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Abstract
Topological indices (TIs) and atom pairs (APs) were used to develop quantitative structure-activity relationships

(QSARs) for anticancer activity for a set of 43 derivatives of 2-phenylindole. Results show that QSARs formulated us-

ing TI+AP outperform those using either TI or AP alone. The q2 of the ridge regression model using TI+AP was 0.867

as compared to 0.705 reported in the literature using the comparative molecular field analysis (CoMFA) method.
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1. Introduction
Tubulins consist of a small group of globular pro-

teins with approximate molecular weight of 55 kilodal-
tons. The most common members of the tubulin family
are α-tubulin and β-tubulin. Microtubules are assembled
as dimers of α- and β-tubulin subunits.1 Microtubule is the
generic name of a class of subcellular components that oc-
cur in a wide variety of eukaryotic cells. Such structures
are straight cylinders, 240 ± 20 Å in diameter, with a hol-
low 150 Å core. They have diverse biochemical functions
which include chromosome movements in cell division,
intracellular transport of materials, development and
maintenance of cell form, cellular motility, and sensory
transduction. It is well known that the disruption of micro-
tubules by antimitotic drugs or physical factors results in
disruption of cellular function.2

Various tubulin binding ligands with antimitotic and
anticancer properties have been reported in the literatu-
re.3–6 Regarding the binding sites of the various ligands,
these can be classified into three main groups: those that
bind tubulin at the colchicine-binding site; those that bind
at the vinblastine site, and those that bind at the taxol site.

The inhibition of microtubule formation via tubulin
polymerization results in mitotic arrest which, in turn,
promotes vascular disruption, leading to cell death by
apoptosis. Hence, tubulin has emerged as a popular target
for anticancer drug design.7, 8

Von Angerer et al. synthesized a group of 2-pheny-
lindole derivatives and determined their anticancer activi-
ties in human breast cancer cells.9–11 One of their critical
observations was that these compounds prevent the poly-
merization of the α/β -tubulin dimers to functional micro-
tubules by binding to the colchicine-binding site and all
have pronounced cytotoxicity, indicating their good po-
tential as a new class of anticancer drugs. Consequently,
there has been a lot of interest in understanding the struc-
tural basis of the anticancer activity of 2-phenylindoles
using quantitative structure-activity relationship (QSAR)
modeling. In fact, Liao et. al.12 applied the comparative
molecular field analysis (CoMFA) approach to a set of 43
analogs of 2-phenylindole with reasonable results. In our
previous studies we found that mathematical molecular
descriptors, invariants of simple and weighted molecular
graphs in particular, which can be calculated directly from
chemical structure without the input of any other experi-
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mental data, can predict property/ bioactivity/toxicity of
various congeneric and structurally diverse classes of che-
micals.13–24 So in this paper we carried out QSAR mode-
ling on the set of 43 2-phenylindoles using a diverse col-
lection of mathematical structural invariants.

2. Materials and Methods

2. 1. The Database
The 43 compounds used for the QSAR models in

this study were taken from the published work of von

Angerer and his coworkers.9–11 Liao et al.12 carried out a
CoMFA type of QSAR using this set of compounds. The
anticancer activity of the 43 2-phenylindole derivatives
was measured as the level of cytotoxicity against human
breast cancer cell line MDA-MB 231. The range of IC50

values was 5.5 to 720 nM, more than two orders of mag-
nitude between the most and least potent derivatives. We
used pIC50 values of the compounds (pIC50= – logIC50)
as dependent variable in our models. The structural for-
mula of the studied compounds is shown in Fig 1. The
structure of each compound and its bioactivity are listed
in Table 1.

Table 1. Structures and anticancer activities against human breast cancer cell line MDA-MB 231

