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Abstract

In this paper, we investigate the isomorphism problems of the generalized Cayley
graphs, which are generalizations of the traditional Cayley graphs. We find that there are
two types of natural isomorphisms for the generalized Cayley graphs. We also study the
GCI-groups among the generalized Cayley graphs, and the Cayley regressions of some
groups. We mainly showed that, for an odd prime power n, Z2n (resp. D2n) is a restricted
GCI-group if D2n (resp. Z2n) is a CI-group. We also obtain that the cyclic group of order
2n is a 4-quasi-Cayley regression if and only if n = 3.

Keywords: Generalized Cayley graph, natural isomorphism, GCI-group, Cayley regression.

Math. Subj. Class.: 05C25, 20D20

1 Introduction
Let G be a finite group, S ⊆ G be a subset and α ∈ Aut(G). If G,S, α satisfy the
following three conditions:
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(i) α2 = 1;

(ii) if g ∈ G, then α(g−1)g /∈ S;

(iii) if g, h ∈ G and α(g−1)h ∈ S, then α(h−1)g ∈ S,

then the structure Γ = GC(G,S, α) is called a generalized Cayley graph with V (Γ) = G,
E(Γ) = {{g, h} | α(g−1)h ∈ S}. The neighborhood of a vertex g ∈ G is the set of
vertices adjacent to g, denoted by N(g). Then N(g) = {α(g)s | s ∈ S}.

According to condition (i), α is either the identity of Aut(G) or an involution. When
α is the identity, then the definition of GC(G,S, α) is just the same as that of Cayley
graphs, and thus GC(G,S, α) = Cay(G,S). In this case, S is symmetrical, i.e., S =
S−1 = {s−1 | s ∈ S} and for σ ∈ Aut(G), we have that σ acts on V (Γ) naturally
as V (Γ) = G. Also, if T = Sσ , then there is a bijection from Γ to Γσ = Cay(G,T )
induced by σ, defined as σ : V (Γ) → V (Γσ), g 7→ gσ . It follows Γ ∼= Γσ . This kind
of isomorphism between Cayley graphs induced by the automorphisms of G is called the
Cayley isomorphism. It should be mentioned that not all isomorphisms between Cayley
graphs are Cayley isomorphisms. In fact, there are pairs of isomorphic Cayley graphs with
no Cayley isomorphism between them. This encourages us to investigate the so-called
CI-graphs and CI-groups defined below.

Definition 1.1. A Cayley graph Cay(G,S) is called a CI-graph of G, if for any Cayley
graph Cay(G,T ), Cay(G,S) ∼= Cay(G,T ) implies Sσ = T for some σ ∈ Aut(G). In
this case, S is called a CI-subset. Furthermore, G is called a CI-group if any symmetrical
subset not containing the identity is a CI-subset.

For those graphs having particular transitive properties, such as Cayley graphs and bi-
Cayley graphs, their isomorphism problems are well studied in the literature (recall that a
bi-Cayley graph is a graph which admits a semiregular group of automorphisms with two
orbits on the vertices). The isomorphism problem for Cayley graphs was proposed decades
ago and has been investigated deeply up to now. It was initiated by Ádám in 1967 who
conjectured that any cyclic group is a DCI-group, where a DCI-group satisfies that any
subset not containing the identity and not necessarily symmetrical is a CI-subset. Although
this conjecture was soon denied by Elspas and Turner [4], it stimulated the study of CI- and
DCI-groups. Alspach, Parsons [1] and Babai [3] presented a criteria for CI-graphs. Muzy-
chuk [18, 19] obtained a complete classification of the CI-groups in finite cyclic groups.
Li [14] showed that all finite CI-groups are solvable. The isomorphism problem and the
automorphism groups for bi-Cayley graphs have also been studied flourishingly; one may
refer to [10, 11, 28]. Other related results could be found in [15, 16, 23, 24, 26, 27].

The concept of generalized Cayley graphs was introduced by Marušič et al. [17] when
they dealt with the double covering of graphs. Answering a question in [17], the authors in
[8] found some vertex-transitive generalized Cayley graphs which are not Cayley graphs.
Further, the authors in [25] studied the isomorphism problems of generalized Cayley graphs
and found that the alternating group An is a restricted GCI-group if and only if n = 4.

The present paper can be regarded as the continuance of the above work, and also pro-
vides support to the question at the end of [8], where the authors asked for the classification
of all generalized Cayley graphs arising from cyclic groups. The structure of this paper is
as follows. In Section 2, we give several properties of the generalized Cayely graphs and
some lemmas which will be used later. In Section 3, we introduce two types of natural
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isomorphisms for any generalized Cayley graph. In Section 5, we study the GCI-groups in
cyclic groups. We show that when G is a dihedral group of order 2n with n an odd prime
power, if G is a CI-group, then Z2n is a restricted GCI-group. In Section 6, we study the
GCI-groups in dihedral groups. We show that when G is a cyclic group of order 2n with n
an odd prime power, if G is a CI-group, then D2n is a restricted GCI-group. In Section 7,
we study the Cayley regressions, a concept relating to both Cayley graphs and generalized
Cayley graphs. We show that the cyclic group Z2n is a 4-quasi-Cayley regression if and
only if n = 3. Finally, we propose some questions for future research.

2 Preliminaries
All graphs considered in the paper are simple, finite and undirected. All the automorphisms
in the paper that induce generalized Cayley graphs are assumed to be some involutions.

Let G be a finite group that admits an automorphism α of order two. For g = 1,
we have α(h−1) ∈ S whenever h ∈ S, by condition (iii), implying α(S) = S−1. Let
ωα : G→ G be the mapping defined by ωα(g) = α(g−1)g for any g ∈ G. Note that ωα is
not necessarily a bijection. Let ωα(G) = {ωα(g) | g ∈ G}. We use the same notation and
terminology as in [8]. Suppose s ∈ S, then α(s) ∈ α(S), and thus α(s) ∈ S−1. Therefore
s ∈ S if and only if α(s−1) ∈ S. Let Ωα be the set containing all elements satisfying
α(g) = g−1 in G \ ωα(G), and fα be the set containing all elements in G satisfying
α(g) 6= g−1. Let Kα = {g ∈ G | α(g)g = 1}. Then we have

Proposition 2.1 ([25]). Let GC(G,S, α) be a generalized Cayley graph of G. Then

(1) S ∩ ωα(G) = ∅. Conversely, if S ∩ ωα(G) = ∅, α is an involution in Aut(G) and
α(S) = S−1, then G,S, α can induce a generalized Cayley graph.

(2) G = Kα ∪fα and Kα = ωα(G)∪Ωα. Furthermore, ωα(G),Ωα,fα are all symmet-
rical.

(3) S = S1 ∪ S2, where S1 ⊆ Ωα and S2 ⊆ fα.

Proposition 2.2. Let G be a finite group admitting two automorphisms α, β of order two.
If α, β are conjugate in Aut(G), then Cay(G,ωα(G) \ {1}) ∼= Cay(G,ωβ(G) \ {1}).

