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Abstract
Quantitative structure-activity relationship studies were carried out on some novel HCV NS5B polymerase inhibitors

comprising 1,1-dioxoisothiazoles and benzo [b] thiophene-1,1-dioxides using genetic function algorithm (GFA) and

molecular field analysis (MFA) techniques. The statistically significant 2D/3D-QSAR models (r2 > 0.975) showed the

indispensable structural requirements to improve the activity of this class. High r2
CV

values of 0.961 and 0.945 and r2
pred

values of 0.856 and 0.992 respectively for 2D/3D-QSAR models indicated the significant predictive ability of derived

models. The validation of the models was done by full cross validation tests and external test set prediction. The results

obtained can be exploited for modifications of the anti-HCV NS5B polymerase activity of this class of analogs.
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1. Introduction

Hepatitis C virus (HCV), a member of the Flaviviri-

dae family of viruses, has caused a global health crisis sin-

ce it was first identified in 1989.1–3 There is an estimated

3% or nearly 200 million of the world’s population at risk

of this disease,4,5 which is about five times as prevalent as

the acquired immunodeficiency syndrome (AIDS).1 Many

researchers have found that HCV is a major causative

agent of liver cirrhosis, liver fibrosis, hepatocellular carci-

noma and other forms of liver dysfunction.2,6 Besides,

HCV is also the leading indication for liver transplan-

tation.5 Unfortunately, the detailed mechanism of the ac-

tion of HCV remains largely obscure at current level of

knowledge.1,7 It is also reported that HCV will be a seri-

ous global health threat for many years to come because

this disease has the chronic nature of the infection, and

high prevalence and the significant morbidity.8 Hence,

there is an increasing demand for new anti-HCV therapies

to fulfill this unmet medical need.2, 9

The interferon (IFN) monotherapy has been the

mainstream treatment for chronic HCV infection since the

early 1990s.9,10 The introduction of ribavirin as combina-

tion therapy with IFN has improved the treatment of HCV

infection. However, current standard therapy has demon-

strated limited success because of the development of

drug resistance and severe adverse side effects.9,11 Many

infected peoples with genotype 1 virus have poor respon-

se to standard therapy. There is no effective vaccine to

prevent the disease and no specific antiviral drugs directed

against HCV infection.12–14 No effective therapy for HCV

associated chronic hepatitis C has been developed so far.11

Thus there is an urgent need to further understand the

mechanism of the action of hepatitis C virus and to disco-

ver improved therapeutic agents that can effectively com-

bat chronic HCV infection.13,15,16

The urgent demand for novel anti-HCV agents has

provided an impetus for understanding the structural re-

quirements of NS5B polymerase inhibitors at molecular

level.17 NS5B polymerase, one of the virus-encoded pro-
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Table 1. Structures and anti-HCV NS5B polymerase activity of molecules used for QSAR study.

a Molecules in the test set;
b IC

50
is concentration of compounds required to achieve 50% inhibition against HCV NS5B polymerase, which is converted into corresponding

negative logarithm (pIC
50

);
c Model-1 is the best 2D-QSAR model derived by GFA method;
d Model-2 is the best 3D-QSAR model derived by MFA-G/PLS method

Molecule R1 R2 R3 R4 X IC50 pIC50 Model-1c Model-2d

(μM) (M)b predicted predicted
1 CH(CH

3
)

2
H CH

2
Ph H N 1.4 5.854 5.785 5.966

2 CH(CH
3
)

2
H CH

2
Ph OEt N 3.6 5.444 5.309 5.404

3 CH(CH
3
)

2
H CH

2
Ph OH N 0.47 6.328 6.324 6.509

4 CH(CH
3
)

2
H CH

2
Ph OCH

2
CONH

2
N 0.52 6.284 6.443 6.320

5 CH(CH
3
)

2
H CH

2
Ph OCH

2
CH

2
CONH

2
N 1.2 5.921 6.110 6.011

6a CH(CH
3
)

2
H CH

2
Ph OCH

2
COC(CH

3
)

3
N 21 4.678 6.195 5.170

7 CH(CH
3
)

2
H CH

2
Ph OCH

2
CN N 1.6 5.796 5.760 5.680

8 CH(CH
3
)

2
H CH

2
Ph N 3.2 5.495 5.477 5.259

9 CH(CH
3
)

2
H CH

2
Ph N 0.35 6.456 6.363 6.463

10 CH(CH
3
)

2
H CH

2
CH

2
C(CH

3
)

