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Abstract

In this paper the binary locating-dominating number of convex polytopes is considered.
The exact value is determined and proved for convex polytopes Dn and R′′n, while for the
convex polytopes Rn, Qn and Un a tight upper bound of the locating-dominating number
is presented.
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1 Introduction
Let G be a simple connected undirected graph G = (V,E), where V is a set of vertices,
and E is a set of edges. The open neighborhood of a vertex v ∈ V is NG(v) = {u ∈ V |
(u, v) ∈ E} and the closed neighborhood is NG[v] = {u ∈ V | (u, v) ∈ E} ∪ {v}. We
write N(v) or N [v] if the graph G is clear from the context [4]. For a graph G = (V,E) a
dominating set is a vertex set D ⊆ V such that the union of the closed neighborhoods of
the vertices in D is all of V ; that is,

⋃
v∈DN [D] = V . Equivalently, each vertex not in D

is adjacent to at least one vertex in D, e.g. for every vertex v ∈ V \D,N(v)∩D 6= ∅. The

E-mail addresses: simicana4as@gmail.com (Ana Simić), mb2001969@beotel.com, milenab@ucfak.ni.ac.rs
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domination number of G, denoted by γ(G), is the minimum cardinality of a dominating
set of G.

The concept of a dominating set can also be studied through assigning a weight of 1 will
be assigned to the vertices inD and a weight of 0 to the vertices of V \D. In this case,D is a
dominating set ofG if for every vertex inG the sum of weights for closed neighborhoods is
at least 1, i.e. |N [v]∩S| ≥ 1 for each v ∈ V . A dominating set S ⊆ V is a binary locating-
dominating set if for every two different vertices u, v ∈ V \S holds N(u)∩S 6= N(v)∩S
([12]). The binary locating-dominating number of G, denoted by γl−d(G), is the minimum
cardinality of a binary locating-dominating set. In the sequel all terms about the locating-
dominating number or set is denoted by binary locating-dominating number or set.

The article [11] studies the smallest cardinalities of locating-dominating codes on
chains and cycles and the extreme values of the cardinality of a minimum r-identifying or
r-locating-dominating code in any connected undirected graphG having a given number, n,
of vertices is studied in [8]. For more information about these issues, see [3, 9, 14, 15, 21].
The authors of the papers [23, 24, 27] study the single-fault-tolerant locating-dominating
sets and an open neighborhood locating-dominating sets in trees. More information on
locating-dominating sets can be found in [12, 13, 15, 25].

The identifying code problem and binary locating-dominating problem are NP-hard in
a general case [6, 7]: I. Charon et al. proved in [7] that, given a graphG and an integer k, the
decision problem of the existence of an r-identifying code, or of an r-locating-dominating
code, of size at most k in G, is NP-complete for any r.

The comprehensive list of papers related to identifying code and binary locating-domi-
nating problems were given in [19].

The following theorem gives a tight lower bound of binary locating-dominating number
on regular graphs:

Theorem 1.1 (Slater [26]). If G is a regular graph of degree r, then

γl−d(G) ≥
⌈
2 · |V (G)|
r + 3

⌉
.

Graphs of convex polytopes were introduced by Bača [1]. The classes of convex poly-
topes Qn and Rn were introduced in [2]. The metric dimension of convex polytopes Dn,
Qn andRn are equal to 3, as was proved in [16]. In [17] it was proven that metric dimension
of convex polytopes Sn, Tn and Un is also equal to 3. Minimal doubly resolving sets and
the strong metric dimension of convex polytopesDn and Tn are studied in [18]. M. Salman
et al. [22] were considering three similar optimization problems: the fault-tolerant metric
dimension problem, the local metric dimension problem and the strong metric dimension
problem of two convex polytopes Sn and Un.

