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Abstract

Regular oriented hypermaps are triples (G; a, b) consisting of a finite 2-generated group
G and a pair a, b of generators of G, where the left cosets of 〈a〉, 〈b〉 and 〈ab〉 describe re-
spectively the hyperfaces, hypervertices and hyperedges. They generalise regular oriented
maps (triples with ab of order 2) and describe cellular embeddings of regular hypergraphs
on orientable surfaces. Previously, we have classified the regular oriented hypermaps with
a prime number of hyperfaces and with no non-trivial regular proper quotients with the
same number of hyperfaces (i.e. primer hypermaps with prime number of hyperfaces),
which generalises the classification of regular oriented maps with prime number of faces
and underlying simple graph. Now we classify the regular oriented hypermaps with a prime
number of hyperfaces. As a result of this classification, we conclude that the regular ori-
ented hypermaps with prime p hyperfaces have metacyclic automorphism groups and the
chiral ones have cyclic chirality groups; of these the “canonical metacyclic” (i.e. those for
which 〈a〉 is normal in G) have chirality index a divisor of n (the hyperface valency) and
the non “canonical metacyclic” have chirality index p. We end the paper by counting, for
each positive integer n and each prime p, the number of regular oriented hypermaps with p
hyperfaces of valency n.
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1 Introduction
Hypermaps (surface embeddings of hypergraphs), introduced by Cori [10] in 1975, have
acquired great importance in recent years as a connection between permutations, extended
triangle groups, Riemann surfaces, algebraic curves and Galois groups. As highlighted
by Grothendieck [14], the absolute Galois group of the field of algebraic numbers acts
faithfully on dessins d’enfants (hypermaps), combinatorial objects that, by Belyi’s theorem
[1], characterise the Riemann surfaces defined (as projective algebraic curves) over the field
of algebraic numbers. The correspondence between hypermaps and Riemann surfaces is in
general difficult to study, but becomes more manageable if the hypermaps are uniform (that
is, if all hyperfaces have the same size n, all hypervertices have the same degree k and all
hyperedges have the same size m) and particularly better handled when they are regular.

In this paper we concentrate on regular oriented hypermaps, which are algebraically
characterised by triplesH = (G; a, b) consisting of a finite 2-generated group G and a pair
a, b of generators of G; such triples encode cellular embeddings of regular hypergraphs
(bipartite graphs1) on compact orientable surfaces of genus

g =
2− (|G/l〈b〉|+ |G/l〈ab〉|+ |G/l〈a〉|)

2
,

whereG/lH stands for the left cosets of the subgroupH inG and |X| the cardinality ofX .
The left cosets of 〈a〉, 〈b〉 and 〈ab〉 determine the hyperfaces, hypervertices and hyperedges
ofH. Regular oriented maps are regular oriented hypermaps (G; a, b) in which the product
ab has order 2.

Regular (cellular-) embeddings of graphs in orientable surfaces (regular orientable
maps) have been classified for certain classes of graphs. The closest to the present pa-
per is the classification of orientable regular embeddings of graphs of given order. This has
been achieved for simple graphs of prime order [13] and of order a product of two primes
[12], giving rise respectively to classifications of the regular oriented simple maps of prime
order, and of order a product of two primes. Regular oriented maps of type {|a|, |b|} are
regular hypermaps of type (|b|, 2, |a|). Here |g| is the order of g.

Up to a duality a primer hypermap is a generalisation of a simple map (map with un-
derlying simple graph). In [4] we classified the primer hypermaps with prime number of
hyperfaces (left cosets of 〈a〉 in G) and now we extend the classification to regular ori-
ented hypermaps with prime number of hyperfaces – or, by duality, to a classification of
the regular oriented hypermaps with prime number of hypervertices (left cosets of 〈b〉 ) or
hyperedges (left cosets of 〈ab〉 ).

There has been some contributions to the classification of regular (oriented or non-
oriented) hypermaps by given number of hyperfaces; namely, on regular hypermaps (non-
oriented hypermaps, which include non-orientable hypermaps and hypermaps with border)
with one and two hyperfaces [9], on non-orientable regular hypermaps with a prime number
of hyperfaces [19], on chiral hypermaps up to 4 hyperfaces [7], and on regular oriented
hypermaps up to 5 hyperfaces [3].

This paper has five sections. The first is the actual introduction which includes two
subsections, one giving a quick overview of the theory of regular oriented hypermaps and
the second giving an overview of “primer” hypermaps. In this subsection we write down
the most important results of [4] that are used in the third section. For a complementary

1Graphs in this paper are pseudographs, that is, they may have multiple edges, loops and free-edges.
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reading on these subjects we address the reader to [16, 17, 11, 7, 5, 4]. In the second
section we introduce some families of hypermaps, called “derivations”, that arise from a
given regular oriented hypermap, and explore their properties. The third is the classification
of the regular oriented hypermaps with p (prime) hyperfaces, and this will be achieved by
“lifting” the “primer” hypermaps with p hyperfaces classified in [4]. In the fourth section,
we compute the chirality group and the “H-sequences” (an extension of type) of the regular
oriented hypermaps with p hyperfaces. And finally in the fifth section we compute the
number of regular oriented hypermaps with p hyperfaces of valency n.

Functions in this paper are read from right to left.

