 57.62 mean. 4.5 INDEPENDENT SAMPLES T-TEST 16) The solution is obtained by calculating the sample mean and sample standard deviation for both varieties and then using the formulas given in the section 1.3.2: 𝐻0: 𝑀1 = 𝑀2; 𝐻1: 𝑀1 ≠ 𝑀2; 𝛼 = 0.05; 𝑡𝑐𝑜𝑚𝑝 = −0.294; df = 8; 𝑡𝑐𝑟𝑖𝑡 = 2.306; we cannot reject the null hypothesis, thus we conclude that the varieties do no differ significantly with respect to grain yield. You can check the obtained results by using the t-test calculator (choose a unpaired t-test). 17) Apply the formulas given in section 1.3.2 and you get the following: 𝐻0: 𝑀1 = 𝑀2; 𝐻1: 𝑀1 ≠ 𝑀2; 𝛼 = 0.05; 𝑡𝑐𝑜𝑚𝑝 = 1.457; df = 89; 𝑡𝑐𝑟𝑖𝑡 = 1.99; the null hypothesis is retained, we cannot say that the chemical fertilizer produces a statistically significant higher yield. 18) a) 𝐻0: 𝑀1=𝑀2. b) 𝑡 = −2.364. c) 𝛼 = 0.05. d) 𝑝 = 0.030. e) The yields differ significantly. 4.6 PAIRED SAMPLES T-TEST 19) First calculate the differences and then use the formulas from 1.3.2: 𝐻0: 𝑀1 − 𝑀2 = 0; 𝐻1: 𝑀1 − 𝑀2 ≠ 0; 𝛼 = 0.05; 𝑡𝑐𝑜𝑚𝑝 = −0.357; df = 7; 𝑡𝑐𝑟𝑖𝑡 = 2.365; we cannot conclude that a significant difference exists. You can verify the obtained results by using the t-test calculator (choose a paired t-test). 20) a) 𝐻0: 𝑀1 − 𝑀2 = 0 b) 𝑡 = −2.63. c) 𝛼 = 0.05. d) 𝑝 = 0.034. e) There is a statistical difference between standing and supine blood pressures 29 4.7 ANALYSIS OF VARIANCE 21) Apply the formulas given in section 1.3.3, and you get the following: 𝐻0: 𝑀1 = 𝑀2 = 𝑀3; 𝐻1: 𝑀𝑖 ≠ 𝑀𝑗 for some 𝑖, 𝑗 ∈ {1,2,3}; 𝛼 = 0.05; 𝐹𝑐𝑜𝑚𝑝 = 0.496; 𝑑𝑓1 = 2; 𝑑𝑓2 = 12; 𝐹𝑐𝑟𝑖𝑡 = 3.885; we cannot reject the null hypothesis, thus we conclude that the varieties do not differ significantly with respect to grain yield. You can verify the obtained results by using the one-way ANOVA calculator. 22) a) 𝐻0: 𝑀1 = 𝑀2 = 𝑀3 = 𝑀4. b) 𝐹 = 14.218. c) 𝛼 = 0.05. d) 𝑝 = 0.000. e) We have evidence at 𝛼 = 0.05 that at least two means for weight loss differ significantly. 4.8 PEARSON' S CORRELATION COEFFICIENT 23) Apply the formula given in section 1.3.4, and you get the following: 𝐻0: 𝜌 = 0; 𝐻1: 𝜌 ≠ 0; 𝛼 = 0.05; 𝑟𝑥𝑦 = 0.726; 𝑟𝑐𝑟𝑖𝑡 = 0.754; we cannot reject the null hypothesis, at a 5% level of significance, the evidence is not strong enough to indicate any correlation between the systolic and diastolic blood pressures. The above can be checked by using the Pearson correlation coefficient calculator. Scatter diagram: 24) 𝐻0: 𝜌 = 0; 𝐻1: 𝜌 ≠ 0; 𝛼 = 0.01; 𝑟𝑥𝑦 = 0.5; 𝑟𝑐𝑟𝑖𝑡 = 0.479; at 1% level of significance we can reject the null hypothesis and conclude that a statistically significant positive linear correlation exists in the population. 30 25) a) 𝐻0: 𝜌 = 0. b) 𝑟𝑥𝑦 = 0.896. c) 𝛼 = 0.05. d) 𝑝 = 0.000. e) At 𝛼 = 0.05 (and also 𝛼 = 0.001) we can claim that a significant positive linear correlation between the variables exists. 4.9 SPEARMAN' S CORRELATION COEFFICIENT 26) Convert the raw data in each variable into ranks and apply the formula given in section 1.3.4 and you get the following: 𝐻0: 𝜌𝑆 = 0 ; 𝐻1: 𝜌𝑆 ≠ 0; 𝛼 = 0.05; 𝑟𝑠 = 0.937 𝑟𝑐𝑟𝑖𝑡 = 0.587; at 5 % level of significance we can reject the null hypothesis and conclude that a statistically significant positive correlation exists between the maximum monthly averaged daily temperature and monthly averaged sunshine hours. The above can be checked by using the Spearman rank-order correlation coefficient calculator. 