2 A modified integer linear programming formulation
An integer linear programming (ILP) formulation of minimum identifying code problem
was given in [5]. If S is an identifying set, then decision variables xi are defined as:

xi =

{
1, i ∈ S
0, i /∈ S

Then, the ILP formulation of minimum identifying code problem from [5] is presented as
follows:
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min
∑
i∈V

xi (2.1)

subject to ∑
j∈N [i]

xj ≥ 1, i ∈ V (2.2)

∑
j∈N [i]∇N [k]

xj ≥ 1, i, k ∈ V, i 6= k (2.3)

xi ∈ {0, 1}, i ∈ V (2.4)

The objective function (2.1) ensures that the identifying code set has a minimal cardi-
nality, and constraints (2.2) defines S to be a dominating set. Identifying feature is rep-
resented by constraints (2.3) while the binary nature of decision variables xi are given by
constraints (2.4).

This formulation can not be directly used for the binary locating-dominating problem.
Therefore, it needs to be adapted by changing constraints (2.3) into the constraints (2.5).

xi + xk +
∑

j∈N(i)∇N(k)

xj ≥ 1, i, k ∈ V, i 6= k (2.5)

Constraints (2.3) and (2.5) are the same when vertices i and k are not neighbors, e.g.
N [i]∇N [k] = {i, j} ∪ (N(i)∇N(k)). The change between (2.3) and (2.5) is reflected
only when vertices i and k are neighbors, i.e. i ∈ N(k). Then, by constraints (2.5), at least
one of vertices i, k or some j ∈ N(i)∇N(k) must be in S. When i and k are not neighbors,
then N [i]∇N [k] = {i, j} ∪ (N(i)∇N(k)), so constraints (2.3) and (2.5) are equal.

In [28] it was noted that if d(u, v) ≥ 3 then u, v has no neighbors in common, therefore,
N(u)∩S 6= N(v)∩S need not be checked for equivalence. This becomes computationally
important for large graphs as it allows us to minimize the number of constraints generated
by the locating requirement. Using this idea, constraints (2.5) would be further improved:

xi + xk +
∑

j∈N(i)∇N(k)

xj ≥ 1, i, k ∈ V, i 6= k, d(i, k) ≤ 2 (2.6)

The proposed formulation with a reduced number of constraints can be used to find the
exact optimal values for problems of small dimensions. Moreover, as it can be seen from
[10], ILP formulation can be tackled by efficient metaheuristic approaches for obtaining
suboptimal solutions for large dimensions.

3 The exact values
3.1 Convex polytope Dn

The graph of convex polytope Dn, on Figure 1, was introduced in [16]. It consists of
2n 5-sided faces and a pair of n-sided faces. Mathematically, it has vertex set V (Dn) =
{ai, bi, ci, di | i = 0, 1, . . . , n−1} and edge set E(Dn) = {(ai, ai+1), (di, di+1), (ai, bi),
(bi, ci), (ci, di), (bi+1, ci) | i = 0, 1, . . . , n − 1}. Note that arithmetic in the subscripts is
performed modulo n.
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Figure 1: The graph of convex polytope Dn.

Table 1: Locating-dominating vertices in Dn.
n v ∈ V \ S S

⋂
N [v] v ∈ V \ S S

⋂
N [v]

3k a3i {a3i+1, b3i} a3i+2 {a3i+1}
b3i+1 {a3i+1, c3i+1} b3i+2 {c3i+1}
c3i {b3i} c3i+2 {b3(i+1), d3i+2}
d3i {d3(i−1)+2} d3i+1 {c3i+1, d3i+2}

3k + 1 a3i {a3(i−1)+2, b3i} a3i+1 {a3i+2}
b3i+1 {c3i+1} b3i+2 {a3i+2, c3i+1}
c3i {b3i, d3i} c3i+2 {b3(i+1)}
d3i+1 {c3i+1, d3i} d3i+2 {d3(i+1)}
a3k {b3k, a3(k−1)+2} c3k {b3k, d3k}
a0 {b0}

3k + 2 a3i+1 {a3i, b3i+1} a3i+2 {a3(i+1)}
b3i {a3i, c3(i−1)+2} b3i+2 {c3i+2}
c3i {b3i+1, d3i} c3i+1 {b3i+1}
d3i+1 {d3i} d3i+2 {c3i+2, d3(i+1)}
b3k {a3k, c3(k−1)+2} c3k {b3k+1, d3k}
a3k+1 {a3k, b3k+1} c3k+1 {b3k+1}
d3k+1 {d3k} b0 {a0}
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Theorem 3.1.
γl−d(Dn) =

⌈
4 · n
3

⌉
.