1.1 Regular oriented hypermaps

An (finite) oriented hypermap is a triple H = (Ω; a, b) consisting of a finite set Ω (the
set of darts) and two permutations a and b that generate a transitive group G (called the
monodromy group) on Ω. Hyperfaces, hypervertices and hyperedges ofH are orbits of 〈a〉,
〈b〉 and 〈ab〉 respectively, and incidence is given by non-empty intersection of orbits. Here
abmeans a followed by b since functions and actions in this paper are supposed to act from
right. H is uniform if the permutations a, b and ab are regular permutations; this means that
all the hyperfaces have common valency, all the hypervertices have common degree and all
the hyperedges have common valency. In general we have |Ω| ≥ |G|. If |Ω| = |G|, that is,
if G acts regularly on Ω, then we say thatH is a regular oriented hypermap. In such case Ω
can be replaced by G and the right actions of a and b by right multiplication. Conversely,
any finite two generated groupG = 〈a, b〉 determines a regular oriented hypermap (G; a, b)
where the monodromy elements a and b are the respective right permutation representations
of a and b on G. The above triple describes a cellular embedding of a hypergraph G in an
oriented surface S (i.e., an orientable surface with a fixed orientation). Viewing G as a
bipartite graph, with the set of vertices partitioned into black vertices and white vertices,
the hypermap H can be seen as a bipartite mapM where the black vertices of G represent
the hypervertices, the white vertices the hyperedges and the faces of M the hyperfaces
[18]. In this representation the edges of G are the darts of H and the permutations a and
b locally permute the darts counter clockwise (CCW) around hyperfaces and hypervertices
respectively (actually in the literature it is more common a and b be permutations of darts
CCW around hypervertices and hyperedges, and usually denoted by R and L).

�

��

�� ���

Figure 1: The effect of the permutations a, b and ab on a dart ω.

The type of a regular oriented hypermap H is a triple (k,m, n) where the positive
integers k = |b|, m = |ab|, n = |a| are the valencies of the hypervertices, hyper-
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edges and hyperfaces, in this order. An extended version of the type is the H-sequence
[k,m, n ; V,E, F ; |G|] where (k,m, n) is the type, V , E and F are respectively the num-
ber of hypervertices, hyperedges and hyperfaces, and |G| is the size of G (or the number of
darts ofH). The Euler characteristic of the underlying surface S is the characteristic ofH,
and it is given by the formula χ = V + E + F − |G|.

If H = (G; a, b) and H′ = (G′; a′, b′) are two regular oriented hypermaps, then H
covers H ′ if the assignment a 7→ a′, b 7→ b′ can be extended to a (canonical) epimorphism
of monodromy groups G → G′ . The hypermap H is isomorphic to H′, H ∼= H′, if
the canonical epimorphism G 7→ G′, is an isomorphism. A hypermap is reflexible if it is
isomorphic to its mirror image H = (G; a−1, b−1), otherwise it is chiral. The chirality
group of H is the smallest normal subgroup X(H) of G such that H/X(H) is reflexible.
This group ranges from X(H) = 1, when H is reflexible, to X(H) = Mon(H) when H
is totally chiral [5, 6]. The Chirality index ofH is the size κ = κ(H) = |X(H)|.

Let ∆ denote the free product C2 ∗ C2 ∗ C2 generated by r0, r1 and r2, and Γ be the
normal subgroup of index 2 in ∆ generated by a = r0r1 and b = r1r2, a free group of
rank 2. Any regular oriented hypermapH corresponds an unique normal subgroup H in Γ,
called the fundamental hypermap subgroup, such thatH ∼= (Γ/H;Ha,Hb). In this context
the chirality group ofH is given by X(H) = HH/H , where H = Hr1 . If 〈a, b | R(a, b)〉
is a presentation of the monodromy group G, where R(a, b) denotes a set of relators on a
and b, then the chirality group of H is X(H) = 〈R(a−1, b−1)〉G, the normal closure in G
of the subgroup generated by R(a−1, b−1) [2].

The regular oriented hypermapsH = (G; a, b) with 1 and 2 hyperfaces are all reflexible
and the chiral hypermaps with 3 and 4 hyperfaces are all (face-)canonical metacyclic, that
is, the monodromy group G is the metacyclic group 〈a, b | an = 1, bm = as, bab−1 = at〉
with (t − 1)s = 0 modn and tm = 1 modn. Equally we say that (G; a, b) is vertex-
canonical (resp. edge-canonical) metacyclic if 〈b〉 (resp. 〈ab〉) is normal in G. H is
vertex-canonical (resp. edge-canonical) metacyclic if and only if Hδ1 (resp. Hδ0) is face-
canonical metacyclic, where δ1 is the dual operation a 7→ b−1, b 7→ a−1 that transpose
hypervertices with hyperfaces, and δ0 is the dual operation a 7→ ab, b 7→ b−1 that transpose
hyperedges with hyperfaces. Another dual operation is the mirror operation µ : a 7→ a−1,
b 7→ b−1 that maps H to its mirror image Hµ = H. Face-, vertex- and edge-canonical
metacyclic hypermaps have cyclic chirality groups with chirality index n

gcd(n, t2−1) ; while

the chirality group of a face-canonical hypermap is generated by at
2−1 [7], the chirality

group of a vertex- or edge-canonical metacyclic hypermap is generated by (at
2−1δ1)−1 =

bt
2−1 or by at

2−1δ0 = (ab)t
2−1, respectively [8, Lemma 2.1]. Therefore a (face-, vertex-

or edge-) canonical metacyclic hypermap is chiral if and only if t2 6= 1 modn.
By canonical metacyclic we just mean face-canonical metacyclic.
In contrast, most of the hypermaps appearing in the classification [3] are not canoni-

cal metacyclic. However, we will show that all regular oriented hypermaps with a prime
number of hyperfaces have metacyclic automorphism groups, though not necessarily being
(face-, vertex- or edge-) canonical metacyclic hypermaps.

1.2 Primer hypermaps

We can use the equivalence of Proposition 11 of [4] for our definition of primer hypermap
as it gives a good general idea behind the concept. A (face-) primer hypermap is a regular
oriented hypermap with no non-trivial regular proper quotients with the same number of
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hyperfaces.
Any regular hypermapH = (G; a, b) covers a unique primer hypermap P = P(H). In

particular the hyperface valency l of its primer hypermap divides the hyperface valency n of
H. For consistency we reserve the letter ` to denote the valency of a hyperface of a primer
hypermap and set aside the letter n for the valency of a hyperface of a non necessarily
primer hypermap.

