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Abstract

For every prime p > 3 we prove that Q × Zp is a DCI-group, where Q denotes the
quaternion group of order 8. Using the same method we reprove the fact that Z3

2 × Zp is
a CI-group for every prime p > 3, which was obtained in [3]. This result completes the
description of CI-groups of order 8p.

Keywords: Cayley graphs, CI-groups.

Math. Subj. Class.: 05C25

1 Introduction
Let G be a finite group and S a subset of G. The Cayley graph Cay(G,S) is defined by
having the vertex setG and g is adjacent to h if and only if g−1h ∈ S. The set S is called the
connection set of the Cayley graph Cay(G,S). A Cayley graph Cay(G,S) is undirected
if and only if S = S−1, where S−1 =

{
s−1 ∈ G | s ∈ S

}
. Every left multiplication

via elements of G is an automorphism of Cay(G,S), so the automorphism group of every
Cayley graph on G contains a regular subgroup isomorphic to G. Moreover, this property
characterises the Cayley graphs of G.

Similarly to Cayley graphs one can also define ternary Cayley relational structures.
(V,E1, E2, . . . , El) is a colour ternary relational structure if Ei ⊂ V 3 for i = 1, . . . , l. We
say that a colour ternary relational structure (V,E1, . . . , El) is a Cayley ternary relational
structure of the group G if the automorphism group of (V,E1, . . . , El) contains a regular
subgroup isomorphic to G.

It is clear that Cay(G,S) ∼= Cay(G,µ(S)) for every µ ∈ Aut(G). A Cayley graph
Cay(G,S) is said to be a CI-graph if, for each T ⊂ G, the Cayley graphs Cay(G,S)
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and Cay(G,T ) are isomorphic if and only if there is an automorphism µ of G such that
µ(S) = T . Furthermore, a group G is called a DCI-group if every Cayley graph of G is a
CI-graph and it is called a CI-group if every undirected Cayley graph of G is a CI-graph.

Similarly, a group G is called a CI-group with respect to colour ternary relational struc-
tures, if for any pair of isomorphic colour ternary relational structures of G there exists an
isomorphism induced by an automorphism of G.

Let G be a CI-group of order 8p, where p is an odd prime. It is easy to verify that
Z2 × Z4 and the dihedral group of order 8 are not CI-groups. It can easily be seen that
every subgroup of a CI-group is also a CI-group. Therefore the Sylow 2-subgroup ofG can
only be Z8, Z3

2 or the quaternion group Q of order 8.
It was proved by Li, Lu and Pálfy [5, Theorem 1.2 (b)] that a finite CI-group of order

8p containing an element of order 8 can only be

H =
〈
a, z | ap = 1, z8 = 1, z−1az = a−1

〉
.

It was also shown in [5, Theorem 1.3] that H is a CI-group, though not a DCI-group. In
view of these results, for the rest of the discussion, we assume that the Sylow 2-subgroup
of G is isomorphic to Q or Z3

2.
It was proved by Dobson [2] that Z3

2×Zp is a CI-group with respect to ternary relational
structures if p ≥ 11. Moreover, Dobson and Spiga [3] proved that Z3

2 × Zp is a DCI-
group with respect to colour ternary relational structures if and only if p 6= 3 and 7. As a
consequence of this result it was proved in [3] that Z3

2 × Zp is a DCI-group for all primes
p.

If p > 8 or p = 5, then by Sylow’s Theorem the Sylow p-subgroup of G is a normal
subgroup, therefore G is isomorphic to one of the following groups: Z3

2 × Zp, Q × Zp,
Z3

2 n Zp or Q n Zp. It can also be seen from [5, Theorem 1.2] that neither Q n Zp nor
Z3

2 n Zp is a CI-group.
If p = 7, then either the Sylow 7-subgroup is normal, in which case G is as before, or

G has 8 Sylow 7-subgroups and the Sylow 2-subgroup of G is normal. Then the Sylow
7-subgroup of G acts transitively by conjugation on the the non-identity elements of the
Sylow 2-subgroup. Hence G ∼= Z3

2 oZ7, which is not a CI-group by [5, Theorem 1.2.(b)].
If p = 3, then the order ofG is 24. A complete list of CI-groups of order at most 31 was

given in the Ph.D. thesis of Royle, see [7]. The CI-groups of order 24 are the following:
Q× Z3, Z8 n Z3 and Z3

2 × Z3.
Spiga [6] proved that Q×Z3 is not a CI-group with respect to colour ternary relational

structures.
Using different methods depending on whether p > 8, or p = 5, 7 we show that the

other groups are DCI-groups. By extending our result with the fact that Z3
2 × Z3 is a

CI-group we get that Q× Zp is a CI-group for every odd prime p.

