

Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 2 (2009) 217–229

Maximal core size in singular graphs

Irene Sciriha [∗]

Department of Mathematics, Faculty of Science, University of Malta, Msida, Malta

Received 3 September 2009, accepted 5 November 2009, published online 30 November 2009

Abstract

A graph G is singular of nullity η if the nullspace of its adjacency matrix G has dimension η . Such a graph contains η cores determined by a basis for the nullspace of G. These are induced subgraphs of singular configurations, the latter occurring as induced subgraphs of G. We show that there exists a set of η distinct vertices representing the singular configurations. We also explore how the nullity controls the size of the singular substructures and characterize those graphs of maximal nullity containing a substructure reaching maximal size.

Keywords: Adjacency matrix, nullity, extremal singular graphs, singular configurations, core width. Math. Subj. Class.: 05C50, 05C60, 05B20.

1 Introduction

A graph $G = G(\mathcal{V}, \mathcal{E})$ has vertex set $\mathcal{V} = \mathcal{V}_G = \{1, 2, ..., n\}$ and edge set \mathcal{E} consisting of pairs of vertices. The *order* |G| of a graph G is the number n of vertices. The graphs we consider are simple, that is, without multiple edges or loops. The complete graph K_n on n vertices has edges between all distinct pairs of vertices.

The graph $G - X$ denotes the graph obtained from G when the set X of vertices and the edges incident to the vertices in X are deleted. The reverse process, starting from H and adding a vertex set X results in $H + X$. Note that $H + X$ is not unique for a particular graph H and set X, since it varies with the choice of edges between X and \mathcal{V}_H and even with the edges among the vertices of X themselves. If $X = \{v\}$, we write $G - v$ and $G + v$ for $G - X$ and $G + X$ respectively.

The adjacency matrix of a graph G, denoted by G, is (a_{ij}) , where $a_{ij} = 1$ if $\{ij\}$ is an edge and 0 otherwise. Note that the set of matrices $\{G\}$ for distinct labellings of the vertices are permutationally similar and therefore a graph G is described completely (up

[∗]This research is supported by the AWRF and project fund R-39 of the University of Malta. Web page <http://staff.um.edu.mt/isci1/>.

E-mail address: irene.sciriha-aquilina@um.edu.mt (Irene Sciriha)

to isomorphism) by the corresponding G for a specific labelling. The *spectrum* $Sp(G)$ of a graph G consists of the collection, with repetitions, of the eigenvalues of G , which are the solutions of the characteristic equation $\det(\lambda I - G) = 0$. The *algebraic multiplicity* of an eigenvalue is the number of times it is repeated in $Sp(G)$. The *geometric multiplicity* is the dimension of the corresponding eigenspace. Since G is real and symmetric, the two multiplicities for an eigenvalue have a common value. The multiplicity of the eigenvalue zero is referred to as the $nullity^1$, $\eta(G)$, of $G.$ The $rank$ of G is $rank(\mathbf{G})$, equal to $n-\eta(G),$ a result referred to as *the Dimension Theorem*.

A graph G on n vertices is said to be *singular* if $\eta(G) > 0$; that is, if there exists $x \neq 0, x \in \mathbb{R}^n$, such that $Gx = 0$, where each entry of the vector 0 is 0. Since G satisfies $Gx = \lambda x$ for the eigenvalue $\lambda = 0$, we call x a *kernel eigenvector* of G.

This paper is motivated by the question:

How does the nullity control the size of the singular substructures within a graph?

This we address in section [4.](#page-7-0) To this end, we survey results on substructures in section [2](#page-1-0) and on certain invariants of a graph in section [3,](#page-4-0) including proofs of theorems that facilitate the reasoning of new results, leading to a clarification of the underlying concepts.

2 Singular graphs

Let $x \in \mathbb{R}^n$, $n \geq 3$, be a vector in the nullspace of G, which is labelled so that $x =$ $(\mathbf{x}_F, \mathbf{0})^t$, with each entry of \mathbf{x}_F being non-zero. The vertices corresponding to \mathbf{x}_F induce a subgraph F whose adjacency matrix is the principal $|F| \times |F|$ submatrix **F** of **G**, satisfying $\mathbf{F} \mathbf{x}_\mathbf{F} = \mathbf{0}$. We call (F, \mathbf{x}_F) , or simply F, a *core of* G. If $\mathbf{x} = \mathbf{x}_F$, then $G = F$ and G is said to be a *core graph*. Note that a core of G is a core graph in its own right. Linearly independent kernel eigenvectors determine distinct cores of G. The set CV of *core vertices* consists of those vertices that lie on some core of G. If a vertex does not lie on any core of G, then it is said to be *core forbidden*. A core graph without isolated vertices having nullity one must be connected and is said to be a *nut graph*. Nut graphs exist for all orders from seven onwards. There are three nut graphs of order seven and none for smaller order [\[10\]](#page-12-0).