This primer hypermap can be constructed in the following way. When the elements
of G act on G (set of darts) on the right they act as monodromy elements, but when they
act on the left they act as automorphisms of H. Therefore each element γ ∈ G induces
an automorphism ϕγ : g 7→ γg of H. In particular the automorphisms ϕa : g 7→ ag and
ϕb : g 7→ bg, induced by a and b, correspond to one-step global counter-clockwise rotations
about the hyperface and the hypervertex (respectively) that contain the identity dart. Since
H is regular we have Aut(H) = 〈ϕa, ϕb〉 ∼= G and since functions in this paper act on the
right, ϕγ1γ2 = ϕγ2ϕγ1 and thus ϕ(γ1γ2)−1 = ϕγ−1

1
ϕγ−1

2
, and so,

H = (G; a, b) ∼= (Aut(H); (ϕa)−1, (ϕb)
−1) .

The action of Aut(H) on H induces a transitive action of Aut(H) on the set of the hy-
perfaces F = G/l〈a〉 of H, where the symbol G/lK represents the left cosets of K in G.
Under this action, each ϕγ ∈ Aut(H), or equivalently each γ ∈ G, determines a permu-
tation πγ ∈ Sym(F) defined by g〈a〉 7→ γg〈a〉. In particular, the automorphisms ϕa and
ϕb give rise to permutations A = πa

−1 and B = πb
−1 on F . Labelling the hyperfaces

of H by 1, 2, . . . , F , the permutations A and B are elements of the symmetric group SF .
Let P be the subgroup of SF generated by A and B. Then P = P(H) = (P ;A,B) is
the primer hypermap determined by H. The subgroup P of SF generated by A and B
is called the (face-) primer group of H. We note that we are not adopting the notation
P = (P ;A−1, B−1) we have used in [4].

The function Π : G −→ P , γ 7→ γΠ = πγ
−1 = πγ−1 which maps a 7→ A and

b 7→ B, is an epimorphism with kernelKern(Π) = 〈a|A|〉 (Proposition 5 of [4]). Therefore
it induces an epimorphism Π : H −→ P branched over hyperfaces. Moreover, since
P ∼= G/〈a|A|〉, we get:

Corollary 7 [4]: for any word r(A,B) onA,B, r(A,B) = 1 if and only if r(a, b) = au

for some u = 0 mod |A|”.
To recognise a canonical metacyclic hypermap from its primer we have the following

proposition:
Proposition 4 [4]: H is (face-) canonical metacyclic if and only if A = 1.
The chirality group of the primer hypermap is a factor group of the chirality group of

the hypermap (Proposition 9 of [4]), that is, X(P(H)) = X(H)/K for some K. Conse-
quently, the chirality index κ(P(H)) divides κ(H). Hence if P(H) is chiral then alsoH is
chiral. The converse is not true.

The main theorem of [4] says:
Theorem 16 [4]: P is a primer hypermap with p (prime) hyperfaces (each of valency `)
if and only if P ∼= Pp,`,tk = (M(p, `, 0, t); y, xyk) for some `, t ∈ {1, . . . , p − 1} and
k ∈ {0, ..., ` − 1} such that: (1) ` is a divisor of p − 1 , (2) t` = 1 mod p , (3) if
` > 1 , ti 6= 1 mod p for each i ∈ {1, 2, ..., `− 1}. Here M(p, `, 0, t) is the metacyclic
group 〈x, y | xp = y` = 1, xy = xt〉 = 〈x〉 o 〈y〉. Different parameters k, ` and t
correspond to non-isomorphic primer hypermaps with p hyperfaces of valency `.
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Note that ifH is a regular oriented hypermap with p (not necessarily prime) hyperfaces,
each of valency n, then H covers a unique primer hypermap P with p hyperfaces, each of
valency ` with ` dividing n. Also useful is the following corolloary:
Corollary 17 [4]: The H-sequences of the primer hypermaps Pp,`,tk given above are

(1) [p, p, 1 ; 1, 1, p ; p] if k = 0 and ` = 1 (⇒ t = 1) ;

(2) [p, `, ` ; `, p, p ; `p] if k = 0 and ` > 1 (⇒ p > 2) ;

(3) [`, p, ` ; p, `, p ; `p] if k = `− 1 > 0 (⇒ p > 2) ;

(4)
[

`

(`, k)
,

`

(`, k + 1)
, ` ; p(`, k), p(`, k + 1), p ; `p

]
if 0 < k < `− 1 (⇒ p > 2) ,

where, for space saving, (u, v) stands for gcd(u, v), the greatest common divider of u and
v.

2 Derivations
Before we start with the classification, we introduce several families of regular oriented
hypermaps that are derived from a given hypermap. These families together with their
properties will be useful later on.

Let H = (G; a, b) be a regular (oriented) hypermap with F hyperfaces of valency
n. The following regular hypermaps, which we call derivations of H, all have the same
number of hyperfaces F , and the same hyperface-valency n.

(1) The mirrorH = (G; a−1, b−1);

(2) The mid-mirror Mm(H) := (G; a, b−1);

(3) The k-Left family Lk(H) := (G; a, akb), for each k ∈ {1, ..., n− 1},

(4) The k-Right family Rk(H) := Lk(H)
ak

= (G; aa
k

, (akb)a
k

) = (G; a, bak), and

(5) The (0, 1)-dual D(0,1)(H) = Mm(L1(H)) = (G; a, (ab)−1); this is the hypermap
resulting fromH by swapping hypervertices with hyperedges.

One easily sees thatH = H, Mm(Mm(H)) = H,D(0,1)(D(0,1)(H)) = H,
Ln−k(Lk(H)) = Lk(Ln−k(H)) = H and Rn−k(Rk(H)) = Rk(Rn−k(H)) = H.

Let D(H) denote one of the derivations of H. Then D defines an operation D : H 7→
D(H) that takes a regular oriented hypermap with F hyperfaces of valency n to a regular
oriented hypermap with F hyperfaces of valency n. This operation has the inverse defined
by

D−1 =

 D if D is the mirror, mid-mirror or the (0, 1)-dual
Ln−k if D = Lk
Rn−k if D = Rk .

