
Informatica 39 (2015) 443–449 443

Asynchronous Adaptive Delay Tolerant Index Cache Using In-memory Delta
Cell

Kun Ma1,2 and Bo Yang1

1 Shandong Provincial Key Laboratory of Network Based Intelligent Computing,
University of Jinan, Jinan 250022, China
2 Shandong Provincial Key Laboratory of Software Engineering,
Shandong University, Jinan 250100, China
E-mail: ise_mak@ujn.edu.cn http://kunma.net

Keywords: index, cache, delta cell, query cache, indexing, relational database

Received: October 8, 2015

Relational database indexes, used to speed up access to data stored in a database, are maintained when
data in the source table of the index is modified. Therefore, relational database index management can
involve time consuming manual analysis and specialized development efforts, and impose organizational
overhead and database usage costs, especially in the context of big data. To address this limitation, this
paper proposes an asynchronous adaptive delay tolerant index cache using in-memory delta cell. The
contributions of index cache are adaptive management and fine-grained delta cell. Finally, our experimental
evaluation shows that this simple index cache has the features such as update efficiency with frequent
changes, transparency to developers, and low impact on database performance.

Povzetek: Predstavljena je nova oblika indeksa, ki omogoča boljše delovanje relacijskih baz.

1 Introduction

1.1 Background

Relational databases are organized collections of data us-
ing schemas such as tables, records and columns. Infor-
mation retrieval can be made more efficient by using rela-
tional indexes to provide rapid access to data stored in a
table [1]. An index is a data structure that is created us-
ing one or more columns of a base table using balanced
trees, B+ trees, and hashes techniques. Indexes are up-
dated when data in the source table of the index is mod-
ified. Therefore, indexes maintenance [2] is performed to
provide accurate responses to applications that retrieve data
in the presence of frequent changes. Generally, an index is
updated immediately when data in its source table is mod-
ified [2]. Changes to base tables result from statements to
insert, update, or delete records in the base table. Main-
taining an index immediately may be inefficient due to fre-
quent changes. For instance, a particular record may be
modified several times before it is read when evaluating a
query. In this situation, only the latest change to this record
before the query is concerned. In addition, index mainte-
nance may occur at peak operating times of the database,
especially in the context of big data. Thus, the processing
power of the database may be drained due to index mainte-
nance operations. And index maintenance has become the
bottleneck of big data access.

1.2 Data access with frequent changes

To address the issue of rapid data access with frequent
changes, many approaches and strategies have been pro-
posed. The first solution is distributed cache. A distributed
cache may span multiple rapid storage nodes so that it can
grow in size and in transactional capacity. It is mainly used
to store frequently accessed data residing in database and
web session data. This solution is popular due to the cheap
hardware such as memory, solid state disk, and disk array.
In addition, a distributed cache works well on lower cost
machines. Ehcache and Memcached are distributed cache
for general purpose caching [3], originally intended for use
in speeding up data access by alleviating the database load.
They feature memory and disk stores, replicate by copy
and invalidate, and cache loaders. However, distributed
cache might be suited for the scenario in which the data is
read frequently. While in the presence of frequent changes,
swapped in and out lead to excessive spending on consis-
tency.

The second solution is cache table. Cache table [4] en-
ables persistent caching of the full or partial contents of the
relational table in the distributed environment. The con-
tent of a cache table is dynamic, which is either defined in
advance at setup time or determined on demand at query
time. Although this solution exploits the characteristics of
short transactions and simple equality predicates, too mas-
sive maintenance of cache table and extra storage spaces
are needed in the context of frequent changes.

The third solution is caching query results. TxCache [5]
is a transparent caching framework that supports transac-



444 Informatica 39 (2015) 443–449 K. Ma et al.

tions with snapshot isolation. It is designed to cache query
results, and extends them to produce invalidation tags in
the presence of updates. This works when the workload
of an application consists of simple exact-match selection
predicates. CacheGenie [6] provides high-level caching ab-
stractions for common query patterns, and generates SQL
queries and object instances stored in the cache. It can per-
form this for a subset of query patterns generated by the
ORM. These frameworks are suitable with minor changes
of data.