Proof. Firstly, notice that Dn is a regular graph of degree 3, with 4n vertices. Then, by
Theorem 1.1 it holds γl−d(Dn) ≥

⌈
2·4·n
3+3

⌉
=
⌈
4·n
3

⌉
.

Let

S =


{a3i+1, b3i, c3i+1, d3i+2|i = 0, . . . , k − 1}, n = 3k

{b3k, d3k}
⋃
{a3i+2, b3i, c3i+1, d3i|i = 0, . . . , k − 1}, n = 3k + 1

{a3k, b3k+1, d3k}
⋃
{a3i, b3i+1, c3i+2, d3i|i = 0, . . . , k − 1}, n = 3k + 2

Now, let us prove that S is a locating-dominating set of Dn. In order to do that, we
need to consider three possible cases:

Case 1: n = 3k. As can be seen from Table 1, neighborhoods of all vertices in V \ S
and their intersections with set S are non-empty and distinct. Although some formu-
las for some intersections can be somewhat similar, they are distinct. For example,
S
⋂
N [a3i+2] = {a3(i+1)} 6= {a3i+1} = S

⋂
N [b3i+1], since indices 3(i + 1) =

3i + 3 6= 3i + 1. Similarly, S
⋂
N [d3i+1] = {c3i+2, d3i} 6= {c3i+2, d3(i+1)} =

S
⋂
N [d3i+2];

Case 2: n = 3k+1. As in the previous case, once again, all intersections of neighborhoods
N [v] with set S, i.e. S

⋂
N [v], are non-empty and distinct. This also can be seen

from Table 1;

Case 3: n = 3k + 2. As in both previous cases, once again, all intersections of neighbor-
hoods N [v] with set S, i.e. S

⋂
N [v], are non-empty and distinct, which also can be

seen from Table 1.

3.2 Convex polytope R′′
n

The graph of convex polytope R′′n on Figure 2 is introduced in [20]. It has vertex set
V = {ai, bi,ci, di, ei, fi | i = 0, . . . , n−1} and edge setE = {(ai, ai+1), (ai, bi), (bi, ci),
(bi+1, ci), (ci, di), (di, ei), (di+1, ei), (ei, fi), (fi, fi+1) | i = 0, . . . , n− 1}.
Theorem 3.2.

γl−d(R
′′
n) = 2 · n.

Proof. It can be seen that R′′n is a regular graph of degree 3, with 6n vertices. Then, by
Theorem 1.1 it holds γl−d(R′′n) ≥

⌈
2·6·n
3+3

⌉
= 2 ·n. Now, let us prove that a set S = {bi, ei |

i = 0, . . . , n − 1} is a binary locating-dominating set of R′′n. Indeed, it is easy to see that
all intersections S

⋂
N [ai] = {bi}; S

⋂
N [ci] = {bi, bi+1}; S

⋂
N [di] = {ei−1, ei} and

S
⋂
N [fi] = {ei} are non-empty and distinct. Since S is a binary locating-dominating set

of R′′n and |S| = 2 · n therefore, γl−d(R′′n) ≤ 2 · n. Due to the previously proved fact that
γl−d(R

′′
n) ≥ 2 · n, it is proven that γl−d(R′′n) is equal to 2 · n.

4 The upper bounds
4.1 Convex polytope Qn

The graph of convex polytope Qn in Figure 3, is introduced in [2]. It has vertex set
V (Qn) = {ai, bi, ci, di | i = 0, 1, . . . , n−1} and edge setE(Qn) = {(ai, ai+1), (bi, bi+1),
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Figure 2: The graph of convex polytope R′′n.

