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It has been shown in numerous situations that sharing information between the com-

panies leads to improved performance of the supply chain. We study a positive lead time

periodic-review inventory system of a retailer facing stochastic demand from his customer

and stochastic limited supply capacity of the manufacturer supplying the products to him.

The consequence of stochastic supply capacity is that the orders might not be delivered

in full, and the exact size of the replenishment might not be known to the retailer. The

manufacturer is willing to share the so-called advance supply information (ASI) about the

actual replenishment of the retailer’s pipeline order with the retailer. ASI is provided at a

certain time after the orders have been placed and the retailer can now use this information

to decrease the uncertainty of the supply, and thus improve its inventory policy. For this

model, we develop a dynamic programming formulation, and characterize the optimal order-

ing policy as a state-dependent base-stock policy. In addition, we show some properties of

the base-stock level. While the optimal policy is highly complex, we obtain some additional

insights by comparing it to the state-dependent myopic inventory policy. We conduct the

numerical analysis to estimate the influence of the system parameters on the value of ASI.

While we show that the interaction between the parameters is relatively complex, the general

insight is that due to increasing marginal returns, the majority of the benefits are gained

only in the case o ull, or close to full, ASI visibility.
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1. Introduction

Nowadays companies are facing culties in ively managing their inventories mainly

due to the highly volatile and uncertain business environment. While they are trying their
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best to fulfill the demand of their customers by using more or less sophisticated inventory

control policies, their efforts can be severely hindered by the unreliable and limited deliv-

eries from their suppliers. Due to the widespread trend of establishing plants overseas or

outsourcing to specialists it has become increasingly more difficult for the companies to re-

tain control over their procurement process. As the complexity of supply networks grows,

so do the challenges and inefficiencies the companies are facing; orders get lost or are not

delivered in full, shipments are late or don’t arrive at all.

It has been well acknowledged both in the research community as well as by practitioners

that these uncertainties can be reduced and better supply chain coordination can be achieved

through the improved provision of information (Lee and Padmanabhan 1997, Chen 2003).

While the performance of a supply chain depends critically on how its members coordinate

their decisions, sharing information can be considered as the most basic form of coordination

in supply chains (Austin et al. 1998, Manrodt et al. 2005). In light of this, the concept of

achieving a so-called Supply Chain Visibility is gaining on importance, as it provides accurate

and timely information throughout the supply chain processes and networks (Rassameethes

et al. 2000, Jahre et al. 2007, Barratt and Adegoke 2007). This enables companies to share

the information through often already established B2B communication channels and ERP

solutions. EDI formatted electronic notifications on the status of the order fulfillment pro-

cess, such as order acknowledgements, inventory status, Advance Shipment Notices (ASN),

and Shipment Status Messages (SSM) are shared, enabling companies to track and verify

the status of their order and consequently foresee supply shortages before they happen (Choi

2010). There are also multiple examples of companies like UPS, FedEx and others in ship-

ping industry, and Internet retailers like eBay and Amazon, that are offering real time order

fulfillment information also on the B2C level.

Real visibility in the supply chain can be regarded as a prerequisite for the companies to

reach new levels of operating efficiency, service capabilities, and profitability for suppliers,

logistics partners, as well as their customers. However, while the technological barriers to

information sharing are being dismantled, the abundance of the available information by

itself is not a guarantee for improved performance. Therefore the focus now is on developing

new tools and technologies that will use this information to improve the current state of the

inventory management practices.

In this paper, we investigate the benefits of advance supply information (ASI) sharing.

We consider a retailer facing stochastic demand from the end customers and procuring the

2



M. JAKŠIČ, M. MARINČ  |  OPTIMAL INVENTORY CONTROL WITH ADVANCE SUPPLY INFORMATION 321

products from a single manufacturer with stochastic limited supply capacity. We assume

that the order is replenished after a given fixed lead time, which constitutes of order pro-

cessing, production and shipping delay. However it can happen that the quantity received

by the retailer is less than what he ordered originally. This supply uncertainty can be due

to, for instance, the allocation policy of the manufacturer, which results in variable capac-

ity allocations to her customers or to an overall capacity shortage at certain times. This

stochastic nature of capacity itself may be due to multiple causes, such as variations in the

workforce (e.g. holiday leaves), unavailability of machinery or multiple products sharing the

total capacity.