Theorem 1.1. For every prime p ≥ 3 the group Q× Zp is a DCI-group.

We also prove the following result which was first obtained in [3].

Theorem 1.2 (Dobson, Spiga [3]). For every prime p ≥ 3 the group Z3
2 × Zp is a DCI-

group.

Our paper is organized as follows. In Section 2 we introduce the notation that will be
used throughout this paper. In Section 3 we collect important ideas which are useful in the
proof of Theorem 1.1 and 1.2. Section 4 contains the proof of Theorem 1.1 and 1.2 for
primes p > 8 and Section 5 contains the proof of Theorem 1.1 and 1.2 for p = 5 and 7.
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2 Technical details
In this section we introduce some notation. Let G be a group. We use H ≤ G to denote
that H is a subgroup of G and by NG(H) and CG(H) we denote the normalizer and the
centralizer of H in G, respectively.

Let us assume that the group H acts on the set Ω and let G be an arbitrary group. Then
by G oΩ H we denote the wreath product of G and H . Every element g ∈ G oΩ H can be
uniquely written as hk, where k ∈ K =

∏
ω∈ΩGω and h ∈ H . The groupK =

∏
ω∈ΩGω

is called the base group of G oΩ H and the elements of K can be treated as functions from
Ω to G. If g ∈ G oΩ H and g = hk we denote k by (g)b. In order to simplify the notation
Ω will be omitted if it is clear from the definition of H and we will write G oH .

The symmetric group on the set Ω will be denoted by Sym(Ω). LetG be a permutation
group on the set Ω. For a G-invariant partition B of the set Ω we use GB to denote the
permutation group on B induced by the action of G and similarly, for every g ∈ G we
denote by gB the action of g on the partition B.

For a group G, let Ĝ denote the subgroup of the symmetric group Sym(G) formed
by the elements of G acting by right multiplication on G. For every Cayley graph Γ =
Cay(G,S) the subgroup Ĝ of Sym(G) is contained in Aut(Γ).

Definition 2.1. Let G ≤ Sym(Ω) be a permutation group. Let

G(2) =

{
π ∈ Sym(Ω)

∣∣∣∣∀a, b ∈ Ω ∃ga,b ∈ G with π(a) = ga,b(a) and
π(b) = ga,b(b)

}
.

We say that G(2) is the 2-closure of the permutation group G.

The following lemma is well-known and follows directly from the definition of G(2).

Lemma 2.2. Let Γ be a graph. If G ≤ Aut(Γ), then G(2) ≤ Aut(Γ).

3 Basic ideas
In this section we collect some results and some important ideas that we will use in the
proof of Theorem 1.1 and Theorem 1.2.

We begin with a fundamental lemma that we will use all along this paper.

Lemma 3.1 (Babai [1]). The Cayley graphCay(G,S) is a CI-graph if and only if for every
regular subgroup G̊ of Aut(Cay(G,S)) isomorphic to G there is a µ ∈ Aut(Cay(G,S))
such that G̊µ = Ĝ.

We introduce the following definition.

Definition 3.2. (a) We say that a Cayley graph Cay(G,S) is a CI(2)-graph if and only
if for every regular subgroup G̊ of Aut(Cay(G,S)) isomorphic to G there is a σ ∈
〈G̊, Ĝ〉(2) such that G̊σ = Ĝ.

(b) A group G is called a DCI(2)-group if for every S ⊂ G the Cayley graph Cay(G,S)
is a CI(2)-graph.

Let R be either Q or Z3
2. Let us assume that A = Aut(Cay(G,S)) ≤ Sym(8p)

contains two copies of regular subgroups, R̊ × Z̊p and R̂ × Ẑp. By Sylow’s theorem we
may assume that Z̊p and Ẑp are in the same Sylow p-subgroup P of Sym(8p). If p > 8,
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then P is isomorphic to Z8
p. Moreover, P is generated by 8 disjoint p-cycles. It follows

that both R̊ and R̂ normalize P so we may assume that R̊ and R̂ lie in the same Sylow 2-
subgroup of NA(P ). Let P2 denote a Sylow 2-subgroup of Sym(8). It is also well known
that P2 is isomorphic to the automorphism group of the following graph ∆:
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Every automorphism of ∆ permutes the leaves of the graph and the permutation of the
leaves determines the automorphism, therefore Aut(∆) can naturally be embedded into
Sym(8).

Lemma 3.3. (a) There are exactly two regular subgroups of P2 which are isomorphic
to Q.

(b) There are exactly two regular subgroups of P2 which are isomorphic to Z3
2.

