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Abstract

After fullerenes were discovered, Kroto in 1987 proposed first the isolated-pentagon
rule (IPR): the most stable fullerenes are those in which no two pentagons share an edge,
that is, each pentagon is completely surrounded by hexagons. To now the structures of the
synthesized and isolated (neutral) fullerenes meet this rule. The IPR can be justified from
local strain in geometry and π-electronic resonance energy of fullerenes. If two pentagons
abut in a fullerene, a 8-circuit along the perimeter of the pentalene (a pair of abutting pen-
tagons) occurs. This paper confirms that such a 8-circuit is always a conjugated cycle of
the fullerene in a graph-theoretical approach. Since conjugated circuits of length 8 desta-
bilize the molecule in conjugated circuit theory, this result gives a basis for the IPR in
π-electronic resonance. We also prove that each 6-circuit (hexagon) and each 10-circuit
along the perimeter of a pair of abutting hexagons are conjugated. Two such types of con-
jugated circuit satisfy the (4n+ 2)-rule, and thus stabilise the molecule.
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1 Introduction
The fullerenes are closed carbon-cage molecules such that every carbon atom has bonds
to three other atoms, and the length of each carbon ring is either 5 or 6. Ever since the
first fullerene, Buckministerfullerene C60, was discovered by Kroto et al. in 1985 [15], the
stabilities of fullerenes have attracted many theorist’s attentions. The simple Hückel molec-
ular orbital model that predicts reliably the relative stabilities of planar aromatic hydrocar-
bons is not generally found to work so well for fullerenes. Kroto [14] in 1987 proposed
first the isolated-pentagon rule (IPR): the most stable fullerenes are those in which no two
pentagons share an edge, that is, each pentagon is completely surrounded by hexagons.
Schmalz et al. [23] gave a more theoretical discussion of the rule in support of the fullerene
hypothesis. Indeed the structures of the synthesized and isolated fullerenes meet this rule.
The IPR can be justified from local strain and π-electronic resonance of fullerenes; for de-
tails, also see a book due to Fowler and Manolopoulos [7]. Pentagon adjacency leads to
higher local curvature of the molecule surface and increases the strain energy. On the other
hand, according to Hückel (4n+2)-rule, conjugated circuits of length 6, 10, 14, . . . stabilize
the molecule, whereas conjugated circuits of length 4, 8, 12, . . . destabilize the molecule.
Here a conjugated circuit is a cycle of alternating single and double bonds within a Kekulé
structure. If two pentagons abut in a fullerene, the conjugated or resonant 8-circuit along
the perimeter of the pentalene may occur, and this leads to resonance destabilization [22].
This is an interpretation of IPR in π-electronic resonation stabilization. However, a prob-
lem occurs: In a fullerene, is every 8-length circuit conjugated? To now we have not seen
any definite answer to this problem in mathematics. In this article we investigate nice
patches of a fullerene by applying some small cyclic edge-cuts of graphs and present a
positive answer to the above problem (a patch of a fullerene is nice if its Kekulé structure
can be extended to a Kekulé structure of the entire fullerene). As immediate consequences
of our main theorems, we have that every 8-length circuit of a fullerene surrounds a pental-
ene (a pair of abutting pentagons) and is conjugated or alternating with respect to a Kekulé
structure (see Corollary 3.4). This confirms the destabilization of any pentalene as a nice
substructure to the entire fullerene and thus gives a mathematical support for the IPR of
fullerenes. Furthermore we also show that in a fullerene every hexagon is a conjugated
6-circuit (see Corollary 3.3) and the boundary along a naphthalene (i.e. a pair of abutting
hexagons) is a conjugated 10-circuit (see Corollary 4.2). The former has already been
proved (see [26]). In conjugated circuit theory [10, 19, 20], conjugated 6-circuits and 10-
circuits contribute stabilizations of fullerenes and the small conjugated circuits have the
greatest effects (positive and negative) on stability. For recent discussions on the IPR of
fullerenes about steric strain factor and π-electronic resonance factor, see [1, 2, 8, 13, 21].
For mathematical aspects of fullerenes, see a recent survey [3].