Figure 1: Two singular graphs of nullity one.

Consider the two graphs in Figure [1.](#page-1-1) The six vertex graph has a nullvector $(1, 1, -1, 1)$ $(-1, 0, 0)^t$ and its core is the four cycle C_4 (labelled 1,2,3,4), induced by the solid black vertices, while its core-forbidden vertices (labelled 5,6) are white. The nine vertex graph is a nut graph and therefore has no core-forbidden vertices.

¹The term **corank(G)** is also used for nullity(G) in the literature.

Since it is the existence of $x_F \in \mathbb{R}^{|F|}$ that determines that a graph is singular, we classify singular graphs according to core-order $|F|$. As shown in Figure [2,](#page-2-0) there are eight possible cores of order six, three of order five, two of order four and one each of orders three and two.

Figure 2: Minimum rank of graphs with core-width τ .

2.1 Singular configurations

Cauchy's inequalities for a Hermitian matrix M, (also known as the *Interlacing Theorem* [\[3\]](#page-12-1)) control the multiplicity of the eigenvalues of principal submatrices relative to those of M. Applied to graphs we have:

Theorem 2.1. Interlacing Theorem: Let G be an *n*-vertex graph and $v \in V$. If the eigenval*ues of* G are $\lambda_1, \lambda_2, \ldots, \lambda_n$ and those of $G-v$ are $\mu_1, \mu_2, \ldots, \mu_{n-1}$, both in non-increasing *order of magnitude, then* $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \ldots \geq \mu_{n-1} \geq \lambda_n$.

Thus when a vertex is added to a graph, the nullity, or multiplicity of the eigenvalue zero, may change by at most one. Let us first consider a graph of nullity one. Such a graph G with nullspace generator x has a unique core F as an induced subgraph determined by the vertices corresponding to the non-zero restriction x_F of x. We say the core is (F, x_F) when x_F needs to be emphasized. By interlacing, to obtain a graph G of nullity one from a core graph F of nullity η , at least $\eta - 1$ vertices are added. Thus a lower bound for the order of a graph G of nullity one, with core (F, \mathbf{x}_F) , is $|F| + \eta(F) - 1$.

Definition 2.2. A graph G , $|G| \geq 3$, is a **singular configuration** (SC), with core (F, \mathbf{x}_F) , if it is a singular graph, of nullity one, having $|F| + \eta(F) - 1$ vertices, with F as an induced subgraph, satisfying $|F| \geq 2$, $\mathbf{F} \mathbf{x}_F = \mathbf{0}$ and $\mathbf{G} \begin{pmatrix} \mathbf{x}_F \\ \mathbf{0} \end{pmatrix}$ 0 $= \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 0). The vector \mathbf{x}_F is said to be the **non-zero part** of the kernel eigenvector $\begin{pmatrix} x_F \\ 0 \end{pmatrix}$ 0 $\Big)$ of G.

Note that by interlacing, among singular graphs of nullity one, a singular configuration G has the least number of vertices for its core (F, \mathbf{x}_F) . A core graph may be connected as in the cycles C_{4k} , $k \in \mathbb{Z}^+$ on 4k vertices or disconnected as in the empty graph rK_1 consisting of r isolated vertices. An important combinatorial property of core graphs is that they have no pendant edges.

Lemma 2.3. *A singular configuration is a connected graph.*

Proof. Suppose, for contradiction that a singular configuration S is disconnected. Without loss of generality, S has a connected component S_1 , $|S_1| \geq 3$, having a non-zero kernel eigenvector x_1 . If the vertices of S_1 are labelled first, then $S\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ $=\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ \setminus and \mathbf{x}_2 0 $S_1x_1 = 0$. Note that S cannot have isolated vertices, since these would contribute to the nullity, so that $\eta(S)$ would be more than one. Since $x_1 \neq 0$, then $x_2 = 0$, otherwise $\left(\begin{array}{c} \mathbf{x}_1 \end{array} \right)$ $\Big)$ and $\Big(\begin{array}{c} 0 \\ 0 \end{array} \Big)$ would be linearly independent kernel eigenvectors of S , again con-0 \mathbf{x}_2 tradicting that the nullity of S is one. Thus the unique core of S lies in S_1 . Suppose that x_2 corresponds to vertices in the non-singular components. But then S does not have a minimum number of vertices for core F, a contradiction. Thus $S = S_1$. \Box

We now show the relevance of singular configurations. We prove that for nullity–one graphs, of order larger than minimal with respect to core F , some singular configuration is an induced subgraph.

Proposition 2.4. A graph G without isolated vertices, of nullity one, with core (F, \mathbf{x}_F) , *has (at least) one induced subgraph which is a singular configuration with the same core* (F, \mathbf{x}_F) .