No. R1 R2 R3 X IC50(nm) pIC50

1 H H H C(CN)2 430 6.367

2 H H OCH3 C(CN)2 720 6.143

3 H OCH3 OCH3 C(CN)2 590 6.229

4 OCH3 H OCH3 C(CN)2 260 6.585

5 H F OCH3 C(CN)2 400 6.398

6 F H OCH3 C(CN)2 280 6.553

7 OCH3 H CH3 C(CN)2 180 6.745

8 H CH3 OCH3 C(CN)2 280 6.553

9 Cl CH3 OCH3 C(CN)2 75 7.125

10 H n-Pr OCH3 C(CN)2 83 7.081

11 H i-Pr OCH3 C(CN)2 210 6.678

12 H n-Bu OCH3 C(CN)2 26 7.585

13 H n-Pentyl OCH3 C(CN)2 42 7.377

14 H n-Hexyl OCH3 C(CN)2 46 7.337

15 H n-Bu CH3 C(CN)2 65 7.187

16 H n-Bu CH2CH3 C(CN)2 76 7.119

17 H n-Bu CF3 C(CN)2 56 7.252

18 H n-Pentyl CF3 C(CN)2 78 7.108

19 H n-Hexyl CF3 C(CN)2 150 6.824

20 H OCH3 OCH3 O 260 6.585

21 OCH3 H OCH3 O 35 7.456

22 F H OCH3 O 59 7.229

23 H F OCH3 O 540 6.268

24 Cl H OCH3 O 27 7.569

25 Cl CH3 OCH3 O 26 7.585

26 H CH3 OCH3 O 86 7.066

27 H Pr OCH3 O 20 7.699

28 H n-Bu OCH3 O 6.7 8.174

29 H sec-Bu OCH3 O 72 7.143

30 H t-Bu OCH3 O 280 6.553

31 H n-Pentyl OCH3 O 5.5 8.260

32 H n-Hexyl OCH3 O 7.4 8.131

33 OCH3 OCH3 OCH3 O 220 6.658

34 OCH3 H CH3 O 31 7.509

35 H CH3 CH3 O 48 7.319

36 H n-Bu CH3 O 34 7.469

37 H n-Bu CH2CH3 O 27 7.569

38 H CH2CH3 n-Bu O 300 6.523

39 H n-Bu CF3 O 33 7.481

40 H n-Pentyl CF3 O 42 7.377

41 H n-Hexyl CF3 O 43 7.367

42 OCH3 H H O 240 6.620

43 H H H O 420 6.377
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Fig.1. Molecular structure of 2-phenylindole derivatives

2. 2 Calculation of Molecular Descriptors

Two general classes of molecular descriptors were
used as independent variables in the current study, na-
mely, atom pairs (APs) and topological indices (TIs). The
former are molecular substructures, while the latter are
derived from graph theoretical methods. It is important to
note that both types of descriptors are based solely on che-
mical structure.

An atom pair represents any two atoms in the mole-
cule and includes information about their path-wise inte-
ratomic separation as well as the electronic character of
the atoms. The method of Carhart et al. 25 was used in
their calculation and defines an atom pair as a substructu-
re consisting of two non-hydrogen atoms i and j and their
interatomic separation:

<atom descriptor i> – <separation> – <atom descriptor j>

where <atom descriptor> contains information re-
garding atom type, number of non-hydrogen neighbors
and the number of electrons. The interatomic separation is
defined as the number of atoms traversed in the shortest
bond-by-bond path containing both atoms. An example
demonstrating the calculation of APs can be found in an
earlier publication.26 APProbe 27 was used to calculate the
atom pairs for each molecule in the data set. In total, 354
APs were calculated for the data set.

In addition to the atom pairs, a set of 369 topological
indices (TIs) was calculated using programs including
POLLY v2.3,28 Triplet29 and Molconn-Z v.3.5.30 They inc-
lude path length descriptors, 31 path or cluster connectivity
indices, 31, 32 neighborhood complexity indices,33 valence
path connectivity indices, 31 hydrogen bonding descriptors
and electrotopological state indices.34 Topological indices
may be classified as either topostructural (TS) or topoche-
mical (TC). The former encode information related to
connectivity only, while the latter also encode chemical
information such as atom and bond type. Table 2 provides
a list of the topological indices calculated for this study,
along with brief descriptions.