Proof. By Proposition 2.1, we have ωα(G) = ωα(G)−1 and ωβ(G) = ωβ(G)−1. Since
α, β are conjugate, there exists some γ ∈ Aut(G) such that β = γαγ−1 = αγ . Therefore

γ(ωα(G)) = {γ(α(g−1)g) | g ∈ G}
= {γαγ−1γ(g−1)γ(g) | g ∈ G}
= {β(γ(g)−1)γ(g) | γ(g) ∈ G}
= ωβ(G).

It follows that γ(ωα(G) \ {1}) = ωβ(G) \ {1}. Hence the result follows.

Theorem 2.3. Let G be a finite group admitting an automorphism α of order two, S ⊆ G
such that S ∩ ωα(G) = ∅. Let Φ(g) = α(g)Sg−1. If S is symmetrical and Φ(g) = S for
any g ∈ G, then GC(G,S, α) ∼= Cay(G,S).
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Proof. Let Γ1 = GC(G,S, α) and Γ2 = Cay(G,S). Let φ : V (Γ1) → V (Γ2), x 7→ x−1

be a bijection between these two graphs. For any {g, h} ∈ E(Γ1), there exists some
s ∈ S such that h = α(g)s. {g, h}φ = {g−1, h−1}. Note that gh−1 = gs−1α(g)−1 =
α(α(g))s−1α(g)−1. Since S is symmetrical and Φ(g) = S for any g ∈ G, we have
α(α(g))s−1α(g)−1 ∈ S. This implies {g, h}φ ∈ E(Γ2), and thus GC(G,S, α) ∼=
Cay(G,S).

Theorem 2.3 can be regarded as a criteria to judge whether some generalized Cayley
graphs are Cayley graphs or not.

Theorem 2.4. Let G be any finite group admitting an automorphism α of order 2. Then
we have GC(G,S, α) ∼= Cay(G,S), where S = fα,Ωα or G \ ωα(G).

Proof. By proposition 2.1, G = ωα(G) ∪ Ωα ∪ fα. For any g ∈ G, G = α(g)Gg−1.
For any x ∈ ωα(G), there exists some h ∈ G such that x = α(h−1)h. So α(g)xg−1 =
α(g)α(h−1)hg−1 = α((hg−1)−1)hg−1, and hence ωα(G) = α(g)ωα(G)g−1. As a result,
Ωα ∪ fα = α(g)Ωαg

−1 ∪ α(g)fαg−1.
For any s ∈ Ωα, assume that α(g)sg−1 ∈ fα, then α(α(g)sg−1)−1 ∈ fα and

α(g)sg−1 6= α(α(g)sg−1)−1. Since α(α(g)sg−1)−1 = α(g)α(s−1)g−1, we have that
s 6= α(s−1), which is a contradiction as s ∈ Ωα. This means α(g)sg−1 ∈ Ωα. Thus,
Ωα = α(g)Ωαg

−1 and fα = α(g)fαg−1. By Theorem 2.3, we get the result.

Let Fix(α) = {g ∈ G | α(g) = g}. So Fix(α) ≤ G and we have the following lemma.

Lemma 2.5 ([8]). |ωα(G)| = |G|
|Fix(α)| .

Note that some references also use CG(α) to denote Fix(α). Those papers mainly
investigate the properties of the finite groups which admit involutory automorphisms; one
can refer to [2, 13, 21, 22]. Although those problems are not considered in this paper, we
borrow the following well-known result.

Lemma 2.6 ([7]). Let G be a finite group of odd order admitting an automorphism φ of
order two. Then the following statements hold.

(1) G = FK = KF , F ∩K = 1, and |K| = |G : F |, where F = CG(φ) and K = Kφ;

(2) Two elements of K conjugate in G are conjugate by an element of F ;

(3) If H is a subgroup of F , then NG(H) = CG(H)NF (K).

By Lemmas 2.5 and 2.6, we get

Proposition 2.7. Let G be a group of odd order admitting an automorphism α of order
two. Then Ωα = ∅.

Proof. By Lemmas 2.5 and 2.6, |Kα| = |ωα(G)| = |G|
|Fix(α)| . As Kα = ωα(G) ∪ Ωα, we

obtain Ωα = ∅.

Remark 2.8. By Proposition 2.7, for any generalized Cayley graph GC(G,S, α), if |G|
is odd, S ⊆ fα. We present an alternative proof avoiding Lemmas 2.5 and 2.6. If Ωα 6=
∅, assume that fα = ∅. Then G is an abelian group of odd order by Proposition 2.1.
Thus α is a fixed-point-free automorphism of G. Then Kα = ωα(G) = G according
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to [7, Lemma 10.1.1], which is a contradiction. This implies that fα 6= ∅. Since the
S in GC(G,S, α) are choosen from Ωα and fα. Therefore |S| must be odd, which is a
contradiction as, there are no regular graphs of odd order with odd valency. This implies
Ωα = ∅.

It is well known that a finite group G of odd order is solvable by Feit-Thompson Theo-
rem [5]. From above, we can see that the classification of GC(G,S, α) of finite group G of
odd order seems to be more clear as the elements of S can only be chosen from fα since
Ωα = ∅.

In [8], Hujdurović et al. defined the following set

Aut(G,S, α) = {ϕ ∈ Aut(G) | ϕ(S) = S, αϕ = ϕα}.

Moreover, one sees that Aut(G,S, α) = Aut(G,S) ∩ CAut(G)(α), where Aut(G,S) =
Aut(G,S, 1).

Proposition 2.9. Let S be the set as in (3) of Proposition 2.1. Then Aut(G,S, α) =
Aut(G,S1, α)∩Aut(G,S2, α) = Aut(G,S1)∩Aut(G,S2)∩CAut(G)(α). Furthermore,
the couples of the form like {s, α(s−1)} are imprimitive blocks of Aut(G,S, α).

Proof. For any s ∈ S1 and s′ ∈ S2, if there exists some ϕ ∈ Aut(G,S, α) such that
s = ϕ(s′), then αϕ(s′) = α(s). Since αϕ = ϕα and s = α(s−1), ϕα(s′−1) = s.
This implies α(s′) = s′−1, which is a contradiction as s′ ∈ S2. Hence ϕ(S1) = S1 and
ϕ(S2) = S2 for any ϕ ∈ Aut(G,S, α).

Let ∆ = {s, α(s−1)} be a couple in S2. For any ϕ ∈ Aut(G,S, α), ∆ϕ ⊆ S2. If
∆ ∩∆ϕ 6= ∅, then s = ϕ(s) or s = ϕα(s−1). If s = ϕ(s), then α(s−1) = ϕα(s−1). If
s = ϕα(s−1), then α(s−1) = ϕ(s). This implies that ∆ = ∆ϕ. Thus ∆ is an imprimitive
block.

