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On Bagging and Estimation in Multivariate 
Mixtures 

Reza Pakyari1 

Abstract 

Two bagging approaches, say ^n-out-of-n without replacement (subagging) and 
n-out-of-n with replacement (bagging) have been applied in the problem of esti-
mation of the parameters in a multivariate mixture model. It has been observed by 
Monte Carlo simulations and a real data example, that both bagging methods have 
improved the standard deviation of the maximum likelihood estimator of the mixing 
proportion, whilst the absolute bias increased slightly. In estimating the component 
distributions, bagging could increase the root mean integrated squared error when 
estimating the most probable component. 

1 Introduction 

In many statistical applications, it is known or suspected that observations arise from 
two or more populations with different distributions mixed in varying proportions. For 
example, the distribution of height in a population of adults might be decomposed into 
male and female populations, or similarly in fisheries research, where usually fish lengths 
are available, but not their sexual identities. In medical diagnostics, a patient could be 
suffering from each of p — 1 illnesses. These p — 1 illnesses as well as the case of no illness 
represent p sub-populations. The doctor then applies k different tests, so he or she has k-
dimensional data, potentially from a mixture with p sub-populations. Extensive literature 
is available on the parametric approach. See, for example, the monographs of (Everitt 
and Hand, 1981; Titterington et al., 1985; McLachlan and Basford, 1988; Lindsay, 1995; 
McLachlan and Peel, 2000) and the references therein. 

Bagging is one of the successful methods for improving the accuracy of estimators 
especially for high dimensional dataset problems. Bagging (bootstrap aggregating), was 
first introduced by (Breiman, 1996a) as a method for reducing the variance of an estimator 
and since then has been applied by several authors and researchers. 

Bagging is particularly useful for decision trees and neural networks as well as some 
nonlinear predictors, although theoretical explorations of why this is so are less clear. 

(Breiman, 1996a) showed in empirical studies that the variance of the bagged estima-
tor is never greater than the variance of the original estimator, and that there is consider-
able variance reduction if the original estimator is instable. He also showed that there is 
little difference between the biases of the bagged and original estimators. 
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By Breiman's definition of instability (Breiman, 1996b), an estimator is instable if a 
small change in the data tends to a large variation in the predicted value(s). He mentioned 
that neural nets, classification and regression trees, and subset selection in linear regres-
sion, are all examples of instable procedures, whilst, the k-nearest neighbor method is 
stable. 

Note that bagging is useless when it is applied for a linear predictor (Bühlmann and 
Yu, 2002), therefore bagging may be useful only for nonlinear predictors. 

(Bühlmann and Yu, 2002) proposed a variant of bagging called subagging 
(subsample aggregating) based on subsampling instead of the bootstrap for the aggre-
gation. They chose subsample size m = | which was also considered by (Freidman and 
Hall, 2000). 

As mentioned earlier, the theoretical reasons why bagging works well are less clear. 
(Freidman and Hall, 2000) showed theoretically that under bagging for a class of smooth 
estimators, the first order or leading variance term remains unchanged, whilst, the second 
order variance term is improved. They also argued that two different bagging approaches, 
say |n-out-of-n without replacement (subagging) and //-out-of-// with replacement (bag-
ging) tend to give virtually identical results. 

(Bühlmann, 2003) proposed another variant of bagging, called bragging (bootstrap 
robust aggregating), which improves an estimator by taking averages over an unstable 
selection of variables or terms. 

In the present paper, we apply bagging and subagging for the estimation in a two-term 
mixture model, and compare the estimation with the usual maximum likelihood method. 

2 Estimation in multivariate mixtures 

Consider the k-variate p-term mixture model 

$ = n i J ! Fii + . . . + n p J ! Fpi, (2.1) 
i = 1 i = 1 

where Fji for 1 < i < k and 1 < j < p are continuous univariate distribution func-
tions and the mixing proportions, n ' s satisfy YTj=1 n = 1. Suppose further that the 
component distribution functions are independent. 

Let fit a Gaussian mixture model and estimate the parameters by the method of maxi-
mum likelihood estimation. Hence there are 4k + 1 unknown parameters to estimate. It is 
known that the likelihood equations that arise from a finite Gaussian mixture model does 
not have a closed form, and therefore a numerical method should be used to find MLEs. 
The EM algorithm first introduced by (Dempster et al., 1977) in their fundamental paper, 
is known to be one of the most efficient methods to find MLEs in finite mixture models; 
see for example the monograph of (McLachlan and Krishnan, 1997). 

Consider a dataset x, and let x* be a resample of size m < n obtained by sampling 
with replacement from x. Bagging is defined as follows: 

Let 9(x) be the predictor of 6{x) where x = {x1,..., x n } is a dataset. Let ̂ (x*) be 
the bootstrapped predictor of 9(x) computed by the plug-in principle based on bootstrap 
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resample x*. The bagged predictor is defined by 

9baga(x) = E*{(9(x*)> , (2.2) 

where E*{•} is the bootstrap expectation. 
In practical applications, the bagged predictor in (2.2) is approximated by the follow-

ing estimator: 

1 B 

j=i 

where B is the number of bootstrap replicates and 9j (x*) is the version of 9(x*) computed 
from the j th bootstrap resample. 