3
OEt N 9.0 5.046 5.200 5.102

11a C(CH
3
)

3
H CH

2
CH

2
C(CH

3
)

3
OEt N 1.5 5.824 5.136 5.298

12 CH
2
CH(CH

3
)

2
H CH

2
CH

2
C(CH

3
)

3
OEt N 5.1 5.292 5.124 5.381

13 C
6
H

11
H CH

2
CH

2
C(CH

3
)

3
OEt N 4.0 5.398 5.384 5.335

14 2-Thiophene H CH
2
CH

2
C(CH

3
)

3
OEt N 2.9 5.538 5.589 5.505

15 C(CH
3
)

3
H CH

2
(3-Cl-Ph) OEt N 1.6 5.796 5.844 6.039

16 C(CH
3
)

3
H CH

2
(3-Cl-4-F-Ph) OEt N 0.76 6.119 6.313 5.935

17 C(CH
3
)

3
H CH

2
CH

2
CH(CH

3
)

2
OEt N 5.1 5.292 5.154 5.336

18a C(CH
3
)

3
H CH

2
CH

2
C(CH

3
)

3
H N 0.42 6.377 5.824 6.286

19 C(CH
3
)

3
H CH

2
(3-Cl-4-F-Ph) OCH

2
CONH

2
N 0.033 7.481 7.320 7.393

20 C(CH
3
)

3
H CH

2
(3-Cl-4-F-Ph) OCH

2
CN N 0.07 7.155 7.259 7.257

21a C(CH
3
)

3
H CH

2
(3-Cl-4-F-Ph) N 0.18 6.745 7.389 5.097

22a C(CH
3
)

3
H CH

2
(3-Cl-4-F-Ph) CH

2
NHSO

2
CH

3
N <0.01 8.000 7.622 7.397

23 C(CH
3
)

3
H CH

2
(3-Cl-4-F-Ph) CH

2
N(CH

3
)SO

2
CH

3
N 0.023 7.638 7.438 7.666

24a C(CH
3
)

3
H CH

2
(3-Cl-4-F-Ph) NHSO

2
CH

3
N 0.094 7.027 8.362 6.657

25 C(CH
3
)

3
H CH

2
CH

2
C(CH

3
)

3
OCH

2
CONH

2
N 0.2 6.699 6.621 6.587

26 C(CH
3
)

3
H CH

2
CH

2
C(CH

3
)

3
N 0.65 6.187 6.339 6.142

27 C(CH
3
)

3
H CH

2
CH

2
C(CH

3
)

3
CH

2
NHSO

2
CH

3
N 0.018 7.745 7.857 7.696

28 C(CH
3
)

3
H CH

2
CH

2
C(CH

3
)

3
CH

2
CH

2
SO

2
CH

3
N 0.045 7.347 7.324 7.286

29 –CH
2
CH

2
– – CH

2
(3-Cl-4-F-Ph) CH

2
NHSO

2
CH

3
N 0.13 6.886 6.735 6.763

30 –CH
2
CH

2
– – CH

2
(3-Cl-4-F-Ph) CH

2
N(CH

3
)SO

2
CH

3
N 0.62 6.208 6.363 6.346

31 CH
2
CH

3
CH

3
CH

2
(3-Cl-4-F-Ph) CH

2
N(CH

3
)SO

2
CH

3
N 0.41 6.387 6.266 6.459

32 CH
3

CH
3

CH
2
(3-Cl-4-F-Ph) CH

2
N(CH

3
)SO

2
CH

3
N 0.46 6.337 6.361 6.277

33 CH(CH
3
)

2
CH

3
CH

2
CH

2
C(CH

3
)

3
CH

2
N(CH

3
)SO

2
CH

3
CH 13 4.886 4.979 4.960

34 C(CH
3
)

3
H CH

2
CH

2
C(CH

3
)

3
CH

2
N(CH

3
)SO

2
CH

3
CH 0.92 6.036 6.010 5.972

35a C(CH
3
)

3
H CH

2
CH

2
C(CH

3
)

3
CH

2
NHSO

2
CH

3
CH 0.24 6.620 6.222 4.130
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teins in the HCV genome, is initially recognized as an

RNA-dependent RNA polymerase (RdRp) due to its criti-

cal function in the replication cycle of the virus, which

has been confirmed by extensive in vivo studies having

essential roles for viral replication in cell cultures and in

chimpanzees.2,9 Therefore, NS5B polymerase has been

one of the ideal targets for anti-HCV therapy.11 Medicinal

chemistry pursuits of this polymerase for discovery of

anti-HCV drugs have led to the identification of many

structurally diversified inhibitors.2 Recently, Kim et al.