Proof. (a) Let Q be a regular subgroup of Aut(∆) isomorphic to the quaternion group
with generators i and j. Since Q is regular, for every 1 ≤ m ≤ 4 there is a qm ∈ Q
(not necessarily distinct) such that qm(2m− 1) = 2m. These are automorphisms of
∆ so qm(2m) = 2m− 1 and hence since Q is regular the order of qm is 2. There is
only one involution in Q so qm = i2 for every 1 ≤ m ≤ 4 and this fact determines
completely the action of i2 on ∆. Note that the automorphisms qm are all equal.

We can assume that i(1) = 3. Such an isomorphism of ∆ fixes setwise {1, 2, 3, 4}
so we have that i(3) = 2, i(2) = 4 and i(4) = 1 since i is of order 4. Using again
the fact that Q is regular on ∆ and i2(5) = 6, we get that there are two choices for
the action of i: i = (1324)(5768) or i = (1324)(5867).

We can also assume that j(1) = 5. This implies that j(5) = j2(1) = i2(1) = 2,
and j(2) = 6 since j ∈ Aut(∆) and j(6) = 1. The action of i determines the
action of j on ∆ since iji = j. Applying this to the leaf 3 we get that j(3) = 8 if
i = (1324)(5768) and j(3) = 7 if i = (1324)(5867) so there is no more choice for
the action of j. Finally, i and j generate Q and this gives the result.

(b) One can prove this using an argument similar to the previous case.
�

The previous proof also gives the following.
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Lemma 3.4. (a) The following two pairs of permutations generate the two regular sub-
groups of Aut(∆) ≤ Sym(8) isomorphic to Q:

i1 = (1324)(5768), j1 = (1526)(3748) and

i2 = (1324)(5867), j2 = (1526)(3847).

(b) The elements of these regular subgroups of Aut(∆) are the following:

Ql: Qr:
id (12)(34)(56)(78) id (12)(34)(56)(78)

(1324)(5768) (1423)(5867) (1324)(5867) (1423)(5768)
(1526)(3847) (1625)(3748) (1526)(3748) (1625)(3847)
(1728)(3546) (1827)(3645) (1728)(3645) (1827)(3546)

Using the identification given in the following table, Ql and Qr act on Q by left-and
right-multiplication with the elements of Q, respectively:

{1, . . . , 8} 1 2 3 4 5 6 7 8
Q 1 −1 i −i j −j k −k .

(c) A1 = 〈x1, x2, x3〉 and A2 = 〈y1, y2, y3〉 are subgroups of Aut(∆) ≤ Sym(8)
isomorphic to Z3

2, where

x1 = (12)(34)(56)(78), x2 = (13)(24)(57)(68), x3 = (15)(26)(37)(48) and

y1 = (12)(34)(56)(78), y2 = (13)(24)(58)(67), y3 = (15)(26)(38)(47).

Lemma 3.5. Let us assume that G1 ≤ P2 is generated by two different regular subgroups
Qa and Qb of Aut(∆) which are isomorphic to Q and G2 ≤ P2 is generated by two
different regular subgroups A1 and A2 of Aut(∆) which are isomorphic to Z3

2. Then
G1 = G2.

Proof. It is clear that |P2| = |Aut(∆)| = 27. One can see using Lemma 3.4 (a) and (c) that
G1 and G2 are generated by even permutations. Both G1 and G2 induce an action on the
set V = {A, B, C, D} which is a set of vertices of ∆ and it is easy to verify that every
permutation of V induced by G1 and G2 is even. This shows that G1 and G2 are contained
in a subgroup of P2 of cardinality 25.

Lemma 3.4 (b) shows that |Qa ∩Qb| = 2 and one can also check using Lemma 3.4 (c)
that |A1 ∩ A2| = 2. This gives |G1| ≥ 25 and |G2| ≥ 25, finishing the proof of Lemma
3.5. �

Proposition 3.6. (a) The quaternion group Q is a DCI(2)-group.

(b) The elementary abelian group Z3
2 is a DCI(2)-group.

Proof. (a) LetQa andQb be two regular subgroups of Sym(8) isomorphic to the quater-
nion group Q. By Sylow’s theorem we may assume that Qa and Qb lie in the same
Sylow 2-subgroup of H = 〈Qa, Qb〉. Since every Sylow 2-subgroup of H is con-
tained in a Sylow 2-subgroup of Sym(8), we may assume that Qa and Qb are sub-
groups of Aut(∆).
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Our aim is to find an element π ∈ 〈Qa, Qb〉(2) such thatQπa = Qb. Let us assume that
Qa 6= Qb. Using Lemma 3.4 (a) we may also assume that Qa and Qb are generated
by the permutations (1324)(5768), (1526)(3748) and (1324)(5867), (1526)(3847),
respectively. Lemma 3.4 (b) shows thatH contains the following three permutations:

(12)(34) = (1324)(5768)(1324)(5867)

(12)(56) = (1526)(3748)(1526)(3847)

(12)(78) = (1728)(3546)(1728)(3645).

