
Acta Chim. Slov. 1999, 46(3), pp. 375-388

THE CALCULATION OF THE THERMODYNAMICAL PRO PERTIES
IN THE LIQUID-GAS REGION

Jurij Avsec, Milan Marčič

Faculty  of Mechanical Engineering,
University of Maribor, Maribor, Slovenia

(Received 25.8.1998)

ABSTRACT
The paper features the mathematical model of computing phase diagrams and
thermodynamic functions of the state in the liquid, gas and two-phase domain with the
help of statistical thermodynamics. The paper features all  important contributions
(translation, rotation, internal rotation, vibration, intermolecular potential energy and
influence of electron and nuclei excitation). To calculate the thermodynamic properties of
real gases we developed the cluster theory, which yields better results than the  classical
virial equation. For the realm of real liquids the Johnson-Zollweg-Gubbins model based on
the modified Benedict-Webb-Rubin  equation was applied. The Lennard – Jones
intermolecular potential was used. The analytical results are compared with the
thermodynamical data and models obtained by classical thermodynamics and show
relatively good agreement.

INTRODUCTION
In engineering practice processes in the liquid-gas region are of  vital   importance. In

order to design devices for this field of activity, it is necessary to be  familiar  with the

thermodynamic  properties  of  state in a  one-phase and a two-phase environment. In

most  cases the thermodynamic tables, diagrams and different empirical  functions

obtained  from  measurements are used.

The calculation of thermodynamic properties of state is possible by  classical or

statistical thermodynamics. Classical thermodynamics has no insight into the

microstructure, but it allows the calculation of the thermodynamic function of state with
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the assistance of macroscopic observation of phenomena. Unlike the classical

thermodynamics, however, the statistical thermodynamics does enable the computation

of the thermodynamic functions of the state by studying the molecular structure of

matter.

This paper presents a mathematical model for computing the speed of sound and other

thermophysical properties using statistical thermodynamics. For real gases we developed

a cluster theory, based on the principle of average clusters, which yields better results

than the virial equation. For real liquids the Johnson-Zollweg-Gubbins model based on

the modified Benedict-Webb-Rubin (BWR) equation of state and a great number of

Monte Carlo and molecular dynamics simulations were applied.

For the calculations in the two-phase region  we applied the method of equilibrium

conditions between two phases. The mathematical model enables the calculation in both

sub- and supercritical region. To establish the critical point, the stabilization conditions

known from the theory of fluctuation were applied.

Using the mathematical model described above we were able  to compute the

thermophysical properties in the one- and two-phase region and draw phase diagrams for

some technically significant substances.

The results of the analysis are compared with  the experimental data and show a

relatively good agreement, especially for real gases. Somewhat larger deviations can

however be found in the real liquid region due to the large influence of the attraction and

repulsion forces, since the Lennard- Jones potential is an approximation of the actual real

intermolecular potential.

To calculate the thermodynamic functions of state we applied  the canonical partition

[3]. Utilising the semi-classical formulation for the purpose of the canonical ensemble for

N indistinguishable molecules the parition function Z can be expressed as follow [2,3]:
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where f stands for the number of degrees of freedom of individual molecule, H

designates the Hamiltonian molecule system, vectors N21 r..r,r
rrr

.. describe the positions of N

molecules  and N21 p...p,p
rrr

momenta, k is Boltzmann`s constant and h is Planck`s constant.
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The canonical ensemble of partition function for the system of  N  molecules can be

expressed [3,5]:

confnucelirrotvibtrans0 ZZZZZZZZZ = . (2)

Thus the partition function Z is a product of terms of the ground state (0), the

translation (trans), the vibration (vib), the rotation (rot), the internal rotation (ir), the

influence of electrons excitation (el), the influence of nuclei excitation (nuc) and the

influence of the intermolecular potential energy (conf).

The computation of the individual terms of the partition function and their derivatives

with the exception of configurational integral is dealt with in the works [3,4,5].