We assume that the manufacturer tracks the retailer’s order evolution and at certain

point, when she can assess the extent to which the order will be fulfilled, she shares ASI with

the retailer, giving him feedback on the actual replenishment quantity ahead of the time of

the physical delivery of products. ASI enables the retailer to respond to the possible shortage

by adjusting his future order decisions, and by doing this possibly offset the negative impact

of the shortage. Based on this rationale we pose the following two research questions: (1)

How can we integrate ASI into inventory decision model, and subsequently characterize the

optimal policy? (2) Can we quantify the value of ASI and establish the system settings

where utilizing ASI is of most importance?

The practical setting in which the above modeling assumptions could be observed is food

processing industry, where the food processing facilities/manufacturers are being supplied

with the agricultural products. The products are harvested periodically and the product

availability is changing through time depending on a variety of factors: weather, harvesting

capacity, etc. Also it is reasonable to assume that supply capacity cannot be backordered as

harvested products cannot be stored for longer periods. Khang and Fujiwara (2000) discuss

this scenario for the frozen seafood industry, however they assume that the retailers’ orders

are fulfilled immediately by the manufacturer. We believe it is more realistic that the supply

process is taking a number of time periods, more so that the process can be broken into two

phases. As the order is made by the retailer, the harvesting part of the production process

is underway, where the production outcome is uncertain. Then the products are delivered

to the food processing facility. At this point the product availability is revealed and is no

longer uncertain, and ASI is communicated to the customer in the form similar to ASN.

The actual replenishment follows after the product is fully processed. This fully processed

product can now also be stored.
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Our work builds on the broad research stream of papers assuming uncertainty in the

supply processes. In the literature the supply uncertainty is commonly attributed to one of

the two sources: yield randomness and randomness of the available capacity. Our focus lies

within the second group of problems, where Federgruen and Zipkin (1986a,b) were the first

to address the capacitated stationary inventory problem with a fixed capacity constraint and

have proven the optimality of the modified base-stock policy. Kapuscinski and Tayur (1998)

extend this result by studying the non-stationary version of the model, where they assume

periodic demand. Later, a line of research extends the focus to capture the uncertainty in

capacity, by analyzing models with limited stochastic production capacity (Ciarallo et al.

1994, Güllü et al. 1997, Khang and Fujiwara 2000, Iida 2002). Ciarallo et al. (1994) explore

different cases of the stochastic capacity constraint in a single and multiple periods setting.

In the analysis of a single period problem, they show that stochastic capacity does not affect

the order policy. The myopic policy of newsvendor type is optimal, meaning that the decision

maker is not better off by asking for a quantity higher than that of the uncapacitated case.

For a finite horizon stationary inventory model they show that the optimal policy remains

to be a base-stock policy, where the optimal base-stock level is increased to account for the

possible, however uncertain, capacity shortfalls in the future periods. Iida (2002) extends

this result for the non-stationary environment.

Although a lot of attention in recent decades has been put in assessing the benefits of

sharing information in the supply chains, the majority of the research is focused on studying

the effect of sharing downstream information, in particular demand information (Gallego and

Özer 2001, Karaesmen et al. 2003, Wijngaard 2004, Tan et al. 2007, Özer and Wei 2004).

Review papers by Chen (2003), Lau (2007) and Choi (2010) show that sharing upstream

information has been considered in the literature in the form of sharing lead time information,

production cost information, production yield, and sharing capacity information. It has been

shown by numerous researchers that information sharing decreases the bullwhip effect (the

increasing variance of orders in a supply chain), however it was also shown that despite

being optimal, the base-stock policy is an instigator of increased order variability (Jakšič

and Rusjan 2008).