Let GC(G,S, α) be a generalized Cayley graph of G. Under the condition of Propo-
sition 2.9, S ∩ S−1 = (S1 ∪ S2) ∩ (S1 ∪ S2)−1 = (S1 ∩ S−11 ) ∪ (S1 ∩ S−12 ) ∪ (S2 ∩
S−11 ) ∪ (S2 ∩ S−12 ). Note that S1 ∩ S−12 = S2 ∩ S−11 = ∅, it follows that S ∩ S−1 =
(S1 ∩ S−11 ) ∪ (S2 ∩ S−12 ). Since S1 ⊆ Ωα, and Ωα is symmetrical, so S1 ∩ S−11 ⊆ Ωα.
Similarly, S2 ∩ S−12 ⊆ fα. Let T = S ∩ S−1. It follows that GC(G,T, α) is still
a generalized Cayley graph of G. We call GC(G,T, α) the induced generalized Cayley
graph of GC(G,S, α). Note that T−1 = T , this encourages us to consider the Cayley
graph Cay(G,T ), called the induced Cayley graph of GC(G,S, α). Next we consider
Aut(G,S, α), Aut(G,T, α) and Aut(G,T ).

Proposition 2.10. Aut(G,S, α) ≤ Aut(G,T, α) ≤ Aut(G,T ). Furthermore,
Aut(G,S, α) < Aut(G,T, α) if S is not symmetrical; Aut(G,T, α) = Aut(G,T ) if
α ∈ Z(Aut(G)).

Proof. For any ϕ ∈ Aut(G,S, α), we have ϕ(S) = S and ϕ(S−1) = S−1, thus
ϕ(T ) = T , ϕ ∈ Aut(G,T, α). If S is not symmetrical, we have α /∈ Aut(G,S, α) as
α(S) = S−1 6= S, but α ∈ Aut(G,T, α) as α(T ) = T . Aut(G,T, α) ≤ Aut(G,T )
is obvious by the definition. Since Aut(G,T, α) = Aut(G,T ) ∩ CAut(G)(α), we get the
result.

Finally, we introduce a lemma about the connectivity of the generalized Cayley graph.
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Lemma 2.11. Let G be a group, A ⊆ G and α ∈ Aut(G) of order 2. The generalized
Cayley graph X = GC(G,A, α) is connected if and only if A is a left generating set for
(G, ∗), where f ∗ g = α(f)g for all f, g ∈ G.

3 Two basic types of isomorphisms
In this section, we will introduce two types of natural isomorphisms of generalized Cayley
graphs for any finite group. First, we introduce the first type of natural isomorphism found
by A. Hujdurović et al.

Theorem 3.1 ([9]). GC(G,S, α) ∼= GC(G,Sβ , αβ) for any β ∈ Aut(G), where
αβ = βαβ−1.

Remark 3.2. From Theorem 3.1, one can see that if α, γ are conjugate, then there is a
generalized Cayley graph GC(G,S, α) if and only if there is a generalized Cayley graph
GC(G,Sβ , γ) with γ = αβ such that these two graphs are isomorphic. Hence, if we
intend to study all the generalized Cayley graphs of some group G, we only need to study
the generalized Cayley graphs related to the representatives of the conjugacy classes of
elements in Aut(G).

Corollary 3.3. GC(G,S, α) ∼= GC(G,S−1, α).

Proof. Let β = α. Then GC(G,S, α) ∼= GC(G,α(S), αα) by Theorem 3.1. Note that
α(S) = S−1, this completes the proof.

Next, we introduce the second type of natural isomorphism.

Theorem 3.4. Let GC(G,S, α) be a generalized Cayley graph. Then GC(G,α(g)Sg−1, α)
is also a generalized Cayley graph of G for any g ∈ G. Furthermore, GC(G,S, α) ∼=
GC(G,α(g)Sg−1, α).

Proof. For any x ∈ G, if α(x−1)x ∈ α(g)Sg−1, α(g−1)α(x−1)xg ∈ S, that is,
α((xg)−1)xg ∈ S, which conflicts with condition (ii). If α(x−1)y ∈ α(g)Sg−1, then
we have α((xg)−1)yg ∈ S. Thus α((yg)−1)xg ∈ S by condition (iii). It follows that
α(y−1)x ∈ α(g)Sg−1. Therefore, GC(G,α(g)Sg−1, α) is also a generalized Cayley
graph of G for any g ∈ G.

Let Γ = GC(G,S, α) and Γg = GC(G,α(g)Sg−1, α). Let θ : V (Γ) → V (Γg),
a 7→ ag−1. So θ is a bijection. For any {a, b} ∈ E(Γ), α(a−1)b ∈ S. Since

α((ag−1)−1)(bg−1) = α(g)(α(a−1)b)g−1 ∈ α(g)Sg−1,

we have {ag−1, bg−1} ∈ E(Γg). Therefore {a, b} ∈ E(Γ) if and only if {a, b}θ ∈ E(Γα).
Thus they are isomorphic.

According to Theorem 3.1, Γ ∼= Γβ for any β ∈ Aut(G), we call the mapping x 7→ xβ

the the first basic type of isomorphism of Γ. By Theorem 3.4, Γ ∼= Γg for any g ∈ G, we
call the mapping x 7→ xg−1 the second basic type of isomorphism of Γ.

For any g ∈ G, R(g) : x 7→ xg is a permutation of G. Set R(H) = {R(h) | S =
α(h)Sh−1}.

Theorem 3.5. Let Γ = GC(G,S, α) be a generalized Cayley graph. Then R(H) ≤
Aut(Γ).
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Proof. For any {a, b} ∈ E(Γ), it suffices to show that {a, b}R(h) ∈ E(Γ) for any R(h) ∈
R(H). Since {a, b} ∈ E(Γ), α(a−1)b ∈ S = α(h)Sh−1. It follows that α((ah)−1)bh ∈
S, which implies that {ah, bh} ∈ E(Γ). Thus R(h) ∈ Aut(Γ). For any R(h), R(h′) ∈
R(H), S = α(h)Sh−1 and S = α(h′)Sh′−1. Therefore S = α(h′−1h)S(h′−1h)−1, thus
R(h′−1h) ∈ R(H). This implies that R(H) ≤ Aut(Γ).

4 GCI, restricted GCI and strongly GCI groups
Similarly to the CI-groups in Cayley graphs and BCI-groups in bi-Cayley graphs, we pro-
pose the following definitions relating to generalized Cayley graphs.

Definition 4.1. Let G be a finite group. Let M be the set of all Cayley graphs and N be
the set of all generalized Cayley graphs constructed by automorphisms of order two. Then

1. G is called a GCI-group if both of the following are satisfied:

(i) for any two nontrivial generalized Cayley graphs GC(G,S, 1) and GC(G,T, 1)
in M , whenever GC(G,S, 1) ∼= GC(G,T, 1), there exists δ ∈ Aut(G) such
that Sδ = T .

(ii) for any two nontrivial generalized Cayley graphs GC(G,S, α) and GC(G,T, β)
in N , whenever GC(G,S, α) ∼= GC(G,T, β), there exists δ ∈ Aut(G) such
that β = αδ = δαδ−1 and T = αδ(g)Sδg−1.