Denote by Π, Π, ΠM , ΠL and ΠR the corresponding homomorphisms G −→ Sp,
γ 7→ πγ−1 . For example, Π : a 7→ πa−1 , b 7→ πb−1 and ΠL : a 7→ πa−1 , akb 7→ πb−1a−k .
As bΠL = (a−kakb)ΠL = a−kΠL a

kbΠL = πakπb−1a−k = πb−1a−k ak = πb−1 , then
ΠL = Π. Similarly we have Π = Π = ΠL = ΠM . Since the primer hypermap of H is
P(H) = (GΠ; aΠ, bΠ) andH is primer if and only if Ker(Π) = 1, we immediately have,

Proposition 2.1. LetH be a regular hypermap and P(H) be its primer hypermap. Then
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(1) P(D(H)) = D(P(H)), for any derivation D ofH.

(2) H is primer if and only if any of its derivations is primer .

Let FP denote the family of regular hypermaps with primer hypermap P . As an im-
mediate consequence of above, D(FP) = FD(P), and, as a consequence of this, we have
D(H) ∈ FP ⇔ H ∈ FD−1(P).

Let H = (G; a, b) be a regular hypermap and 〈a, b | R(a, b)〉 be a presentation for the
monodromy groupG. Let x = X(a, b) and y = Y (a, b) be another pair of generators ofG.
Then the original generators a and b can be written as words in x and y, say a = A(x, y)
and b = B(x, y).

Proposition 2.2. If the change of generators a to x and b to y produce no extra relations,
that is, if x = X(A(x, y), B(x, y)) and y = Y (A(x, y), B(x, y)) are not new relations,
and there is a w ∈ G such that the conjugations Aw = w−1Aw and Bw = w−1Bw

coincide with their inverse order words, in symbols Aw =
←−
A and Bw =

←−
B , then both

hypermapsH = (G; a, b) and Q = (G;x, y) have the same chirality group.

Proof. The non-existence of any extra relations implies that 〈x, y | R
(
A(x, y), B(x, y)

)
〉

is another presentation of G, this time as a function of the new generators x and y. By
Theorem 1 of [2] we have,

X(Q) = 〈R(A(x−1, y−1), B(x−1, y−1))〉G = 〈R(
←−
A (x, y)

−1
,
←−
B (x, y)

−1
)〉G

= 〈R(Aw(x, y)
−1
, Bw(x, y)

−1
)〉G

= 〈R(A(x, y)
−1
, B(x, y)

−1
)〉G = 〈R(a−1, b−1)〉G

= X(H) .

We saw in Proposition 2.1 thatH is primer if and only if any of its derivations D(H) is
also primer. Now we show that this is also true for chirality.

Corollary 2.3. Let D be a derivation of H. Then X(D(H)) = X(H); that is H and its
derivations D(H) all share the same chirality group. In particular, if some derivation ofH
is chiral then alsoH is chiral.

Proof. In Proposition 2.2 take w = id if Q = H or Mm(H), and take w = a−k if
Q = Lk(H) or Rk(H).

Consider the families P
p

I
= {P

p,1,1

0 }, P
p

II
= {P

p,`,t

0 }
`,t

with ` > 1, P
p

III
= {P

p,`,t

`−1 }`,t
with ` > 1, andP

p

IV
= {P

p,`,t

k }
k,`,t

with ` > 1 and 0 < k < `−1, of the primer hypermaps
with H-sequences (1), (2), (3) and (4) respectively, of Corollary 17 [4]. Then P

p

III
=

R`−1(P
p

II
) and P

p

IV
= Rk(P

p

II
). Taking into account Corollary 2.3 and [7, Corollary 9]

for the chirality group of canonical metacyclic hypermap, we have the following result
shown in [4]:

Corollary 2.4. If P = Pp,`,tk = (G; y, xyk) is a primer hypermap with p hyperfaces (p
prime) then

X(P) =

 1 (reflexible) if P ∈ P
p

I

〈yt
2−1〉 if P ∈ P

p

II
,P

p

III
or P

p

IV
.
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3 The classification
Let p be a prime number. We now proceed with the classification of the regular oriented
hypermaps with p hyperfaces. Let H = (G; a, b) be a regular oriented hypermap with p
hyperfaces (of valency n) and P = (GΠ; aΠ, bΠ) = (P ;A,B) be its primer hypermap,
which also has p hyperfaces. In what follows,

M(n, p, u, t) := 〈a, b | an = 1, bp = au, b−1ab = at〉

is the metacyclic group with parameters n, p, u, t, and

Gp,`,tn,u,v := 〈a, b | an = 1, bp = au, [a`, b] = 1, bab−t = av〉 .

Before we state and prove the main theorem, we first prove the following lemma,

Lemma 3.1. Let G = 〈a, b〉, p an odd prime and t, ` positive integers such that t 6=
1 mod p, t` = 1 mod p and p = 1 mod `. If (i) bp ∈ 〈a`〉, (ii) biab−it ∈ 〈a`〉a, for
any i = 1, 2, . . . , p , then b� a`, where the symbol � means “commutes with”.

Proof. As t` = 1 mod p, by (i) we have bt
`−1 ∈ 〈a`〉. On the other hand, taking i =

1, t, t2, . . . , t`−1, (ii) yields the following information bab−t, btab−t
2

, ..., bt
`−1

ab−t
`

∈
〈a`〉a. Multiplying the first i of these words (in the same order as shown) and the last
` − i words we get baib−t

i

∈ 〈a`〉ai and bt
i

a`−ib−t
`

∈ 〈a`〉a`−i, respectively. Then
ba`b−t

`

∈ 〈a`〉 and thus

ba`b−1 = (ba`b−t
`

) bt
`−1 = aV

for some V = 0 mod `. On the other hand,

bt
i

a`b−t
i

= (bt
i

a`−ib−1)(baib−t
i

) = (baib−t
i

)(bt
i

a`−ib−1) = ba`b−1 = aV

for each i ∈ {0, ..., ` − 1, `}. Consequently, b(t
i−1)a`b1−t

i

= b−1aV b = a` for every
integer i ∈ {0, ..., `− 1, `}. Taking i = ` we get

[a`, bt
i−1] = 1, i = 0, ..., `.