have reported some novel HCV NS5B polymerase inhibi-

tors comprising 1,1-dioxoisothiazoles and benzo[b]thiop-

hene-1,1-dioxides.18 Elucidation of the structural require-

ments for receptor binding of these inhibitors is im-

portant in the development of novel therapeutic and diag-

nostic agents. Computational chemistry including QSAR

study was developed as an important contributor to ratio-

nal drug design.19 The aim of this study is to derive some

statistically significant 2D/3D-QSAR models to indicate

the indispensable structural requirements for improving

the activity of this class of potent anti-HCV agents by

combining genetic function algorithm (GFA) and mole-

cular field analysis (MFA) methodologies. The results

obtained may contribute to design novel anti-HCV agents

and to further understanding of the mechanism of action

of hepatitis C virus (HCV).

2. Experimental

2.1. Data Set
A data set of 35 novel HCV NS5B polymerase inhi-

bitors comprising 1,1-dioxoisothiazoles and ben-

zo[b]thiophene-1,1-dioxides were taken from the literatu-

re (Table 1).18 The biological activity was expressed as

IC
50

values (IC
50

values are concentration of compounds

required to achieve 50% inhibition against HCV NS5B

polymerase). The biological data were converted to -log

molar concentration (pIC
50

) to reduce the skewness of the

data set.20 Molecules were rationally divided into the trai-

ning set (28) and test set (7) (Table 1) on the basis of sug-

gestions by Oprea et al.,21 which are (i) for the test set, the

biological activity values should span several times but

should not exceed activity values in training set by more

than 10%; (ii) the test set should represent a balanced

number of both active and inactive compounds for uni-

form sampling of the data. The test set molecules captured

structural features of the training set molecules, thus their

activity could be well predicted.22

2. 2. Molecular Modeling

All the molecular modeling and statistical analysis

were performed using Cerius2 (version 4.10) running on

Silicon Graphics O2 R5000 workstation.23 The molecu-

lar geometric structures were constructed using a 3D-

sketcher in the Cerius2 Builder option. Partial atomic

charges were assigned using the Gasteiger method.24

Multiple conformations of each molecule were genera-

ted using the Boltzmann jump as a conformational

search method. The upper limit of the number of confor-

mations per molecule was 150. Each conformer was sub-

sequently subjected to an energy minimization procedu-

re of UFF-VALBOND1.1 to generate the lowest energy

conformation for each structure.25 The minimum energy

difference of 0.001kcal/mol was set as a convergence

criterion.

2. 3. 2D-QSAR Analysis

Different types of physicochemical descriptors for

each molecule were generated in the study table using de-

fault setting within QSAR+ module of Cerius2. Before ge-

nerating models, 163 nonzero descriptors of E-state-indi-

ces, conformational, structural, thermodynamic, electro-

nic and spatial were considered for their inter-correlation

and the highly correlated descriptors, and the descriptors

that are difficult to interpret were removed.26 Descriptors

used for generating 2D-QSAR models are listed and des-

cribed in Table 2.

2D-QSAR analysis was performed using genetic

function algorithm (GFA). GFA was developed by Rogers

and Hopfinger,27 which was genetically involved in the

combination of Fried machs multivariate adaptive reges-

sion splines (MARS) and Holland’s genetic algorithm

(GA),28,29 It is a useful statistical analysis tool to correlate

Table 2. Descriptors used for building 2D-QSAR models.

Type Descriptors
E-state-indices Electrotopological-state indices

Spatial Jurs descriptors, radius of gyration, principal moment of inertia, molecular surface area, density, molecular

volume

Electronic Sum of atomic polarizabilities, dipole moment, energy of highest occupied orbital (HOMO), energy of

lowest unoccupied orbital (LUMO), superdelocalizability

Thermodynamic Ghose and Crippen molar refractivity, heat of formation, log of the partition coefficient, log of the partition

coefficient atom type value, desolvation free energy for water, desolvation free energy for octanol

Structural Number of chiral centers, number of rotatable bonds, number of hydrogen-bond donors, number of

hydrogen-bond acceptors, molecular weight

Conformational The energy of the currently selected conformation
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biological activity or property with characteristic parame-

ters of molecules, and also greatly improves the ease of

successful model interpretation. The length of equation

was initially fixed to five terms including a constant, the

population size was established as 100, the equation term

was set to linear polynomial and the mutation probability

was specified as 50%. After some preliminary runs for ob-

servations, GFA crossover of 5000 and smoothing para-

meter “d” value of 1.0 were set to give reasonable conver-

gence. Other default settings were maintained. Cross-vali-

dated r2 (r2
CV

) was calculated using cross-validated test

option in the statistical tool in Cerius2.