In our simulation studies in Section 3 we took B = 50. In general, choosing B 
depends on the problem under consideration, sample size and computational cost. For 
further discussion regarding the number of bootstrap replicates, see (Breiman, 1996a). 

If the resampling is done without replacement, the resulting bagged predictor is known 
as subagging. In the following section we study the effect of bagging in estimation the 
parameters in multivariate mixtures through a Monte Carlo simulation and a real data 
example by comparing the three estimation method say ^n-out-of-n without replacement 
(subagging), n-out-of-n with replacement (bagging) and the usual maximum likelihood 
estimation. 

3 Numerical results 

3.1 Simulation study 

We generated 300 datasets, each of size n = 
mixture model 

500, from a trivariate two-term Gaussian 

$i(x) = nNa(x; ß i , 13) + (1 - n)N3(x; p2,13), (3.1) 

where N3(ß, S) denotes the trivariate Gaussian distribution function with mean vector 
ß, and variance-covariance matrix S. In particular, we chose the 3 x 3 identity matrix 
I3 as the variance-covariance matrix, and ß1 = (0,0,0), and two different values for ß2, 
specifically ß2 = (1,1,1) and ß2 = (3, 3, 3), representing relatively "close" or "distant" 
component distributions, respectively. It is known that estimation of n and Fji in the 
"distant" setting tends to better results in compare to "close" setting. 

The maximum likelihood estimation method via EM algorithm has been applied for 
estimation of the parameters. The effect of bagging procedure for the improvement of the 
estimation has been studied by applying bagging and subagging. 

Table 1 gives the absolute bias of the maximum likelihood, subagged maximum likeli-
hood and bagged maximum likelihood estimator of the mixing proportion n, in the distant 
setting and Table 2 gives their standard deviations. Figure 1 depicts the figures given in 
Tables 1 and 2 as well as the root mean squared error of the three kind of estimators. It can 
be seen from this figure that subagging and bagging had reduced the standard deviation 
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whilst the absolute bias have been slightly increased. The improvement of the root mean 
squared error is less clear. The same thing happens when estimation is done in the close 
setting as is suggested by Tables 3 and 4 and Figure 2 which give absolute bias, standard 
deviation and their figures in the close setting, respectively. 

Table 1 : Absolute bias of maximum likelihood estimator MLE, subagged MLE and bagged 
MLE of mixing proportion n, in the distant setting. 

mixing proportion 7r MLE Subagging MLE Bagging MLE 
0.1 0.00092 0.00046 0.00089 
0.2 0.01360 0.01424 0.01413 
0.3 0.02547 0.02521 0.02566 
0.4 0.03477 0.03612 0.03616 

Table 2: Standard deviation of maximum likelihood estimator MLE, subagged MLE and 
bagged MLE of mixing proportion n, in the distant setting. 

mixing proportion 7r MLE Subagging MLE Bagging MLE 
0.1 0.01194 0.01197 0.01179 
0.2 0.01721 0.01697 0.01651 
0.3 0.02075 0.01837 0.01831 
0.4 0.02538 0.02125 0.02207 

Table 3: Absolute bias of maximum likelihood estimator MLE, subagged MLE and bagged 
MLE of mixing proportion n, in the close setting. 

mixing proportion ir MLE Subagging MLE Bagging MLE 
0.1 0.24103 0.27256 0.27170 
0.2 0.08876 0.09238 0.09160 
0.3 0.01332 0.01557 0.01578 
0.4 0.00667 0.00637 0.00547 

Table 5 gives the root mean integrated squared error (MISE) of the maximum likeli-
hood, subagged maximum likelihood and bagged maximum likelihood estimator of the 
component distribution function Fn , in the distant setting. Figure 4 depicts the root MISE 
of all the Fji's for the three kinds of estimators. Any difference between the three esti-
mation method is barely clear in this figure. When comes to the close setting the results 
differ slightly. Figure 3 depicts the root mean integrated squares error of the three es-
timation method. For brevity we do not give table in this case. The figure surprisingly 
show that both bagging and subagging have increased the root MISE when estimating the 



Figure 1: Absolute bias, standard deviation and root MSE of the MLE, solid lined, subagged 
MLE, dotted lines and bagged MLE, dot-dashed lines, estimators of the mixing proportion 

n, in the "distant" setting. Sample size is 500. 
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Figure 2: Absolute bias, standard deviation and root MSE of the MLE, solid lined, subagged 
MLE, dotted lines and bagged MLE, dot-dashed lines, estimators of the mixing proportion 

n, in the "close" setting. Sample size is 500. 
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Figure 3: Root MISE of the MLE, solid lined, subagged MLE, dotted lines and bagged 
MLE, dot-dashed lines, estimators of the component distribution functions, in the "close" 

setting. Sample size is 500. 
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Figure 4: Root MISE of the MLE, solid lined, subagged MLE, dotted lines and bagged 
MLE, dot-dashed lines, estimators of the component distribution functions, in the "distant" 

setting. Sample size is 500. 