In particular,

b(t−1)+(t2−1)+...+(t`−1−1) = b(1+t+t
2+...+t`−1)−` � a` . (3.1)

As t 6= 1 mod p and t` − 1 = (t − 1)(1 + t + t2 + ... + t`−1) = 0 mod p, one has
(1 + t+ t2 + ...+ t`−1) = 0 mod p, and so by (3.1) we have b` � a`. As ` is a divisor of
p− 1, we also have bp−1 � a`. Consequently

[a`, b] = 1.

Theorem 3.2. If H = (G; a, b) is a regular oriented hypermap with p (prime) hyperfaces,
each of valency n, thenH is isomorphic to one of the following hypermaps:
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(1) CMn,p,u,t = (M(n, p, u, t); a , b) for some u, t ∈ {0, 1, . . . , n− 1} such that

(t− 1)u = 0 modn and tp = 1 modn ;

(2) Hp,`,t,kn,u,v = (Gp,`,tn,u,v; a , ba
k) (p odd prime) , for some ` ∈ {2, . . . , n},

u, v ∈ {0, . . . , n− 1}, k ∈ {0, ..., `− 1} and t ∈ {2, . . . , p− 1} such that

(H1) gcd(p− 1, n) = 0 mod ` ,
(H2) t` = 1 mod p and ti 6= 1 mod p for i ∈ {1, 2, ..., `− 1}

(that is, t has order ` in Z∗p = Zp\{0}) ,
(H3) u = 0 mod `, v = 1 mod ` and
(H4) (t− 1)u+ p(v − 1) = 0 modn .

Moreover, all these hypermaps Hp,`,t,kn,u,v for `, t, k, n, u, v satisfying the above condi-
tions, have p hyperfaces of valency n, and different parameters (`, t, k, u, v) correspond to
non-isomorphic hypermaps with p hyperfaces of valency n.

Proof. Let H = (G; a, b) be a regular oriented hypermap with p (prime) hyperfaces and
P = (P ;A,B) be its primer hypermap where A = aΠ and B = bΠ. By Theorem 16 of
[4], P = Pp,`,tk , for some k, ` and t. We treat separately the following cases: A=1 (Case
1), A 6= 1 and |B| = p (Case 2) and A 6= 1 and |B| 6= p (Case 3).

Case 1. If A = 1 then H is canonical metacyclic and P = P is the spherical cyclic
hypermap Cp = (Cp; 1, B) (Proposition 4 of [4]). Then H is isomorphic to CMn,p,u,t =
(M(n, p, u, t); a, b) for some u and t such that (t− 1)u = 0 modn and tp = 1 modn. �

Case 2. |A| = ` > 1 and |B| = p. By Theorem 16 of [4], and Corollary 17 of [4] (see
also §1.2), P(H) = Pp,`,t0 = (P ;A,B), where

P = 〈A,B | A` = 1, Bp = 1, A−1BA = Bt〉 , (3.2)

for some t ∈ {1, . . . , p − 1} such that t` = 1 mod p and ti 6= 1 mod p for i =
1, 2, ..., `− 1. By Proposition 15 of [4], ` is a divisor of p− 1 (that is, p = 1 mod `).

From A−1BA = Bt we deduce that BiAB−it = A for each integer i. Applying
Corollary 7 of [4] (see also §1.2 ), we derive the following relations in G:

(i) an = 1 with n = 0 mod `;
(ii) bp = au, u = 0 mod `;

(iii) biab−it = avi , vi = 1 mod `, i = 1, ..., p− 1 (also true for i = p).

These equations define a group that is right factorised byK = 〈a〉 into p cosets. Indeed, on
the one handK,Kb, . . . ,Kbp−1 are distinct cosets because p is the smallest positive integer
such that bp belongs to K = 〈A〉, and on the other hand, since {0, t, 2t, ..., (p− 1)t} is a
complete set of residues modulo p, equation (iii) implies that the set of right cosets of K in
G is G/rK = {K, Kb, ... , Kbp−1}. Hence the monodromy group ofH is given by

G = 〈a, b | an = 1, bp = au, biab−it = avi , i = 1, ..., p− 1〉
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for some integers n = 0 mod `, u = 0 mod ` and vi = 1 mod `, i = 1, ..., p − 1. We
now simplify this presentation.

From relation (iii) we have biab−it ∈ 〈a`〉a, valid for any i. By Lemma 3.1 ,

[a`, b] = 1.

Adding the relation [a`, b] = 1 to the presentation of G, some relations of the previous
presentation will turn out to be redundant. From (iii), i = 1, we deduce b2ab−2t =
b(bab−t)b−t = bav1b−t = av1−1bab−t = a2v1−1 = a2(v1−1)+1; and more generally

biab−it = ai(v1−1)+1, i = 1, ..., p− 1 and p.

Thus all the relations in (iii) except the first one are redundant. Now for i = p we also have
bpab−pt = a(1−t)u+1; therefore a(1−t)u+1 = ap(v1−1)+1 which implies

(1− t)u = p(v1 − 1) modn.

The hypermapH is then isomorphic toHp,`,t,0n,u,v := (Gp,`,tn,u,v; a, b), where

Gp,`,tn,u,v = 〈a, b | an = 1, bp = au, [a`, b] = 1, bab−t = av〉 ,

for some `, t, n, u and v such that p = 1 mod `, t` = 1 mod p, ti 6= 1 mod p for
each i ∈ {1, 2, ..., ` − 1}, u = 0 mod `, v = 1 mod `, n = 0 mod ` and (1 − t)u =
p(v − 1) modn.

Conversely, we show that if H = Hp,`,t,0n,u,v for some `, t, n, u, v satisfying the above
conditions, then H has p hyperfaces of valency n. Factoring G = Gp,`,tn,u,v by the normal
subgroup 〈a`〉 yields the monodromy group of the primer hypermap P = Pp,`,t0 with p
hyperfaces of valency `. Then ` divides |a| and so both P = H/〈a`〉 andH have the same
number of hyperfaces, p.