Capacity information sharing is of particular interest to our paper, where several papers

have been discussing sharing information on future capacity availability (Jakšič et al. 2011,

Altuğ and Muharremoğlu 2011, Çinar and Güllü 2012, Atasoy et al. 2012). Jakšič et al. (2011)

study the benefits of sharing perfect information on future supply capacity available for
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orders to be placed in future periods. They show that the optimal ordering policy is a state-

dependent base-stock policy characterized by the base-stock level that is a function of advance

capacity information. Altuğ and Muharremoğlu (2011) work on a similar model; however

they assume that the evolution of the capacity availability forecasts is done via the Martingale

Method of Forecast Evolution (MMFE). The main difference in the way information is shared

in the above cases compared to sharing ASI in this paper lies is the assumption about the

time delay between the placement of the order and the time the information on the available

supply capacity is revealed. In our case, the supply capacity information is revealed after the

order has been placed and the lack of supply capacity availability results in the replenishment

below the initial order. In the case of information about future capacity availability the order

is aligned with this availability, and thus replenished in full. ASI thus only allows the decision

maker to respond to the actual realized shortages in a more timely manner. While in the

case of information on future capacity availability, the decision maker can anticipate the

potential future shortages and accordingly adopt his ordering strategy. While in the latter

case, the savings potential is higher, it is reasonable to assume that ASI is likely to be more

reliable and easier to obtain in a practical setting.

Zhang et al. (2006) discuss the benefits of sharing advance shipment information. A

setting in which a company receives the exact shipment quantity information is closely related

to the one proposed in this paper, however they assume that inventory is controlled through a

simple non-optimal base-stock policy and as such it fails to capture the uncertainty of supply.

Our model can be considered as a generalization of the model by Zhang et al. (2006), as

we allow for both, demand and supply capacity to be stochastic, and more importantly we

model the optimal system behavior by considering considering the optimal inventory policy

that is able to account for the supply uncertainty by setting appropriate safety stock levels.

We propose that by having timely feedback on actual replenishment quantities through ASI,

we can refine the inventory policy and improve its performance. To our knowledge the

exploration of the relationship between the proposed way of modeling ASI and the optimal

policy parameters has not yet received any attention in the literature.

Our contributions in this study are twofold. The focus is on modeling a periodic review

single-stage inventory model with stochastic demand and limited stochastic supply capacity

with the novel feature of improving the performance of the inventory control system through

the use of ASI. Despite a relatively simple and intuitive structure of the optimal policy, the

major difficulty lies in determining the optimal base-stock levels to which the orders should
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be placed. Already for the single-stage model under consideration, we need to resort to the

numerical analysis to estimate these. Even more so, analyzing the real-life supply chains

inevitably leads to the complex system state description, causing the state space to become

large and eventually too large to evaluate all possible future scenarios or realizations. The

problem commonly referred to as ”Curse of dimensionality” (Puterman 1994). This greatly

reduces the likelihood that a realistic inventory problem can be solved. One way to tackle

this problem is to search for the approximate inventory policy, which comes at the cost of

suboptimal performance. In our case we opt to analyze the myopic (shortsighted) inventory

policy, and compare its parameters to the optimal ones.

In addition to the analytical and numerical results, we provide some relevant managerial

insights related to optimal inventory control and the value of information sharing between the

supply chain parties. The main dilemma in stochastic inventory management revolves around

setting the appropriate safety stock levels, where the performance of the inventory system

will depend on finding the right trade-off between the costs of holding the safety stocks and

achieving the desired service level to the customers. While it is unrealistic that the companies

would be able to integrate the proposed optimal policy into their ERP system, we provide

some general guidelines on how the safety stock levels are influenced by the demand and

supply uncertainty, and motivation for the companies to stimulate the information exchange

with their supply chain partners.

The remainder of the paper is organized as follows. We present a model incorporating

ASI and its dynamic cost formulation in Section 2. The optimal policy and its properties

are discussed in Section 3. We proceed by the study of the approximate inventory policy

based on the state-dependent myopic policy in Section 4. In Section 5 we present the results

of a numerical study and point out additional managerial insights. Finally, we summarize

our findings and suggest directions for future research in Section 6.

