© Strojni{ki vestnik 47(2001)5,199-209 © Journal of Mechanical Engineering 47(2001)5,199-209 ISSN 0039-2480 ISSN 0039-2480 UDK 697.9(569.1):536.2:551.506:004.94 UDC 697.9(569.1):536.2:551.506:004.94 Strokovni ~lanek (1.04) Speciality paper (1.04) Identifikacija sezonskih modelov temperatur zraka v podro~ju glavnega mesta Sirije Damask An Identification of Seasonal Models for Air Temperature in the Capital Zone Damascus in Syria Kamal Skeiker Ta prispevek predstavlja matematično predstavitev vremenskih parametrov v glavnem mestu Sirije Damask Sezonski modeli, kot alternativa za uporabo urnih vremenskih vrednosti, so bili predlagani in uporabljeni za generiranje vremenskih podatkov za naslednje parametre: - temperaturo suhega zraka, - temperaturo vlažnega zraka, - temperaturo rosisča. Matematični modeli so bili izdelani za ogrevalno sezono (od novembra do aprila) in za sezono klimatizacije (od junija do septembra). © 2001 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: projektiranje stavb, analize toplotne, modeli matematični, temperature zraka) This paper presents a mathematical representation of weather parameters in the city of Damascus in Syria. As an alternative to using hourly historical weather data, seasonal models were suggested and used to generate synthetic weather data for the following parameters: - air dry-bulb temperature, - air wet-bulb temperature, - air dew-point temperature. These mathematical models were derived for the heating season (November to April) and for the air-conditioning season (June to September). © 2001 Journal of Mechanical Engineering. All rights reserved. (Keywords: building design, thermal analysis, mathematical models, air temperatures) 0 UVOD Raba energije različnih panog v Siriji se deli na 42% za zgradbe in kmetijstvo, 41% za transport in 17% za industrijo [1]. Ker je največji del energije uporabljen v zgradbah, je smotrno nadaljevati raziskave na tem področju. Zato so raziskave usmerjene v: razvoj matematičnih modelov za preračune in simuliranje toplotnih sistemov, organizacijo in avtomatizacijo notranjih klimatizacijskih sistemov, oblikovanje pasivnih in aktivnih sončnih toplotnih sistemov, uporabo zunanjih površin za toplotno izolacijo in dvoslojnih oken. V okviru razvoja matematičnih modelov za izračun in simuliranje toplotnih sistemov za stavbe je bil izdelan in preoblikovan računalniški program 0 INTRODUCTION The energy consumption for the various sectors in Syria is as follows: 42% for buildings and agriculture, 41% for transportation and 17% for industry [1]. Since the greatest share of the energy consumption is accounted for by buildings, research in this field could prove to be useful, and so research has focused on the following areas: the development of mathematical models for thermal system calculations and simulations; the organization and automation of internal air-conditioning systems; the design of passive and active solar thermal systems; and the use of outer surfaces thermal insulation and double glazed windows. As part of the development of mathematical models for the calculation and simulation of building thermal systems, the computer program LOS-A0 [2] gfin^OtJJlMlSCSD 01-5 stran 199 | ^BSSITIMIGC K. Skeiker: Identifikacija sezonskih modelov - An Identification of Seasonal Models LOS-A0 [2]. Spremenjena verzija CLIMA lahko računa poljubna obdobja v letu. V računalniškem programu CLIMA je izračun neustaljenega prevoda toplote v zgradbi izdelan glede na matematični model z enournim časovnim korakom. Potrebuje urne meteorološke vrednosti za lokalno področje kot del vhodnih podatkov. Tako je računalniški program CLIMA izdelan z urnim testnim referenčnim letom (TRL - RMY Reference Meteorological Year) za glavno mesto Sirije. Podatki TRL bazirajo na dostopnih urnih meteoroloških vrednostih , ki so bili dobljeni na Oddelku za meteorologijo. Posneti so bili na posebno datoteko z vrednostjo 347000 bytov Ti podatki so bili zbrani tudi v prejšnjih fazah dela [3]. Da bi zmanjšali celotni obseg računalniškega programa CLIMA in potrebne programske opreme, smo se odločili predstaviti TRL podatke v obliki matematične predstavitve vremenskih parametrov. V tem okviru so bili izdelani sezonski modeli za naslednje parametre: - temperaturo suhega zraka; - temperaturo vlažnega zraka; - temperaturo rosišča. Takšni matematični modeli so bili izdelani za ogrevalno sezono (od novembra do aprila) in za sezono klimatizacije (od junija do septembra) v Damasku. Potrebno je omeniti, da so številni avtorji uporabljali ta pristop za njihova specifična področja ([4] in [5]). 