The velocity of sound

The term velocity of  sound refers to the velocity of the mechanical longitudinal

pressure waves propagation through a medium. It is very important parameter in the

study of compressible fluids flows [6,28] and in some applications of measurement

(acoustic resonance level gauge) [24].

The propagation of sonic waves for real fluids is almost in all cases nearly isentropic

[7,8,9]. Therefore, we can calculate the isentropic speed of sound for  the real fluid  c0:
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where T is temperature, p is pressure, s is intropy, v is  the specific volume, cp is the

specific heat capacity at constant pressure.
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CONFIGURATIONAL INTEGRAL

The methods for solving the  configurational integral in the liquid - gas region are

generally divided most crudely into solving the configurational integral for real gases and

for real liquids.

 In a real gas the intermolecular forces are relatively weak. To solve the

configurational integral we devised a method of clusters [1]. The real gas molecules

move either individually or in small instantaneous and random clusters. The size and

shape of the cluster alter due to the existence of attractive and repulsion forces between

molecules. The number of molecules in clusters depends on the intermolecular distances.

Molecules which are sufficiently close to one another are considered to be in the same

cluster. More distant molecules, though close enough to each other, are said to be in

another cluster.

 The method is based on the principle of average clusters.

Fig. 1: Schematic outline of clusters.

By dealing with a sufficiently large number N of molecules in the system an average

cluster of N1 molecules can be determined. Figure 1 features the outline of the idea of the

method of clusters illustrating the activity of intermolecular forces in clusters as well as

the activity of intermolecular forces between clusters.

The analysis of the motion of molecules by means of the Monte Carlo method [10]

indicates that the number of molecules in the average cluster is relatively low. The

principal idea of the method of clusters stipulates that the intermolecular potential energy

of the system can be split up to intermolecular potential energy in  clusters (Epot1) and
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intercluster potential energy due to interactions between clusters (Epot2). Therefore the

potential intermolecular energy can be written as the sum of both parts:

2pot1potpot EEE += . (4)

On the basis of the previously mentioned assumtions the configurational integral can be

put as follows:

2conf1confconf ZZZ = . (5)

In the study of systems with the intermolecular potential uij  acting between molecules

i,j, it is more suitable to use the Mayer function fij :

( ) 1kT/uexpf ijij −−= . (6)

For the intermolecular potential the Lennard-Jones potential [11,12] was applied:
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In equation (7)  σ and ε  are Lennard-Jones parameters and rij is the intermolecular

distance.

 When computing the configurational integral Zconf1 the effects of mutual interactions

of up to three molecules in the cluster were taken into account. The configurational

integral Zconf1 that takes interactions in clusters into account can be written [5,11,12]:
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Equation (8) can also be expressed as follows [25]:
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Integrals I1 and I2 are defined:
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Integral I1 for the case of the Lennard-Jones potential is solved by literature

[12,13,14]. The integral I2 was transformed by A.Münster [11] as follows:

21
2

12 II3I += , (11)
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Integral I21 is resolved in the works of L.E. Reichl [13] and Hirschfelder, Curtiss and

Bird [12] for the case of the Lennard-Jones potential.

The effect of the intercluster interaction can be presented by the configurational

integral Zconf2 which includes the mutual interactions of two clusters in the system.
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where Uij stands for the potential energy between i- and j- clusters. Applying Corner´s

method [26] in the case of diluted systems the inercluster potential energy can be

expressed:

ij
2

1ij uNU = , (13)

where uij  stands for the potential energy between molecule in the cluster i and molecule

in the cluster j.

Utilizing the above and taking only the mutual interaction of two clusters in the

system we can write:

1
kT

U
expF ij

ij −







−= , 21ij

*
1 rdrdF

V

1
I

rr

⋅⋅= ∫∫ ,   
1

2 N

N
N = , (14)

where N2  and Fij  are the number of clusters in the system, and  Mayer function. Integral

I1
* can be solved in the same way as I1.