(di, di+1), (ai, bi), (bi, ci), (ci, di), (bi+1, ci) | i = 0, 1, . . . , n − 1}. We call the cy-
cle induced by set of vertices {a0, a1, . . . , an−1} the inner cycle, the cycle induced by
{d0, d1, . . . , dn−1} the outer cycle, and the middle cycle are induced by set of vertices
{b0, b1, . . . , bn−1}. This polytope consists of n 5-sided faces, n 4-sided faces and n trian-
gles.
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Figure 3: The graph of convex polytope Qn.

Theorem 4.1.

γl−d(Qn) ≤
⌈
4 · n
3

⌉
,

and this bound is tight.
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Table 2: Additional data for Qn compared to Dn.
n v ∈ V \ S S

⋂
N [v] v ∈ V \ S S

⋂
N [v]

3k b3i+1 {a3i+1, b3i, c3i+1} b3i+2 {b3(i+1), c3i+1}
3k + 1 b3i+1 {b3i, c3i+1} b3i+2 {a3i+2, b3(i+1), c3i+1}
3k + 2 b3i {a3i, b3i+1, c3(i−1)+2} b3i+2 {b3i+1, c3i+2}

b3k {a3k, b3k+1, c3(k−1)+2} b0 {a0, b1, b3k+1}

Proof. Let

S =


{a3i+1, b3i, c3i+1, d3i+2|i = 0, . . . , k − 1}, n = 3k

{b3k, d3k}
⋃
{a3i+2, b3i, c3i+1, d3i|i = 0, . . . , k − 1}, n = 3k + 1

{a3k, b3k+1, d3k}
⋃
{a3i, b3i+1, c3i+2, d3i|i = 0, . . . , k − 1}, n = 3k + 2

Note that this set is the same as for convex polytopes Dn. This is not a surprise, since
convex polytopes Qn have only n additional edges (bi, bi+1), i = 0, . . . , n − 1 compared
toDn. Therefore, except vertices bi, i = 0, . . . , n−1, all neighborhoods of vertices in V \S
and their intersection with set S are the same as in Table 1. Additional data is presented in
Table 2.

As can be seen from Table 3 and additional data from Table 2, in all three cases, neigh-
borhoods of all vertices in V \ S and their intersection with set S are non-empty and
distinct. Therefore set S is a locating-dominating set for Qn. Since |S| =

⌈
4·n
3

⌉
therefore,

γl−d(Qn) ≤
⌈
4·n
3

⌉
.

Using the CPLEX solver on the integer linear programming formulation (2.1), (2.2),
(2.4), and (2.6) we have obtained optimal solutions: γl−d(Q5) = 7, γl−d(Q6) = 8,
γl−d(Q7) = 10, . . . , γl−d(Q28) = 38, γl−d(Q29) = 39 and γl−d(Q30) = 40 which
all match the proposed upper bound in this theorem. Therefore, the proposed upper bound
is tight.

4.2 Convex polytope Rn

The graph of convex polytope Rn, on Figure 4, has been introduced in [2]. It has vertex
set V = {ai, bi, ci | i = 0, . . . , n − 1} and edge set E = {(ai, ai+1), (ai, bi), (ai+1, bi),
(bi, bi+1), (bi, ci), (ci, ci+1) | i = 0, . . . , n − 1}. This graph consists of n 4-sided faces
and 2n triangles.

Theorem 4.2.
γl−d(Rn) ≤ n,

and this bound is tight.

Proof. Let S = {bi | i = 0, . . . , n− 1}. It is easy to see that all intersections S
⋂
N [ai] =

{bi−1, bi} and S
⋂
N [ci] = {bi} are non-empty and distinct. Since S is a binary locating-

dominating set of Rn and |S| = n therefore, γl−d(Rn) ≤ n.
Using the CPLEX solver on integer linear programming formulation (2.1), (2.2), (2.4),

and (2.6), we have obtained optimal solutions. For 5 ≤ n ≤ 31, γl−d(Rn) = n, which
match the proposed upper bound in this theorem. Therefore, the proposed upper bound is
tight.
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Figure 4: The graph of convex polytope Rn.