Proof. Let the vertices of F be labelled first. Then the first $|F|$ rows of G may be partitioned as $(\mathbf{F}|\mathbf{C})$ and $(\mathbf{F}|\mathbf{C})^t(\mathbf{x}_F) = 0$. Moreover the rank of $(\mathbf{F}|\mathbf{C})$ is $|F| - 1$. If F is not itself a SC, its nullity $\eta(F)$ is more than one. There exist $\eta(F) - 1$ column vectors of the supplementary matrix C which are mutually linearly independent and also independent of the columns of F. These form the matrix C' such that rank $((\mathbf{F}|\mathbf{C}'))$ = rank $((\mathbf{F}|\mathbf{C}))$ = $|F| - 1$. The principal submatrix of $\mathbf{A}(G)$ determined by $(\mathbf{A}(F)|\mathbf{C}')$ is of the form $A' = \begin{pmatrix} A(F) & C' \\ C' \end{pmatrix}$), where Q is a square matrix. The adjacency matrix A' defines $(\mathbf{C}')^{\mathbf{t}}$ Q an induced subgraph of G , satisfying Definition [2.2.](#page-3-0) Therefore G is a singular configuration $S(F, \mathbf{x}_F)$. \Box

Figure 3: Verices 7 and 8 are core–forbidden.

Example 2.5. A singular configuration S has a unique core (F, \mathbf{x}_F) whose vertices form the full set CV in S. If the set P of core-forbidden² vertices form an independent subset of the vertices of S, then S is said to be a *minimal configuration*. In fact there are $2^{|\mathcal{P}|}$ singular configurations $\{S\}$ obtained from a particular minimal configuration by adding edges between some pairs of distinct vertices of P and they all satisfy $S\begin{pmatrix} x_F \\ 0 \end{pmatrix}$ 0 $=\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 0 \setminus .

The complete list of minimal configurations of core order up to five may be found in [\[5\]](#page-12-2).

The singular graph G , of nullity one, shown in Figure [3,](#page-4-1) has only one core F which is the subgraph (of order 6 and nullity 2) induced by the solid black vertices. By Definition [2.2,](#page-3-0) a singular configuration with core F is expected to have 7 vertices. There are two nonisomorphic singular configurations, $G - 7$ and $G - 8$, having the same core as G. These two distinct induced subgraphs of G are in fact minimal configurations. Moreover, G and its two singular configurations share the same non-zero part $x_F = (1, 1, -1, -1, -1, 1)^t$ of a kernel eigenvector generating their nullspace.

3 Some new invariants of singular graphs

The study of singular graphs reveals invariants of a graph. One is the partition of the vertex set $V(G)$ into the set CV of vertices lying on some core of G and the set of core-forbidden vertices, $V(G)\$ V. We show that this partition does not depend on the choice of basis for the nullspace of G. Therefore CV is well defined.

Proposition 3.1. *The set* CV *of core vertices is an invariant of a graph* G*.*

Proof. A basis B for the nullspace can be transformed into another, B' , by linear combinations of the vectors of B . However, the union of the collections of the positions of the non-zero entries in the basis vectors is the same for all bases. Thus the partition of the vertex set $V(G)$ into CV and core-forbidden vertices, $V(G) \setminus CV$, is independent of the basis used for the nullspace. п

²For a graph G of nullity more than one, the *periphery* with respect to F is the subset of vertices *not* on the core F. For graphs of nullity more than one, the set of core-forbidden vertices is then the set–intersecton of the peripheries over all cores F of G .

From proposition [3.1,](#page-4-2) it follows that the set, $V(G)\$ CV, of core-forbidden vertices is also an invariant of G.

3.1 Fundamental system of cores

We now point out properties of subspaces in general that shed light on the structure of a singular graph. For any vector space W, let $wt(\mathbf{x})$ denote the **weight** or number of nonzero entries of the vector x. We adopt the convention to write a basis for a vector space in which the vectors are *ordered* according to the monotonic non-decreasing *sequence* of the weights of its vectors.

A maximal set of linearly independent vectors x_1, x_2, \ldots, x_ℓ , with the smallest *weight* $sum _{i=1}^{\ell} wt(\mathbf{x}_i)$, are said to form a *minimal basis* B_{min} for W. We say a basis B for W is *reducible* if linear combinations of the vectors of B can produce another basis for W with lower weight sum. Thus for any vector space, a basis is not reducible if and only if it is minimal. The monotonic non-decreasing sequence of weights of vectors (weight– sequence) in a minimal basis provides an invariant of the vector space, a result that is significant because of its generality to bases of any vector space:

Theorem 3.2. [\[8\]](#page-12-3) *Let* W *be a q*-*dimensional subspace of* \mathbb{R}^n *. Let* t_1 *be the least weight of a non-zero vector in* W *and let* $B_1 = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_q)$ *, with weight–sequence* t_1, t_2, \ldots, t_q , be a basis with minimum weight-sum. If $B_2 = (\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_q)$ is another *ordered basis for* W with weight–sequence s_1, s_2, \ldots, s_q , then $\forall i, t_i \leq s_i$.