2. G is called a restricted GCI-group if (ii) is satisfied.

3. G is called a strongly GCI-group if for any nontrivial GC(G,S, α), whenever
GC(G,S, α) ∼= GC(G,T, β), there exists δ ∈ Aut(G) such that β = αδ = δαδ−1

and T = αδ(g)Sδg−1.

Remark 4.2.

1. The definition is based on Theorems 3.1 and 3.4 and Definition 1.1. The two basic
types of isomorphisms and their compositions are called the natural isomorphisms
of generalized Cayley graphs. For instance, GC(G,S, α) ∼= GC(G,Sγ , αγ) by
Theorem 3.1, GC(G,Sγ , αγ) ∼= GC(G,αγ(g)Sγg−1, αγ) by Theorem 3.4, then we
have GC(G,S, α) ∼= GC(G,αγ(g)Sγg−1, αγ).

2. The word ‘nontrivial’ in the definition means that the null graph is not considered.
In fact, if it is included, for a finite group G which has an automorphism α of or-
der 2, GC(G, ∅, 1) and GC(G, ∅, α) are both isomorphic to the null graph. By the
definition, G cannot be a strongly GCI-group, otherwise it will make the definition
meaningless, thus the null graph is not considered in the definition.

3. If a finite group G has no automorphisms of order two, then we still consider that (ii)
is satisfied for G.

4. By definition, strongly GCI-group implies GCI-group, GCI-group implies CI-group
and restricted GCI-group. However, restricted GCI does not imply GCI and does not
imply CI either. If G is not a restricted GCI-group or a CI-group, then it is not a
GCI-group either.

Next we will give some examples of finite groups satisfying special conditions:
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Example 4.3. Let G = Z4. Then G is a GCI group by Theorem 5.2. However, let
α : x 7→ −x be an involution. Thus GC(G, {1}, α) is a generalized Cayley graph of G.
Also, GC(G, {2}, 1) is a generalized Cayley graph of G. Although GC(G, {1}, α) ∼=
GC(G, {2}, 1) but, α is not conjugate to 1, that means G is not a strongly GCI group.
Therefore Z4 is a GCI but not strongly GCI group.

Let G = Z8. Then G is a CI group [19]. However, Z2n is a GCI group if and only if it
is Z2 or Z4 by Theorem 5.2. It follows that G is not a GCI group. Thus Z8 is a CI but not
GCI group.

Though we find example of CI but not restricted GCI groups, like Z8, we have not
found out the example of restricted GCI but not CI groups up to now. Thus we propose the
following question:

Question 4.4. Is every restricted GCI group a CI group?

The next theorem is useful to determine whether a group is a restricted GCI-group or
not.

Theorem 4.5. Let G be a finite group admitting two automorphisms α, β of order two. If
α, β satisfy the following three conditions:

(1) α and β are not conjugate;

(2) |ωα(G)| 6= |Kα|;

(3) |ωβ(G)| 6= |Kβ |,

then G is not a restricted GCI-group.

Proof. Assume |G| = n. If these three conditions are satisfied, then n is even by Proposi-
tion 2.7. Furthermore, there must exist two generalized Cayley graphs, say GC(G, {s}, α)
and GC(G, {s′}, α), which are both isomorphic to n

2K2. But there is no natural automor-
phism as α and β are not conjugate. Hence G is not a restricted GCI-group.

To conclude, we give the characterization of strongly GCI-groups.

Theorem 4.6. A finite group G is a strongly GCI-groups if and only if G is a CI-group and
one of the following is true for G:

(1) G has no involutory automorphisms;

(2) all involutory automorphisms are fixed-point-free.

Proof. First we show the necessity. If G is a strongly GCI-groups, then G must be a CI-
group. If not all involutory automorphisms of G are fixed-point-free automorphisms or, as
we will show thatG has no automorphisms of order two. If there exists some involutory au-
tomorphism which is not fixed-point-free, say α, this means |Fix(α)| 6= 1. By Lemma 2.5,
we get ωα(G) 6= G. Since G = ωα(G) ∪ Ωα ∪ fα by Proposition 2.1, it follows that
Ωα ∪ fα 6= ∅. Thus at least one of Ωα and fα, say Ωα, is not an empty set. According to
Theorem 2.4, GC(G,Ωα, α) ∼= GC(G,Ωα, 1) which is not a null graph. This is a contra-
diction to the fact that G is a strongly GCI-group. Therefore G has no automorphisms of
order two since otherwise all automorphisms of order two of G are fixed-point-free auto-
morphisms. If G has no automorphisms of order two, then G must be a CI-group as G is a
strongly GCI-group.
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Next we show the sufficiency. Suppose that all automorphisms of order two of G are
fixed-point-free. Let α ∈ Aut(G) be such an involution. Then G = ωα(G) by Lemma 2.5,
so any generalized Cayley graph induced by involutory automorphism is a null graph.

5 The cyclic GCI groups
Theorem 5.1. The cyclic group of order pn with p an odd prime is a GCI-group if and only
if it is a CI-group.

Proof. LetG = Zpn . ThenG has only one automorphism of order two, that is α : x 7→ −x.
Note that ωα(G) = {α(g−1)g | g ∈ G} = {2g | g ∈ G}, it follows that S = ∅ as any
non-identity of G is a square since |G| is odd. Thus the only generalized Cayley graph of
G induced by automorphisms of order two is GC(G, ∅, α) ∼= pnK1.

Babai [3] classified the CI-groups of cyclic groups of order 2p with p a prime. God-
sil [6] classified the CI-groups of cyclic groups of order 4p. Next we will classify the
GCI-groups of cyclic groups of even order. We will deal with the problem step by step in
this section.

Theorem 5.2. Let G be a finite cyclic group of order 2n. Then G is a GCI-group if and
only if n = 1, 2.

Proof. Let G = Z2n = {0, 1, . . . , 2n − 1}. When n = 1, Aut(G) = 1, there are no
automorphisms of order two in Aut(G). Therefore G is a GCI-group by Definition 4.1.
When n = 2, then Aut(G) ∼= Z2, there is a unique element of order two in Aut(G) since
Aut(G) is cyclic, say α : x 7→ −x. If g ∈ G, then α(g−1)g = 2g /∈ S. Hence S ⊆ {1, 3}.
Therefore there are only three generalized Cayley graphs of G, with S being {1}, {3} and
{1, 3}, respectively. Let Γ1 = GC(G, {1}, α), Γ2 = GC(G, {3}, α). Note that −1 ≡ 3
(mod 4), and so Γ1

∼= Γ2 by Corollary 3.3.
When n ≥ 3, then Aut(G) ∼= Z2 × Z2n−2 , and there are only three automorphisms of

order two in Aut(G), say,

α : x 7→ −x, β : x 7→ (2n−1 − 1)x, γ : x 7→ (2n−1 + 1)x.