The fourth solution is augmented cache. Cache aug-
mented systems [7] [8] enhance the velocity of simple oper-
ations that read and write a small amount of data from big
data, which are most suitable for those applications with
workloads that exhibit a high read to write ratio. Some
query intensive applications augment a database with a
middle-tier cache to enhance the performance. In the pres-
ence of updates to the normalized tables, invalidation based
consistency techniques delete the impacted key-value pairs
residing in the cache. A subsequent reference for these key-
value pairs observes a cache miss and re-computes the new
values. It is difficult to keep consistency in the presence of
frequent changes.

The last solution is augmented index. This method im-
proves the traditional index in the presence of updates.
Service indexes [9] are created to assist main indexes to
record the changes in the presence of updates. They are
maintained when there is data manipulation on main in-
dexes. Asynchronous index [10] is a delay index to main-
tain database indexes or sub-indexes. After the database
receives a data manipulation statement to modify particular
data, the index associated with this operation is maintained
asynchronously until an index maintenance event. In this
situation, there are inconsistencies between the delayed in-
dex data and actual data. Index maintenance includes delta
tables as well as control tables. The challenges of aug-
mented index is how to implement adaptive index manage-
ment and reduce the cost of maintaining indexes.

1.3 Contributions

The biggest disadvantage of the above five solutions is the
bottleneck in the presence of frequent changes. To address
this limitation, we attempt to benefit indexes from cache
techniques. We call this index cache. Compared with in-
dex techniques, we attempt to address index maintenance
issue using cache techniques. Unlike cache, index cache is
used to speed up read and write at the same time. Thus,
index cache is suitable for both high read to write ratio and
high write to read ratio. Innovation points of this article
lies on the following. First, we provide dynamic manage-
ment of index cache. Several index management metrics
(column access frequency, index maintenance frequency,
and deadlock frequency) are collected to compare with the
thresholds to determine management actions, such as reor-
ganizing indexes, creating indexes and removing indexes.
Proposed actions may be subject to final authorization or

may be implemented automatically after the metric thresh-
old values are satisfied. On one hand, the profiler we pro-
posed is general to monitor data query and manipulation
statements using JDBC or other middleware. On the other
hand, frequency is a corrected metrics. Second, we provide
delay tolerant index cache using delta cell. Index main-
tenance caused by data manipulation associated with this
index is delayed within the tolerance. This method is based
on an isolation level of a transaction including a query that
triggered the index maintenance. In this solution, fine-
grained delta cells are used to describe the changes of data.
Reset, read, write, and consistency of index cache are also
concerned. On one hand, fine-grained delta cells save more
storage than delta tables using versioning management. On
the other hand, the write of index cache is oriented to cache
itself using eventually consistency strategy.

The remainder of this paper is organized as follows. Rel-
evant recent work on dynamic management of index and
augmented index is reviewed in Section 2. In Section 3, a
description of asynchronous adaptive delay tolerant index
cache is presented. First, adaptive dynamic management
of index cache is provided to reorganize, create, and re-
move indexes by the collected metrics. Furthermore, delay
tolerant method is proposed to reset, read, write of the in-
dex cache to implement the consistency using fine-grained
delta cells. Section 4 presents the experimental evaluation
of this asynchronous adaptive delay tolerant index cache to
illustrate its update efficiency with frequent changes. Brief
conclusions and future research directions are outlined in
the last section.

2 Related work

2.1 Dynamic management of index
Generally, indexes are created by administrators to speed
up data access. In the context of applications with high
read to write ratio, indexes are competent to organize data
records. Most relational database can provide benefits by
controlling index fragmentation and inserting/removing in-
dexes based on database queries [1]. Unfortunately, it in-
volves time consuming manual analysis and specialized de-
velopment efforts. In some situations, such index man-
agement may be performed without an integral manage-
ment, leading to problems such as the following [11]. First,
running query profilers to trace query patterns may cause
significant performance overhead on databases. Second,
resolving index related issues may impose organizational
overhead and slow turnaround time.