Although there may be various possible minimal bases for a vector space, by Proposition [3.2,](#page-5-0) the sequence of weights of their members is unique for the vector space. The following results are immediate.

Corollary 3.3. *A basis for a vector space is not reducible if and only if the monotonic non-decreasing sequence of the weights of its vectors is lexicographically minimal.*

Corollary 3.4. *The weight-sequence of a minimal basis for a vector space is an invariant of the vector space.*

The vertex space for a *n*-vertex graph G is considered to be \mathbb{R}^n and the nullspace $ker(G)$, is a subspace of dimension η . Note that a minimal basis B_{min} for ker(G) determines a *fundamental system of cores* of G. We now apply Corollary [3.4](#page-5-1) to singular graphs to obtain another invariant associated with the nullspace.

Proposition 3.5. *The monotonic non–decreasing sequence of core-orders in a fundamental system of cores is a graph invariant.*

Remark 3.6. The following result proved in [\[7\]](#page-12-4), provides a necessary condition, in terms of admissible subgraphs, for a graph to be of a specific nullity η .

Proposition 3.7. *Let* H *be a singular graph, without isolated vertices, having nullity* η*. There exist* η SC*s as induced subgraphs of* H *whose cores form a fundamental system of cores of* H*.*

3.2 Increasing the nullity of a graph

Proposition [3.7](#page-5-2) provides a necessary condition for a graph to be of nullity η . The following proposition, which we shall use repeatedly in what follows, gives a necessary and sufficient condition to increase the number of core vertices in a graph.

Proposition 3.8. *The nullity increases with the addition of a vertex* v *to a graph* G *forming a connected graph* $G + v$ *if and only if* v *is a core vertex of* $(G + v)$ *.*

Proof. Suppose, for contradiction, that v does not lie on any core of the resulting graph $G + v$ but $n(G) < n(G + v)$. Then all the cores of $G + v$ lie in G. But then, interlacing demands that $n(G) \ge n(G + v)$, a contradiction.

Conversely, let v be a core vertex of $(G + v)$. Then there exists a kernel eigenvector x with a non-zero entry corresponding to v. Let M be the $k \times n$ matrix whose rows are the k vectors of a basis for the nullspace of $G+v$, labelled so that the first row of M is x and the first column corresponds to v. By row-reducing M to echelon form, with all entries in the columns above and below a leading 1 (or pivot) being zero, a matrix M' is produced, whose rows give a new basis B_V for the nullspace of $G + v$, determining a system Y of cores. The first row determines the only core F in this system with vertex v. Deleting v has the effect of destroying F while retaining all the other cores in \mathcal{Y} . Thus $\eta(G) \geq \eta(G + v) - 1$.

Moreover, if $\eta(G) > \eta(G + v) - 1$, then there exists a kernel eigenvector z of G which is linearly independent of those determined by \mathcal{Y} . This kernel eigenvector becomes an additional kernel eigenvector of $G + v$ by adding a zero as a first entry; but then the $k + 1$ vectors in $B_{\mathcal{V}} \cup \{z\}$ are linearly independent in the k–dimensional nullspace of $G + v$, a contradiction. Hence $\eta(G) = \eta(G + v) - 1$. \Box

We now show that if a graph G of rank r is labelled so that the first r rows of \bf{G} are linearly independent, then G has a simple block form.

Proposition 3.9. *Let the graph* G *be of order* n *and rank* r*, with adjacency matrix* G*. Let the first* r *rows* of G *be linearly independent vectors. Then there exist a non–singular* $r \times r$ *matrix B* and a $r \times (n - r)$ *matrix* **Y** *such that*

$$
\mathbf{A}(G) = \begin{pmatrix} \mathbf{B} & \mathbf{B}\mathbf{Y} \\ \mathbf{Y}^t \mathbf{B} & \mathbf{Y}^t \mathbf{B} \mathbf{Y} \end{pmatrix}.
$$

Proof. The first r rows of G form a submatrix T of the adjacency matrix G and represent a maximal set of linearly independent row vectors of G. Each of the $\eta(G)$ row vectors R_j , $j > r$, is linearly dependent on a subset of the first r row vectors of G. The adjacency matrix G, of rank r and nullity η , can be expressed as $\begin{pmatrix} T \\ \nabla t \end{pmatrix}$ for a $r \times \eta$ matrix **Y**. To $\mathbf{Y^{t}T}$ see this, note that each linear relation between R_j , $j > r$ and the rows of T corresponds to a kernel eigenvector in the nullspace of G. Since each of these $\eta(G)$ kernel eigenvectors corresponds to a core with a unique vertex v_j (described by row vector R_j , $j > r$), these $\eta(G)$ kernel eigenvectors are linearly independent and so their first r entries form the columns of Y. Because of the symmetry of G, the block T can be expressed as $(B \ BY)$, where **B** is a $r \times r$ non-singular matrix. The result now follows immediately from the symmetry of G. П

Note that in general there are different choices of the first r rows. Also, each of the last $(n - r)$ vertices in this labelling of G lies on a core and are said to form a **singular** configuration vertex- representation denoted by R. Thus $|\mathcal{R}| = n - r = \eta$, by the Dimension Theorem. The kernel eigenvectors, forming a basis for the nullspace of G, define a system Y of η distinct cores that correspond to η singular configurations found as induced subgraphs of G. There is a one-one correspondence between $\mathcal Y$ and $\mathcal R$. The concept of the singular–configuration–vertex–representation has been used in an *ad hoc* manner in the literature and more formally in this paper.