Now one can easily see that the permutation (12) is in H(2). Finally, it is also easy
to check using Lemma 3.4 (b) that Q(12)

a = Qb.

(b) One can prove this statement using Lemma 3.4 and Lemma 3.5.

Definition 3.7. Let Γ be an arbitrary graph and A,B ⊂ V (Γ) such that A ∩ B = ∅. We
write A ∼ B if one of the following four possibilities holds:

(a) For every a ∈ A and b ∈ B there is an edge from a to b but there is no edge from b
to a.

(b) For every a ∈ A and b ∈ B there is an edge from b to a but there is no edge from a
to b.

(c) For every a ∈ A and b ∈ B the vertices a and b are connected with an undirected
edge.

(d) There is no edge between A and B.

We also write A � B if none of the previous four possibilities holds.

The following lemma follows easily:

Lemma 3.8. LetA,B be two disjoint subsets of cardinality p of a graph. We writeA∪B =
Zp ∪ Zp. Let us assume that a generator ĝ of Ẑp acts by ĝ(a1, a2) = (a1 + 1, a2 + 1) on
A∪B and for a generator å of the cyclic group Z̊p the action of å is defined by å(a1, a2) =
(a1 + b, a2 + c) for some b, c ∈ Zp.

(a) If b = c, then the action of Ẑp and Z̊p on A ∪B are the same.

(b) If A � B, then b = c.

(c) If A ∼ B, then every π ∈ Sym(A ∪B) which fixes A and B setwise is an automor-
phism of the graph defined on A ∪B as long as π|A ∈ Aut(A) and π|B ∈ Aut(B).

4 Main result for p > 8

In this section, we will prove that R × Zp is a DCI-group if p > 8, where R is either Q or
Z3

2.

Proposition 4.1. For every prime p > 8, the group R× Zp is a DCI-group.

Our technique is based on Lemma 3.1 so we have to fix a Cayley graph Γ = Cay(R×
Zp, S). LetA = Aut(Γ) and G̊ = R̊×Z̊p be a regular subgroup ofA isomorphic toR×Zp.
In order to prove Proposition 4.1 we have to find an α ∈ A such that G̊α = Ĝ = R̂ × Ẑp.
We will achieve this in three steps.
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4.1 Step 1

Since p > 8, the Sylow p-subgroup of Sym(8p) is generated by 8 disjoint p-cycles. We
may assume Ẑp and Z̊p lie in the same Sylow p-subgroup P of Sym(8p). Then both R̊
and R̂ are subgroups of NSym(8p)(P ) ∩A so we may assume that R̊ and R̂ lie in the same
Sylow 2-subgroup of NSym(8p)(P ) ∩A which is contained in a Sylow 2-subgroup of A.

Since p > 8, the Sylow p-subgroup P gives a partition B = {B1, B2, . . . , B8} of the
vertices of Γ, where |Bi| = p for every i = 1, . . . , 8 and B is P -invariant. It is easy to see
that B is invariant under the action of R̂ and R̊ and hence 〈Ĝ, G̊〉 ≤ Sym(p) o Sym(8).
Moreover, both G̊ and Ĝ are regular so R̊ and R̂ induce regular action on B which we
denote by R1 and R2, respectively. The assumption that R̊ and R̂ lie in the same Sylow
2-subgroup of A implies that R1 and R2 are in the same Sylow 2-subgroup of Sym(8).

4.2 Step 2

Let us assume that R1 6= R2. We intend to find an element α ∈ A such that
(
R̊α
)B

= R2.
We define a graph Γ0 on B such that Bm is adjacent to Bn if and only if Bm � Bn.

This is an undirected graph with vertex set B and both R1 and R2 are regular subgroups of
Aut(Γ0). It follows that Γ0 is a Cayley graph of R.

Observation 4.1. Since R1 ≤ Aut(Γ0) acts transitively on B we have that the order of
eah connected component of Γ0 divides 8.

We can also define a coloured graph Γ1 on B by colouring the edges of the complete
directed graph on 8 vertices. The vertex Bm is adjacent to the vertex Bn with the same
coloured edge as Bm′ is adjacent to Bn′ in Γ1 if and only if there exists a graph isomor-
phism φ from the induced subgraph of Γ on Bm ∪ Bn to the induced subgraph of Γ on
Bm′ ∪Bn′ such that φ(Bm) = Bm′ and φ(Bn) = Bn′ . The graph Γ1 is a coloured Cayley
graph of R. Moreover, both R1 and R2 act regularly on Γ1. Using the fact that R has
property DCI(2), it is clear that there exists an α′ ∈ 〈R1, R2〉(2) ≤ Aut(Γ1) such that
Rα

′

2 = R1. We would like to lift α′ to an automorphism α of Γ such that αB = α′.