Prior to model development, any descriptor with a
constant value for all, or nearly all, compounds within the
data set was omitted. In addition, only one descriptor of
any perfectly correlated pair (i.e., r = 1.0), as identified by
the CORR procedure of the SAS statistical package35 was
retained. Subsequently, 248 TIs remained for use in the
modeling study. Prior to modeling, the descriptors were

Table 2. Symbols, definitions and classification of topological indices

Topostructural (TS)

IW
D Information index for the magnitudes of distances between all possible pairs of vertices of a graph

ÎW
D Mean information index for the magnitude of distance

W Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph

ID Degree complexity

HV Graph vertex complexity

HD Graph distance complexity

IC Information content of the distance matrix partitioned by frequency of occurrences of distance h
M1 A Zagreb group parameter = sum of square of degree over all vertices

M2 A Zagreb group parameter = sum of cross–product of degrees over all neighboring (connected) vertices
hχ Path connectivity index of order h = 0–10
hχC Cluster connectivity index of order h = 3–6
hχPC Path-cluster connectivity index of order h = 4–6
hχCh Chain connectivity index of order h = 3–10
Ph Number of paths of length h = 0–10
J Balaban’s J index based on topological distance
nrings Number of rings in a graph
ncirc Number of circuits in a graph
DN2Sy Triplet index from distance matrix, square of graph order, and distance sum; operation y = 1–5

DN21y Triplet index from distance matrix, square of graph order, and number 1; operation y = 1–5

AS1y Triplet index from adjacency matrix, distance sum, and number 1; operation y = 1–5

DS1y Triplet index from distance matrix, distance sum, and number 1; operation y = 1–5

ASNy Triplet index from adjacency matrix, distance sum, and graph order; operation y = 1–5
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Topostructural (TS)

DSNy Triplet index from distance matrix, distance sum, and graph order; operation y = 1–5

DN2Ny Triplet index from distance matrix, square of graph order, and graph order; operation y = 1–5

ANSy Triplet index from adjacency matrix, graph order, and distance sum; operation y = 1–5

AN1y Triplet index from adjacency matrix, graph order, and number 1; operation y = 1–5

ANNy Triplet index from adjacency matrix, graph order, and graph order again; operation y = 1–5

ASVy Triplet index from adjacency matrix, distance sum, and vertex degree; operation y = 1–5

DSVy Triplet index from distance matrix, distance sum, and vertex degree; operation y = 1–5

ANVy Triplet index from adjacency matrix, graph order, and vertex degree; operation y = 1–5

kp0 Kappa zero

kp1–kp3 Kappa simple indices

Topochemical (TC)

O Order of neighborhood when ICr reaches its maximum value for the hydrogen-filled graph

Oorb Order of neighborhood when ICr reaches its maximum value for the hydrogen-suppressed graph

IORB Information content or complexity of the hydrogen-suppressed graph at its maximum neighborhood of vertices

ICr Mean information content or complexity of a graph based on the rth (r = 0–6) order neighborhood of vertices in a

hydrogen-filled graph

SICr Structural information content for rth (r = 0–6) order neighborhood of vertices in a hydrogen-filled graph

CICr Complementary information content for rth (r = 0–6) order neighborhood of vertices in a hydrogen-filled graph
hχ b Bond path connectivity index of order h = 0–6
hχ b

C Bond cluster connectivity index of order h = 3–6
hχ b

Ch Bond chain connectivity index of order h = 3– 6
hχ b

PC Bond path-cluster connectivity index of order h = 4–6
hχ v Valence path connectivity index of order h = 0–10
hχ v

C Valence cluster connectivity index of order h = 3–6
hχv

Ch Valence chain connectivity index of order h = 3–10
hχv

PC Valence path-cluster connectivity index of order h = 4–6

JB Balaban’s J index based on bond types

JX Balaban’s J index based on relative electronegativities

JY Balaban’s J index based on relative covalent radii

AZVy Triplet index from adjacency matrix, atomic number, and vertex degree; operation y = 1–5

AZSy Triplet index from adjacency matrix, atomic number, and distance sum; operation y = 1–5

ASZy Triplet index from adjacency matrix, distance sum, and atomic number; operation y = 1–5

AZNy Triplet index from adjacency matrix, atomic number, and graph order; operation y = 1–5

ANZy Triplet index from adjacency matrix, graph order, and atomic number; operation y = 1–5

DSZy Triplet index from distance matrix, distance sum, and atomic number; operation y = 1–5

DN2Zy Triplet index from distance matrix, square of graph order, and atomic number; peration Y = 1–5

nvx Number of non-hydrogen atoms in a molecule

nelem Number of elements in a molecule

fw Molecular weight

si Shannon information index

totop Total Topological Index t
sumI Sum of the intrinsic state values I
sumdelI Sum of delta-I values

tets2 Total topological state index based on electrotopological state indices

phia Flexibility index (kp1* kp2/nvx)

Idcbar Bonchev-Trinajsti} information index

IdC Bonchev-Trinajsti} information index

Wp Wienerp

Pf Plattf

Wt Total Wiener number

knotp Difference of chi-cluster-3 and path/cluster-4

knotpv Valence difference of chi-cluster-3 and path/cluster-4

nclass Number of classes of topologically (symmetry) equivalent graph vertices
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standardized by autoscaling to zero mean and unit stan-
dard deviation.