2 Preliminary
To obtain the above end we now start our arguments in a graph-theoretical approach. As a
molecular graph of a fullerene, a fullerene graph is a 3-connected planar cubic graph with
only pentagonal and hexagonal faces. It is well known that a fullerene graph on n vertices
exists for every even n ≥ 20 except n = 22 [9]. By Euler’s polyhedron formula, every
fullerene graph with n vertices has exactly 12 pentagonal faces and (n/2− 10) hexagonal
faces.

Let G be a graph with vertex-set V (G) and edge-set E(G). An edge set M of a graph
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G is called a matching if no two edges in M have a common endvertex. A matching M
of G is perfect if every vertex of G is incident with one edge in M . In organic molecular
graphs, perfect matchings correspond to Kekulé structures, playing an important role in
analysis of the resonance energy and stability of polycyclic aromatic hydrocarbons.

The following classical theorem is Tutte’s 1-factor theorem on the existence of perfect
matching of a graph [24]. For detailed monograph on matching theory, see Lovász and
Plummer [17].

Theorem 2.1. A graph G has a perfect matching if and only if odd(G−S) ≤ |S| for each
S ⊆ V (G), where odd(G−S) denotes the number of odd components in subgraph G−S.

Subgraph G′ of a graph G is called nice if G − V (G′) has a perfect matching. In
particular, an even cycle C of a graph G is nice if G has a perfect matching M such that
C is an M -alternating cycle, i.e. the edges of C alternate in M and E(G) \M . A nice
even cycle is also called resonant or conjugated cycle (or circuit) in chemical literature.
For convenience, a cycle of length k is said to be a k-cycle or k-circuit.

For nonempty subsets X,Y of V (G), let [X,Y ] denote the set of edges of G that each
has one end-vertex in X and the other in Y . If X = V (G) \X 6= ∅, then∇(X) := [X,X]
is called an edge-cut ofG, and k-edge-cut whenever |[X,X]| = k. The edges incident with
a single vertex form a trivial edge-cut. For a subgraph H of G, let H := G − V (H). We
simply write∇(H) for ∇(V (H)).

Lemma 2.2 ([25]). Every 3-edge-cut of a fullerene graph is trivial.

Lemma 2.3 ([25]). Every 4-edge-cut of a fullerene graph isolates an edge.

An edge-cut S = ∇(X) ofG is cyclic if at least two components ofG−S each contains
a cycle. The minimum size of cyclic edge-cuts of G is called cyclic edge-connectivity of
G, denoted by cλ(G).

Theorem 2.4 ([6, 12, 18]). Let F be any fullerene graph. Then cλ(F ) = 5.

From the definition with the above properties we know that each fullerene graph has
the girth 5 (the minimum length of cycles), and each of its 5-cycles and 6-cycles bounds a
face. A cyclic k-edge-cut of a graph isolating just a k-cycle will be called trivial.

Theorem 2.5 ([12, 16]). A fullerene graph with a non-trivial cyclic 5-edge-cut is a nan-
otube with two disjoint pentacaps (see Figure 1), and each non-trivial cyclic 5-edge-cut
must be an edge set between two consecutive concentric cycles of length 10.

A fullerene patch is a 2-connected plane graph with all faces pentagonal or hexagonal
except one external face, all internal vertices (not incident with the external face) of degree
3 and those incident with the external face having degree 2 or 3. The cycle bounding the
external face is the boundary of the patch. We can count the pentagons of a fullerene patch
as internal faces as follows.

Lemma 2.6 ([4]). For fullerene patch G, let p5 denote the number of pentagonal faces
other than the external face. Then

p5 = 6 + k3 − k2 = 6 + 2k3 − l, (2.1)

where k2 and k3 denote the number of vertices of degree 2 and 3 on the boundary of G,
respectively, and l is the boundary length.
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Figure 1: A fullerene with a non-trivial cyclic 5-edge-cut.

For T ⊆ V (G), the induced subgraph of G by T consists of T and all edges whose
endvertices are contained in T , denoted by G[T ].

In the next two sections we will investigate nice patches of fullerene graphs in cyclic
6-edge-cut and 8-edge-cut cases, respectively.