Let S = {1, 2n−1 + 1}. Since 1 6≡ 2n−1 + 1 (mod 2n) and they are both odd, we have
S ∩ωα(G) = ∅ as ωα(g) = α(g−1)g = 2g is even for any g ∈ G. Further, S ∩ωβ(G) = ∅
as ωβ(g) = β(g−1)g ≡ 2n−1g + 2g (mod 2n) is also even for any g ∈ G. Recall that
β(−1) = 2n−1 + 1, α(−1) = 1 and α(−(2n−1 + 1)) = 2n−1 + 1, hence α(S) = S−1

and β(S) = S−1. Therefore both GC(G,S, α) and GC(G,S, β) are generalized Cayley
graphs of G.

Let Γ1 = GC(G,S, α). Since |S| = 2, the valency of Γ1 is two. For any x ∈ V (Γ1),
N(x) = {α(x) + y | y ∈ S} = {−x+ 1,−x+ 2n−1 + 1}. Consider the vertex 2n−1 + x
(mod 2n), it follows that x 6≡ 2n−1+x (mod 2n). N(2n−1+x) = {α(2n−1+x)+y | y ∈
S} = {2n−1−x+1,−x+1}. Thus ‘x→ (−x+1)→ (2n−1+x)→ (2n−1−x+1)→ x’
is a 4-cycle in Γ1. Therefore Γ1

∼= 2n−2C4.
Let Γ2 = GC(G,S, β). Since |S| = 2, the valency of Γ2 is two. For any x ∈ V (Γ2),

N(x) = {β(x) + y | y ∈ S} = {(2n−1 − 1)x + 1, (2n−1 − 1)(x − 1)}. We consider
the vertex 2n−1 + x (mod 2n). Then N(2n−1 + x) = {β(2n−1 + x) + y | y ∈ S} =
{(2n−1−1)x−2n−1+1, (2n−1−1)x+1}. Thus ‘x→ (2n−1−1)x+1→ (2n−1+x)→
(2n−1 − 1)(x− 1)→ x’ is a 4-cycle in Γ1. Therefore Γ2

∼= 2n−2C4.
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From above, GC(G,S, α) ∼= GC(G,S, β) ∼= 2n−2C4, but α and β are not conjugate in
Aut(G) as Aut(G) is abelian, henceG is not a restricted GCI-group by Definition 4.1.

Theorem 5.3. LetG be a finite cyclic group of order 2apb with p an odd prime and a, b > 0.
If G is a restricted GCI-group, then a = 1.

Proof. Since G is a finite cyclic group of order 2apb, let G = G1 ×G2, where G1 = Z2a

and G2 = Zpb .
We claim that a ≤ 2. Now we suppose a ≥ 3. By Theorem 5.2, α : (g1, g2) 7→

(−g1, g2) and β : (g1, g2) 7→ ((2n−1 − 1)g1, g2) are two different automorphisms of G
with order two when a ≥ 3. Let S = {(1, 0), (2n−1, 0)}. Then GC(G,S, α) and
GC(G,S, β) are two generalized Cayley graphs of G. According to Theorem 5.2, we
have GC(G,S, α) ∼= GC(G,S, β) ∼= 2n−2pbC4. Note that α and β are not conjugate in
Aut(G), it follows that a ≤ 2.

Assume a = 2. Note that α : (g1, g2) 7→ (−g1, g2), β : (g1, g2) 7→ (g1,−g2) are two
automorphisms of G. Furthermore, ωα(G) = {(0, 0), (2, 0)}, Kα = {(g1, 0) | g1 ∈ G1}.
Therefore Ωα = {(1, 0), (3, 0)}. ωβ(G) = {(0, g2) | g2 ∈ G2}, Kβ = {(0, g2), (2, g2) |
g2 ∈ G2}. Thus Ωβ = {(2, g2) | g2 ∈ G2}. Let S1 = {(1, 0)} and S2 = {(2, 0)}. We can
see that GC(G,S1, α) ∼= GC(G,S2, β) ∼= 2pbK2. However α and β are not conjugate as
Aut(G) is abelian. It follows from above discussion that a = 1.

Theorem 5.4. Let G be a finite cyclic group of order n, where n is even with at least two
different odd prime divisors. Then G is not a restricted GCI-group.

Proof. Suppose that n = ps00 ·p
s1
1 · · · p

sk
k , where p0 = 2, pi, pj are different odd primes for

any i, j ∈ {1, . . . , k} and st ≥ 1 is an integer for any t ∈ {0, 1, . . . , k}, k ≥ 2. It follows
that G can be decomposed into the direct product of some cyclic groups, say

G = G0 × · · · ×Gk = Z2s0 × Zps11 × · · · × Zpskk , where Gi = Zpsii
, i = 0, 1, . . . , k.

Let
α : (x0, x1, . . . , xk) 7→ (x0,−x1, . . . , xk)

and
β : (x0, x1, x2, . . . , xk) 7→ (x0, x1,−x2, . . . , xk).

Since k ≥ 2, then suchα, β can not appear in Aut(G). Obviously ωα(G) = {(0, x1, 0, . . . ,
0) | x1 ∈ G1} and ωβ(G) = {(0, 0, x2, . . . , 0) | x2 ∈ G2}. Let gi ∈ Gi, i ∈ {0, 1, . . . , k}
and g0 the element of order two. Then (g0, g1, 0, . . . , 0) ∈ Ωα and (g0, 0, g2, 0, . . . , 0) ∈
Ωβ . Therefore GC(G, {(g0, g1, 0, . . . , 0)}, α) and GC(G, {(g0, 0, g2, 0, . . . , 0)}, β) are
both generalized Cayley graphs of G. In fact, they are both isomorphic to n

2K2, but α and
β are not conjugate in Aut(G). Thus G is not a restricted GCI-group by Theorem 4.5.

Theorem 5.5. Let G = Z2n, where n is an odd prime power. Then G is not a strongly
GCI-group.

Proof. Let G = 〈a, b | an = b2 = 1, ab = ba〉. It can be checked that the mapping
α : a 7→ a−1, b 7→ b is the only automorphism of G of order two. Also Ωα = {aib |
i ∈ {1, . . . , n}} and fα = ∅ by direct computation. Let GC(G,S, α) be any generalized
Cayley graph of G. Then S ⊆ Ωα. Let H = 〈a′, b′ | a′n = b′2 = 1, b′a′b′ = a′−1〉 and
ϕ : as 7→ a′s, atb 7→ a′−tb. It follows that ϕ is a bijection from G to H . Furthermore,
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GC(G,S, α) ∼= Cay(H,ϕ(S)). Let S = {ab, a2b}. Then ϕ(S) = {a−1b, a−2b}, this
implies Cay(H,ϕ(S)) ∼= C2n as 〈ϕ(S)〉 = H . Let T = {ab, a−1b}. Then 〈T 〉 = G,
therefore Cay(G,T ) ∼= C2n. Thus GC(G,S, α) ∼= GC(G,T, 1) ∼= C2n, which means
that G is not a strongly GCI-group from Definition 4.1.

Theorem 5.6. Let G = Z2n, H = D2n, where n is an odd prime power. Then G is a
restricted GCI-group if H is a CI-group.