*
1

2
2

2conf I
V2

N
Zln += , (15)

To determine the number of molecules in an average cluster of real gases we took

advantage of the experimental results of thermodynamic functions of the state obtained
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by the experimental results of J.B. Maxwell [15] and W.C. Edmister [16], as well as J.A.

Barker [10] where the results of simulation by means of the Monte Carlo method are

reported. After a thorough analysis the number of molecules in individual average

clusters was established:  6N1 1 << .

For a real liquid we used the Johnson-Zollweg-Gubbins (JZG)  model [17] based on

molecular dynamics and Monte Carlo simulations and the modified Benedict-Webb-

Rubin equation of state. The JZG model is based on Lennard-Jones intermolecular

potential and contains 32 linear parameters and one nonlinear parameter. On this basis

we can express  reduced configurational free energy Aconf
*:
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i

a
A ,     (16)

where the coefficients ai, bi and Gi are presented in Table 1. The coefficients ai and bi are

functions of  reduced temperature T* only, the coefficients Gi are function of the reduced

density ρ* and nonlinear adjustable parameter γ.
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Equation (16) accurately correlates the thermophysical properties from the triple point to

about 4 to 5 times the critical temperature. In equation (16) xj´s are the adjustable

parameters in the equation of state. In equation (17)  confA is conigurational free energy

and V is volume of molecular system.

To determine the equilibrium states between the liquid and the gaseous phases

the conditions for equilib rium were applied:

,,pp,TT µ ′′=µ′′′=′′′=′ (18)

where ´ in equation (18) means the liquid phase, " means the gaseous phase and µ

constitutes the chemical potential.

Due to  the mathematical complexity of the equations in the model, the states on the

coexistence curve are obtained numerically, with the help of the iteration procedure. By

applying these states, the thermodynamic properties in the two-phase environment can be

calculated.

In the two-phase region the computation of thermodynamic functions of state is based

on the mixing rule [7].
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Table 1: Coefficients for the JZG model
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*
17 T/xT/x +
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RESULTS AND COMPARISON WITH EXPERIMENTAL DATA

The  constants necessary for the computation, such as the characteristic rotation-,

vibration-, electronic- etc. temperatures, are obtained from the experimental data

[18,19,20]. The inertia moments are obtained analytically by applying the knowledge of

the atomic structure of the molecule. Constants for the Lennard-Jones potential are

obtained from the literature  of  [3, 4, 12].

We  carried out calculations for methanol (CH4O), difluordichlormethane R-12

(CF2Cl2), ammonia (NH3), benzene (C6H6)  and carbon dioxide (CO2) . The comparison

of our calculations with thermodynamical data and experimental results  (exp.) by

Maxwell [15], Edmister [16], Eckert & Drake [21], Petrak [22] and Younglove,

Frederick, and McCarthy [9], Borgnakke and Sonntag [23]  are presented in Tables

3,4,5,6. Some important constants (vibration (θvib) and electron (θel) characteristic

temperatures, internal rotation moment of inertia (Iir), symmetry number for internal

rotation (σint)) need for the calculation of thermodynamic properties are presented in

Table 2.



383

Table 2: Some  important constants [18,19,20]

Comp Iir (gcm2) σσσσir θθθθel(K) θθθθvib (K)

CO2 - - - 1890, 3360, 954,  954
NH3 - - 66379 4780, 1360, 4880,4880, 2330, 2330
R-12 - - - 374,654,623,955,460,1262,1322,1566, 1650
CH4O 4010027.1 −⋅ 3 - 5295,4279,4093,2127,2052,1936,1485,

1546,4279,2092,1769

C6H6 - - - 581,581,869,869,969,1119,1215,1415,1419,144
1,1572,1572,1637,1658,1673,1873,1701,2116,
2352,2651,2552,2173,4500,4700,4900,5100,
5300, 5500, 5700