3 Cyclic 6-edge-cut
We first consider a more general case than fullerene patches.

Theorem 3.1. Let F0 be a connected induced subgraph of a fullerene graph F such that
interior faces of F0 exist and each one is a pentagon or hexagon. If F has exactly six edges
from F0 to the outside F 0 = F − V (F0), then F0 has a perfect matching.

Proof. Let n0 and ε0 denote the numbers of vertices and edges of F0 respectively. Then
3n0 = 2ε0 + 6, which implies that n0 is even, i.e. F0 has an even number of vertices.

We will prove that F0 has a perfect matching by Tutte’s theorem. To the contrary
suppose that F0 has no perfect matchings. By Theorem 2.1, there exists a subset X0 ⊂
V (F0) such that

odd(F0 −X0) > |X0|. (3.1)

For the sake of convenience, let α := odd(F0 − X0). Since α and |X0| have the same
parity, we have

α ≥ |X0|+ 2. (3.2)

Let G1, . . . , Gα and Gα+1, . . . , Gα+β denote respectively the odd components and the
even components of F0−X0, where β denotes the number of even components of F0−X0.
For i = 1, 2, . . . , α+β, letmi denote the number of edges of F0 which are sent toX0 from
Gi, and γi (resp. γ0) the number of edges of F from Gi (resp. X0) to F 0. Since ∇(F0) is
a 6-edge-cut of F , we have

|∇(F0)| =
α+β∑
i=0

γi = 6. (3.3)

Since F is 3-connected, for i = 1, . . . , α, . . . , α+ β we have

|∇(Gi)| = mi + γi ≥ 3. (3.4)
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Figure 2: Illustration for the proof of Theorem 3.1.

By taking the number of edges of F from the components Gi to F 0 and X0 into account
and by using Equation (3.3) and Inequalities (3.2) and (3.4) we have

3(α+ β) ≤
α+β∑
i=1

(mi + γi)

≤ 3|X0| − γ0 +
α+β∑
i=1

γi

= 3|X0|+ 6− 2γ0

≤ 3α− 2γ0,

(3.5)

which implies that β = 0, γ0 = 0 and equalities always hold. Hence
∑α
i=1 γi = 6, and

α = |X0|+2. Further, the second equality in (3.5) implies that X0 is an independent set of
F0. The first equality in (3.5) implies that mi + γi = 3 for each 1 ≤ i ≤ α, that is, ∇(Gi)
is a 3-edge-cut of F . So by Lemma 2.2 it is a trivial edge-cut and each Gi is a singleton.
Let Y0 denote the set of all singletons Gi. Then F0 is a bipartite graph with partite sets X0

and Y0.
If F0 has no vertices of degree one, then F0 is 2-connected. Otherwise, F0 has a

bridge, the deletion of which results in two components each containing a cycle. So the
bridge together with at most three edges in ∇(F0) form a cyclic edge-cut, contradicting
that cλ(F ) = 5 (Theorem 2.4). Hence F0 is a fullerene patch. Since k2 = |∇(F0)| = 6, by
Lemma 2.6 we have that the number p5 of pentagons contained in F0 is equal to the number
k3 of vertices of degree three lying on the boundary of F0. Since F0 is bipartite, k3 = p5 =
0, which implies that F0 is just a hexagon, contradicting that α = |Y0| = |X0|+ 2.

If F0 has a vertex x of degree one, let xy be the edge of F0, and xy1 and xy2 be the
other two edges in F incident with x. Then ∇(F0 − x) = (∇(F0) \ {xy1, xy2}) ∪ {xy}
forms a cyclic 5-edge-cut of F since F0 − x contains all cycles of F0 and F0 − x can
be obtained from F − F0 by adding a 2-length path y1xy2 and contains at least seven
pentagons. Since F0−x is bipartite, cyclic 5-edge-cut∇(F0−x) is not trivial, and F0−x
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is always 2-connected from Theorem 2.5. By Lemma 2.6 we have p5 = k3 + 1 for the
fullerene patch F0 − x, which implies that F0 has at least one pentagon, contradicting that
F0 is bipartite.