We can also identify a singular–configuration–vertex–representation as the set of vertices corresponding to the pivots in the rows of matrix M' in the proof of Proposition [3.8.](#page-6-0) These define a vertex–representation of a fundamental system $\mathcal Y$ of $\eta(G)$ distinct cores. By Proposition [3.8,](#page-6-0) deleting a vertex v in a singular–configuration–vertex–representation reduces the nullity by one and destroys a core in $\mathcal Y$ that has vertex v .

Note that any collection of h vectors in B_{min} collectively cover at least h core-vertices of G. So the existence of a singular–configuration–vertex–representation is also guaranteed by *Hall's Theorem* (also known as *the Marriage Problem*).

Retaining the labelling of Proposition [3.9,](#page-6-1) there exist $\eta(G)$ singular configurations (with distinct spanning minimal configurations) which are induced subgraphs of G such that each singular configuration corresponds to a unique vertex $j, r < j \le n$. By scaling the corresponding kernel eigenvectors so that the last non-zero entry is 1, the following result is immediate.

Corollary 3.10. *Let* G *be of order* n *and rank* r*, with adjacency matrix* G*. Let the first* r *rows of* G *be linearly independent vectors. There exists a matrix* $\mathbf{M}^t = \begin{pmatrix} \mathbf{K}^t & \mathbf{K}^t \end{pmatrix}$ I *whose columns are the vectors of a basis for the nullspace of* G*, where the order of identity matrix* \sum *is* $n - r$.

Note that if $G = \begin{pmatrix} B & E \\ E^t & I \end{pmatrix}$ $\mathbf{E^t}$ U) has rank r and **B** is a non–singular $r \times r$ matrix, then $K = B^{-1}E = -Y$ in Proposition [3.9.](#page-6-1)

4 Nullity and core width

Remark 4.1. Henceforth we shall refer to a minimal basis B_{min} for ker(G) as $(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$ \mathbf{u}_n). The integers $wt(\mathbf{u}_1)$ and $wt(\mathbf{u}_n)$ are *extremal* values and have been referred to as the graph *singularity* κ in [\[2,](#page-12-5) [9\]](#page-12-6) and *core-width* τ in [\[6\]](#page-12-7), respectively. We focus on the zero, non-zero pattern of the entries of the vectors in $\text{ker}(G)$, to show that the nullity controls the core width.

The zero eigenvalue equation, $Gx = 0$, stipulates that the sum of the entries of x corresponding to neighbours of any vertex in G is zero. This is also known as the *Zero Sum Rule* [\[9\]](#page-12-6) which leads to a generic kernel eigenvector x_{gen} in terms of $\eta(G)$ independent parameters. One way in which to obtain a basis of $\eta(G)$ kernel eigenvectors is to set a parameter in turn equal to one and the remaining parameters equal to zero. If η non-zero entries of x_{gen} , chosen so that they are collectively functions of all the η parameters, are set to zero, then x_{gen} is forced to vanish. This concept, which has been used in the theory of singular graphs [\[4\]](#page-12-8), will be expanded upon in this section.

The Lemma that follows appears in [\[1\]](#page-12-9) for graphs with weighted edges. We give a new proof for the $(0 - 1)$ –adjacency matrix, emphasising the role of the core vertices in a singular graph. The result will enable us to relate the core-width τ to the nullity η , while the proof helps to shed more light on the graph structure.

Lemma 4.2. *If* $\eta(G) > k \geq 1$ *, then there exists* $\mathbf{x} \in \text{ker}(G)$ *, such that* x *has zero entries in any* k *specified positions.*

Proof. Let v be a core–forbidden vertex. Then any kernel eigenvector has a zero entry in that position. To prove this lemma, then, we need to show that there exists a kernel eigenvector with zeros in any k positions corresponding to core vertices.