Proof. Let G = 〈a, b | an = b2 = 1, ab = ba〉 and H = 〈a′, b′ | a′n = b′2 =
1, b′a′b′ = a′−1〉. It is easy to see that α : a 7→ a−1, b 7→ b is the only automorphism
of G of order two. Then we have Ωα = {aib | i ∈ {1, . . . , n}} and fα = ∅ by direct
computation. Let GC(G,S, α) be any generalized Cayley graph of G. Then S ⊆ Ωα.
Let ϕ : as 7→ a′s, atb 7→ a′−tb. Obviously ϕ is a bijection from G to H . Further-
more, GC(G,S, α) ∼= Cay(H,ϕ(S)). Assume that GC(G,S1, α) ∼= GC(G,S2, α), then
Cay(H,ϕ(S1)) ∼= Cay(H,ϕ(S2)). Since H is a CI-group, there exists some γ ∈ Aut(H)
such that γ(ϕ(S1)) = ϕ(S2). Without loss of generality, assume that there exist k, l sat-
isfying (k, n) = 1 and 1 ≤ l ≤ n such that γ is the mapping a′ 7→ a′k, b′ 7→ a′lb′. Let
δ : a 7→ ak, b 7→ b. Then δ ∈ Aut(G). Since n is some odd prime power, there must exist
some 1 ≤ m ≤ n such that al = a2m. Therefore there exist δ ∈ Aut(G) and g = a−m

such that S2 = α(g)Sδ1g
−1. Hence G is a restricted GCI-group.

Theorem 5.7. Let G be a finite cyclic group of odd order n, where n has at least two
different prime divisors. Then G is not a strongly GCI-group.

Proof. Let G = G1 × G2 × · · · × Gs where Gi = Z
p
ki
i

, pi is some odd prime. Let
α : (g1, g2, . . . , gs) 7→ (−g1, g2, . . . , gs). Then ωα(G) = G1, and thus G \ ωα(G) 6= ∅.
By Theorem 2.4, GC(G,S, α) ∼= GC(G,S, 1), where S = G \ ωα(G). It follows that G
is not a GCI-group.

6 The GCI-groups in dihedral groups
Theorem 6.1. Let G = D2n (n ≥ 3) be a dihedral group. If G is a restricted GCI-group,
then n is some odd prime power.

Proof. Let G = D2n = 〈a, b | an = b2 = 1, bab−1 = a−1〉 be a GCI-group. As-
sume first that n is even. Let α : a 7→ a−1, b 7→ b. Then α ∈ Aut(G) is of order two.
ωα(G) = {α(g−1)g | g ∈ G} = {ai ∈ G | i is even}. Kα = {α(g)g = 1 | g ∈
G} = {ai, b, an

2 b | ai ∈ G}. It follows that Ωα(G) = {ai, b, an
2 b | i is odd}. This im-

plies GC(G, {a}, α) and GC(G, {b}, α) are always generalized Cayley graphs of G. Note
that they are both isomorphic to nK2. Furthermore, α(g)aγg−1 = a−2i+j if g = ai and
aγ = aj , α(g)aγg−1 = a−2i−j if g = aib and aγ = aj . It follows that α(g)aγg−1 ∈ 〈a〉.
Since G is a GCI-group, α(g)aγg−1 = b for some g ∈ G and γ ∈ Aut(G), but this is
impossible. Thus n is not even.

Assume n is odd and has at least two different prime factors, say n = pr11 · · · p
rt
t is

the prime decomposition and t ≥ 2. By [20, Lemma 3.4], Aut(G) = Aut(G1) × · · · ×
Aut(Gt), where Gi = 〈ai, b〉 and 〈a〉 = 〈a1〉 × · · · × 〈at〉. It can be checked that there
must exist two automorphisms α : a1 7→ a−11 , ai 7→ ai, b 7→ b and β : a2 7→ a−12 , aj 7→ aj ,
b 7→ b in Aut(G). Notice that each is of order two, and they are not conjugate in Aut(G)
as they belong to Aut(G1) and Aut(G2) respectively, and Aut(G) is the direct prod-
uct of these Aut(Gi). Furthermore, b ∈ Ωα(G) ∩ Ωβ(G). Thus GC(G, {b}, α) and
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GC(G, {b}, β) are two generalized Cayley graphs of G which are isomorphic to nK2.
However α and β are not conjugate. Thus n is some odd prime power.

Theorem 6.2. Let G = D2n, H = Z2n, with n odd prime power. Then G is a restricted
GCI-group if H is a CI-group.

Proof. Let G = 〈a, b | an = b2 = 1, bab = a−1〉 and H = Z2n = {0, 1, . . . , 2n − 1}.
We will show first that any two automorphisms of G of order two are conjugate. Let
α : a 7→ ai, b 7→ ajb and β : a 7→ ak, b 7→ alb be two automorphisms of order two. Then
i, k = −1. Let γ : a 7→ as, b 7→ atb with (n, s) = 1. Then γ ∈ Aut(G). We can see
that γ−1 : a 7→ ar, b 7→ a−rtb with rs ≡ 1 (mod n). It follows that γαγ−1 : a 7→ a−1,
b 7→ a2t+sjb. For any j, l, the equation 2t+ sj ≡ l (mod n) has a solution. It follows that
α, β are conjugate.

According to the Remark 3.2, it suffices to consider the isomorphisms of the generalized
Cayley graphs induced by the same automorphisms. Without loss of generality, we consider
α : a 7→ a−1, b 7→ b. Let s = n−1

2 and I = {1, . . . , s}. Then ωα(G) = {α(g−1)g | g ∈
G} = 〈a〉. Kα = {b} ∪ 〈a〉. Thus Ωα = {b} and fα = ∪i∈I{aib, a−ib}.

Let GC(G,S, α) and GC(G,T, α) be any two isomorphic generalized Cayley graphs.
We divide the proof into two cases.

Case 1: Ωα ⊆ S.
If Ωα ⊆ S, then Ωα ⊆ T . Suppose S = ∪i∈I1⊆I{aib, a−ib} ∪ Ωα and T =

∪i∈I2⊆I{aib, a−ib} ∪ Ωα. Let ϕ : G → H, as 7→ 2s, atb 7→ n − 2t. Then ϕ is a bi-
jection from G to H . Furthermore, GC(G,S, α) ∼= Cay(H,ϕ(S)) and GC(G,T, α) ∼=
Cay(H,ϕ(T )), where ϕ(S) = ∪i∈I1⊆I{n− 2i, n+ 2i} ∪ {n} and ϕ(T ) = ∪i∈I2⊆I{n−
2i, n + 2i} ∪ {n}. Since H is a CI-group, there exists some automorphism φ ∈ Aut(H)
such that ϕ(T ) = φ(ϕ(S)). Since n is the unique involution in H , φ(n) = n and
φ(n − 2i) = φ(n) − 2φ(i) = n − 2φ(i) for any i ∈ I1 ⊆ I . This implies that φ can
induce an automorphism φ of G with rules ai 7→ aφ(i), b 7→ b. As φα = αφ, there exist
φ and g = 1 ∈ G such that the isomorphism between GC(G,S, α) and GC(G,T, α) is a
natural isomorphism.