Corollary 3.2. For each cyclic 6-edge cut E0 of a fullerene graph F , both components of
F − E0 have a perfect matching.

Proof. It follows that F − E0 has exactly two components from Lemma 2.2 and 3-edge-
connectedness of F . Such two components fulfil the conditions of Theorem 3.1 and thus
each has a perfect matching.

Figure 3: Some nice substructures of fullerene graphs.

Figure 4: Some nice patches of fullerene graphs with six 2-degree vertices.

From Corollary 3.2 we can find many nice substructures of fullerene graphs, examples
of which are shown in Figures 3 and 4. It should be mentioned that the third nice sub-
structure fulvene in Figure 3 has been discovered by Došlić applying 2-extendability of
fullerenes [5, 27], and the first one has been proved in investigating k-resonance [26, 11];
see the following.

Corollary 3.3 ([26]). Each hexagon of a fullerene graph is resonant.

Corollary 3.4. Each 8-length cycle (if exists) of a fullerene graph bounds a pentalene (a
pair of abutting pentagons) and is thus resonant.

Proof. Let C be a 8-length cycle of a fullerene graph F . If F has an edge e whose endver-
tices both lie in C but e /∈ E(C), then e is called a chord of C. If C has no chords, then the
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eight edges issuing from C can be classified into two edge-cuts of size from 3 to 5, which
lie in the interior and the exterior of C respectively. If one is a 3-edge-cut, then Lemma 2.2
implies that it is trivial, and thus a triangle or quadrilateral appear, a contradiction. If both
are 4-edge-cuts, then Lemma 2.3 implies that F has only 12 vertices, also a contradiction.
So C must have a chord. Further, this chord and C form a pair of 5-length cycles sharing
this chord, which must bound pentagonal faces of F by Theorem 2.4. That is, C bounds a
pentalene and is resonant from Corollary 3.2.

4 Cyclic 8-edge-cut
Theorem 4.1. If E0 is a cyclic 8-edge-cut of a fullerene graph F and E0 is a matching,
then F − E0 has a perfect matching.

Proof. There exists a nonempty and proper subset X of vertex set V (F ) such that E0 =
∇(X) = [X,X]. Let F0 := F [X] and F 0 := F [X]. We claim that both F0 and F 0

are connected and E0 is a minimal edge-cut. If not, then one of F0 and F 0, say F 0, is
disconnected. Then F 0 has exactly two components since F is 3-connected. Since E0 is a
matching, F0 and each component of F 0 have the minimum degree 2 and contain a cycle.
So a cyclic edge-cut of at most four edges occurs in F , a contradiction. So the claim is
verified. Hence each of F0 and F 0 has exactly one face of size more than six, which has
exactly 8 two-degree vertices on its boundary.

We only show that F0 has a perfect matching (the same for F 0). If F0 has a bridge,
then it follows that F0 can be obtained from two pentagons by adding one edge between
them by Theorems 2.4 and 2.5. In this case F0 has a perfect matching. So in the following
we always suppose that F0 is a patch of F . We adopt similar arguments and notations as
in the proof of Theorem 3.1 (see Figure 2). It is known that F0 has an even number of
vertices. Suppose to the contrary that F0 has no perfect matchings. By Tutte’s theorem we
can choose a minimal subset X0 ⊂ V (F0) satisfying α := odd(F0 −X0) ≥ |X0|+ 2.

Let G1, . . . , Gα and Gα+1, . . . , Gα+β denote respectively the odd components and the
even components of F0 −X0. For i = 1, 2, . . . , α+ β, let mi denote the number of edges
of F0 which are sent to X0 from Gi, and γi (resp. γ0) the number of edges of F from Gi
(resp. X0) to the patch F 0. By |∇(F0)| =

∑α+β
i=0 γi = 8 and Inequality (3.4), we have

3(α+ β) ≤
α+β∑
i=1

(mi + γi)

≤ 3|X0| − γ0 +
α+β∑
i=1

γi

= 3|X0|+ 8− 2γ0

≤ 3α+ 2− 2γ0,

(4.1)

which implies that β = 0, 0 ≤ γ0 ≤ 1, and |X0| + 2 = α. So the forth equality in
Inequality (4.1) holds.