Let the k chosen core vertices be labelled first, followed by the rest of the core vertices and ending with the core-forbidden vertices. Let M be the matrix whose rows are the vectors of a basis for the nullspace of G , ordered so that the *i*th entry in the *i*th row vector is non-zero. The only non-zero entries lie in the first $|CV|$ columns. Row-reducing M to echelon form, with all entries in the columns above and below a leading 1 being zero, produces a matrix M' , whose rows give a new basis for the nullspace of G . Thus each row of M' is non-zero. Furthermore, the pivots in the rows from the $(k + 1)$ th up to the last row have at least k zero entries preceding them. Thus the kernel eigenvectors represented by each of the last $\eta(G) - k$ rows of \mathbf{M}' satisfy the conditions of the required result. \Box

Lemma [4.2](#page-7-1) guarantees a kernel eigenvector with zero entries in *any* $\eta(G) - 1$ specified positions. In the proof, the rows of M' form a basis that can determine the minimum weight sequence and one of a possible number of minimal bases. The determination of the minimum rank of a $(0 - 1)$ –adjacency matrix, as τ varies, is regarded as an *extremal* problem. The minimum rank for various values of τ is given in Figure [2.](#page-2-0) The result that follows holds for minimal bases.

Proposition 4.3. *If* $x \in B_{min}$ *, then* x *has at least* $\eta(G) - 1$ *zero entries.*

Proof. There exists a basis B of kernel eigenvectors which are the rows of the $n \times n$ matrix M' , with all entries in the columns above and below a pivot being zero. Recall that the set of vertices corresponding to the pivots represents a singular–configuration–vertex– representation. Thus any row of M' has at least $|\eta(G)| - 1$ zero entries corresponding to all the other rows of M'. By Theorem [3.2,](#page-5-0) the weight-sequence of B_{min} is entry-wise less than that of B. Thus if $x \in B_{min}$, then x has at least $\eta(G) - 1$ zero entries. \Box

By Proposition [3.2,](#page-5-0) among all (ordered) bases for the nullspace of G, a minimal basis has the maximum number of zeros in each vector in turn. The minimum number of zeros in the vectors of a minimal basis is used to establish a method of obtaining an upperbound for the nullity.

Proposition 4.4. If the number of zero entries in a vector $\mathbf{x} \in B_{min}$ is less than k, then $n(G) \leq k$.

Proof. By Proposition [4.3,](#page-8-0) all the vectors in B_{min} have $\eta - 1$ or more zero entries so that $k-1 \geq \eta-1$, as required. \Box

Note that Proposition [4.4](#page-8-1) can also be proved by using Lemma [4.2](#page-7-1) directly. This guarantees a vector y in the nullspace with at least k zeros if $\eta(G) > k$. So suppose that $\eta(G) > k$ and the number of zero entries in each $x \in B_{min}$ is $k - 1$ or less. Since y is a linear combination of the vectors in B_{min} , by Theorem [3.2,](#page-5-0) it cannot have more than $k-1$ zero entries, contradicting the necessary condition of Lemma 4.2. Hence $\eta(G) \leq k$.

To determine the minimum number of zeros over all $\mathbf{x} \in B_{min}$, it suffices to determine the core-width τ , an invariant of the graph. Figure [2](#page-2-0) shows all the cores of order up to six and the minimum rank of graphs with a min-max core-order (or core-width) τ .

We now show that τ and η exert mutual control.

Proposition 4.5. *For a graph* G *on n vertices of nullity* η *and core width* τ , $\tau + \eta \leq n + 1$ *.*

Proof. By definition of core-width τ , there exists $y \in B_{min}$ having τ non-zero entries. If z denotes the number of zero entries in y, then $\tau + z = n$. By Proposition [4.3,](#page-8-0) $z \geq \eta(G)-1$. Thus $\tau + \eta(G) - 1 \leq n$, as required. \Box

We may ask what the threshold order of a singular graph G needs to be for a particular core F to lie in a fundamental system $\mathcal F$ of cores.

Corollary 4.6. A singular graph G of nullity η cannot have a core F_t of order t in $\mathcal F$ if $t > n + 1 - n$.

Definition 4.7. Let the order of a singular graph G be n. If the nullity is η and the core width is τ , then G is said to be **extremal singular** if $\eta + \tau$ reaches $n + 1$.

Figure 4: The nut graph 7b and a extremal singular graph of nullity five.

To determine for which graphs $\tau + \eta$ reaches the upper bound $n+1$, we need to consider as large a core width τ as is possible, for a given core–order n and nullity η . Figure [4](#page-9-0) shows a core graph which is extremal singular with the nut graph N_{7b} in a fundamental system of cores.

Proposition 4.8. *A graph* G *is extremal singular of nullity* η*, if and only if it is a core graph and the largest core in a fundamental system is a nut graph* N *and there are exactly* $\eta - 1$ *vertices of* G *not on* N*.*

Proof. Let $\tau + \eta = n + 1$ and $\mathbf{x} \in B_{min}$ have τ non-zero entries representing core F_{τ} . If z denotes the number of zero entries in x, then $\tau + z = n$ and z needs to be $\eta - 1$. As in the proof of Proposition [4.3,](#page-8-0) there exists a subset L consisting of η – 1 vertices in a singular– configuration–vertex–representation representing the cores for B_{min} other than F_{τ} , such that at the vertex positions of L, the entries of x are zero, but the entries of the other $\eta - 1$ vectors in B_{min} are collectively non-zero. Then corresponding to each vertex of G , there is a kernel eigenvector with a non-zero entry in the associated position. Hence each vertex of G is a core vertex. Now deleting L destroys exactly $\eta - 1$ cores of G leaving a subgraph H of G of order τ with core F_{τ} whose kernel eigenvector has τ non-zero entries. Thus G is a core graph and H is a nut graph whose kernel eigenvector is the non-zero part of x .