Recent researches focus on automatical integral index
management for a relational database. For example, dy-
namic integral index management actions and index man-
agement metric thresholds are provided/rectified by admin-
istrator. An index metrics collection module automatically
collects metric values to determine whether to reorganize or
insert/remove indexes [11]. Another case is index monitor-
ing system for selectively maintaining an index [12]. An in-



Asynchronous Adaptive Delay Tolerant Index Cache. . . Informatica 39 (2015) 443–449 445

dication of an index usage criterion associated with each of
two or more indexes is provided to efficiently determine ex-
actly what and how indexes are used, and whether the index
should be removed and created. Some well-known tuning
advisors [13], such as Oracle and Microsoft SQL Server,
provide index recommendations for a given work load of
queries. Other relational database products also have a
separate component that would read a given set of queries
and provide the indexing recommendations based on stor-
age, partitioning, and other considerations [14]. Many
such products have significant limitations. For instance,
the tools are manually controlled. A set of user queries
to be analyzed must be captured from production database
servers using profilers that can add significant performance.
Implementing the index recommendations on the produc-
tion databases may require IT release cycles, which is of-
ten time consuming. Sometimes the metrics are not correct
enough to conclude good guiding significance.

2.2 Augmented index

Augmented index is a method to enable indexes to imple-
ment the maintenance in the presence of updates. Com-
pared with augmented cache solution, this method is ef-
ficient in the context of frequent changes with high write
to read ratios. At least a service index [9] is proposed to
record the changes caused by main indexes. This is a de-
layed update method of index maintenance. After data ma-
nipulation on main indexes, changes are immediately saved
to at least a service index. Maintenance to main indexes is
delayed with the help of service index. There are several
insufficiencies. First, single table with no more than one
index will lead to generate more service indexes. Second,
the performance impact on index maintenance is inevitable
because main index maintenance is just delayed to update.
In the presence of frequent changes, it will also become the
bottleneck of data access.

Another augmented index is asynchronous index [10].
Asynchronous indexes may need to be maintained when
records of the base table with the index are changed in re-
sponse to a data manipulation statement. Asynchronously
updating an index may improve the efficiency of index
maintenance by reducing the number of inputs/outputs
needed for index maintenance. This method is particularly
efficient for a database table having frequent writes, but in-
frequent reads. Insufficiencies of this method lies on the
following. First, delta tables to store the changes caused
by index will occupies huge amounts of required storage
spaces. A changes record is stored no matter how many
columns have been changed. That indicates that the un-
changed column is also stored as long as the record includ-
ing this column is changed. Second, the merging strate-
gies of massive records in delta tables are not discussed.
Without a reasonable merging strategy, the records of delta
tables grow fast in the presence of frequent updates.

3 Asynchronous dynamic delay
tolerant index cache

3.1 Dynamic management by metrics

We provide a profiler on the read and write statements to
regularly monitor the workload (a set of data query and ma-
nipulation statements that execute against a database) and
control indexes management actions appropriately, to re-
move unused indexes, to re-organize used indexes, and to
create required indexes based on the frequency. We define
column access frequency, index maintenance frequency,
and deadlock frequency to determine whether to maintain
indexes dynamically.

We want to create indexes on frequently accessed col-
umn, to remove indexes on frequently index maintenance
column, and to re-organize indexes on tables with many
deadlocks. The frequency is the broad frequency belong-
ing to one column. We take different frequencies as the
metrics of index management.

3.1.1 Column access frequency

Column access frequency reflects the frequency that one
column is accessed. When the data in this column are ac-
cessed by querying, the column access frequency count is
plus an increment. The reason why it is called broad is that
the increment is not simply one, depending on the product
of the priority weight of this column and the correction fac-
tor. When the column access frequency exceeds the thresh-
old, the index on this column should be created to speed
up the data access. Column access frequency count f is
computed by the query predicates: selection predicates, ag-
gregate predicates, and ordered predicates. To describe the
rectification of the column access frequency, we assume the
following terminology for a SQL query:
SELECT target list FROM table list
WHERE qualification list
ORDER BY ordered list

We consider the column access frequency on three pred-
icates: selection predicates (target, exact-match and range
selection), aggregate predicates, and ordered predicates. At
the beginning, the column access frequency count is zero.
Other weights and factors are empirically determined.