As gcd(t − 1, p) = 1 there exist integers c and d such that c(t − 1) + dp = 1. Then
the assignment a 7→ a, b 7→ ac(1−v)+du turn each of the relators of G into the identity of
Cn = 〈a | an = 1〉 and so it defines an epimorphism from G to the cyclic group Cn. This
proves that the order of a in G is n. ConsequentlyH has p hyperfaces of valency n. �

Case 3. |A| = ` > 1 and |B| 6= p. By Theorem 16 of [4], and Corollary 17 of [4],

P(H) = Pp,`,tk = (M(p, `, 0, t);A, βAk) = Rk((M(p, `, 0, t);A, β)) = Rk(Pp,`,t0 )

for some k ∈ {0, ..., `− 1} and t ∈ {1, 2, . . . , p− 1}, where M(p, `, 0, t) = 〈β,A | βp =
A` = 1, βA = βt〉 = 〈β〉 o 〈A〉 and (1) ` is a divisor of p − 1 , (2) t` = 1 mod p and
(3) if ` > 1 , ti 6= 1 mod p for each i ∈ {1, 2, ..., `− 1}.

Then P(R`−k(H)) = Pp,`,t0 . By case 2, R`−k(H) = Hp,`,t,0n,u,v = (Gp,`,tn,u,v; a, b). Thus

H = Hp,`,t,kn,u,v := Rk(Hp,`,t,0n,u,v ) = (Gp,`,tn,u,v; a , ba
k) ,

for some k ∈ {0, ..., `− 1}. �

Finally we show that different parameters lead to different hypermaps.
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(1) If CMn,p,u,t = (M ; a, b) ∼= CMn′,p′,u′,t′ = (M ′;α, β) then p′ = p and n′ = n,
since the number of hyperfaces and their valencies should be the same. Then it becomes
obvious that we must have u′ = u and t′ = t since these parameters run from 0 to n− 1.
(2) IfHp,`,t,kn,u,v

∼= Hp
′,`′,t′,k′

n′,u′,v′ , then, as above, we must have p′ = p and n′ = n. Looking at
the primer hypermaps,

P(Hp,`,t,kn,u,v ) = Pp,`,tk
∼= P(Hp,`

′,t′,k′

n,u′,v′ ) = Pp,`,t
′

k′ ,

this forces `′ = `, t′ = t and k′ = k (Theorem 16 [4]). But then we have Hp,`,t,kn,u,v =

Rk(Hp,`,t,0n,u,v ) and Hp,`,t,kn,u′,v′ = Rk(Hp,`,t,0n,u′,v′), so we must also have Hp,`,t,0n,u,v
∼= Hp,`,t,0n,u′,v′ . It is

now clear that this isomorphism implies u′ = u and v′ = v, since u, u′, v, v′ are restrict to
{0, . . . , n− 1}.

Each hypermapH with p hyperfaces, p prime, with each hyperface of valency n, covers
only one primer hypermap also with p hyperfaces of valency ` = |A| (a divisor of n). This
primer hypermap is

P(CMn,p,u,t) = Cp = (Cp; 1, B) , ifH = CMn,p,u,t, or

P(Hp,`,t,kn,u,v ) = Pp,`,tk = (Gp,`,t0 ; a, bak) , ifH = Hp,`,t,kn,u,v .

Among the hypermaps in the familyHp,`,t,kn,u,v many of them share the same group and are
distinguished by different pairs of generators. In the previous proof we find the requisites
necessary to prove that Gp,`,tn,u,v is a metacyclic group.

Proposition 3.3. Gp,`,tn,u,v is a metacyclic group isomorphic to Gp,`,tn,0,1 = M(p, n, 0, t) =

〈β, α | βp = 1, αn = 1, α−1βα = βt〉 under the isomorphism ψ : a 7→ α, b 7→ βαθ,
where θ = c(1 − v) + du, for some c, d satisfying c(t − 1) + dp = 1 = gcd(t − 1, p).
Moreover, Hp,`,t,kn,u,v

∼= Rθ+k(Hp,`,tn ), where Hp,`,tn is the canonical metacyclic hypermap
(Gp,`,tn,0,1;α, β).

Proof. Consider the group

Gp,`,tn,0,1 = 〈α, β | αn = 1, βp = 1, βαβ−t = α〉
= 〈β, α | βp = 1, αn = 1, α−1βα = βt〉
= M(p, n, 0, t) .

Note that βαβ−t = α⇔ α−1βα = βt implies that βiαβ−it = α for any i; so by Lemma
3.1, [α`, β] = 1. This group, being metacyclic, has order np. Note also that the condition
t` = 1 mod p is stronger than the metacyclic condition tn = 1 mod p. Let c and d be
such that c(t− 1) + dp = 1, and let θ = c(1− v) + du. Then

θ = 0 mod `, so αθ ∈ Z(Gp,`,tn,0,1) ,

θp = cp(1− v) + pdu = c(t− 1)u+ pdu = (c(t− 1) + pd)u = u , and

θ(1− t) = (1− t)c(1− v) + (1− t)u d
= (1− t)c(1− v) + p(v − 1)d
= (t− 1)c(v − 1) + p(v − 1)d
= (v − 1)((t− 1)c+ pd)
= v − 1 .
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The assignment ψ : a 7→ α, b 7→ βαθ, transfers the relators of Gp,`,tn,u,v to relators of Gp,`,tn,0,1

as we can observe:

1) an −→ αn = 1,

2) bpa−u −→ (βαθ)pα−u = βpαθpα−u = αuα−u = 1,

3) [a`, b] −→ [α`, βαθ] = [α`, β] = 1,

4) bab−ta−v −→ βαθα(βαθ)−tα−v = βαβ−tαθα−θtα−v

= αθ(1−t)αα−v = αv−1α1−v = 1,

By the Substitution Test [15, Theorem 4, pg 29], ψ : Gp,`,tn,u,v → Gp,`,tn,0,1 is an epimor-
phism. As |Gp,`,tn,0,1| = |Gp,`,tn,u,v|, ψ is indeed an isomorphism and thus Gp,`,tn,u,v is metacyclic.
This isomorphism also shows that Hp,`,tn,u,v = Hp,`,t,0n,u,v is isomorphic to Rθ(Hp,`,tn ). Then
Hp,`,t,kn,u,v = Rk(Hp,`,tn,u,v)

∼= Rθ+k(Hp,`,tn ).