1 POSTOPEK IDENTIFIKACIJE MODELA Ker je oblika grafičnega prikaza podatkovnih točk M(xi,yi) v tej študiji več-polinomska, se bomo osredotočili na modele nelinearne regresije. Splošna oblika polinoma, ki ustreza podatkom je podana v naslednji obliki ([6] do [10]): was modified and re-organized at an earlier stage of this work. The modified version of CLIMA can calculate optional period during the year. In the CLIMA computer program the calculation of non-stationary heat transfer in a building is conducted according to the adopted mathematical model by using a one-hour time increment, and it requires hourly meteorological data for the locality as a part of its input. Therefore, the CLIMA computer program was provided with an hourly Reference Meteorological Year RMY database for the capital zone in Syria. The RMY database was based on the available hourly meteorological data, which was measured by the Department of Meteorology. It was recorded in a separate file with a size of 347000 byte. This database was also organized in the previous stage of this work [3]. To reduce the size of the CLIMA computer program and its relevant peripheral software we decided to represent the RMY database with a mathematical model of the weather. Therefore, a decision was made to identify seasonal models as an alternative to the use of hourly historical weather data and to generate synthetic weather data instead. Consequently, for this paper seasonal models were suggested for the following weather parameters: - air dry-bulb temperature; - air wet-bulb temperature; - air dew-point temperature. Such mathematical models were derived for the heating season (November to April) and for the air-conditioning season (June to September) in the Damascus zone. Several other authors have followed this approach for their specific localities ([4] and [5]). 1 METHOD OF MODEL IDENTIFICATION Since the shape of the graphical outlay of the data points M(xi,yi) for a particular parameter under consideration in the present study suggested a multi-polynomial representation as a strong candidate, it was considered to be worth focusing on the nonlinear regression models. The general form of the polynomial used to fit the data is given by the following relation ([6] to [10]): Y b0 + b1 x i + b2 x i2 + ...+ bm x im + ei 2i mi (1). Y je vrednost spremenljivke v i-tem poskusu in x je vrednost neodvisne spremenljivke v i-tem poskusu. Parametri modela so bk (k=0,1,2,...m), in napaka je ei. Yi predstavlja različne vremenske parametre opisane v tem prispevku kot so temperatura suhega zraka J, temperatura vlažnega zraka J in temperatura rosišča Tehnika, ki jo uporabljamo za določevanje krivulj z najboljšim prilagajanjem, se imenuje metoda najmanjših kvadratov. Naj bo ak cenilec parametra bk. V metodi najmanjših kvadratov so a-ji izbrani tako, da je vsota kvadratov ostankov najmanjša. Z drugimi besedami parameter ak minimizira vrednost ([6] in [7]): Y denotes the value of the response variable in the ith trial, and xi is the value of the explanatory variable in the ith trial. The parameters of the model are bk (k=0,1,2,.. ..m), and the error term is ei . Yi represents the various weather parameters predicted in this study such as the air dry-bulb temperature (J), air wet-bulb temperature (J ) and air dew-point temperature (J d). The technique used to determine the best-fitting curve was the least-squares method. If a denotes the estimators of the parameters bk, in the least-squares method the values of the a’s that make the sum of the squares of the residuals as small as possible are chosen. In other words, the parameter estimates ak to minimize the quantity ([6] and [7]): VBgfFMK stran 200 K. Skeiker: Identifikacija sezonskih modelov - An Identification of Seasonal Models i=1 Obrazec za najmanjše kvadrate je precej zapleten. Zato se bomo osredotočili na razumevanje načela in pustili programski opremi, da opravi izračune. Da bi raziskali zmožnot regresijskega modela moramo vpeljati naslednje parametre: - Standardna deviacija: Na splošno je standardna deviacija definirana kot ([6] do [8]): Yi )2 (2). The formula for the least-squares estimates is complicated. Therefore, we will be content to un-derstand the principle on which they are based and to let the software do the computations. To examine the aptness of the regression model for the data at hand, the following statistical parameters need to be determined: - Standard Deviation: In general, the standard deviation is defined as ([6] to [8]): s (Y) 1 \ n - p i= Vrednost n-p je prostostna stopnja povezana z s2 (Y). Stopnje prostosti so enake podatkom “n” minus “p=m+1”, število b pa moramo oceniti, da ustreza modelu. Standardna deviacija je vedno pozitivna in ima enako enoto kot vrednosti, ki jih obravnavamo. Srednja standardna deviacija sm (Y) je definirana kot ([6] do [8]): -Yi)2 (3). The quantity n-p is the degrees of freedom associated with s2(Y). The degrees of freedom equal the size of the data set “n” minus “p=m+1”, the number of b’s we must estimate to fit the model. The standard deviation is always positive and has the same units as the values under consideration. The standard deviation of the mean sm (Y)is defined as ([6] to [8]): Ker so cenilke ak znane funkcije Y, in ker so napake v Y znane, so lahko napake ak določene z množenjem napak. Matrična algebra uporablja pravila varianc in ocenjuje, da je standardna deviacija cenilk ak podana z naslednjo relacijo [8]: — (Y) n s (4). Since the estimators ak are known functions of Y, and the errors in Y are known, the errors in ak may be determined by error propagation. Some matrix algebra using the rules of variances establishes that the standard deviations of the estimators ak are given by the following relation [8]: [s(a)] = sm(Y)[[X]T[X]\ (5). [s(a)] predstavlja vektor standardnih deviacij cenilk z “m+1” elementi. [X] pa je matrika spremenljivk z “n” vrsticami in “m+1” kolonami. [X]Tin [X]1 sta transponirana in inverzna matrika matrike [X]. - t preizkus: Da bi pokazali ali je ničta hipoteza pravilna ali napačna in če potrebujemo polinom višjega reda, uporabimo test za bk. Da testiramo ali drži trditev bk =0 lahko uporabimo statistični test ([6] in [8]): in pravilo odločitve: [s(a)] denotes the column vector of the standard deviations of the estimators with “m+1” elements, and [X] is the matrix of the explanatory variable with “n” rows and “m+1” columns. [X]T and [X] 1 are the transpose and inverse of the matrix [X], respectively. - t Test: In order to show whether the null hypothesis is true or false, and whether higher power is important, tests for bk are set up in the usual fashion. To test whether or not b = 0 we may use the test statistic ([6] and [8]): (6) s (ak) and the decision rule: p ) ^ bk = 0 (7), It | < t (1 - a/2 ; n |t*| > t (1 - a/2 ; n - p ) => b ^ 0 kjerčlen (1-a/2) predstavlja koeficient zaupanja where the term (1 - a/2) represents the confidence - Koeficient večkratne določenosti in koeficient coefficient. večkratne korelacije: Koeficient večkratne - Coefficient of multiple determination and coefficient of določenosti, ki ga označimo z R2, je definiran na sledeč multiple correlation: The coefficient of multiple determi- način ([6] do [10]): n nation, denoted by R2, is defined as follows ([6] to [10]): T(yi-Y)2 R2 = 1- i=1 (8). y)2 stran 201 glTMDDC K. Skeiker: Identifikacija sezonskih modelov - An Identification of Seasonal Models Izraz y = -!yi predstavlja aritmetično povprečje podatkov R 2 meri proporcionalno zmanjševanje variacije spremenljivke Y v odvisnosti od spremenljivk x. Zavzema vrednosti: The term y = - Z yi denotes the arithmetic mean of the data values y. R 2 measures the propor-tionate reduction of total variation in Y associated with the use of the set of x variables. It takes the values as: 0