We describe the affection of the target and exact-match
predicates in turn. Consider the following query with a
quantification list consisting of exact-match selection pred-
icates:
SELECT a1, a2, ..., an FROM table list
WHERE a1 = C1 and/or a2 = C2 ... and/or am = Cm

The proposed profiler constructs the rectification of the
column access frequency count. If the column is located in
the target list, the access frequency count fai of column ai
is plus to the product of the weight wsai of the column and
selection correction factor ks, denoted as f = f+wsai∗ks.
If the column is located in the exact-match list, the access
frequency count fai of column ai is plus to the product of



446 Informatica 39 (2015) 443–449 K. Ma et al.

the weightwmai of the column and exact-match correction
factor km, denoted as f = f + wmai ∗ km.

We describe the affection of the range selection predi-
cates. Consider the following query with a qualification
list consisting of range selection predicates:
SELECT target list FROM table list
WHERE (a1 > C1anda1 <
C2) and/or ... and/or (am > C2k and a1 < C2k+1)

If the column is located in the range list, the access fre-
quency count fai of column ai is plus to two times the
product of the weight wrai of the column and range cor-
rection factor kr, denoted as f = f + 2 ∗ wrai ∗ kr.

We describe the affection of the aggregate selection
predicates. Consider the following query with a quantifi-
cation list consisting of aggregate selection predicates:
SELECT function1(a1), ..., functionm(am)
FROM table list
WHERE quantification list

If the column is located in the aggregate list, the access
frequency count fai of column ai is plus to the product of
the weight waai of the column and aggregate correction
factor ka, denoted as f = f + waai ∗ ka.

We describe the affection of the ordered selection pred-
icates. Consider the following query with a quantification
list consisting of ordered selection predicates:
SELECT target list FROM table list
WHERE quantification list
ORDER BY a1 asc/desc, ..., am asc/desc

If the column is located in the ordered list, the access
frequency count fai of column ai is plus to the product
of the weight woai of the column and ordered correction
factor ko, denoted as f = f + woai ∗ ko.

3.1.2 Index maintenance frequency

Index maintenance frequency reflects the frequency that in-
dexes are maintained due to data manipulation. When the
index is rebuilt by the changed column, the index mainte-
nance frequency of this column is plus an increment. The
reason why it is called broad is that the increment is not
simply one, depending on the product of the priority weight
of this column and the correction factor. Index mainte-
nance frequency count g of one column i is denoted as
g = g + wbi ∗ k, where wbi is the weight, and k is in-
dex maintenance correction factor. When the index main-
tenance frequency exceeds the threshold, the index on this
column should be removed to speed up the data access with
changes.

3.1.3 Deadlock frequency

Deadlock frequency reflects the times that one table is
locked by the index maintenance. Table access is locked
when the index maintenance is not complete. We provide
lock frequency h to record the deadlock times. When table
access is locked, the deadlock frequency is plus one. When

the deadlock frequency exceeds the threshold, a manual
check is needed to re-organize the indexes.

3.2 Delay tolerant index cache using delta
cell

3.2.1 Delta cell

In order to define the architecture and management actions
of the delay tolerant index cache, a mathematical represen-
tation of the fine-grained model is necessary. In our so-
lution, we split the storage structure of the basic element
of index cache into sets of delta cells divided by column.
Delta cell is a fine-grained model of frequent changes of a
relational database.

First, we define the elements of a delta cell.

– key is the key of a delta cell. It corresponds to
the key of relational changed record before it is di-
vided into cells. key is denoted as 2-tuple key :<
keyname, keyvalue >, where keyname is the key
name of the record, and keyvalue is the key value of
the record;

– C is key/value of this delta cell. It is denoted as 2-
tuple C :< name, value >, where name and value
are the name and value of this delta cell respectively.