(a) Let us assume first that Γ0 is a connected graph.

Lemma 4.2. (a) R̊× Z̊p ≤ Ẑp o Sym(8).

(b) If R̊× Z̊p ≤ Ẑp o Sym(8), then for every r̊ ∈ R̊ we have (̊r)b = id.

Proof. (a) We first prove that Ẑp = Z̊p. Let x and y generate Ẑp and Z̊p, respec-
tively. Since x and y lie in the same Sylow p-subgroup and |B1| = p, we can
assume that x|B1

= y|B1
. Using Lemma 3.8(b) we get that x|Bm

= y|Bn
if

there exists a path in Γ0 from Bm to Bn. This shows that x = y since Γ0 is
connected. Moreover, R̊× Z̊p ≤ Ẑp oSym(8) since the elements of Z̊p and the
elements of R̊ commute.

(b) Let A′ = A ∩
(
Ẑp o Sym(8)

)
. We have already assumed that R̊ and R̂ lie in

the same Sylow 2-subgroup ofA′. Let r̊ be an arbitrary element of R̊. For every
(a, u) ∈ R × Zp we have r̊(a, u) = (b, u + t) for some b ∈ R and t ∈ Zp,
where t only depends on r̊ and a since r̊ ≤ Ẑp o Sym(8). The permutation
group Ĝ is transitive, hence there exist r̂1, r̂2 ∈ R̂ such that r̂1(1, u) = (a, u)
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and r̂2(b, u+ t) = (1, u+ t). The order of r̂2r̊r̂1 is a power of 2 since r̂2, r̊, r̂1

lie in a Sylow 2-subgroup. Therefore t = 0 and hence (̊r)b = id.

�

Lemma 4.2 says that if Γ0 is connected, then 〈R̊, R̂〉 ≤ Ẑp o Sym(8) and (r)b = id

for every r ∈ 〈R̊, R̂〉. Therefore we can define α = α′idB to be an element of the
wreath product Ẑp o Sym(8) and clearly α′idB is an element of A with αB = α′.

(b) Let us assume that Γ0 is the empty graph.

Then Lemma 3.8(c) shows that every permutation in 〈R1, R2〉(2) lifts to an automor-
phism of Γ.

(c) Let us assume that Γ0 is neither connected nor the empty graph.

Observation 4.2. If R1 6= R2, then 〈R̊, R̂〉 ≤ A contains β1, β2, β3 such that

βB1 = (B1B2)(B3B4), βB2 = (B1B2)(B5B6), βB3 = (B1B2)(B7B8).

Proof. Recall from Lemma 3.5 that 〈R̂, R̊〉 is the same group whether R is Q or Z3
2.

By Lemma 3.4 the elements β1, β2, β3 can be generated as products of an element
of R̊ and R̂, as in the proof of Proposition 3.6, if R = Q. �

Lemma 4.3. We claim that B2k−1 and B2k are in the same connected component of
Γ0 for k = 1, 2, 3, 4.

Proof. Since Γ0 is a Cayley graph and R1 is transitive on the pairs of the form
(B2k−1, B2k) it is enough to prove that B1 and B2 are in the same connected com-
ponent of Γ0. If B1 � B2, then B1 is adjacent to B2 in Γ0, so we can assume that
B1 ∼ B2. Since Γ0 is not the empty graph B1 is adjacent to Bl for some l > 2,
so B1 � Bl. By Observation (4.2) there exists β ∈ A such that β(B1) = B2 and
β(Bl) = Bl. This shows that B2 � Bl and hence there is a path from B1 to B2 in
Γ0. �

Γ0 is not connected, so the order of the connected components of Γ cannot be bigger
than 4. Since B1 and B2 are in the same connected component of Γ0 there exists a
partition H1 ∪H2 = B such that |H1| = |H2| = 4, B1, B2 ∈ H1 and no vertex in
H1 is adjacent to any vertex of H2 in Γ0.

Lemma 4.4. There exists α ∈ A such that αB = α′.

Proof. Let us assume first that H1 = {B1, B2, B3, B4}. Then we define α1 to be
equal to β2 on H1 and the identity on H2, where β2 is defined in Observation 4.2.
Using Lemma 3.8(c) we get that α1 is in 〈R̊, R̂〉(2).