2. Model formulation

In this section, we introduce the notation and the model of advance supply information

for orders that were already placed, but are currently still in the pipeline. The model un-

der consideration assumes periodic-review, stationary stochastic demand, limited stationary

stochastic supply with fixed supply lead time, finite planning horizon inventory control sys-

tem. Unmet demand is fully backlogged. However, the retailer is able to obtain ASI on
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supply shortages affecting the future replenishment of the orders in the pipeline from the

manufacturer. We introduce the ASI parameter m that represents the time delay in which

ASI is communicated with the retailer. The parameter m effectively denotes the number

of periods between the time the order has been placed with the manufacturer and the time

ASI is revealed. More specifically, ASI on the order zt−m placed m periods ago is revealed

in period t after the order zt is placed in the current period (Figure 1). Depending on the

available supply capacity qt−m, ASI reveals the actual replenishment quantity, determined as

the minimum of the two, min(zt−m, qt−m). We assume perfect ASI. Observe that the longer

the m, the larger is the share of the pipeline orders for which the exact replenishment is

still uncertain. Furthermore, we assume that the unfilled part of the retailer’s order is not

backlogged at the manufacturer, but it is lost. We give the summary of the notation in Table

1 and we introduce some later upon need.

Table 1: Summary of the notation

T : number of periods in the finite planning horizon
L : constant nonnegative supply lead time, a multiple of review periods (L ≥ 0);
m : advance supply information parameter, 0 ≤ m ≤ L
h : inventory holding cost per unit per period
b : backorder cost per unit per period
α : discount factor (0 ≤ α ≤ 1)
xt : inventory position in period t before ordering
yt : inventory position in period t after ordering
x̃t : starting on-hand inventory in period t
zt : order size in period t
Dt : random variable denoting the demand in period t
dt : actual demand in period t
Qt : random variable denoting the available supply capacity at time t
qt : actual available supply capacity limiting order zt given at time t,

for which ASI is revealed m periods later

We assume the following sequence of events. (1) At the start of period t, the decision

maker reviews the current inventory position xt. (2) The ordering decision zt is made up to

uncertain supply capacity and correspondingly the inventory position is raised to yt = xt+zt.

(3) Order placed in period t − L is replenished in the extent of min(zt−L, qt−L), depending

on the available supply capacity. ASI on the order placed in period t−m is revealed, which

enables the decision maker to update the inventory position by correcting it downward in

the case of insufficient supply capacity, y′t = yt − (zt−m − qt−m)
+, where (x)+ = max(x, 0).
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Figure 1: Advance supply information.
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(4) At the end of the period previously backordered demand and demand dt are observed

and satisfied from on-hand inventory; unsatisfied demand is backordered. Inventory holding

and backorder costs are incurred based on the end-of-period on-hand inventory.

Due to positive supply lead time, each of the orders remains in the pipeline stock for L

periods. For orders placed m periods ago or earlier we have already obtained ASI, while for

more recent orders the supply information is not available yet. Therefore we can express

the inventory position before ordering xt as the sum of net inventory and the certain and

uncertain pipeline orders:

xt = x̃t +
t−m−1∑
s=t−L

min(zs, qs) +
t−1∑

s=t−m

zs. (1)

Note, that due to perfect ASI the inventory position xt reflects the actual quantities that will

be replenished for the orders for which ASI is already revealed, while there is still uncertainty

in the actual replenishment sizes for recent orders for which ASI is not known yet.

Observe also that m denotes the number of uncertain pipeline orders. Therefore, m lies

within 0 ≤ m ≤ L, and the two extreme cases can be characterized as:

• m = L, or so-called “No information case”, which corresponds to the most uncertain

setting as the actual replenishment quantity is revealed no sooner than at the moment

of actual arrival. This setting is a positive lead time generalization of the Ciarallo et al.