If γ0 = 1, then |[X − X0, X]| =
∑α+β
i=1 γi = 7 and all equalities in Inequality (4.1)

hold. Like the proof of Theorem 3.1 we have thatX0 is an independent set,mi+γi = 3 for
each 1 ≤ i ≤ α and each Gi is a singleton. Hence F0 is a bipartite graph. By Lemma 2.6
we have that F0 has two three-degree vertices on the boundary of F0. That implies that
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F0 is just the graph obtained by gluing two hexagons along an edge. So F0 has the same
cardinalities of two partite sets, which contradicts that |X0|+ 2 = α.

From now on we suppose that γ0 = 0. That is, each vertex of X0 has degree 3 in F0.
We claim that second equality in Inequality (4.1) must hold. Otherwise, F0[X0] has exactly
one edge, say uv, and the first equality holds, so each Gi is a singleton. Without loss of
generality, suppose that y1 and y2 are two neighbors of u other than v, and V (G1) = {y1}
and V (G2) = {y2}. Let X ′

0 := X0 \ {u}, and X1 := {u, y1, y2}. Then G′
1 := F0[X1] is

a 3-vertex path obtained by combining G1 and G2 with vertex u. Hence F0 −X ′
0 has the

odd components G′
1, G3, . . . , Gα, and odd(F0 −X ′

0) = α − 1 = |X ′
0| + 2, contradicting

the minimality of X0.
Hence X0 is an independent set of F0, and the first inequality is strict. Since for each

1 ≤ i ≤ α, mi + γi is always odd, there exists an i0 such that mi0 + γi0 = 5 and
mi + γi = 3 for all i 6= i0. For convenience, we may suppose that i0 = 1. So G1 is an odd
component with at least three vertices and G2, . . . , Gα are all singletons. Let Y0 denote
the set of all singletons Gi (2 ≤ i ≤ α). Then H := (X0, Y0) is a bipartite graph as the
induced subgraph of fullerene graph F .

If G1 is a tree, then it is a 2-length path, say xyz, since ∇(G1) has exactly five edges.
For F0, by Lemma 2.6 we have p5 = k3 − 2. Since E0 is a matching, x and z both have
neighbors in X0, so γ1 ≤ 3. The latter implies

∑α
i=2 γi ≥ 5. That is, the boundary of F0

contains at least 5 two-degree vertices belonging to Y0.
We assert that p5 ≤ 2. Since H is bipartite, any pentagon P of F0 must intersect G1.

If P only intersects a vertex of G1, say z, then P − z is a path of length 3 in H which
connects two vertices of X0, contradicting that any path between two vertices in the same
partite set of a bipartite graph has an even length. Similarly we have that P cannot contain
both edges of G1. If F0 has two distinct pentagons sharing the same edge of G1, then one
pentagon must have two edges G1, a contradiction. So the assertion holds.

By the assertion and p5 = k3 − 2 we have k3 ≤ 4. This implies that the boundary of
F0 has at most 4 vertices in X0. Let C be the boundary of F0. Then C − V (C) ∩X0 has
at most |V (C) ∩X0| components. On the other hand, C − V (C) ∩X0 has all singletons
in V (C) ∩ Y0 as components. But |V (C) ∩ Y0| ≥ 5, contradicting |V (C) ∩X0| ≤ 4.

From now on suppose that G1 contains a cycle. Then ∇(G1) is a cyclic 5-edge-cut
of F . By Theorem 2.5 ∇(G1) is a matching and G1 is also a patch (precisely, G1 is a
pentagon or contains a pentacap according as the cyclic 5-edge-cut∇(G1) is trivial or not),
so each vertex of H has degree at least two, and each component of H contains a cycle.
If H is disconnected, then H has exactly two components H1 and H2 since F0 is 2-edge-
connected and ∇(G1) has exactly five edges. Further, between G1 and each Hi has at
least two edges. So∇(G1) has two consecutive edges along the boundary of G1 separately
from G1 to H1 and H2. These two edges must be contained in a cycle of length at least 8
bounding a face of F , a contradiction. Hence H is connected.