Case 2: Ωα * S.
If Ωα * S, then Ωα * T . The rest of the proof is similar to that of Case 1.

The next result is about the graph structure. Recall that a graph Γ is Hamiltonian if it
contains a cycle passing through all vertices of Γ.

Theorem 6.3. Let G = D2n with n odd prime power. Then any connected generalized
Cayley graph of G is Hamiltonian.

Proof. LetH = Z2n and ϕ : G→ H, as 7→ 2s, atb 7→ n−2t be the bijection fromG toH .
Then any generalized Cayley graph GC(G,S, α) of G is isomorphic to the Cayley graph
Cay(H,ϕ(S)) of H . Therefore GC(G,S, α) is connected if and only if Cay(H, δ(S)) is
connected. It is well known that Cay(H,ϕ(S)) is connected if and only if 〈ϕ(S)〉 = H .
〈ϕ(S)〉 = H if and only if there exist some aib, a−ib ∈ S satisfying (i, n) = 1 as ϕ(aib) =
n − 2i. Then there always exists a Hamilton cycle GC(G, {aib, a−ib}, S) in a connected
generalized Cayley graph of G. This completes the proof.
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7 Cayley regression
First of all, we give the following related definitions.

Definition 7.1. Let G be a finite group.

(1) G is called a Cayley regression if any generalized Cayley graph of G is isomorphic to
some Cayley graph of G.

(2) G is called an α-Cayley regression if any generalized Cayley graph of G induced by
α ∈ Aut(G) is isomorphic to some Cayley graph of G.

(3) G is called a quasi-Cayley regression if any generalized Cayley graph not induced by
the automorphism x 7→ x−1 is isomorphic to some Cayley graph of G.

(4) G is called an m-Cayley regression if any generalized Cayley graph of G with valency
at most m is isomorphic to some Cayley graph of G.

(5) G is called an m-quasi-Cayley regression if any generalized Cayley graph not induced
by the automorphism x 7→ x−1 of G with valency at most m is isomorphic to some
Cayley graph of G.

(6) G is called a skew Cayley regression if any generalized Cayley graph ofG is isomorphic
to some generalized Cayley graph of another finite group.

It is well known that every Cayley graph is also a generalized Cayley graph. But many
examples, see [8] for instance, reveal that the converse is not true. Therefore a natural
question arises.

Question 7.2. Characterize Cayley regressions.

Remark 7.3. If α : x 7→ x−1 is an automorphism ofG, thenG is abelian. This case is very
special as Kα = G and fα = ∅. In fact, Hujdurović et al. in [9] had already noticed this
situation. They studied the relationship between the generalized Cayley graphs induced by
involutory automorphism and Cayley graphs. They obtained two families of generalized
Cayley graphs induced by involutory automorphisms on Z2m ×Z2n and Z2×Z2×Z2k+1

respectively (where m ≥ 1, n ≥ 2, k ≥ 1) are not vertex-transitive. Therefore we propose
the definition of ‘quasi-Cayley regression’ and ‘m-quasi-Cayley regression’. Also, we
propose the following problem: Are there finite groups which are quasi-Cayley regressions
but not Cayley regressions?

WhenG is an abelian simple group, thenG is a cyclic group of prime order and Aut(G)
is not necessarily a Cayley regression.

Example 7.4. For the prime p = 61, obviously, Aut(Zp) ∼= Zp−1 = Z60. Let G =
Aut(Zp), S = {±6,±12, 5, 25} and α(x) = 31x. By [17, Theorem 4.4], we have
GC(G,S, α) is not a Cayley graph. Thus G is not a Cayley regression.

Theorem 7.5. Let G be a finite cyclic group of odd order n. Then G is a Cayley regression
if and only if n is some odd prime power.
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Proof. The sufficiency is obvious by Theorem 5.1, it suffices to show the necessity. As-
sume on the contrary that n has at least two different odd prime divisors, say n = q1q2m,
where q1 and q2 are different prime powers and (q1, q2) = 1, then we have G = G1 ×
G2 × G3, where |G1| = q1, |G2| = q2 and |G3| = m. Let α : G → G, (g1, g2, g3) 7→
(−g1, g2, g3). It is easy to see that the order of α is two, so α can induce some gen-
eralized Cayley graphs of G. Note that ωα(G) = {(g1, 0, 0) | g1 ∈ G1}. Let S =
{(0, 1, 0), (0, q2 − 1, 0)}. Then Γ = GC(G,S, α) is a generalized Cayley graph of G.
Consider the vertex of the form (0, g2, g3) in Γ for any g2 ∈ G2, g3 ∈ G3. For any
fixed g3, there are q2 vertices of the form {(0, g2, g3) | g2 ∈ G2} which induce a cycle
of length q2. For any other vertex of the form (g1, g2, g3) with g1 6= 0, there are 2q2 ver-
tices {(g1, g2, g3), (−g1, g2, g3) | g2 ∈ G} which induce a cycle of length 2q2. Therefore
Γ1 = mCq2 ∪

(q1−1)m
2 C2q2 , which is not vertex-transitive. Thus GC(G,S, α) is not a

Cayley graph, and hence G is not a Cayley regression.

Theorem 7.6. Let G = Zn × · · · × Zn︸ ︷︷ ︸
s

with n odd, s ≥ 2. Then G is not a Cayley

regression.

Proof. Let α : (i1, i2, i3 . . . , is) 7→ (i2, i1, i3, . . . , is) for all it ∈ Zn. So α ∈ Aut(G) and
o(α) = 2. Therefore α can induce generalized Cayley graphs ofG. Let S = {(1, 0, . . . , 0),
(0, n− 1, 0, . . . , 0)}. It follows that GC(G,S, α) is a generalized Cayley graph of G.

Consider vertex (0, . . . , 0), then vertices like (i, i, 0, . . . , 0) and (i, i − 1, 0, . . . , 0) are
in the same cycle with (0, . . . , 0). Thus (0, . . . , 0) is in a cycle of length 2n.

Consider vertex (0, n−12 , 0, . . . , 0), then vertices like (i, n−12 + i, 0, . . . , 0) and (n+1
2 +

i, i, . . . , 0) are in the same cycle with (0, n−12 , 0, . . . , 0). It follows that (0, n−12 , 0, . . . , 0)
is in a cycle of length n.

Therefore GC(G,S, α) is not vertex-transitive, and thus GC(G,S, α) is not a Cayley
graph. That completes the proof.

From Theorem 7.5, we see that the cyclic group of odd non prime power order is not an
m-Cayley regression for any m > 0. So we only consider the cyclic groups of even order
in the rest of this section.

Corollary 7.7 ([9]). Let G = Z2n. Then GC(G,S, α) is isomorphic to a Cayley graph on
D2n, where α : x 7→ −x.

According to Corollary 7.7, we can see that Z2pn (with p an odd prime) is a skew-
Cayley regression since α : x 7→ −x is the only automorphism of G of order two.

Theorem 7.8. Let G be a finite cyclic group of order 2n with n ≥ 3. Then

(1) G is a 3-quasi-Cayley regression;

(2) G is a 4-quasi-Cayley regression if and only if n = 3.