(1994) model.

• m = 0, or so-called “Full information case”, which corresponds to the full information

case, where before placing the new order, we know the exact delivery quantities for all

8



M. JAKŠIČ, M. MARINČ  |  OPTIMAL INVENTORY CONTROL WITH ADVANCE SUPPLY INFORMATION 327

pipeline orders. This is the case with the least uncertainty within the context of our

model. Observe however that the current order is still placed up to uncertain supply

capacity.

When moving from period t to t + 1, we obtain ASI for the order zt−m placed in period

t − m. Correspondingly, the inventory gets corrected downwards if the order exceeds the

available supply capacity, thus inventory position xt is updated in the following manner:

xt+1 = xt + zt − (zt−m − qt−m)
+ − dt. (2)

Note, that there is dependency between the order quantity and the size of the correction

of xt. If zt is high, it is more probable that the available supply capacity will restrict the

replenishment of the order, thus the correction will be bigger, and vice versa for low zt. To

fully describe the system behavior, we do not only need to keep track of xt, but also have

to track the pipeline orders for which we do not have ASI yet. We denote the stream of

uncertain pipeline orders with the vector �zt = (zt−m, zt−m+1, . . . , zt−2, zt−1). In period t+ 1,

�zt+1 gets updated by the inclusion of the new order zt, and the order zt−m is dropped out as

its uncertainty is resolved through the received ASI.

A single period expected cost function is a function of xt and all uncertain orders, includ-

ing the most recent order zt, given in period t. Cost charged in period t+ L, C̃t+L(x̃t+L+1),

reassigned to period t when ordering decision is made, can be expressed as:

Ct(yt, �zt, zt) = αLE �Qt,Qt,DL
t
C̃t+L(yt −

t∑
s=t−m

(zs −Qs)
+ −DL

t ), (3)

where the expected inventory position after ordering (accounted for the possible future supply

shortages), E �Qt,Qt
(yt −

∑t
s=t−m (zs −Qs)

+), is used to cover the lead time demand, DL
t =

∑t+L
s=t Ds.

The minimal discounted expected cost function, optimizing the cost over a finite planning

horizon T , from time t onward, and starting in the initial state (xt, �zt), can therefore be

written as:

ft(xt, �zt) = min
xt≤yt

{Ct(yt, �zt, zt) + αEDt,Qt−mft+1(yt − (zt−m −Qt−m)
+ −Dt, �zt+1)}, for t ≤ T ,

(4)

where fT+1(·) ≡ 0. The cost function ft is a function of inventory position before ordering

and orders given in last m periods, for which ASI has not yet been revealed.

9



ECONOMIC AND BUSINESS REVIEW  |  VOL. 18  |  No.  3  |  2016328

3. Analysis of the optimal policy

In this section, we show the necessary convexity results of the relevant cost functions. This

allows us to establish the structure of the optimal policy and show some of its properties.

Lets define Jt as the cost-to-go function of period t:

Jt(yt, �zt, zt) = Ct(yt, �zt, zt)+αEDt,Qt−mft+1(yt− (zt−m−Qt−m)
+−Dt, �zt+1)}, for t ≤ T . (5)

The minimum cost function ft defined in (4) can now be expressed as:

ft(xt, �zt) = min
xt≤yt

Jt(yt, �zt, zt), for t ≤ T , (6)

We proceed by establishing the necessary convexity results that allow us to establish the

structure of the optimal policy. Observe that the single period cost function Ct(yt, �zt, zt)

is not convex already for the zero lead time case as was originally shown by Ciarallo et al.

(1994). Ct(yt, zt) is shown to be convex in yt and quasiconvex in zt (Figure 2), which however

still suffice for the optimal policy to exhibit the structure of the base-stock policy.

Figure 2: (a) Ct(yt, �zt, zt) as a function of xt and zt, and (b) Ct(yt, �zt, zt) as a function of zt
for a particular xt.