Since G1 and F 0 are two connected subgraphs of F with exactly one face of size more
than six, there are two possible cases to be considered.

Case 1. G1 and F 0 lie in different faces of H . Suppose that G1 lies in a bounded face f of
H and F 0 does in the exterior face of H . Then the boundary ∂f of f is a 10-length cycle
since 5 neighbors of G1 in H belong to X0 and are separated by 5 vertices in Y0. Hence
F is a nanotube with two pentacaps and F0 has exactly 6 pentagons. By Lemma 2.6 the
boundary of F0 has exactly 8 vertices of degree 3 in F0. Hence the boundary of F0 is an
alternating cycle of three-degree and two-degree vertices. But in this nanotube there is only
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10-length cycle as such boundary of a patch, a contradiction.

0
F

1
G

e

f

H

Figure 5: Illustration for Case 2 in the proof of Theorem 4.1 (the vertices in X0 are colored
white and other vertices black).

Case 2. G1 and F 0 lie in the exterior face of H . Then the boundary of F0 is formed by a
path P of H and a path P1 of G1 and two edges between them. So 0 ≤ γ1 ≤ 3, and there
are 8 − γ1 two-degree vertices lying on P , which belong to Y0 and are thus non-adjacent
mutually. So there are at least 7 − γ1 three-degree vertices in X0 on P that can separate
them. Since the four end-vertices of P and P1 are all of degree three in F0, there are at least
11− γ1 vertices of degree three of F0 on the boundary. That is, for F0, k3 ≥ 11− γ1. On
the other hand, if G1 is a pentagon, then F0 has at most 5− γ1 pentagons, so k3 ≤ 7− γ1
by Lemma 2.6, a contradiction. Otherwise, ∇(G1) is a non-trivial cyclic 5-edge-cut and
F0 has exactly 6 pentagons. Hence, by Lemma 2.6 we have that for F0, k3 = 8. So γ1 = 3.
Take two consecutive edges e and f of ∇(G1) along the boundary of G1 separately from
G1 to F 0 and H . Since ∇(G1) is a non-trivial cyclic 5-edge-cut, by Theorem 2.5 we have
that e and f have non-adjacent end-vertices in G1. So these two edges belong to a cycle of
length at least 7 bounding a face of F (see Figure 5). But this is impossible.

From Theorem 4.1 we further find many nice substructures of fullerene graphs, which
are listed in Figure 6. In particular, the first one is the naphthalene (a pair of abutting
hexagons), whose boundary is a resonant cycle of length 10.

Corollary 4.2. Any adjacent hexagons of a fullerene graph form a nice substructure, and
the boundary (10-length cycle) is thus resonant.

However, not all 10-length cycles of fullerene graphs are resonant. For example, see
Figure 1. The following corollary gives a criterion for a 10-length cycle of a fullerene graph
to be resonant.

Corollary 4.3. A 10-length cycle C of a fullerene graph F is resonant if and only if it
bounds either the naphthalene or the second patch in Figure 4.

Proof. The sufficiency is immediate from Corollaries 3.2 and 4.2. So we only consider the
necessity. Suppose that 10-length cycle C of a fullerene graph F is resonant. Let F0 be
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Figure 6: Some nice patches of fullerene graphs with eight 2-degree vertices.

the patch of F bounded by 10-length cycle C with p5 ≤ 6. So F0 has an even number of
vertices, and we can have that k3 and k2 both are even. By Lemma 2.6 we have p5 = 2k3−4
and 2 ≤ k3 ≤ 5. The possible values of k3 are 2 and 4. If k3 = 2, then C bounds a pair of
adjacent hexagons. If k3 = 4, then F0 has exactly two vertices in the interior of C which
are adjacent by Lemma 2.3. In fact, F0 is the second patch in Figure 4.
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[6] T. Došlić, Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages, J. Math. Chem. 33
(2003), 103–112, doi:10.1023/a:1023299815308.

[7] P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Clarendon Press, Oxford, 1995.
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