On Bagging and Estimation. 15 

Table 4: Standard deviation of maximum likelihood estimator MLE, subagged MLE and 
bagged MLE of mixing proportion n, in the close setting. 

mixing proportion 7r MLE Subagging MLE Bagging MLE 
0.1 0.13252 0.06909 0.07478 
0.2 0.03818 0.01847 0.02087 
0.3 0.01469 0.01333 0.01402 
0.4 0.02041 0.02063 0.02161 

Table 5: Root MISE of maximum likelihood estimator MLE, subagged MLE and bagged 
MLE of component distribution Fu , in the distant setting. 

mixing proportion 7r MLE Subagging MLE Bagging MLE 
0.1 0.08697 0.08963 0.09222 
0.2 0.07109 0.07101 0.07216 
0.3 0.06598 0.06468 0.06575 
0.4 0.05751 0.05888 0.05899 

distribution function of the most probable component. The difference between the three 
estimation method is not significant in other cases. 

3.2 Real-data example: Leptograpsus crabs 

(Campbell and Mahon, 1974) collected and analyzed 200 specimens of Leptograpsus 
crabs in Fremantle, Western Australia. Leptograpsus crab has two species, blue and or-
ange. Campbell and Mahon measured five morphological characteristics of 50 males and 
50 females of each colour, 200 specimens in total. To simplify our analysis we considered 
the first three morphological characteristics, namely the width of the frontal lip, the rear 
width of the carapace and the length along midline of the carapace. The carapace is the 
hard protective shell of the crab. 

(Campbell and Mahon, 1974) used a multivariate analysis to classify the two species 
independently of colour. This classification of species based on morphological character-
istics would help museums, because preserved species lose their colour over time. The 
dataset is widely considered to follow a multivariate two-component mixture model and 
was further analyzed by (Ripley, 1996; McLachlan and Peel, 1998; McLachlan and Peel, 
2000; Raftery and Dean, 2004). 

We repeatedly resampled datasets of size 100, without replacement, from the whole 
dataset of size n = 200 using the following resampling scheme: 

Step 1 : Generate a random number u from a uniform random variable 
on (0,1). 

Step 2: If u < n take a sample without replacement from the male 
population; 
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Figure 5: Root mean integrated squared errors of the marginal distribution estimators by 
fitting three models to the first three morphological characteristics of the crabs dataset when 

n = 0.3. 

otherwise take a sample without replacement from the female 
population. 

Step 3: Repeat steps 1 and 2 until all 100 samples are taken. 

We considered n = 0.3 to have a asymmetric mixture model. This makes the female 
population, the most probable component in the model. We repeated the above steps 50 
times to obtain 50 resamples each of size 100. To each dataset, we fitted a trivariate 
two-term Gaussian mixture model 

$2(x) = nNa(x; ßi, S i ) + (1 - n)N3(x; ß2, £ 2 ) , (3.2) 

where N3(ß, S) denotes the trivariate Gaussian distribution function with mean vector ß, 
and variance-covariance matrix S. The components are assumed to be independent. 

Table 6: Absolute bias and standard deviation of maximum likelihood estimator MLE, 
subagged MLE and bagged MLE of mixing proportion n, in the crabs data. 

criterion MLE Subagging MLE Bagging MLE 
Absolute bias 

Standard deviation 
0.20286 
0.15590 

0.21069 
0.10397 

0.20805 
0.11188 

Table 6 gives absolute bias and standard deviation of the maximum likelihood esti-
mator of the mixing proportion, n as well as the subgged and bagged estimators. As one 
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expects both bagged and subagged estimators have reduced the standard deviation, whilst 
the absolute bias has been slightly increased. 

Figure 5 depicts the root mean integrated squared errors of the marginal distribution 
function estimators. Empirical distributions computed from all 200 data were considered 
as the true marginal distribution functions. Surprisingly both bagging procedures have 
little or no effect on the root MISE of the first component, whilst they have been worsen 
the estimation for the second, i.e. the most probable component. 

Conclusions 

In summary, the bagging and subagging procedures improve the standard deviation when 
estimating the mixing proportion, whilst the absolute bias increases slightly. Both Bag-
ging procedures could increase the mean integrated square error when estimating the mar-
ginal distribution functions, especially in estimating of the most probable component. In 
all of the estimations there are no significant difference between |n-out-of-n subagging 
and n-out-of-n bagging. This support the results of (Freidman and Hall, 2000). 

Our findings in this article leave a major question about the usefulness of Bagging in 
mixture estimation problems. Bagging was well know to be useless in linear problems and 
we have to consider the mixture models as another situation that this resampling method 
fails to improve the estimation. Nonetheless one should not underestimate the power of 
Bagging in improvement the estimation in neural networks and decision tress problems. 
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