Ct

xt
zt zt

Ct

We show that the results of the zero lead time case can be generalized to the positive lead

time case, where the convexity of the costs functions in the inventory position is established

given a more comprehensive system’s state description (xt, �zt). In Lemma 2 in the Appendix,

we show that the single period cost function Ct(yt, �zt, zt) is not a convex function in general,

but it exhibits a unique, although state-dependent, minimum. Based on this result one can

show that the related multi-period cost functions Jt(yt, �zt, zt) and ft(xt, �zt) are convex in the
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inventory position yt and xt respectively (we show in Appendix that the convexity holds also

for other characterizations of the inventory position), as shown in the next Lemma:

Lemma 1 For any arbitrary value of information horizon m, value of the ASI vector �zt and

the order zt, the following holds for all t:

1. Jt(yt, �zt, zt) is convex in yt,

2. ft(xt, �zt) is convex in xt.

Based on the results of Lemma 1, we establish a structure of the optimal policy in the

following Theorem:

Theorem 1 Assuming that the system is in the state (xt, �zt), let ŷt(�zt) be the smallest min-

imizer of the function Jt(yt, �zt, zt). For any �zt, the following holds for all t:

1. The optimal ordering policy under ASI is the state-dependent base-stock policy with the

optimal base-stock level ŷt(�zt).

2. Under the optimal policy, the inventory position after ordering yt(xt, �zt) is given by

yt(xt, �zt) =

{
xt, ŷt(�zt) ≤ xt,
ŷt(�zt), xt < ŷt(�zt).

(7)

The proof is by induction, where we provide the details in the Appendix. The optimal

inventory policy is characterized by a single optimal base-stock level ŷt(�zt) that determines

the optimal level of the inventory position after ordering. The optimal base-stock level

however is state-dependent as it depends on uncertain pipeline orders �zt, for which ASI has

not yet been revealed. Observe that due to not knowing the current period’s capacity, we

are not limited in how high we set the inventory position after ordering. The logic of the

optimal policy is such that yt should be raised to the optimal base-stock level ŷt, although

in fact yt does not reflect the actual inventory position as it is possible that the order will

not be delivered in its full size.

In a stationary demand and capacity setting, the base-stock levels are increased above

the normal inventory level required to satisfy the expected demand. By doing so the extra

inventory in the form of safety stock is kept to account for the uncertainty in future demand

and supply. The uncertainty can lead to demand/supply mismatches, and correspondingly to

increased inventory holding and backorder costs. In the context of our model, the dependency

11
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Table 2: Optimal base-stock levels ŷt(zt−2, zt−1) (L = 2, m = 2, E[D] = 5, CVD = 0, E[Q] = 6, CVQ = 0.33)

zt−1

zt−2 0 1 2 3 4 5 6 7 8 9
0 20 20 20 20 20 20 21 22 23 24
1 20 20 20 20 20 20 21 22 23 24
2 20 20 20 20 20 20 21 22 23 24
3 20 20 20 20 20 20 21 22 23 24
4 20 20 20 20 20 21 21 22 23 24
5 20 20 20 20 21 21 22 23 23 24
6 21 21 21 21 21 22 22 23 24 25
7 22 22 22 22 22 23 23 24 25 25
8 23 23 23 23 23 24 24 25 25 26
9 24 24 24 24 24 24 25 25 26 27

of the optimal base-stock level on �zt can be intuitively attributed to the following; if we have

been placing high orders (with regards to expected supply capacity available) in past periods,

it is likely that a lot of the orders will not be realized in their entirety. This leads to probable

replenishment shortages and demand backordering due to insufficient inventory availability.

Therefore it is rational to set the optimal base-stock level higher with a goal of taking

advantage of every bit of available supply capacity in the current period. By setting high

targets, we aim to get the most out of the capacity, that is, we want to take advantage of

periods with high supply availability, although the chances that it will actually be realized

can be small. If currently, we are not facing supply shortages the tendency to use the above

logic diminishes. The result is also confirmed in Table 2, where we see that the optimal

base-stock level is increasing with increasing uncertain pipeline orders zt−1 and zt−2.