If H1 = {B1, B2, B5, B6} or H1 = {B1, B2, B7, B8}, then we define α2 by
α2|H1

= β1 and α2|H2
= id, where β1 is defined in Observation 4.2. Lemma

3.8(c) shows again that α2 ∈ A.

It is easy to see that αB1 = αB2 = (B1B2). Therefore A contains an element α such
that Rα

B

1 = R2. �

We conclude that we can assume that R1 = R2.



G. Somlai: The Cayley isomorphism property for groups of order 8p 441

4.3 Step 3

Let us now assume that R1 = R2. We intend to find γ ∈ A such that R̊γ = R̂.
Let x̂ and x̊ denote the generators of Ẑp and Z̊p, respectively. We may assume that

x̂|B1
= x̊|B1

.

Lemma 4.5. There exists γ ∈ A such that x̊γ = x̂.

Proof. Let us assume first that Γ0 is connected. It is clear by Lemma 3.8 (b) that x̊ = x̂.
So, we may take γ = 1.

Let us assume that Γ0 is not connected. In this case there are at least two connected
components which we denote by C1, . . . ,Cn. We may assume that B1 ∈ C1. The per-
mutations x̂ and x̊ are elements of the base group of Ẑp o Sym(8) and hence they can
be considered as functions on B. We may assume that x̂(r, u) = (r, u + 1) for every
(r, u) ∈ R× Zp. By Lemma 3.8 (b), the function x̊ is constant on each equivalence class.

For every 1 ≤ m ≤ n there exists r̊m ∈ R̊ such that r̊m(C1) = Cm and for every
r̊m ∈ R̊ there exists r̂m ∈ R̂ such that r̊Bm = r̂Bm. Let γ be defined as follows:

γ|∪C1 = id

γ|∪Cm = r̊mr̂
−1
m for 2 ≤ m ≤ n.

Let (b, v) ∈ r̊m(Be) with Be ∈ C1 and we denote r̊−1
m (b, v) by (a, u). Since x̊ is

constant on Cm we have x̊s(b, v) = (b, v + cms) for some cm which only depends on Cm.
Thus r̊m(a, u + s) = (b, v + cms) since x̊ and r̊m commute and x̊|Be

= x̂|Be
. Therefore

we have

γ(b, w) = r̊m(a,w) = r̊m(a, u+ (w − u)) = (b, v + cm(w − u))

for every (b, w) ∈ r̊m(Be). It is easy to verify that γ−1(b, w) = (b, w−v+ucm
cm

) for every
w ∈ Zp which gives

γ−1x̊γ(b, w) = γ−1x̊(b, wcm + v− ucm) = γ−1(b, wcm + v− ucm + cm) = (b, w+ 1).

It follows that γ−1x̊γ = γ̂.
It remains to show that γ ∈ A. Let y and z be two elements of R× Zp.
We denote by By and Bz the elements of B containing y and z, respectively. If By and

Bz are in the same connected component of Γ0, then either γ is defined on By and Bz by
r̊mr̂

−1
m which is the element of the group 〈G̊, Ĝ〉 ≤ A or γ(y) = y and γ(z) = z.
If By and Bz are not in the same connected component, then By ∼ Bz . The definition

of γ shows that γB = id. Using Lemma 3.8 (c) we get that γ|By∪Bz
is an automorphism

of the induced subgraph of Γ on the set By ∪ Bz , which proves that γ ∈ A, finishing the
proof of Lemma 4.5. �

Using Lemma 4.5 we may assume that x̊ = x̂. Since x̊ and r̊ commute we have
R̊ × Z̊p ≤ Ẑp o Sym(8). Now we can apply Lemma 4.2 which gives (̊r)b = id for every
r̊ ∈ R̊. This proves that R̊ = R̂ since R1 = R2. Therefore G̊ = Ĝ, finishing the proof of
Proposition 4.1. �

It is straightforward to check that the proof of Proposition 4.1 only uses the fact that
p > 8 in the first step of the argument. We can formulate this fact in Proposition 4.6.
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Proposition 4.6. Let Γ be a Cayley graph ofG = Q×Zp orG = Z3
2×Zp, where p is an odd

prime and let G̊ = Q̊× Z̊p or G̊ = Z̊3
2 × Z̊p be a regular subgroup of Aut(Γ) isomorphic

to G. Let us assume that there exists a 〈Ĝ, G̊〉-invariant partition B = {B1, B2, . . . , B8}
of V (Γ), where |Bi| = p for every i = {1, . . . , 8}. In addition, we assume that Z̊p is a
subgroup of the base group of Ẑp oSym(B). Then there is an automorphism α of the graph
Γ such that Ĝα = G̊.