Conversely, if in a core graph G, the core corresponding to the core–width τ is a nut graph N, then $\tau + \eta(N) = |N| + 1$. By Proposition [3.8,](#page-6-0) as each of the $\eta - 1$ vertices is added to N to produce G , the graph proceeds through a series of core graphs. Both sides of the equation increases by one at each stage. Thus $\tau + \eta(G) = |G| + 1$.

Proposition 4.9. *A graph* G *is extremal singular of nullity one if and only if* G *is a nut graph.*

Proof. Recall that a nut graph is a core graph of nullity one. Thus $\tau = n$ and $\tau + \eta$ reaches the upper bound. Now for a graph with nullity one which is not a nut graph, there exist core-forbidden vertices so that $\tau < n$. \Box

Thus a nut graph of order n_1 is extremal singular and may be grown into larger extremal singular graphs with core width n_1 .

Figure 5: Non–extremal core graphs H_1 and H_2 of nullity two - with the nut graph N_{7a} as an induced subgraph.

When starting from a nut graph (N, \mathbf{x}_N) , to construct a singular graph of nullity η , in such a way that the nullity increases with each vertex addition, the vector x_N need not remain in a minimal basis. Indeed, let us start with a nut graph N and add vertices to produce a core graph. If with each vertex added, a core graph is created while (N, \mathbf{x}_N) is preserved, then the nullity increases by one with each vertex addition and the equality $|N| + \eta(G) = n + 1$ holds. If the core–width $\tau(G) = |N|$, then G is extremal singular. However, there are two other possibilities that might occur in the process of vertex addition until the *n*-vertex core graph G is produced. With some vertex addition, either a core is not created or the core (N, \mathbf{x}_N) is not preserved in a basis B_{min} for the enlarged graph G. In the former case the nullity does not reach the maximum possible for n and τ , whereas in the latter case x_N does not remain the non–zero part of a vector in a basis B_{min} for the nullspace of the adjacency matrix of the enlarged graph obtained. If either of these cases occurs, even though the nut graph N remains an induced subgraph and x_N is still a kernel eigenvector of the enlarged graph, $\tau + \eta < n + 1$, and the core graph obtained is not extremal singular. The graphs in Figure 5 illustrate these two cases. The nine-vertex

graph H_1 has $\kappa = 4$ and $\tau = 7$, with F_τ being the nut graph N_{7a} (the smallest nut graph possible [\[10\]](#page-12-0)). The nullity is two, however, not three as required for $\tau + \eta = n + 1$, because the nullity did not increase on adding the first vertex to the nut graph N_{7a} . Note that the eight vertex graph H_2 , in Figure [5,](#page-10-0) has nullity two as well. Although the nut graph N_{7a} is an induced subgraph and a core of H_2 , τ is not preserved. Thus the nut graph N_{7a} fails to remain in a Fundamental System of cores (determined by a $B_{min}(H_2)$) after the eighth vertex is added.

Proposition 4.10. *Let* G *be a singular graph of nullity* η, *having a fundamental system* F *of cores. Then* $\max_{F \in \mathcal{F}}(|F| + \eta(F)) + \eta(G) \leq n + 2$.

Proof. Let $F \in \mathcal{F}$ have kernel eigenvector \mathbf{x}_F . By Proposition [3.7,](#page-5-2) there exists a singular configuration H of order $|F| + \eta(F) - 1$ with core (F, \mathbf{x}_F) as an induced subgraph of G. By interlacing, G has at least $|H| + \eta(G) - 1$ vertices. Hence $n \geq |F| + \eta(F) + \eta(G) - 2$ for all $F \in \mathcal{F}$. П

A core in a fundamental system may be a nut graph in which case it is both a core of G and an induced singular configuration of G. If G is extremal singular, then by Proposition [4.8,](#page-9-1) a core of maximum order τ in F is a nut graph. Recall that any core F, in a fundamental system $\mathcal F$ of cores of a graph G is an induced subgraph of a singular configuration H which is in turn an induced subgraph of G. Now by definition, $|F| \leq \tau$ but is $|H| \leq \tau$? This is extremely pertinent when a core in a fundamental system $\mathcal F$ of cores of a graph G is rK_1 . In this case, the order, $2|F| - 1$, of H is relatively large when compared to |F|, in contrast with the case when F is a nut graph and $|H| = |F|$.