4. Insights from the myopic policy

We proceed by establishing the approximate inventory policy that would capture the re-

lationship between the uncertain pipeline orders and the target inventory position. While

the optimal policy is obtained through a minimization of the multi-period cost-to-go func-

tion Jt as given in (5), the approximate policy is a solution to a single-period cost function

Ct(yt, �zt, zt) as given in (3), thus we can refer to it as a myopic solution. The resulting struc-

ture of the myopic policy is equivalent to the structure of the optimal policy as presented in

Part 2 of Theorem 2; however the orders are placed up to myopic base-stock levels ŷMt (�zt),

rather than optimal base-stock levels ŷt(�zt). Observe that ŷMt (�zt) are also state-dependent

on the uncertain pipeline orders �zt, thus the myopic policy is able to account for the pos-

12



M. JAKŠIČ, M. MARINČ  |  OPTIMAL INVENTORY CONTROL WITH ADVANCE SUPPLY INFORMATION 331

sible shortage in supply of the current pipeline orders. A detailed derivation of the myopic

solution is provided in Lemma 2 in the Appendix.

While it would be great if myopic policy would provide a reliable estimate of the optimal

costs, one can easily see that the myopic policy cannot account for future supply shortages

(that is for the orders that are still to be placed in the future). This holds particularly

for highly utilized system settings and in the case of high demand/supply capacity uncer-

tainty that leads to probable demand and supply mismatches. Thus, the following study

is primarily concerned with capturing the state-dependency of the optimal base-stock lev-

els by exploring the relationship between the vector of uncertain pipeline orders and the

corresponding approximate base-stock levels.

In Table 3 we present the base-stock levels for the optimal policy, myopic policy and

the differences between the two. Both, the optimal and the myopic, base-stock levels were

determined through the numerical analysis by minimizing the relevant multi-period and

single period cost functions as mentioned above. Note that myopic policy is optimal when

there is no supply capacity uncertainty (which corresponds to a base-stock level of 23).

Looking at the differences between the base-stock levels we see that the myopic base-stock

levels are always lower and thus can be regarded as a lower bound for the optimal base-

stock levels. The differences are decreasing with increasing uncertain pipeline orders. This

can be attributed to the fact that myopic policy accounts for the potential shortages in the

replenishment of the pipeline orders, but fails to account for future supply unavailability.

For high uncertain pipeline orders, the additional inventory to cover the supply shortage is

sufficient to cover the risk of future shortages. in fact, we observe a risk pooling effect, where

the base-stock level of 29 is sufficient to cover both risks.

5. Value of ASI

In this section we estimate the extent of the savings gained through incorporating ASI into

the inventory system. We perform a numerical analysis to quantify the value of ASI and

assess the influence of the relevant system parameters. Numerical calculations were done by

solving the dynamic programming formulation given in (4).

To determine the influence of ASI parameter m, demand uncertainty, supply capacity

uncertainty, and system utilization on the value of ASI, we set up the base scenario that

is characterized by the following parameters: T = 10, L = 3, α = 0.99 and h = 1 and

13



ECONOMIC AND BUSINESS REVIEW  |  VOL. 18  |  No.  3  |  2016332

Table 3: The myopic and optimal base-stock levels, (L = 2, m = 2, E[D] = 5, CVD = 0.5, E[Q] = 6,

CVQ = 0.33)

Myopic zt−1

zt−2 0 1 2 3 4 5 6 7 8 9
0 23 23 23 23 23 23 24 24 25 26
1 23 23 23 23 23 23 24 24 25 26
2 23 23 23 23 23 23 24 24 25 26
3 23 23 23 23 23 23 24 24 25 26
4 23 23 23 23 23 23 24 25 25 26
5 23 23 23 23 23 24 24 25 26 27
6 24 24 24 24 24 24 25 25 26 27
7 24 24 24 24 25 25 25 26 27 28
8 25 25 25 25 25 26 26 27 28 29
9 26 26 26 26 26 27 27 28 29 29