2. 4. 3D-QSAR Analysis

Molecular field analysis (MFA) was employed to

derive 3D-QSAR models for HCV NS5B polymerase

inhibitors in this study. MFA attempts to postulate and

represent the essential features of a receptor site from

the aligned common features of the molecules that bind

to it.30–32 This approach can effectively evaluate the in-

teraction energy between a probe and the set of aligned

molecules at a series of points defined by a rectangular

grid, especially for the analysis of data sets with avai-

lable activity data but unknown receptor site structu-

re.31,33,34 The probe interaction energy on a rectangular

grid were computed using atomic coordinates of bin-

ding molecules, which can be used for the subsequent

3D-QSAR study.

Having a proper alignment of the structures is cri-

tical for obtaining reliable 3D-QSAR models. It is also

vital that all compounds are aligned in a pharmacologi-

cal active orientation since the 3D-QSAR model assu-

mes that each structure exhibits activity at the same bin-

ding site of the receptor. The method used for perfor-

ming the alignment was the maximum common sub-

group (MCSG) method.23,31,33,35 This method looks at

molecules as points and lines, and uses the techniques

of graph theory to identify patterns. It finds the largest

subset of atoms in the shape reference compound that is

shared by all the structures in the study table and uses

this subset for alignment. A rigid fit of atom pairings

was performed to superimpose each structure so that it

overlays the shape reference compound. A conformer of

the most active molecule 22 was selected as the shape

reference compound to which all the structures in the

study compounds were aligned through pair–wise su-

perposition (Figure 1).

The MFA fields were calculated using proton probe

(H+) and methyl probe (CH
3
) at each lattice interaction of

a regularly spaced grid of 2.0 Å within defined three-di-

mensional region and an energy cutoff of –30 to +30

kcal/mol was truncated. CH
3

and H+ represent the steric

and electrostatic interaction, respectively. The total grid

points generated were 768 and only ten percent of total

columns of H+ and CH
3

probes with highest variance were

automatically selected as independent X variables, which

were directly used as input for 3D-QSAR analysis. Re-

gression analysis was carried out using the genetic partial

least squares (G/PLS) method consisting of 10000 genera-

tions with a population size of 100.30,31,33 The optimum

number of component was set to 4 and the length of equa-

tion was fixed to 15 containing a constant. Cross-valida-

tion was performed with the leave-one-out (LOO) proce-

dure.

3. Results and Discussion

3. 1. 2D-QSAR Model
Different sets of 2D-QSAR equations with several

descriptors were generated using the genetic function al-

gorithm (GFA) in Cerius2. A brute force approach was

first employed to investigate the number of descriptors ne-

cessary and adequate in the QSAR equations.34,36 As the

square correlation coefficient (r2) can be easily increased

by number of terms in the equation, the cross-validated r2

(r2
CV

) was selected as the limiting factor for number of

descriptors in the equation. As shown in Table 3, the r2
CV

value increases till the number of descriptors in the equa-

tion reaches up to 5 and then starts decreasing as the num-

ber of descriptors increases further. Thus, the number of

descriptors was restricted to 5 in the equation for the final

model. The selection of the best model was based on the

values of r2 (square of the correlation coefficient for the

training set molecules), LOF (Friedman’s lack of fit sco-

re), F-Test; LSE (least square error), r2
CV (cross-validated

r2), r2
BS (bootstrap correlation coefficient), and PRESS

(predicted sum of deviation squares).34 The statistically

significant 2D-QSAR model with no outliners is shown

below.