2. 3. Statistical Analysis

Three regression methods that are appropriate when
the number of descriptors exceeds the number of observa-
tions are ridge regression (RR),36, 37 principal component
regression (PCR),38 and partial least squares (PLS) regres-
sion.38, 39 These are shrinkage methods that avoid overfit-
ting by imposing a penalty on large fluctuations of the es-
timated parameters. They are designed to utilize all avai-
lable descriptors, as opposed to subset regression wherein
variable selection is employed, and can be used with des-
criptors that are intercorrelated. RR, like PCR, transforms
the descriptors to their principal components (PCs) and
uses the PCs as descriptors. However, unlike PCR, RR re-
tains all of the PCs, and ‘shrinks’ them differentially ac-
cording to their eigenvalue.36 As with PCR and RR, PLS
also involves the creation of new axes in predictor space,
however, they are based on both the independent and de-
pendent variables.40, 41 Statistical theory suggests that RR
is the best of the three methods, and we have found in
comparative studies that RR outperforms PCR and PLS in
the vast majority of cases.21, 39, 42–45 Therefore, we report
only the ridge regression results in the current study. For

the sake of brevity, we do not report the highly paramete-
rized models, themselves, but rather the associated q2 va-
lues, which are used to evaluate the predictive quality of
the models. The q2 is defined by:

q2 = 1 – (PRESS / SSTotal) (1)

where PRESS is the prediction sum of squares and SSTotal
is the total sum of squares. Unlike R2, q2 may be negative,
indicative of a very poor model. Also, unlike R2 which
tends to increase upon the addition of any descriptor, q2

will decrease upon the addition of irrelevant descriptors,
providing a reliable measure of model quality.

The leave-one-out (LOO) method was used for mo-
del cross-validation. Unfortunately, it is a widely held be-
lief that the use of a hold-out test set is always the best
method of model validation. However, theoretic argument
and empiric study46 have shown that the LOO cross-vali-
dation approach is preferred to the use of a hold-out test
set unless the data set to be modeled is very large. The
drawbacks of holding out a test set include: 1) Structural
features of the held out chemicals are not included in the
modeling process, resulting in a loss of information, 2)
Predictions are made on only a subset of the available
compounds, whereas LOO predicts the activity value for
all compounds, 3) There is no scientific tool that can gua-
rantee similarity between the training and test sets, and 4)

Topochemical (TC)

NumHBd Number of hydrogen bond donors

NumHBa Number of hydrogen bond acceptors

SHCsats E-State of C sp3 bonded to other saturated C atoms

SHCsatu E-State of C sp3 bonded to unsaturated C atoms

SHvin E-State of C atoms in the vinyl group, =CH–

SHtvin E-State of C atoms in the terminal vinyl group, =CH2

SHavin E-State of C atoms in the vinyl group, =CH–, bonded to an aromatic C

SHarom E-State of C sp2 which are part of an aromatic system

SHHBd Hydrogen bond donor index, sum of Hydrogen E–State values for –OH, =NH, –NH2, –NH–, –SH, and #CH

SHwHBd Weak hydrogen bond donor index, sum of C–H Hydrogen E-State values for hydrogen atoms on a C to which 

a F and/or Cl are also bonded

SHHBa Hydrogen bond acceptor index, sum of the E-State values for –OH, =NH, –NH2, –NH–, >N, –O–, –S–, along with 

–F and –Cl

Qv General Polarity descriptor

NHBinty Count of potential internal hydrogen bonders (y = 2–10)

SHBinty E–State descriptors of potential internal hydrogen bond strength (y =2–10)

ka1–ka3 Kappa alpha indices

Electrotopological State index values for atom types:  