– V , V ∈ Z+, is the version number of this delta cell. It
is a non-negative integer. The initial version number
of a delta cell is one. When the delta cell is removed,
the version number is set zero.

Second, we give the definition of a delta cell. The delta
cell is a 3-tuple < key,C, V >, where key is the key of a
delta cell, C is key/value of this delta cell, and V is the
version number of this delta cell. We take schema-free
key/value stores to save delta cells. The query of delta cells
is through SQL-like HiveQL [15].

As mentioned, delta cells are the first-class artifacts to
represent frequent changes. These models are typically cre-
ated and modified by the profiler we design. One of the
techniques used to support index cache management ac-
tivities is version control. Version control is used during
delta cell evolution to keep track of different versions of
delta cell artifacts produced over time. Version control en-
ables simultaneous transactions to access the delta cells that
stores different versions of the data. When a transaction up-
dates the delta cell, it maintains its previous versions. After
index cache is reset, all the versions of delta cells are emp-
tied.

3.2.2 Architecture of index cache

Figure 1 shows the architecture of our proposed asyn-
chronous adaptive delay tolerant index cache. Index cache
is the supplement of actual data with indexes. When there
are data query statements, the query results are from the
merging of index cache and actual data with indexes. When



Asynchronous Adaptive Delay Tolerant Index Cache. . . Informatica 39 (2015) 443–449 447

Figure 1: Architecture of asynchronous adaptive delay tol-
erant index cache.

there are data manipulation statements, all the updates are
written to index cache. Index cache is reset triggered by
forced update event or idle update event. With this archi-
tecture, there is no immediately index maintenance until a
forced or idle update event generates. Besides, profiler is
used to monitor the external read and write operations to
collect the frequencies to adaptively manage indexes.

3.2.3 Reset of index cache

Triggered by a forced or idle update event, the data in in-
dex cache is forced to be written to actual data with in-
dexes. When the version number of the delta cell in the
index cache is zero, the corresponding record in the actual
data with indexes should be removed. When the version
number of the delta cell in the index cache is a positive in-
teger, the latest version of this delta cell in the index cache
should replace the original record in the actual data with
indexes.

3.2.4 Read of index cache

In the architecture of delay tolerant index cache, the query
results are from both index cache and actual data with in-
dexes. In order to make the index cache transparent to the
user, the query results should be corrected by the inner re-
sult corrector in the index cache. When there is a data query
statement, the result corrector delivers the query request to
both the actual data with indexes and index cache at the
same time. In the index cache, only delta cells with a pos-
itive integer are to execute the query statement. The query
of delta cells is using HiveQL [15]. Afterwards, the re-
sults from both index cache and actual data with indexes
are merged together. The merging action needs to meet the
mergence rules shown below:

– Results with the same key: the query results from in-
dex cache replace the results from actual data with in-
dexes.

– Results with different keys: the final results are the
union set of both index cache and actual data with in-
dexes.

3.2.5 Write of index cache

With index cache architecture, the write of index cache acts
on only itself rather than actual data with indexes. For
the creation data manipulation statement, the new record
is broken down into several newborn delta cells with ver-
sion number 1. For the delete data manipulation statement,
the removed record is broken down into several destroyed
delta cells with version number 0. For the update data ma-
nipulation statement, it is divided into two cases. When the
changed data is in the index cache, the only thing to do is to
update the existing delta cell with the changed data. When
the changed data is not in the index cache, the only thing to
do is to create a newborn delta cell with version number 1.

In the process of write of index cache, the delta cells
are created and updated in order. That is to say that the
same delta cell might be updated more than once in a short
time. For instance, the data is first inserted, then updated,
and deleted at last. Therefore, update merging method is
introduced to merge the intermediate result. Afterwards,
the delta cells are in no particular order.

Table 1: Merging result of both actions.