27) By applying the formula given in section 1.3.4 , you get the following: 𝐻0: 𝜌𝑆 = 0 ; 𝐻1: 𝜌𝑆 ≠ 0; 𝛼 = 0.05; 𝑟𝑠 = 0.903; 𝑟𝑐𝑟𝑖𝑡 = 0.648; at 5 % level of significance we can reject the null hypothesis and conclude that there is convincing evidence of agreement. 28) a) 𝐻0: 𝜌𝑆 = 0. b) 𝑟𝑆 = 0.672. c) 𝛼 = 0.01. d) 𝑝 = 0.000. e) At 𝛼 = 0.01 (also 𝛼 = 0.001) we can claim that there is a significant positive correlation between the variables. It turns out that an increase of agricultural land in use affects the increase in gross value added. 4.10 CHI-SQUARED TEST 29) By applying the formulas from 1.3.4, you obtain: 𝐻0: In this population, the two categorical variables are independent; 𝐻1: In this population, the two categorical variables are dependent;𝛼 = 0.05; χ2 2 𝑐𝑜𝑚𝑝 = 125.024; 𝑑𝑓 = 6; χ𝑐𝑟𝑖𝑡 = 12.592; a sale of different varieties of apples and different properties are dependent at level 0.05. You can use chi-squared test calculator to check the answer. 31 30) By applying the formulas from section 1.3.4, you obtain: 𝐻0: In the population, the two categorical variables are independent; 𝐻1: In this population, the two categorical variables are dependent; 𝛼 = 0.05; χ2 2 𝑐𝑜𝑚𝑝 = 5.774; 𝑑𝑓 = 2; χ𝑐𝑟𝑖𝑡 = 5.991; at a 0.05 level of significance we cannot claim that insects are attacking one of the species more than the others. 31) By applying the formula from section 1.3.4, you obtain: 𝐻0: In the population, the two categorical variables are independent; 𝐻1: In this population, the two categorical variables are dependent; 𝛼 = 0.05; χ2 2 𝑐𝑜𝑚𝑝 = 2.645; 𝑑𝑓 = 1; χ𝑐𝑟𝑖𝑡 = 3.841; at a 0.05 level of significance we cannot claim that variables are dependent. You can verify the results by applying a 2x2 contingency table calculator. 4.11 LINEAR REGRESSION 32) a) Scatter diagram: By applying the formulas from section 1.3.5, the following can be obtained: b) 𝑌̂ = 0.023 ∙ 𝑋 − 3.990. c) 𝑥 = 450; 𝑦̂ = 6.36. d) 𝑟2 𝑥𝑦 = 0.653. e) 65.3 %. f) 34.7 %. g) 𝐻1: 𝜌 ≠ 0; 𝛼 = 0.01; 𝐹𝑐𝑜𝑚𝑝 = 18.831; 𝑑𝑓1 = 1; 𝑑𝑓2 = 10; 𝐹𝑐𝑟𝑖𝑡 = 10.04; we can accept the hypothesis that 𝜌 ≠ 0, thus, water intake linearly increases the eggs production. h) 𝐻1: 𝛽 ≠ 0; 𝛼 = 0.01; 𝑡𝑐𝑜𝑚𝑝 = 4.34; 𝑑𝑓 = 10; 𝑡𝑐𝑟𝑖𝑡 = 3.169; we can accept the hypothesis that 𝛽 ≠ 0, thus, water intake linearly increases the eggs production. 32 33) a) 𝑌̂ = 8.00 ∙ 𝑋 + 487.33. b) 𝑥 = 21; 𝑦̂ = 655.33. c) 𝐻1: 𝛽 ≠ 0; 𝛼 = 0.01; 𝑡𝑐𝑜𝑚𝑝 = 5.367; we can accept the hypothesis that 𝛽 ≠ 0, we can thus conclude that the amount of addition linearly increases the chickens’ weight. d) 87.8 %. 