SHsOH, SHdNH, SHsSH, SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, Hmax Gmax, Hmin,  Gmin, Hmaxpos,
Hminneg, SsLi, SssBe, Sssss, Bem, SssBH ,SsssB, SssssBm, SsCH3, SdCH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH,
SddC, StsC, SdssC, SaasC, SaaaC, SssssC, SsNH3p, SsNH2, SssNH2p, SdNH, SssNH, SaaNH, StN, SsssNHp, SdsN,
SaaN, SsssN, SddsN, SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi, SsPH2, SssPH,
SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, SsCl, SsGeH3, SssGeH2, SsssGeH, SssssGe,
SsAsH2, SssAsH, SsssAs, SdsssAs, SsssssAs, SsSeH, SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2,
SsssSnH, SssssSn, SsI, SsPbH3, SssPbH2,SsssPbH, SssssPb.
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Personal bias can easily be introduced in selection of the
external test set. The reader is referred to Hawkins et al.46

and Kraker et al.47 for further discussion of proper model
validation techniques.

The reader is cautioned to be critical of research stu-
dies which involve descriptor selection and cross-valida-
tion. In many such studies, the q2 is obtained via a two-step
process wherein a subset of descriptors is first selected,
followed by cross-validation of the model which is develo-
ped based on those descriptors. This procedure results in
an overly optimistic q2 (termed “naïve q2”) which overesti-
mates the predictive ability of the model.47, 48 When using
cross-validation and descriptor selection, it is essential that
the descriptor selection step be included in the validation
procedure. In doing so, the “true q2” is obtained which ac-
curately reflects the predictive ability of the model.

In addition to q2, another useful statistical metric is
the t-value associated with each model descriptor, defined
as the descriptor coefficient divided by its standard error.
Descriptors with large | t | values are highly significant in
the predictive model and, as such, can be examined in or-
der to gain some understanding of the nature of the pro-
perty or activity of interest. It must be noted, however, that
no conclusions may be drawn with respect to descriptors
associated with small | t | values.

For the sake of clarity, it should be re-stated that the
ridge regression method used in the current study does not
involve variable selection, as this is a shrinkage method
which is designed to use all available descriptors.

3. Results and Discussion

The major objective of this study was to investigate
the utility of graph theoretical invariants in the formula-
tion of QSARs for the anticancer activity of 2-phenylindo-
le derivatives.

Results presented in Table 3 show that, in terms of
the predictive power of the models, the TI+AP model (q2

= 0.867) is better than those developed using TI (q2 =
0.512) or AP (q2 = 0.653) alone. The models developed
using only topological indices or atom pairs alone are also
inferior to that reported by Liao et al. using CoMFA.12

However, the TI + AP model substantially outperforms
the CoMFA model (q2 = 0.705).

Inhibition of microtubule function using tubulin tar-
geting agents is a well established approach to anticancer
chemotherapy.49–53 Over the years, a large number of natu-
ral and synthetic small molecules have been identified as
colchicine site inhibitors (CSIs) of tubulin. The enormous
molecular diversity of the CSIs is of benefit to drug design
because it provides a wide variety of molecular scaffolds
for optimization. Determining the essential structural fea-
tures necessary for anticancer activity is, at the same time,
a formidable challenge.54

Both normal and cancer cells can alter expression of
various tubulin isoforms (encoded by different genes) in
response to external stimuli that modify microtubule sta-
bility. Currently known anti-tubulin drugs bind to all of
these isoforms, with a slight preference for one over the
others. It is also known that cancer cells express a variety
of tubulin isoforms and are not limited to those expressed
in the noncancerous cells from which they originate. The-
refore, a drug that preferentially binds with a particular
isoform present in the cancer cell only could affect those
cells selectively, while being relatively non-toxic to nor-
mal cells.55–57

At the biochemical level, 2-phenylindoles act via
perturbation of the colchicine binding sites on tubulin. A
common mechanism of action of these compounds is ex-
pected from the fact that all 43 compounds analyzed by us
and Liao et al.12 have the same basic structural scaffold.
Such structural homogeneity usually helps the alignment
process essential for the CoMFA analysis. Yet, it is intere-
sting to note that the QSAR generated in this paper using
a diverse set of calculated mathematical descriptors, viz.,
combination of TIs and APs, significantly outperforms the
CoMFA model in terms of predictive power. It is possible
that the variety of ligand-biotarget interactions arising
from the substitution patterns of the 43 analogs is better
represented by the diverse TI + AP set of descriptors as
compared to the CoMFA variables.