Figure 1. Stereo-view of aligned molecules in the training set and

test set by the maximum common subgroup (MCSG) alignment

method.
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Model-1
pIC

50
= 1.26999 – 1.01674(Atype_C_11) –

0.240401(Atype_C_6) – 0.140126(S_dssC) –

0.06192(Jurs-PNSA-3) + 0.152684(Sr)

N = 28, LOF = 0.034, r2 = 0.976, r2
adj

= 0.971, 

F-Test = 178.944, LSE = 0.014, r = 0.988, r2
CV

=

0.961, r2
BS

= 0.976+/-0.000, PRESS = 0.640, N’ =

7, r2
pred

= 0.856

N is the number of compounds in training set and

LOF (Friedman’s lack of fit score) is used to assess the

goodness of each progeny equation using the following

formula:36,37 LOF = LSE / {1 – (c + dp) / m}2, where LSE

is least square error, c is the number of basis function in

the model, d is smoothing parameter, p is the number of

descriptors and m is the number of observations in the

training set; r2 is an indicator of the model data fit; r2
CV

is

an indication of the predictive capability of the model;38

N’ is the number of compounds in test set; r2
-pred

is the pre-

dictive squared correlation coefficient of test set,39 which

is calculated by r2
-pred

= (SD-PRESS)/SD,33,34 where SD is

the sum of squared deviations between the pIC
50

of each

molecule and the mean pIC
50

of the molecules in the trai-

ning set and PRESS is the sum of squared deviations bet-

ween the predicted and calculated pIC
50

values for each

molecule in the test set. The high r2
-pred

value of 0.856 for

the test set accounted for the good predictive ability of

model-1. The inter-correlation of the descriptors appeared

in the above model-1 was taken into account and the des-

criptors were found to be reasonably orthogonal (Table 4).

Summary of best QSAR equations with five descriptors

are shown in Table 5.

The randomization tests and full cross-validation

tests were employed to determine reliability and signifi-

cance of these generated models. The randomization

tests were performed at 90% (9 trials), 95% (19 trials),

98% (49 trials) and 99% (99 trials) confidence levels

and carried out by repeatedly permuting the dependent

variable set.34,36,37 The results of randomization tests in

Table 6 showed that none of the permuted data sets pro-

duced the random r comparable to nonrandom r of

0.988, suggesting that the value obtained for the origi-

nal model-1 was significant. Cross-validation is a prac-

tical and reliable method for testing significance.33 The

full cross-validation tests encompass the entire algo-

rithm including both the choice of descriptors and the

optimization of regression coefficients.40 The cross-va-

lidated r2 (r2
CV

) was computed using the predicted va-

lues of the missing molecules by the models obtained

from the remaining compounds in the data set. The re-

sults based on the rules of “leave-1-out”, “leave-2-out”,

“leave-3-out”, “leave-4-out”, “leave-5-out”, “leave-7-

Table 3. Statistical evaluation of 2D-QSAR models with varying number of descriptors by genetic function algorithm (GFA).

Descriptor Equation LOF r2 r2
adj F-test LSE r r2

BS r2
CV

1 pIC
50

= 2.23347 – 0.046664(Jurs-PNSA-3) 0.237 0.655 0.641 49.286 0.205 0.809 0.655 0.602

2 pIC
50

= 0.007649 – 0.062216(Jurs-PNSA-3)

+ 1.10834(Atype_C_8) 0.092 0.886 0.877 97.202 0.068 0.941 0.886 0.862

3 pIC
50

= 1.4776 – 1.15221(Atype_C_11)

– 0.063625(Jurs-PNSA-3)

– 0.228339(Atype_C_6) 0.056 0.942 0.934 129.042 0.035 0.970 0.942 0.919

4 pIC
50

= 0.066656 – 0.230102(Atype_C_6)

+ 1.01908(Atype_C_8) + 0.174428(Sr) 

– 0.065147(Jurs-PNSA-3) 0.036 0.969 0.963 178.578 0.018 0.984 0.955 0.969

5 pIC
50

= 1.26999 – 1.01674(Atype_C_11)

– 0.240401(Atype_C_6) – 0.140126

(S_dssC)-0.06192(Jurs-PNSA-3)

+0.152684(Sr) 0.034 0.976 0.971 178.944 0.014 0.988 0.976 0.961

6 pIC
50

= 0.118409 – 0.062861(Jurs-PNSA-3)

+ 0.150551(Sr) – 0.175949(S_dssC)

– 0.235841(Atype_C_6) + 0.318926

(S_sssCH) + 1.24354(Atype_C_8) 0.039 0.979 0.972 159.781 0.013 0.989 0.979 0.959

Table 4. Correlation matrix of the descriptors appeared in 2D-QSAR model-1.

pIC50 Atype_C_11 Jurs-PNSA-3 Sr S_dssC Atype_C_6
pIC

50
1

Atype_C_11 –0.024 1

Jurs-PNSA-3 –0.809 –0.489 1

Sr 0.039 –0.430 0.318 1

S_dssC –0.513 –0.157 0.482 –0.058 1

Atype_C_6 –0.149 –0.042 –0.058 0.017 –0.142 1
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out” and “leave-10-out” are shown in Table 7, indica-

ting that the QSAR models obtained were not by chance

correlation. The developed 2D-QSAR model-1 thus was

robust and was found satisfactory for predicting the ac-

tivities of the test set (Table 1).