5 Main result for p = 5 and 7

In this section we will prove that Q× Z5, Q× Z7, Z3
2 × Z5 and Z3

2 × Z7 are CI-groups.
The whole section is based on the paper [5], so we will only modify the proof of Lemma

5.4 of [5].

Proposition 5.1. Every Cayley graph of Q × Z5, Q × Z7, Z3
2 × Z5 and Z3

2 × Z7 is a
CI-graph.

We let R denote either Q or Z3
2, and let p = 5 or 7. Let Γ be a Cayley graph of

R × Zp and let A = Aut(Γ). We denote by P a Sylow p-subgroup of A. Let us assume
that A contains two copies of regular subgroups which we denote by Ĝ = R̂ × Ẑp and
G̊ = R̊ × Z̊p. We can assume that Γ is neither the empty nor the complete graph and both
Ẑp and Z̊p are contained in P .

If the order of every orbit of P on V (Γ) is p, then it is clear from Proposition 4.6 that
Γ is a CI-graph. Therefore P has an orbit Λ ⊂ G such that |Λ| = p2 since p3 > |G|. The
remaining orbits of P have order p since 2p2 > 8p.

It was proved in [5] Lemma 5.4 that the action of A on the vertices of the graph Γ
cannot be primitive so there is a nontrivial A-invariant partition B = {B0, B1, . . . , Bt−1}
of V (Γ) = G. The elements of the partition B have the same cardinality since the action
of A is transitive on B so |Bi| ≤ 4p < p2 for every i = 0, 1, . . . , t − 1. The partition B is
P -invariant so P acts on B. Since P is a p-group, the order of every orbit of P is a power
of p.

Let C = {C0, C1, . . . , Cs−1} be an orbit of P on B such that Λ ⊆ ∪s−1
i=0Ci. We may

assume that Bi = Ci for i = 0, 1, . . . , s − 1. It is clear that s is a power of p. If s ≥ p2,
then

∣∣∪s−1
i=0Ci

∣∣ ≥ 2p2 > 8p which is a contradiction. Since |C0| = |B0| < p2, we cannot
have s = 1. It follows that 1 < s < p2 which implies s = p.

For every i < s and every x ∈ P the following eqalities hold for some j < s

x(Bi ∩ Λ) = x(Bi) ∩ x(Λ) = Bj ∩ Λ.

This implies that
|B0 ∩ Λ| = |Bi ∩ Λ|

for every 0 ≤ i < s. Therefore

p2 = |Λ| =
∣∣∪s−1
i=0 (Bi ∩ Λ)

∣∣ = s |B0 ∩ Λ| = p |B0 ∩ Λ| .

This gives |B0 ∩ Λ| = p so |B0| can only be p or 8 since |B0| t = 8p and both |B0| and
t ≥ s are at least p.

If |B0| = p, then Λ is the union of p elements of the A-invariant partition B and every
orbit Λ′ of P is an element of the partition B if Λ′ 6= Λ. For every orbit Λ′ 6= Λ of P and
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for every y ∈ Ẑp ∪ Z̊p we have y(Λ′) = Λ′. In particular, y(B7) = B7. By Proposition 4.6
we may assume that there exists an element x′ in Ẑp ∪ Z̊p such that x′(B0) 6= Bj for some
j 6= 0, 7 and clearly x′(B7) = B7. Since both Ĝ and G̊ are regular there exists a ∈ CA(x′)
such that a(B0) = B7. Since a and x′ commute we have a(Bj) = B7, which contradicts
the fact that a(B0) = B7.

We must therefore have |B0| = 8. Let x̂ and x̊ generate Ẑp and Z̊p, respectively. Since
Ĝ and G̊ are regular we have that neither x̂B nor x̊B is the identity, so both x̂ and x̊ are
regular on B. Since both x̂B and x̊B generate a transitive subgroup in Sym(B) of prime
order p > 2, and every for r ∈ R̂ ∪ R̊ the permutation rB commutes with one of these two
elements, we have rB = id. Since x̂ and x̊ are in the same Sylow p-subgroup of P we may
assume that x̂(Bi) = x̊(Bi) = Bi+1 for i = 0, 1, . . . , p − 1, where the indices are taken
modulo p. By Proposition 4.6 we may also assume that x̂ 6= x̊.

For every m there exists an l such that the action of x̂lx̊−l is nontrivial on Bm since
x̂ 6= x̊. Therefore ABm

|Bm
contains a regular subgroup and a cycle of length p such that

p > |B0|
2 . A theorem of Jordan on primitive permutation groups, which can also be found

in [8, Theorem 13.1.], says that such a permutation group is 2-transitive and hence the
induced subgraph of Γ on Bm is the complete or the empty graph for every m.