Fig. 2: Entropy and enthalpy of vaporisation for R-12 and C6H6
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Table 3:The comparison between the analytical calculation  and the experimental data

[21,22] for difluordichlormethane in the region of superheated vapour

T (K), H (kJ/kmol), S (kJ/kmolK), V (m3/kmol)

10
bar

20
bar

T V H S V H S

373 JZG 2.81 29120 97.1 1.25 28440 91.0
ST 2.80 29060 98.5 1.25 28270 91.1
CT 2.80 29990 97.9 1.22 28280 89.2
Exp. 2.79 29936 97.9 1.21 28646 89.6

423 JZG 3.30 36900 106.1 1.55 35380 105.4
ST 3.30 33190 109.0 1.55 32560 102.2
CT 3.29 34880 109.3 1.56 33950 102.4
Exp. 3.29 34637 109.1 1.53 33358 101.8

473 JZG 1.82 40840 114.1
ST 1.80 36950 111.1
CT 1.82 38760 109.3
Exp. 1.79 38274 104.5

Table 4:The speed of sound c0 for  carbon dioxide (CO2)  in the region of saturated

vapour

T (K), V (m3/kmol), c0 (m/s)

T V
                           M O D E L S

VDW           RK          PR          JZG            CT         Exp.
223 2.432 222.1 221.6 219.7 226.7 224.1 223.6
233 1.667 223.9 222.7 220.9 227.5 224.2 224.2
243 1.144 221.8 222.3 219.8 226.9 222.6 222.9
253 0.843 220.9 222.2 219.6 226.2 221.1 220.8
263 0.613 216.1 220.1 218.4 223.5 217.9 217.5
273 0.448 209.0 214.2 217.0 219.3 213.9 212.7
283 0.325 202.4 205.5 214.7 212.9 209.9 206.3
293 0.228 188.0 181.9 204.8 203.7 208.6 197.9
301 0.155 180.2 92.9 139.1 194.1 219.3 189.8
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Table 5:Pressure of saturation for  ammonia (NH3)

T (K), V (m3/kmol), p(bar)

T V
                           M O D E L S

 VDW       PR           JZG         CT             ST           Exp.
223 44.76 0.43 0.40 0.41 0.41 0.41 0.40
243 16.37 1.29 1.21 1.22 1.20 1.22 1.19
263 7.072 3.53 3.42 3.03 2.98 3.03 2.91
283 2.941 7.61 7.41 7.65 6.20 7.60 6.16
303 1.853 12.63 12.18 12.77 11.73 12.76 11.6
323 1.067 21.91 21.74 22.90 20.61 22.85 20.33
343 0.643 35.43 34.30 38.78 34.36 38.66 33.07
363 0.395 57.18 52.54 63.71 54.40 63.3 51.02
383 0.238 83.70 76.90 106.5 83.20 104.0 75.60

We compared the models obtained by statistical thermodynamics (CT- cluster

theory, ST- statistical theory with help of classical virial expansion [14], [12], JZG-

Johnson-Zollweg-Gubbins model [17]), and the models obtained by classical

thermodynamics (VDW- Van der Waals equation of state, RK- Redlich-Kwong equation

of state, PR- Peng-Robinson equation of state) and experimental results (exp.)). In the

procedure of computing the configurational integral with the  help of statistical

thermodynamics on the base of classical virial expansion (ST)  the effects of mutual

interactions of up to three molecules in the cluster were taken into account.

Figure 2 illustrates the thermodynamic functions of the state computated by

means of the mathematical model. Figure 2  shows the enthalpy of vaporisation and the

entropy of vaporisation for benzene (C6H6) and difluordichlormethane (R-12).

The comparison (Figure 2) of analytical calculations and thermodynamical data

[7,21,22] for R-12 shows good agreement. In the real gas region  we used the cluster

theory (CT), and in the real liquid region we used the Johnson-Zollweg-Gubbins (JZG)

model. The computed thermophysical functions for benzene show a slightly less good

agreement of results. The reason lies in the complex structure of benzene molecules.