An important observation during generating QSAR

models was the occurrence of Atype_C_11, Atype_C_6,

Sr and Jurs-PNSA-3 as the frequent descriptors (Figure

2). The model-1 with five descriptors could explain
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Table 5. Summary of best QSAR equations generated by genetic function algorithm (GFA) method with five descriptors.

Descriptor Equation LOF r2 r2-adj F-test LSE r
1 pIC

50
= 1.26999 – 1.01674(Atype_C_11)– 0.240401

(Atype_C_6) – 0.140126(S_dssC) – 0.06192

(Jurs-PNSA-3) + 0.152684(Sr) 0.034 0.976 0.971 178.944 0.014 0.988

2 pIC
50

= 1.37196 – 0.057496(Jurs-PNSA-3) – 1.10783

(Atype_C_11) – 0.249135(Atype_C_6) 

+ 0.160746(Sr) – 0.000367(Jurs-PNSA-2) 0.038 0.973 0.967 159.950 0.016 0.987

3 pIC
50

= 1.271 – 0.234089(Atype_C_6) + 0.157638(Sr

– 0.2603(Jurs-FNSA-2) – 1.11158

(Atype_C_11) – 0.058589(Jurs-PNSA-3) 0.039 0.973 0.967 158.491 0.016 0.986

4 pIC
50

= 0.966113 – 0.064248(Jurs-PNSA-3) 

– 0.991227(Atype_C_11) – 0.229949

(Atype_C_6) + 0.204867(Atype_C_39)

+ 0.153011(Sr) 0.039 0.973 0.967 156.910 0.016 0.986

5 pIC
50

= 1.31634 – 0.223683(Atype_C_6) – 0.062435

(Jurs-PNSA-3) – 1.09332(Atype_C_11)

+ 0.010869(S_sF) + 0.143171(Sr) 0.040 0.972 0.966 152.856 0.017 0.986

6 pIC
50

= 1.31602 – 0.223698(Atype_C_6)

+ 0.143166(Sr) – 0.06244(Jurs-PNSA-3)

– 1.09365(Atype_C_11) + 0.148092

(Atype_F_84) 0.040 0.972 0.966 152.767 0.017 0.986

7 pIC
50 

= 1.06779 – 0.066316(Jurs-PNSA-3) – 1.08581 

(Atype_C_11) – 0.238002(Atype_C_6)

+ 0.171716(Sr) – 0.065183(Atype_C_4) 0.040 0.972 0.965 151.998 0.017 0.986

8 pIC
50

= 1.10075 – 0.230753(Atype_C_6) + 0.144789

(Sr) – 0.064054(Jurs-PNSA-3) – 1.0514

(Atype_C_11) + 0.055958(Atype_C_26) 0.041 0.972 0.965 151.232 0.017 0.986

9 pIC
50

= 2.68512 – 0.060797(Jurs-PNSA-3) – 1.01493

(Atype_C_11) – 0.217129(Atype_C_6)

+ 0.171065(Sr) – 1.717(Jurs-RASA) 0.041 0.972 0.965 151.199 0.017 0.986

10 pIC
50

= 1.36288 – 0.062509(Jurs-PNSA-3) – 1.03628

(Atype_C_11) ) – 0.225279(Atype_C_60)

– 162164(Sr) – 0.091528(S_aaaC) 0.041 0.972 0.965 150.520 0.017 0.986

Table 6. Results of randomization tests for 2D-QSAR models.

Randomization tests 
Confidence leve l90% 95% 98% 99%
Total trials    9 19 49 99

r from non-random 0.988 0.988 0.988 0.988

Random rs< non-random 9 19 49 99

Random rs> non-random 0 0 0 0

Mean of r from random trial 0.666 0.659 0.673 0.634

Standard deviation of random trials 0.050 0.056 0.066 0.061

Standard deviation from non-random r to mean 4.429 4.068 3.257 4.135

Table 7. Results of full cross-validation tests for 2D-QSAR models.