Corollary 3.4. IfH is a regular oriented hypermap with a prime number of hyperfaces then
its automorphism group is metacyclic, thoughH is not necessarily canonical metacyclic.

4 Chirality groups and H-sequences

Theorem 4.1. The chirality groups of CMn,p,u,t andHp,`,t,kn,u,v are the cyclic groups 〈at
2−1〉

and 〈bt
2−1〉 respectively. The chirality index of CMn,p,u,t is n

(n,t2−1) while the chirality

index ofHp,`,t,kn,u,v is

p

gcd(p, t2 − 1)
=

{
1 , t = p− 1
p , t ∈ {2, . . . , p− 2}

Proof. The canonical metacyclic hypermap CMn,p,u,t has chirality group 〈at
2−1〉 [7].

By Proposition 3.3, Hp,`,t,kn,u,v = Rθ+k
(
Hp,`,tn

)
and, by Proposition 2.3, Hp,`,t,kn,u,v has the

same chirality group as the vertex-canonical metacyclic hypermap Hp,`,tn = (Gp,`,tn ; a, b),
where

Gp,`,tn = M(p, n, 0, t) = 〈b, a | bp = 1, an = 1, a−1ba = bt〉 .

HenceHp,`,t,kn,u,v has chirality group 〈bt
2−1〉 [7], a subgroup of the cyclic group 〈b〉 of order

p (prime). If Hp,`,t,kn,u,v is not reflexible (bt
2−1 6= 1 ⇔ t 6= −1 mod p, since t ≥ 2), it must

has order p, and thusHp,`,t,kn,u,v has chirality index κ = p.

Corollary 4.2. If H is a regular oriented hypermap with a prime number of hyperfaces
and its primer hypermap is P = (P ;A,B), with A 6= 1, then H is reflexible if and only if
|A| = 2.
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Theorem 4.3. The H-sequences of the hypermaps of Theorem 3.2 are

CMn,p,u,t :

[
pn

(n, u)
,

pn

(n, tp−1 + ...+ 1 + u)
, n ; (n, u), (n, tp−1 + ...+ 1 + u), p ; pn

]
Hp,`,t,0n,u,v :

[
pn

(n, u)
,

n

(n, θ + 1)
, n ; (n, u), p(n, θ + 1), p ; pn

]

Hp,`,t,`−1n,u,v :

[
n

(n, θ + `− 1)
, ((

pn

(n, u)
,
n

`
)), n ; p(n, θ + `− 1),

pn

(( pn
(n,u) ,

n
` ))
, p ; pn

]

Hp,`,t,kn,u,v :

[
n

(n, θ + k)
,

n

(n, θ + k + 1)
, n ; p(n, θ + k), p(n, θ + k + 1), p ; pn

]
,

(0<k<`−1)

where, for space saving, (u, v) stands for gcd(u, v), ((u, v)) stands for lcm(u, v), the least
common multiple of u and v, θ = c(1 − v) + du, and c and d are integers such that
c(t− 1) + dp = 1 = (t− 1, p).

Proof. Recall that the H-sequence ofH = (G; a, b) is a sequence of numbers

[|b|, |ab|, |a|;V,E, F ; |G|]

where |b| (the order of b) is the hypervertex-valency, |ab| is the hyperedge-valency, |a| is
the hyperface-valency, V = |G|

|b| is the number of hypervertices, E = |G|
|ab| is the number of

hyperedges and F = |G|
|a| is the number of hyperfaces.

• For the canonical metacyclic hypermap CMn,p,u,t = (G; a, b), where

G = M(n, p, u, t) = 〈a, b | an = 1, bp = au, b−1ab = at〉,

it is clear that |a| = n, |b| = pn
gcd(n,u) and |G| = pn. We only need to calculate

|ab| = |ba|. From the relation b−1ab = at we get: amb = bamt and abm = bmat
m

,
for any positive integer m. From this we easily derive

(ba)m = bmat
m−1+···+t+1 .

Now as CMn,p,u,t covers P = (Cp; 1, B), the order of ba is a multiple of p. As
(ba)p = at

p−1+···+t+1+u, then |ba| = pn
gcd(n,tp−1+...+1+u) . The rest of the H-

sequence is easily determined from these values.

• For H = Hp,`,t,0n,u,v = (G; a, b), where G = Gp,`,tn,u,v , we also have |a| = n, |b| =
pn

gcd(n,u) and by Proposition 3.3, |G| = pn. Therefore we only need to calculate
|ab| = |ba|.

• For H = Hp,`,t,`−1n,u,v = (G; a, ba`−1), where G = Gp,`,tn,u,v , we have |a| = n,
|aba`−1| = |ba`| = lcm(|b|, |a`|) = lcm( pn

gcd(n,u) ,
n
` ), where |G| = pn. There-

fore we only need to calculate |ba`−1|.
• For H = Hp,`,t,kn,u,v = (G; a, bak), where G = Gp,`,tn,u,v , we have |a| = n, |abak| =

|bak+1| and |G| = pn. Therefore we only need to calculate |bak+1|.
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To complete the H-sequence in the last three cases, we need to calculate the order of
ajb for j ∈ {1, ..., ` − 1}, within the group G = Gp,`,tn,u,v . This group is isomorphic to
the metacyclic group M(p, n, 0, t) = 〈β, α | βp = 1, αn = 1, βα = βt〉 under the
isomorphism ψ : G → M(p, n, 0, t), a 7→ α, b 7→ βαθ (Proposition 3.3), where θ =
c(1−v)+du (which is a multiple of `), and c and d are integers such that c(t−1)+dp = 1.
Then the order of ajb is the order of αjβαθ = αθ+jβ = αiβ, where i = θ+ j 6= 0 mod `.
We now follow the proof of Corollary 17 of [4] to compute the order of βαi.