4.3 Convex polytope Un

Mathematically, the graph of convex polytope Un, on Figure 5, introduced in [17], has
vertex set V = {ai, bi, ci, di, ei | i = 0, . . . , n− 1} and edge set E = {(ai, ai+1), (ai, bi),
(bi, bi+1), (bi, ci), (ci, di), (ci+1, di), (di, ei), (ei, ei+1) | i = 0, . . . , n− 1}. This graph in
Figure 5 has 2n 5-sided faces and n 4-sided faces.
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Figure 5: The graph of convex polytope Un.

Theorem 4.3.
γl−d(Un) ≤

⌈
5 · n
3

⌉
,

and this bound is tight.

Proof. If n = 3k, let S = {a3i+1, b3i, c3i+1, d3i+2, e3i | i = 0, . . . , k − 1}, if n = 3k + 1
let S = {a3k, c3k, e3k}

⋃
{a3i, b3i+2, c3i, d3i+1, e3i | i = 0, . . . , k − 1} and if n = 3k + 2

let S = {a3k+1, b3k, c3k+1, e3k+1}
⋃
{a3i+1, b3i, c3i+1, d3i+2, e3i+1 | i = 0, . . . , k − 1}.

Now, let us prove that S is a locating-dominating set of Un. In order to do that, as we
did in proofs of previous Theorems, we need to consider three possible cases. As it can
be seen from Table 3, in all three cases, neighborhoods of all vertices in V \ S and their
intersection with set S are non-empty and distinct.
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Using the CPLEX solver on the integer linear programming formulation (2.1), (2.2),
(2.4), and (2.6) we have obtained optimal solutions: γl−d(U5) = 9, γl−d(U6) = 10,
γl−d(U7) = 12, . . . , γl−d(U22) = 38, γl−d(U23) = 39 and γl−d(U24) = 40 which all
match the proposed upper bound in this theorem. Therefore, the proposed upper bound is
tight.

Table 3: Locating-dominating vertices in Un.
n v ∈ V \ S S

⋂
N [v] v ∈ V \ S S

⋂
N [v]

3k a3i {a3i+1, b3i} a3i+2 {a3i+1)}
b3i+1 {a3i+1, b3i, c3i+1} b3i+2 {b3(i+1)}
c3i {b3i, d3(i−1)+2} c3i+2 {d3i+2}
d3i {c3i+1, e3i} d3i+1 {c3i+1}
e3i+1 {e3i} e3i+2 {d3i+2, e3(i+1)}

3k + 1 a3i+1 {a3i} a3i+2 {a3(i+1), b3i+2}
b3i {a3i, b3(i−1)+2, c3i} b3i+1 {b3i+2}
c3i+1 {d3i+1} c3i+2 {b3i+2, d3i+1}
d3i {c3i, e3i} d3i+2 {c3(i+1)}
e3i+1 {d3i+1, e3i} e3i+2 {e3(i+1)}
b3k {a3k, b3(k−1)+2, c3k} d3k {c3k, e3k}
b0 {a0, c0}

3k + 2 a3i {a3i+1, b3i} a3i+2 {a3i+1}
b3i+1 {a3i+1, b3i, c3i+1} b3i+2 {b3(i+1)}
c3i {b3i, d3(i−1)+2} c3i+2 {d3i+2}
d3i {c3i+1} d3i+1 {c3i+1, e3i+1}
e3i {e3i+1} e3i+2 {d3i+2, e3i+1}
a3k {a3k+1, b3k} c3k {b3k, d3(k−1)+2}
d3k {c3k+1} e3k {e3k+1}
b3k+1 {a3k+1, b0, b3k, c3k+1} d3k+1 {c3k+1, e3k+1}
a0 {a1, a3k+1, b0} c0 {b0}
e0 {e1, e3k+1}

5 Conclusions
In this paper, we are studying the locating-dominating sets and the binary locating-dominat-
ing number of some convex polytopes. We are dealing with some classes of convex poly-
topes by considering classes: Dn, R′′n, Rn, Qn and Un. For Dn and R′′n exact values are
obtained and proved, while for Rn, Qn and Un tight upper bounds are given.

Future work can be directed towards determining a binary locating-dominating set of
some other challenging classes of graphs. The other promising direction for future work is
solving of some other similar graph problem on convex polytopes.
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