Rule PRESS Sum of sq dev. r2
CV

Leave-1-out 0.415 16.590 0.975

Leave-2-out 0.345 16.590 0.979

Leave-3-out 0.475 16.590 0.971

Leave-4-out 0.435 16.590 0.974

Leave-5-out 0.449 16.590 0.973

Leave-7-out 0.485 16.590 0.971

Leave-10-out 0.410 16.590 0.974
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97.6% of the variance and predict 96.1% of the variance.

Descriptors of Atype_C_6 and Atype_C_11 are the atom

type AlogP descriptors used to characterize the

hydrophobicity (logP) of molecules. The atomic contri-

bution of individual atom types was proposed by Ghose

and Crippen41 toward the overall hydrophobicity of mole-

cules where carbon, hydrogen, oxygen, nitrogen, sulfur

and halogens were classified into 120 atom types.36

Hydrogen and halogens are classified by the hybridiza-

tion and oxidation state of the carbon they are bonded to,

and carbon atoms are classified by their hybridization

state and the chemical nature of their neighboring atoms.

A total of 44 carbon types alone attest the complexity of

the classification procedure. The negative slope of Aty-

pe_C_6 and Atype_C_11 in model-1 represents that acti-

vity decreases with an increase in lipophilicity related to

C_6 and C_11 atom types for these inhibitors. The atom

type C_6 is C in CH
2
RX and C_11 is C in CR

3
X where X

represents any heteroatom (O, N, S, and halogens).41 The

E-state indices encode information about both the topolo-

gical environment and the electronic interaction of an

atom due to all other atoms in the molecule.42 S_dssC is

one descriptor of the E-state indices, representing the ato-

mic type of =C< in the cyclic ring. S stands for the sum of

the E-state values for a given atom type in a molecule.

The set of bonds to a skeletal atom is given by a string of

lower case letters: s (single), d (double), t (triple) and a

(aromatic).43 Jurs-PNSA-3 is the sum of the product of

solvent-accessible surface area X partial charge for all

negatively charged atoms.44 It is negatively correlated

with the activity, indicating that increasing this value in

molecules could decrease biological activity. That may

explain why molecules 2, 6, 10, 12 and 17 with high va-

lues of Jurs-PNSA-3 were less active than molecules 22,

23, 24, 27 and 28 with low values of Jurs-PNSA-3 (Table

1). Superdelocalizability (Sr) is an index of reactivity of

occupied and unoccupied orbitals in aromatic hydrocar-

bons (AH),23,45 which is proposed by Fukui using follo-

wing formula:46

(1)

where S
r
= superdelocalizability at position r; e

j
= bonding

energy coefficient in jth MO (eigenvalue); c = molecular

orbital coefficient at position r in the HOMO, and m = in-

dex of the HOMO. This index is based on the idea that

early interaction of the molecular orbitals of two reactants

may be regarded as a mutual perturbation, so that the rela-

tive energies of the two orbitals change together and

maintain a similar degree of overlap as the reactants ap-

proach one another. This parameter for all atomic posi-

tions of a molecule gives a metric of electrophilicity,

which is frequently employed to characterize molecular

interactions.

3. 2. 3D-QSAR Model
MFA samples the steric and electrostatic fields sur-

rounding a set of ligands and constructs 3D-QSAR mo-

dels by correlating these 3D field interaction energies

computed using atomic coordinates of binding molecules

with the corresponding bioactivity. The statistically signi-

ficant 3D-QSAR model below was selected based on r2

and r2
CV

. In the model-2, the descriptors H+/x, H+/y and

H+/z are the interaction energies between a proton probe

and the molecule at the rectangular points x, y and z, res-

pectively.31,34 The descriptor CH
3
/x is the corresponding

interaction energy for the methyl probe. 30,34

Model-2
pIC

50
= 0.004785(H+/239) – 0.01012(H+/540) +

0.008195(H+/491)

– 0.022389 (H+/619) – 0.013445(CH
3
/621) +

0.00728(CH
3
/636)

+ 0.02768 (CH
3
/404) + 0.023923(H+/546) +

0.025499(CH
3
/110)

– 0.015767(H+/430) – 0.019974(CH
3/

347) +

0.022202(CH
3
/91)