Lemma 5.2. Bm ∼ Bn for 0 ≤ m < n ≤ p− 1.

Proof. There exists a unique element ĝ ∈ Ẑp ≤ P such that ĝ(Bm) = Bn. We also have a
unique element g̊ ∈ Z̊p ≤ P with ĝB = g̊B. Since Zp is a cyclic group of prime order and
x̂ 6= x̊ we have ĝ 6= g̊. Moreover, we may also assume that ĝ|Bm

6= g̊|Bm
since ĝ 6= g̊ and

the induced subgraphs of Γ on Bm+c ∪ Bn+c are all isomorphic, where both m + c and
n+ c are taken modulo p.

Clearly, g̃ = g̊ĝ−1 is a cycle of length p on Bn. The vertices of V (Γ) \Λ are contained
in P -orbits of order p that contain the orbit of the vertex under x, so meet each Bi in a
single vertex, so g̃ fixes every vertex of the set Bm ∪Bn \ Λ since g̃B = id.

Let u ∈ Bm \ Λ. It is enough to show that if u is adjacent to some v ∈ Bn, then u is
adjacent to every vertex of Bn. We will prove that A is transitive on the following pairs:
{(u,w) | w ∈ Bn}.

A is transitive on {(u,w) | w ∈ Bn ∩ supp(g̃)} = {(u,w) | w ∈ Bn ∩ Λ} since g̃
fixes u. Therefore we may assume that v ∈ Bn \ Λ and we only have to find an element
a ∈ A such that a(u) = u and a(v) ∈ Bn ∩ Λ.

The restriction of g̃ toBn is a cycle of length p so g̃ does not commute with r̊|Bn
, where

r̊ is an involution of R̊. Since r̊ and g̊ commute we have that there is a u′ ∈ Bm such that
r̊ĝ(u′) 6= ĝr̊(u′). Since the action of R̂ is transitive on Bm there exists r̂ ∈ R̂ such that
r̂(u) = u′. Then

(̊rr̂) ĝ(u) = r̊ĝr̂(u) = r̊ĝ(u′) 6= ĝr̊(u′) = ĝ (̊rr̂) (u)

so there exists a′ ∈ A such that
a′ĝ(u) 6= ĝa′(u). (5.1)

Let us suppose that v = ĝ(u). Notice that ĝ(u) is in a P -orbit of order p, so ĝ(u) /∈ Λ.
Then the inequality (5.1) gives a′(v) 6= ĝa′(u). Since R̂|Bm

is regular on Bm there exists
ŝ ∈ R̂ such that ŝ(u) = a′(u) and since ŝ and ĝ commute we have ŝ(v) = ŝĝ(u) =
ĝŝ(u) = ĝa′(u). Therefore ŝ(v) 6= a′(v) and hence ŝ−1a′ fixes u and ŝ−1a′(v) 6= v so we
may assume that v 6= ĝ(u).
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If p = 7, then v ∈ Bn ∩ Λ.
Let us assume that p = 5. We claim that there exists t̂ ∈ R̂ such that t̂(u) ∈ Bm \ Λ =

Bm \ supp(g̃) while t̂(v) ∈ Bn ∩ Λ = Bn ∩ supp(g̃). It is clear that ĝ(Bm ∩ supp(g̃)) =
Bn∩supp(g̃) and ĝ commutes with each element of R̂. Therefore it is enough to show that
if u, v ∈ Bm \ supp(g̃) with u 6= v, then there exists t̂ ∈ R̂ such that t̂(u) ∈ Bm \ supp(g̃)
and t̂(v) ∈ Bm ∩ supp(g̃). This can easily be seen from the fact that gcd(|R̂|, 5) = 1.

The permutations t̂−1g̃lt̂ fix the vertex u for every 0 ≤ l ≤ 4 and t̂−1g̃l1 t̂(v) 6=
t̂−1g̃l2 t̂(v) if l1 6≡ l2 (mod p). At least one of the the four elements t̂−1g̃t̂, t̂−1g̃2t̂, t̂−1g̃3t̂,
t̂−1g̃4t̂ of A fixes u and maps v to an element of Bn ∩ supp(g̃) = Bn ∩ Λ since |Bn \
supp(g̃)| = 3, finishing the proof of the fact that Bm ∼ Bn for 0 ≤ m 6= n ≤ 7. �

Every permutation of V (Γ) which fixes Bm setwise for every m is an automorphism of
Γ so there is an a ∈ A such that x̊a = x̂. Applying Proposition 4.6 we get that there exists

α ∈ A such that
(
R̂× Ẑp

)α
= R̊× Z̊p, finishing the proof of Proposition 5.1.
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