Action 1 Action 2 Merging result

Insert Insert ×
Insert Update Insert
Insert Delete Ignore
Update Insert ×
Update Update Update
Update Delete Delete
Delete Insert Insert
Delete Update ×
Delete Delete ×

Merging of the delta cells reduces the times of several
updates to the final update when data are updated more than
once. The mergence rules are shown in Table 1. After con-
tinuous two actions of the same delta cell, the final merging
result is shown in the third column. The expected merging
results might be impossible (×), unchanged (ignore).

4 Experiments
We have conducted a set of experiments to evaluate the ef-
ficiency and effectiveness of our proposed asynchronous
adaptive delay tolerant index cache using delta cell. After a
description of the experimental setup, we evaluate three so-
lutions (database without any external index optimizations,
augmented index, and index cache).

4.1 Experiment setup

We deploy the experiment architecture with Intel Core(R)
i5-2300 @2.80 GHz CPU, 16GB memory. It runs a 64-bit



448 Informatica 39 (2015) 443–449 K. Ma et al.

CentOS Linux OS with a Java 1.6 64-bit server JVM. We
use MySQL server 5.6 GA as the relational database. We
initialize 1, 000, 000 relational records with 20 columns, 1
primary key, and 4 indexes (each index is on one column).

4.2 Update time with frequent changes

We evaluate three different solutions under three circum-
stances. The x axis is transactional workload (presented
using transactions per second), and the y axis is the av-
erage time executing 1, 000 data manipulation statements.
To increase comparability of the results, 1, 000 statements
include one third of new records, one third of changed
records, and one third of deleted records. We take asyn-
chronous index as an example of augmented index.

0 1000 2000 3000 4000 5000
10

15

20

25

30

35

40

45

50

55

60

Transactions per second

U
pd

at
e 

tim
e 

w
ith

 fr
eq

ue
nt

 c
ha

ng
es

 (
s)

 

 

database without external index optimization
augmented index
index cache

Figure 2: Update time when randomly updating non-index
columns.

The first circumstance is randomly updating non-index
columns (other 16 columns except 4 index columns). Fig-
ure 2 shows the average update time with different transac-
tions per second. Since the frequent changes are not in the
index columns, database without external index optimiza-
tions solution has the smallest update time with the increas-
ing of transactions per second. Unfortunately, the aug-
mented index works not well due to massive index main-
tenance. The update time of our proposed index cache is in
the middle, because the write of index cache is just in the
index cache itself without index maintenance.

The second circumstance is randomly updating 4 index
columns. Figure 3 shows the average update time with dif-
ferent transactions per second. Since the frequent changes
lie in the index columns, index maintenance issue become
the bottleneck of the updates. Database without external
index optimizations solution is the worst. When the trans-
actions per second are below 500, the update time of our
index cache solution is a little larger than asynchronous in-
dex solution. That is due to the reset of index cache in the
presence of low frequency. When the transactions per sec-
ond exceed 500, our index cache is starting to change for

0 1000 2000 3000 4000 5000
40

60

80

100

120

140

160

180

Transactions per second

U
pd

at
e 

tim
e 

w
ith

 fr
eq

ue
nt

 c
ha

ng
es

 (
s)

 

 

database without external index optimization
augmented index
index cache

Figure 3: Update time when randomly updating 4 index
columns.

the better. That is caused by little reset of index cache in
the presence of high frequency.

0 1000 2000 3000 4000 5000
40

50

60

70

80

90

100

110

120

Transactions per second

U
pd

at
e 

tim
e 

w
ith

 fr
eq

ue
nt

 c
ha

ng
es

 (
s)

 

 

database without external index optimization
augmented index
index cache

Figure 4: Update time when randomly updating 8 columns.

The third circumstance is randomly updating 8 columns
(3 index columns and 5 non-index columns). Figure 4
shows the average update time with different transactions
per second. Database without external index optimizations
solution is the worst, because index maintenance on 3 index
columns takes up the update time. Our index cache works
better due to the dynamic index management by metrics.
After the experiment, our index cache solution removes 1
index on the frequent updated columns, and creates 2 new
indexs on 2 frequest accessed columns.