Table 4 lists the 20 descriptors with highest | t | va-
lues for the TI+AP model reported in Table 3. The TIs are
classified as either TS or TC. The following classes of mo-
lecular descriptors are found to be influential in the QSAR
of the 2-phenylindole derivatives:

a) 6χb
Ch, 

6χv
Ch, 

9χCh,
6χCh which encode information

regarding cyclicity of structure of the compounds
under investigation.

b) 6χv
C represents the extent of branching in the mo-

lecules.
c) ANV1, ASV2, DSV2, DS11, DN211, DN2N2, AN12,

AS12 are triplet indices which characterize the
electronic character of the molecules.

d) C1X3_2_N0X2, C1X3_3_N0X2, C1X2_4_
C1X2 are atom pairs which represent specific
substructures which are influential for ligand-bio-
target interaction.

The class of models presented here, viz., RR ap-
proach using easily calculated mathematical descriptors

Table 3. Ridge regression results with TI, AP, and TI + AP compa-

red with the result from CoMFA analysis.

Descriptor class q2 PRESS
Current Study

TI 0.512 5.976

AP 0.653 12.990

TI+AP 0.867 4.983

CoMFA Resulta 0.705 b

a CoMFA result from Liao et al.;12 b PRESS value not available.
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and a subset of influential descriptors presented in Table
4, can be used in computer-assisted drug design and pre-
diction of toxicological/ ecotoxicological properties of en-
vironmental pollutants.

In the area of drug design, since the QSAR model
for the phenylindoles was developed based on descriptors
which can be calculated fast, the synthetic chemists can

use these models as a decision support tool in synthesis
planning. For example, in the indole moiety and the other
phenyl ring, one can envision a number of sites where
substitution of hydrogen by other groups is possible.
Hansch and Leo had tabulated a list of 230 substituents for
rational drug design.58 If one wishes to substitute each of
R1, R2 and R3 positions of Figure 1 by a small number,
say 50, of substituents, the possible number of derivatives
will be 503 = 125,000. One cannot handle such a large
number of chemicals intuitively; but the high quality
QSAR of phenylindoles derived in this paper can be used
to screen such a large library pretty fast and the com-
pounds which are predicted to be promising by the QSAR
model can be synthesized and tested. This line of ap-
proach could look like that in Figure 2.

Another way of handling the combinatorial explo-
sion consisting of a virtual library of 125,000 derivatives
could be to cluster the large set into a small number, say
50, of clusters using the most important descriptors in
Table 4 and select one chemical from each cluster for
synthesis and testing. Such a subset of phenylindoles will
be structurally diverse and will have the chance of having
novel bioactivity profiles. A similar method was used by
Lajiness59 of the Upjohn Company (now part of Pfizer)
based on topological indices calculated by the POLLY28

software to discover quite a few novel drug leads.
In the area of application of RR and topological des-

criptor based QSARs in the estimation of properties nee-
ded by Globally Harmonized System of Classification and
Labelling of Chemicals (GHS); Registration, Evaluation,
Authorization and Restriction of Chemicals (REACH);

Table 4. Descriptors with largest | t | values taken from the TI + AP

model

TI+AP || t || Descriptor Class
6χ v

C 29.21 TC

ANV1 29.19 TS

ASV2 28.28 TS

DSV2 28.07 TS

DS11 28.05 TS

DN211 28.01 TS
6χ b

Ch 27.96 TC

DN2N2 27.96 TS

AN12 27.66 TS

AS12 27.30 TS

DN2Z2 27.30 TC
6 χCh 27.29 TS
6χ v

Ch 27.08 TC

DS12 27.00 TS

DN212 26.85 TS

C1X3_2_N0X2 26.84 AP

C1X3_3_N0X2 26.84 AP

C1X2_4_C1X2 26.84 AP
6χ b

C 26.82 TC
9χCh 25.49 TS

Figure 2. Chemical synthesis assisted by QSAR
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and chemical evaluation by agencies like the United Sta-
tes Environmental Protection Agency (USEPA); we can
envision a lot of possibility. The GHS needs a large num-
ber of health and environmental toxicity data on chemi-
cals, viz., acute toxicity, skin corrosion, skin irritation, eye
effects, sensitization, germ cell mutagenicity, carcinogeni-
city, reproductive toxicity, acute aquatic toxicity, etc.60