Proof. Assume that G = {0, 1, . . . , 2n − 1}. By Theorem 5.2, we have that α : x 7→
(2n−1 − 1)x and β : x 7→ (2n−1 + 1)x are the only two automorphisms of G of order
two except the automorphism x 7→ −x. Also, the valency of the generalized Cayley of G
induced by α or β are even as x+ α(x) 6= 0 and x+ β(x) 6= 0 for any x ∈ G.
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(1) Consider the generalized Cayley graphs induced by α, β respectively. For any
g ∈ G,

ωα(G) = {α(−g)g | g ∈ G} = {(2n−1 − 1)(−g) + g | g ∈ G}
= {2n−1g + 2g (mod 2n) | g ∈ G} = {g | g ≡ 0 (mod 2)} = Kα.

ωβ(G) = {β(−g)g | g ∈ G} = {(2n−1 + 1)(−g) + g (mod 2n) | g ∈ G}
= {−2n−1g (mod 2n) | g ∈ G} = {0, 2n−1} = Kβ .

It follows that for any generalized Cayley graph GC(G,S, α), S contains no even integers
and, for any generalized Cayley graph GC(G,S, β), 0 and 2n−1 are not contained in S.

For any g ∈ G with g odd,

α(−g) = (2n−1 − 1)(−g) (mod 2n)

= g − 2n−1g (mod 2n)

= 2ng + g − 2n−1g (mod 2n)

= 2n−1g + g (mod 2n)

= 2n−1 + g (mod 2n).

This implies that there are 2n−2 couples can be included in S, that is, S1 = {1, 2n−1 + 1},
S3 = {3, 2n−1 + 3}, . . . , S2n−1−1 = {2n−1 − 1, 2n − 1}.

For any g ∈ G \ ωβ(G),

β(−g) = (2n−1 + 1)(−g) (mod 2n) = −g − 2n−1g (mod 2n)

= 2ng − g − 2n−1g (mod 2n) = 2n−1g − g (mod 2n).

Then we have

β(−g) =

{
2n−1 − g, if g is odd;
2n − g, if g is even.

This implies that there are (2n−1 − 1) couples which could be included in S, they are:

S1 = {1, 2n−1 − 1},
S3 = {3, 2n−1 − 3},
. . .

S2n−2−1 = {2n−2 − 1, 2n−2 + 1},
S2n−1+1 = {2n−1 + 1, 2n − 1},

. . .

S2n−1+2n−2−1 = {2n−1 + 2n−2 − 1, 2n−1 + 2n−2 + 1},
T2 = {2, 2n − 2},
. . .

T2n−1−2 = {2n−1 − 2, 2n−1 + 2}.

Let Γ = GC(G,S, α), where S = Si, then Γ ∼= 2n−2C4 by Theorem 5.2. Let
Γ = GC(G,S, β). If S = Si, we have GC(G,S, β) ∼= C2n as Si is the left generat-
ing set for (G, ∗) by Lemma 2.11. If S = Ti, then GC(G,S, β) is isomorphic to 2n−kC2k



422 Ars Math. Contemp. 15 (2018) 407–424

if 2ki ≡ 0 (mod 2n); and isomorphic to C2n otherwise. In conclude, all of the 2-valent
generalized Cayley graphs of G induced by α or β are Cayley graphs and, this implies that
G is a 3-quasi-Cayley regression.

(2) When n = 3, it is easy to check that those 4-valent generalized Cayley graphs
induced by α and β, respectively, are all Cayley graphs. Next we construct a family of
generalized Cayley graphs which is not vertex-transitive to show the necessity.

Let S = Si ∪ Tj , where i ∈ {1, . . . , 2n−2 − 1} ∪ {2n−1 + 1, . . . , 2n−1 + 2n−2 − 1}
is odd and j ∈ {2, . . . , 2n−1 − 2} is even. If x is odd, then N(x) = {2n−1 + x + i, x −
i, 2n−1+x+j, 2n−1+x−j}. If x is even, thenN(x) = {x+i, 2n−1+x−i, x+j, x−j}.
SupposeX is the bicirculant such that the vertex set V (X) can be partitioned into to subsets
U = {uk | k ∈ Z2n−1} and V = {vk | k ∈ Z2n−1}, and there is an automorphism of
X such that ρ(uk) = uk+1 and ρ(vk) = vk+1, k ∈ Z2n−1 . The edge set E(X) can be
partitioned into three subsets:

L = ∪k∈Z2n−1 {uk, uk+l | l ∈ L},
M = ∪k∈Z2n−1 {uk, vk+m | m ∈M},
R = ∪k∈Z2n−1 {vk, vk+r | r ∈ R},

so we have L = {±(2n−2 + j
2 )}, M = {2n−2 + i+1

2 ,− i−12 }, R = {± j2}. Then
X = BC2n−1 [L,M,R]. Let γ be the mapping as follows:

γ :=

{
x 7→ u x−1

2
, if x is odd;

x 7→ v x
2
, if x is even.

It follows that Γ ∼= X . Note that BC2n−1 [L,M,R] ∼= BC2n−1 [aL, aM + b, aR] with
a, b ∈ Z2n−1 and a invertible [12]. Then Γ ∼= BC2n−1 [L,M ′, R] with M ′ = M + i−1

2 =
{0, 2n−2 + i}. In particular, Γ is connected since 〈L,M ′, R〉 = Z2n−1 . When j = 2i, there
are no triangles with three vertices of the form {uk, vk+2n−2+ i+1

2
, vk− i−1

2
}, but there is a

triangle with three vertices as {vk′ , uk′+ i−1
2
, uk′−2n−2− i+1

2
} since for n > 3,

k + 2n−2 +
i+ 1

2
± j

2
6≡ k − i− 1

2
(mod 2n−1)

k′ +
i− 1

2
−
(

2n−2 +
j

2

)
≡ k′ − 2n−2 − i+ 1

2
(mod 2n−1).

This implies that there is no automorphism of X which permutates uk and vk′ . So X
is not vertex-transitive when n > 3. This completes the proof.

At last, we propose the following questions for further research.

Question 7.9. Classify finite GCI-groups, such as Zm where m is odd with at least two
different prime divisors, abelian groups, dihedral groups and some classes of finite simple
groups.

Question 7.10. Characterize the structure of the automorphism group of any generalized
Cayley graph.

Question 7.11. Classify Cayley regressions for certain types of group, such as the cyclic
groups and the dihedral groups.
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[9] A. Hujdurović, K. Kutnar, P. Petecki and A. Tanana, On automorphisms and structural proper-
ties of generalized Cayley graphs, Filomat 31 (2017), 4033–4040, doi:10.2298/fil1713033h.

[10] W. Jin and W. Liu, A classification of nonabelian simple 3-BCI-groups, European J. Combin.
31 (2010), 1257–1264, doi:10.1016/j.ejc.2009.11.003.

[11] W. Jin and W. Liu, On Sylow subgroups of BCI groups, Util. Math. 86 (2011), 313–320.
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