– 0.014428(CH
3
/307) + 0.006893(H+/214) +

5.59793

N= 28, r2 = 0.980, r2
CV

= 0.945, r2
BS

=

0.963+/–0.063, LSE = 0.012, r = 0.990,

PRESS = 2.957, N’ = 7, r2
pred

= 0.992

N is the number of compounds used in training set,

and N’ is the number of compounds in test set. The reaso-

nable values of correlation coefficient r2 of 0.980 and

cross-validated r2 of 0.945 indicate that this model could

explain satisfactorily the variances in the activity, which

can be used to design novel HCV NS5B polymerase inhi-

bitors. The robust and highly predictive ability of the mo-

Figure 2. Descriptor usage graph during generating 2D-QSAR mo-

dels by genetic function algorithm (GFA).
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dels was reflected insufficiently only by the cross-valida-

tion test, thus the external predictive power of the model

was evaluated with the test set molecules.33 High r2
pred

va-

lue of 0.992 for the test set accounts for good predictive

ability of model-2, which was also proved satisfactory for

predicting the activity of the test set (Table 1).

Model-2 consists of the same number of methyl

(CH
3
) probes as proton (H+) probes, indicating both of ste-

ric and electrostatic interactions are important to the biolo-

gical activity. In order to visualize the models effectively,

the most active molecule 22 (IC
50

< 0.01 μM) and the least

active molecule 6 (IC
50

= 21 μM) specifying their location

in the 3D-grid with selected field energies of model-2 are

highlighted in Figure 3 and Figure 4, respectively. Through

the comparison of these field energies of active and inactive

compounds in Figure 3 and Figure 4, there are several obvi-

ous differences. Appearance of descriptor of CH
3
/91 with

positive coefficient between the R2 group and R3 group in-

dicates that moderate steric substituents are favorable.34,35

Electrostatic descriptor of H+/214 with positive coefficient

around the R3 position suggests that electron donating

group can increase the activity of molecules.33 The negative

coefficient of descriptor (H+/540) near to the region of

group R4 shows that the subtle balance of electrostatic para-

meter is required at this position.34,35 The unfavorable pre-

sence of CH
3
/621 indicates that groups with big steric pa-

rameters at region of group R4 lead to drop in activity.

4. Conclusions

Statistically significant QSAR models were genera-

ted with the purpose of deriving indispensable structural

requirements for a series of novel HCV NS5B polymerase

inhibitors comprising 1,1-dioxoisothiazoles and ben-

zo[b]thiophene-1,1-dioxides. The 2D-QSAR models con-

structed by GFA methodology were validated by full

cross-validation tests, randomization tests and external

test set prediction, indicating that the bioactivities were

principally governed by the atom type AlogP descriptors

(Atype_C_6 and Atype_C_11), atomic type of =C in the

cyclic ring (S_dssC), the sum of the product of solvent-ac-

cessible surface area X partial charge for all negatively

charged atoms (Jurs-PNSA-3) and superdelocalizability

(Sr). 3D-QSAR models developed based on steric and

electrostatic descriptors by MFA-G/PLS method were to

investigate the substitutional requirements for the favorab-

le receptor-drug interaction. Well predicted activities

compared with actual activities of test set molecules sup-

ports the significant predictive ability of the derived

2D/3D-QSAR models, thus, the models can be used to

predict the anti-HCV activities of new analogs. The re-

sults in this research can provide a preliminary valuable

guidance for continuing search of potent HCV NS5B

polymerase inhibitors prior to synthesis.
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Povzetek
V prispevku je predstavljena kvantitativna {tudija povezave med strukturo in reaktivnostjo nekaterih novih inhibitorjev

HCV NS5B polimeraze, ki obsegajo 1,1-dioksoizotiazole in benzo[b]tiofen-1,1-diokside, z uporabo tehnik algoritma

genetske funkcije (GFA) in analize molekulskega polja (MFA). Statisti~no pomembna 2D/3D-QSAR modela (r2 >

0.975) sta pokazala na neobhodno potrebne strukturne zahteve za izbolj{anje aktivnosti tega tipa spojin. Visoke vredno-

sti r2
CV

(0.961 in 0.945) in r2
pred

(0.856 in 0.992) za 2D/3D-QSAR modela ka`ejo na pomembno napovedovalno sposob-

nost uporabljenih modelov. Validacija uporabljenih modelov je bila narejena z navzkri`nim validacijskim testom in na-

povedjo neodvisnega testnega niza. Rezultate raziskave bi lahko uporabili za spreminjanje anti-HCV NS5B polimeraz-

ne aktivnosti pri {tudiranemu razredu analogov.
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