The majority of chemicals currently used in commerce
worldwide will not have such experimentally determined
data sets. For example, the Toxic Substances Control Act
(TSCA) Inventory maintained by the USEPA contains
more than 83,000 chemicals.61 Most of these substances
do not have experimental physicochemical and toxicolo-
gical test data prerequisite to their hazard assessment.
Therefore, in the foreseeable future property estimation
for ecological risk assessment will be carried out on non-
empirical ground.62 Topological descriptors in combina-
tion with ridge regression and the hierarchical QSAR (Hi-
QSAR) approach have been useful in the estimation of di-
verse properties of chemicals like, toxicity and toxic mo-
des of action,63, 64 vapor pressure,65 boiling point,66 dermal
penetration,67 blood: air partition coefficient,68 Ah recep-
tor binding potency,69 mutagenicity,42 allergy contact der-
matitis,70 etc. After the Human Genome Project, a lot of
“omics” data are being generated on chemicals of interest.
The RR method has been used to combine chemodescrip-
tors and proteomics based biodescriptors in predicting to-
xicity of priority pollutants like halocarbons.71 The
REACH legislation of the European Community also
needs a suite of properties for the evaluation of potential
toxicity of new and existing chemicals. For most of the
chemicals and their metabolites, such properties are not
available. In the area of theoretical descriptor based
QSARs, one can use topological indices, substructures, 3-
D descriptors or more computationally demanding quan-
tum chemical descriptors. In a series of papers on
HiQSARs, we found that for most properties like aryl
hydrocarbon receptor binding affinity,72 mosquito repel-
lency of aminoamides,18 acute toxicity of benzene deriva-
tives,73 dermal penetration of polycyclic aromatic hydro-
carbons,74 mutagenicity of aromatic and heteroaromatic
amines,75 mosquito repellency of DEET-related com-
pounds,76 tissue:air partition coefficients,21 vapor pressure
of 469 diverse compounds,77 and mutagenicity of 508 di-
verse compounds,78 the addiction of quantum chemical in-
dices after the use of topological indices did not improve
the predictive power of the models. Therefore, properly
validated RR based QSAR models derived from easily
calculated descriptors like topological indices and atom
pairs as reported in this paper for 2-phenylindoles could
be very useful tools for the estimation of various toxicolo-
gically and ecotoxicologically relevant properties for ha-
zard assessment of chemicals.

For the proper validation of QSARs needed by regu-
latory agencies and drug discovery groups for the esti-
mation of potential toxicity of chemicals, the example of

RR based QSAR can be applied in many cases. In most
practical situations, the number of data points (dependent
variables) is small and much smaller than the number of
independent variables. Hawkins et al46, 79 put forward con-
vincing statistical evidence that for small data sets the lea-
ve one out method of cross validation is superior to the ex-
ternal validation method. So, it is expected that the type of
QSAR exemplified in this paper will have wide applica-
tions in drug discovery and hazard assessment of chemi-
cals.

4. Conclusion

Topological indices and atom pairs derived from
chemical graph theory produced high-quality models for
the prediction of anticancer activity of a set of 43 pheny-
lindole derivatives which act by the disruption of tubulin
working through the colchicine binding site. The QSAR
formulated using TIs and APs together was superior to the
CoMFA model developed from the same set of chemicals.
Easily calculated molecular descriptors like TIs and APs
used in this paper may find application in the QSAR and
in silico prediction of bioactivity of potential therapeutic
agents in new drug discovery protocols as well as other to-
xic substances.
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Povzetek
Z uporabo topolo{kih indeksov (TI) in atomskih parov (AP) smo razvili model za kvantitativno dolo~anje odnosa med

strukturo in aktivnostjo (QSARs, quantitative structure-activity relationships) za niz 43 derivatov 2-fenilindolov, katerih

aktivnost se ka`e kot zaviranje rakotvornosti. Rezultati ka`ejo, da imajo QSAR modeli, osnovani na kombinaciji TI in

AP, bolj{e napovedne zmogljivosti od tistih, ki upo{tevajo le TI ali AP. Korelacijski koeficient q2 modela veri`ne regre-

sije z uporabo TI + AP je 0.867, v primerjavi z 0.705 iz literaturne {tudije na osnovi analize komparativnega molekul-

skega polja (CoMFA).