33 5 REFERENCES Brase, C.H., Brase, C.P. Understandable statistics (8th ed.). Boston, Houghton Mifflin, 2006. Graphpad.com. (2018). Analyze a 2x2 contingency table. [online] Available at: https://www.graphpad.com/quickcalcs/contingency1.cfm [Accessed 8 May 2018]. Graphpad.com. (2018). One sample t test. [online] Available at: https://www.graphpad.com/quickcalcs/oneSampleT1/ [Accessed 8 May 2018]. Graphpad.com. (2018). t test calculator. [online] Available at: https://www.graphpad.com/quickcalcs/ttest1.cfm [Accessed 8 May 2018]. Mathportal.org. (2018). Normal distribution calculator. [online] Available at: https://www.mathportal.org/calculators/statistics-calculator/normal-distribution-calculator.php [Accessed 8 May 2018]. Mathsisfun.com. (2018). Confidence interval calculator. [online] Available at: https://www.mathsisfun.com/data/confidence-interval-calculator.html [Accessed 8 May 2018]. Metoffice. gov.uk. (2018) [online] Available at: https://www.metoffice.gov.uk/public/weather/climate/gcpn7mp10 [Accessed 8 May 2018]. Palaniswamy, U.R., Palaniswamy, K.M. Handbook of statistics for teaching and research in plant and crop science. Binghamton, NY: The Haworth Press, Inc, 2006. Shayib, M.A. Apllied Statistics 1 st edition. (2013). [online] Available at: http://thuvienso.bvu.edu.vn/bitstream/TVDHBRVT/15780/1/Applied-Statistics.pdf [Accessed 8 May 2018]. Sheskin, D.J. Handbook of parametric and nonparametric statistical procedures (2nd ed.). Boca Raton, Chapman & Hall /CRC, 2000. Slovenian Environment Agency – ARSO. (2018) [online] Available at: http://www.arso.gov.si/en/ [Accessed 8 May 2018]. Socscistatistics.com. (2018). Chi-square test calculator. [online] Available at: http://www.socscistatistics.com/tests/chisquare2/Default2.aspx [Accessed 8 May 2018]. Socscistatistics.com. (2018). One-way ANOVA calculator. [online] Available at: 34 http://www.socscistatistics.com/tests/anova/default2.Aspx [Accessed 8 May 2018]. Socscistatistics.com. (2018). Pearson correlation coefficient calculator. [online] Available at: http://www.socscistatistics.com/tests/pearson/Default2.aspx [Accessed 8 May 2018]. Trpin Šikart, D. Analysis of the results of agricultural holdings in Slovenia processed according to FADN methodology. Master thesis, Faculty of agriculture and life sciences, 2016. Vassarstats.net. (2018). Spearman rank-order correlation coefficient. [online] Available at: http://vassarstats.net/corr_rank.html [Accessed 8 May 2018]. 35 6 INDEX analysis of variance, 5, 20, 29 Pearson's chi-square test, 7 angle, 1 Pearson's correlation coefficient, 6, 21, 30 average of relatives, 1 percentage, 1 chain index, 1 proportion, 1 chi-square distribution, 12 quantiles, 2 chi-squared test, 23, 31 rank, 2 class width, 2 relative rank, 2 comulative frequency, 2 sample geometric mean, 2 confidence interval, 4, 17, 28 sample harmonic mean, 2 F-distribution, 11 sample interquartile range, 3 fixed base index, 1 sample mean, 2 frequency density, 2 sample median, 2 growth rate, 1 sample mode, 2 independent samples t-test, 4, 18, 29 sample quartile deviation, 3 linear regression, 8, 24, 32 sample range, 3 mean absolute deviation around a central point, 3 Spearman's correlation coefficient, 6, 21, 31 normal distribution, 9, 16, 27 standard deviation, 3 one sample t-test, 4, 17, 28 t-distribution, 10 outliers, 3 variance, 3 paired samples t-test, 4, 19, 29 Yates correction, 7 36