The third equation of M(p, n, 0, t) implies that βα
i

= βt
i

⇔ βαi = αiβt
i

. By
induction we get

(βαi)m = αimβt
im+ti(m−1)+···+ti = αimβV (m) ,

where V (m) = tim + ti(m−1) + · · · + ti = ti(ti(m−1) + · · · + t + 1). Let U(m) =
ti(m−1) + · · ·+ t+ 1. Now the order of βαi is the least positive integer m such that

(βαi)m=1⇔ αimβV (m) = 1⇔ αim = β−V (m) ∈ 〈α〉∩〈β〉 = 1⇔ αim = βV (m) = 1.

Hence m is multiple of |αi|. On the other hand, β has order p and βV (m) = 1⇔ V (m) =
0 mod p⇔ tiU(m) = 0 mod p⇔ U(m) = 0 mod p, since t ∈ Z∗p = {1, 2, . . . , p− 1}.
Now ` | p − 1 and t` = 1 mod p and tq 6= 1 mod p, for any q < `, that is tq 6= 1 mod p

for any q 6= 0 mod `. Since i = θ + j 6= 0 mod `, then U(m) = tim−1
ti−1 , and so

U(m) = 0 mod p ⇔ tim = 1 mod p .

Thus, if m is just the order of αi, that is, if m = n
gcd(n,i) , then im is a multiple of n and

so a multiple of ` (n = 0 mod `), and consequently m also satisfies βV (m) = 1. Hence
|βαi| = |αi|, that is,

|ajb| = |βαθ+j | = |αθ+j | = n

gcd(n, θ + j)
.

5 Number of hypermaps with p hyperfaces
To count the number of regular oriented hypermaps with p (prime) hyperfaces of valency n
it suffices to count the different parameters appearing in items (1) and (2) of Theorem 3.2.
Let NH(1)(p, n) be the number of regular oriented hypermaps CMn,p,u,t in item (1) with
p hyperfaces of valency n, and NH(2)(p, n) be the number of regular oriented hypermaps
Hp,`,t,kn,u,v in item (2) with p hyperfaces of valency n. Then

(1) Denote by Up(n) the subgroup of the units of Zn whose elements t satisfy tp =
1 modn. Let µ(t) be the number of solutions u of (t− 1)u = 0 modn. Then

NH(1)(p, n) =
∑

t∈Up(n)

µ(t) =
∑

t∈Up(n)

gcd(t− 1, n) .

Now let NRH(1)(p, n) and NCH(1)(p, n) be the number of reflexible and chiral
(respectively) regular oriented canonical metacyclic hypermaps H = CMn,p,u,t in
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item (1) with p hyperfaces of valency n. By Theorem 4.1, H is reflexible if and
only if t2 = 1 modn. This implies that tm = 1 modn for any even m, and so,
combining with tp = 1 modn, we get t = 1 modn. Then

NRH(1)(p, n) = gcd(0, n) = n

and

NCH(1)(p, n) =
∑

t∈U∗p (n)

gcd(t− 1, n) ,

where U∗p (n) = {t ∈ Up(n) | t 6= 1 modn}.

(2) Denote by ℘(t, `) the number of pairs (u, v) satisfying the equations u = 0 mod `,
v − 1 = 0 mod ` and (H4). Since k freely ranges in {0, 1, . . . , `− 1}, then

NH(2)(p, n) =
∑

`|gcd(p−1,n)
`>1

∑
t∈G`

∑
k

℘(t, `) =
∑

`|gcd(p−1,n)
`>1

∑
t∈G`

`℘(t, `) ,

where G` is the set of elements of order ` in the cyclic group Zp∗ = Cp−1. Since
p and t − 1 are coprimes, the number of pairs of solutions (u, v − 1) mod n of
(H4) is exactly n; so the number ℘(t, `) of solutions pairs (u, v − 1) modn which
are multiple of `, where n = 0 mod `, of (H4), is the number of solutions pairs
(u` ,

v−1
` ) mod n

` of

u

`
(t− 1) +

v − 1

`
p = 0 mod

n

`
,

which is exactly ℘(t, `) = n
` . Therefore

NH(2)(p, n) =
∑

`|gcd(p−1,n)
`>1

∑
t∈G`

`
n

`
= n

∑
`|gcd(p−1,n)

`>1

Φ(`) ,

where Φ is the Euler Phi-function. In the special case when p is a Fermat prime, p−1
is a power of 2 and so NH(2)(p, n) = 0 for n odd. The total number NH(p, n) of
regular oriented hypermaps with p (prime) hyperfaces of valency n is then given by:

NH(p, n) = NH(1)(p, n) +NH(2)(p, n)

=
∑

t∈Up(n)

gcd(t− 1, n) +
∑

`|gcd(p−1,n)
`>1

nΦ(`) .

Denote by NRH(2)(p, n) and NCH(2)(p, n) the number of reflexible and chiral (re-
spectively) regular oriented hypermaps H = Hp,`,t,kn,u,v in item (2). By Theorem 4.1,
H is reflexible if and only if t = −1 mod p. This is equivalent to ` = 2 (and this
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implies n even). Hence

NRH(2)(p, n) =

{
0 , if n is odd,

n , if n is even.

NCH(2)(p, n) = n
∑

`|gcd(p−1,n)
`>2

Φ(`) .

Note that if n is odd thenHp,`,t,kn,u,v is chiral with chirality index p.

Denoting byNRH(p, n) andNCH(p, n) the number of reflexible and chiral regular
oriented hypermaps with p (prime) hyperfaces of valency n, then

NRH(p, n) = NRH(1)(p, n) +NRH(2)(p, n) =

{
n , if n is odd,

2n , if n is even.

and NCH(p, n) = NCH(1)(p, n) +NCH(2)(p, n).
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