Lemma 4.11. Let G be an extremal singular graph with core width τ and nullity η . Let F *be a core in a fundamental system of cores of* G*. Then* $\tau \geq |F| + \eta(F) - 1.$

Proof. Since G is extremal singular, $\eta(G) + \tau = n + 1$. By Proposition [4.10,](#page-11-0) $|F| + \eta(F)$ – $1 \leq n+1-\eta(G) = \tau.$ П

Proposition 4.12. *Let* G *be an extremal singular graph of nullity* η *and core–width* τ *. Let* F *be a core having a fundamental system* F *of cores. If* H *is an induced subgraph of* G *which is a singular configuration with core F*, then $|H| \leq \tau$.

Proof. Let H be a singular configuration which is an induced subgraph of G corresponding to the core F. By Lemma [4.11,](#page-11-1) $|H| = |F| + \eta(F) - 1 \leq \tau$. П

Example 4.13. The singular configurations of the extremal singular graph of Figure [4,](#page-9-0) associated with the cores $3K_1$, $3K_1$, $3K_1$, C_4 , and the nut graph N_{7a} in a fundamental system, have order 5, 5, 5, 5, 7 respectively, supporting Proposition [4.12.](#page-11-2)

The graphs H_1 and H_2 of Figure [5](#page-10-0) are not extremal singular. The graph H_1 has core– order sequence $\{4, 7\}$ corresponding to cores C_4 and the nut graph N_{7a} , associated to singular configurations of order 5 and 7 respectively. The graph H_2 has core–order sequence $\{4, 5\}$ corresponding to cores $4K_1$ and $C_4\cup K_1$, associated to singular configurations of order 5 and 7 respectively.

Corollary 4.14. If core rK_1 is in fundamental system of cores of an extremal singular *graph, then* $r \leq \lceil \frac{\tau}{2} \rceil$.

Proof. A singular configuration H with core rK_1 has $(2r-1)$ vertices. Then $|H| = 2r-1$. By Proposition [4.12,](#page-11-2) $|H| \leq \tau$. Hence the integer $r \leq \frac{\tau+1}{2}$. \Box

5 Conclusion

The symmetry of the $(0 - 1)$ –adjacency matrix G of rank r enables its representation as a block matrix with a maximally non-singular $(r \times r)$ –principal submatrix of G. The nullspace of G can be expressed in terms of submatrices of this representation.

The presence of singular configurations as induced subgraphs in a graph is a necessary condition for a graph to be singular. In a graph G of nullity η , we showed that there is a vertex representation R consisting of η vertices corresponding to η singular configurations which are induced subgraphs of G . The choice of the vertices in \mathcal{R} , which are core vertices, is not unique. A graph may have core-forbidden vertices that do not lie on any core of G . Deletion of a core-forbidden vertex either increases the nullity or leaves it unchanged.

The core-width τ (maximum weight of the vectors in a minimal basis for the nullspace of G) is an invariant of G and was shown to have extremal properties tied with the nullity η in a *n*-vertex graph. Among all graphs on *n* vertices, $\tau + \eta$ reaches a maximum in extremal singular graphs. Not only are the core–orders in a fundamental system $\mathcal F$ of cores bounded above by τ but in extremal singular graphs, the orders of the singular configurations corresponding to the cores of $\mathcal F$ are also bounded above by τ .

References

- [1] AIM Minimum Rank – Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, *Linear Algebra Appl.* 428 (2008), 1628–1648.
- [2] M. Brown, J. W. Kennedy and B. Servatius, Graph singularity, *Graph Theory Notes of New York*, The New York Academy of Sciences 25 (1993), 23–32.
- [3] A. J. Schwenk and R. J. Wilson, On the eigenvalues of a graph, in: L. W. Beineke and R. J. Wilson (eds.), *Selected Topics in Graph Theory*, Academic Press, London, 1978, 307–336.
- [4] I. Sciriha, On the coefficient of λ in the characteristic polynomial of singular graphs, *Util. Math.* 52 (1997), 97–111.
- [5] I. Sciriha, On the construction of graphs of nullity one, *Discrete Math.* 181 (1998), 193–211.
- [6] I. Sciriha, On the rank of graphs, in: Y. Alavi, D. R. Lick and A. Schwenk (eds.), *Combinatorics, graph theory and algorithms* 2, New Issues Press, Kalamazoo, Michigan, 1999, 769– 778.
- [7] I. Sciriha, A characterization of singular graphs, *Electron. J. Linear Algebra* 16 (2007), 451– 462.
- [8] I. Sciriha, S. Fiorini and J. Lauri, A minimal basis for a vector space, *Graph Theory Notes of New York*, The New York Academy of Sciences 31 (1996), 21–24.
- [9] I. Sciriha and I. Gutman, Graphs with maximum singularity, *Graph Theory Notes of New York*, The New York Academy of Sciences 30 (1996), 17–20.
- [10] I. Sciriha and I. Gutman, Nut graphs: maximally extending cores, *Util. Math.* 54 (1998), 257– 272.