5 Conclusions
To reduce index maintenance, this paper has propose the
asynchronous adaptive delay tolerant index cache using
delta cell. This method has some features such as dynamic
index management and fine-grained controls. This is a new



Asynchronous Adaptive Delay Tolerant Index Cache. . . Informatica 39 (2015) 443–449 449

method to improve the database performance.

Acknowledgement
This work was supported by the Doctoral Fund of Uni-
versity of Jinan (XBS1237), the Shandong Provincial
Natural Science Foundation (ZR2014FQ029), the Shan-
dong Provincial Key R&D Program (2015GGX106007),
the Teaching Research Project of University of Jinan
(J1344), the National Key Technology R&D Program
(2012BAF12B07), and the Open Project Funding of Shan-
dong Provincial Key Laboratory of Software Engineering
(No. 2015SE03).

References
[1] Radoslaw Boronski and Grzegorz Bocewicz. Rela-

tional database index selection algorithm. In Com-
puter Networks, pages 338–347. Springer, 2014.

[2] Harumi Kuno and Goetz Graefe. Deferred main-
tenance of indexes and of materialized views. In
Databases in Networked Information Systems, pages
312–323. Springer, 2011.

[3] Brad Fitzpatrick. Distributed caching with mem-
cached. Linux journal, 2004(124):5, 2004.

[4] Mehmet Altinel, Christof Bornhövd, Sailesh Krish-
namurthy, Chandrasekaran Mohan, Hamid Pirahesh,
and Berthold Reinwald. Cache tables: Paving the
way for an adaptive database cache. In Proceedings
of the 29th international conference on Very large
data bases-Volume 29, pages 718–729. VLDB En-
dowment, 2003.

[5] Dan RK Ports, Austin T Clements, Irene Zhang,
Samuel Madden, and Barbara Liskov. Transactional
consistency and automatic management in an appli-
cation data cache. In OSDI, volume 10, pages 1–15,
2010.

[6] Priya Gupta, Nickolai Zeldovich, and Samuel Mad-
den. A trigger-based middleware cache for orms. In
Middleware 2011, pages 329–349. Springer, 2011.

[7] Shahram Ghandeharizadeh and Jason Yap. Cache
augmented database management systems. In
Proceedings of the ACM SIGMOD Workshop on
Databases and Social Networks, pages 31–36. ACM,
2013.

[8] Shahram Ghandeharizadeh and Jason Yap. Gumball:
a race condition prevention technique for cache aug-
mented sql database management systems. In Pro-
ceedings of the 2nd ACM SIGMOD Workshop on
Databases and Social Networks, pages 1–6. ACM,
2012.

[9] Ying Ming Gao, Jia Huo, Kai Zhang, and Xian Zou.
Database index management, February 13 2012. US
Patent App. 13/371,577.

[10] Peter A Carlin, Per-Ake Larson, and Jingren Zhou.
Asynchronous database index maintenance, March 20
2012. US Patent 8,140,495.

[11] Meiyalagan Balasubramanian and Rohit Sabharwal.
Dynamic integrated database index management,
July 16 2013. US Patent 8,489,565.

[12] John Martin Whitehead, Subrahmanyeswar Vadali,
and Kalur Sai Kishan. Database index monitoring
system, January 7 2014. US Patent 8,626,729.

[13] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar,
Arun Marathe, Vivek Narasayya, and Manoj Sya-
mala. Database tuning advisor for microsoft sql
server 2005: demo. In Proceedings of the 2005 ACM
SIGMOD international conference on Management
of data, pages 930–932. ACM, 2005.

[14] Gary Valentin, Michael Zuliani, Daniel C Zilio, Guy
Lohman, and Alan Skelley. Db2 advisor: An opti-
mizer smart enough to recommend its own indexes.
In 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 101–101. IEEE Com-
puter Society, 2000.

[15] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain,
Zheng Shao, Prasad Chakka, Suresh Anthony, Hao
Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a
warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment, 2(2):1626–
1629, 2009.