Table 3 shows the deviation of the analytical computation of  difluorodichlormethane

for the real gas region (CT, ST, JZG) from the experimental values (exp.). The results

obtained by the cluster theory show very good agreement. The cluster theory (CT)
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yields better results, especially at high pressures. Tables 4 and 5 show the deviation of

the analytical results obtained with statistical thermodynamics (CT, ST, JZG)  for carbon

dioxide and ammonia from the models obtained by classical thermodynamics (VDW, RK,

PR) and experimental data (exp). The computed vapour pressure and velocity of sound

conform well   with the measured vapour pressure and velocity of sound. Somewhat

larger deviations can be found in the region of critical conditions due to the large

influence of fluctuation theory [27] and singular behaviour of some thermodynamic

properties in the near-critical condition. The cluster theory (CT)  yields better results,

especially at high pressures, than the classical statistical virial form of the equation of

state (ST).

Somewhat larger deviations are observed  in the real liquid region (Table 6) due

to the large influence of  attraction forces, since the Lennard-Jones potential is only an

approximation of the actual real intermolecular potential.

Table 6:The comparison between analytical calculations and experimental data for

boiling liquid for methanol (CH3OH).

T P V H S
K bar m 3/kmol kJ/kmol kJ/kmolK

310 JZG 0.32 0.044 21894 110.6
Exp. 0.30 0.042 20214 128.4

350 JZG 1.81 0.047 25532 130.3
Exp. 1.60 0.044 23581 141.3

410 JZG 10.3 0.054 30347 166.7
Data 10.0 0.049 29366 157.4

450 JZG
Exp.

26.5
25.3

0.063
0.055

33628
34214

178.3
167.4
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CONCLUSION AND SUMMARY

The paper presents the mathematical model for the computation of thermodynamical

functions of the state in the liquid, gaseous and two-phase region.

For the region of real  gases we developed the method of clusters based on the

average cluster with N1 molecules in the system with N molecules. The advantage of this

method is in the computation of thermodynamical functions at  high pressures. For the

real liquid we used the Johnson-Zollweg-Gubbins [17] model based on molecular

dynamics, Monte Carlo simulations and the modified Benedict-Webb-Rubin equation of

state. The boiling curve and the saturation curve were determinated by means of

equilibrium conditions.

The analytical results obtained by statistical thermodynamics were compared with the

thermodynamical data and the analytical calculations obtained by classical

thermodynamics. The results show a relatively good agreement.

The computed thermodynamical properties in the region of real gas conform well in

comparison with the thermodynamical data. In the real gas region the comparison

between the thermodynamical data and the analytical calculation shows a slightly less

good agreement. The reason lies in the effect of molecular polarity.

For our further research we intend to extend the presented mathematical model to the

calculation of mixtures and to include the theory of fluctuation which is of great

importance in the vicinity of the critical point.
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            POVZETEK
Članek obravnava matematični model izračuna termodinamičnih veličin stanja v kapljevitem,
plinastem in dvofaznem območju s pomočjo statistične termodinamike. Članek obravnava vse
pomembne vplive (translacijo, rotacijo, notranjo rotacijo, vibracijo, medmolekularno potencialno
energijo kot tudi vpliv vzbujanja elektronov in jeder). Za izračun termodinamičnih veličin stanja
realnih plinov smo razvili model gruč, s pomočjo katerega smo dobili boljše rezultate kot s
klasično virialno teorijo realnih plinov. Za področje realne kapljevine smo uporabili Johnson-
Zollweg-Gubbinsov model, ki je zasnovan na osnovi modificirane Benedict-Webb-Rubinove
enačbe stanja. Za medmolekularni potencial smo uporabili Lennard-Jonesov potencial. Analitični
izračuni so primerjani s termodinamičnimi podatki in modeli dobljeni s pomočjo klasične
termodinamike in kažejo na relativno dobro ujemanje.