Optimal zt−1

zt−2 0 1 2 3 4 5 6 7 8 9
0 27 27 27 27 27 27 27 28 29 29
1 27 27 27 27 27 27 27 28 29 29
2 27 27 27 27 27 27 27 28 29 29
3 27 27 27 27 27 27 27 28 29 29
4 27 27 27 27 27 27 28 28 29 29
5 27 27 27 27 27 27 28 29 29 29
6 27 27 27 27 28 28 28 29 29 29
7 28 28 28 28 28 29 29 29 29 29
8 29 29 29 29 29 29 29 29 29 29
9 29 29 29 29 29 29 29 29 29 29

Difference zt−1

zt−2 0 1 2 3 4 5 6 7 8 9
0 4 4 4 4 4 4 3 4 4 3
1 4 4 4 4 4 4 3 4 4 3
2 4 4 4 4 4 4 3 4 4 3
3 4 4 4 4 4 4 3 4 4 3
4 4 4 4 4 4 4 4 3 4 3
5 4 4 4 4 4 3 4 4 3 2
6 3 3 3 3 4 4 3 4 3 2
7 4 4 4 4 3 4 4 3 2 1
8 4 4 4 4 4 3 3 2 1 0
9 3 3 3 3 3 2 2 1 0 0

14
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b = 20. A discrete uniform distribution is used to model demand and supply capacity

where the expected demand is given as E[D] = 4 and the expected supply capacity varies

E[Q] = {4, 6, 8}, which means that the utilization of the system is Util = {1, 0.75, 0.5}.
In addition we vary the coefficient of variation of demand CVD = {0, 0.65} and supply

capacity CVQ = {0, 0.33, 0.65}, and the ASI parameter m = {3, 2, 1, 0}, covering both the

No information and Full information case.

We define the relative value of ASI for m ≤ L, %VASI , as the relative difference between

the optimal expected cost of managing the system in the No information case (m = L), and

the system where we have obtained ASI on a number of pipeline orders (m ≤ L):

%VASI(m ≤ L) =
f
(m=L)
t − f

(m≤L)
t

f
(m=L)
t

. (8)

We also define the marginal change in the value of ASI, �VASI . With this we measure

the extra benefit gained by decreasing the number of uncertain pipeline orders by obtaining

ASI sooner, from m to m− 1:

�VASI(m− 1) = f
(m)
t − f

(m−1)
t

Figure 3: The relative and the absolute value of ACI for CVD = 0.
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We present the results in Figures 3 and 4. The interplay of system parameters is relatively

complex, which is exhibited in the fact that the value of ASI changes in a non-monotone

manner. This holds in the case of changing the system’s utilization, where the majority of

the gains are made at (in our case) moderate utilizations. Increasing capacity uncertainty

is where we would anticipate that the value of ASI will be increasing and majority of the

15
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Figure 4: The relative and the absolute value of ACI for CVD = 0.65.
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gains would be made. This can be observed in �VASI for both low and high demand

uncertainty scenario, while this only partially holds for %VASI . The increasing demand

uncertainty decreases both the relative and the absolute value of ASI. While the relative

value of ASI extends over 30%, and for most of the scenarios above 10%, it drops below

4% for all scenarios under high demand uncertainty. This is expected, as the benefits will

depend on to what extent the uncertainties in the system can be resolved. In the case of low

demand uncertainty, ASI lowers the prevalent supply uncertainty. While in the high demand

uncertainty scenario, supply uncertainty only represents a part of the total uncertainty to

be resolved, and correspondingly the value of ASI is lower under this scenario. Observe also,

that under the assumption of perfect ASI, the value of ASI observed represents the upper

bound on the potential benefits obtained through upstream supply visibility.

The interesting observation is made when studying the influence of the ASI parameter

m. Improving the ASI visibility by decreasing m from m = L in the No information case to

m = 0 in the Full information, leads to increasing marginal returns in most of the scenarios

studied. As seen on the Figures 3 and 4, this holds both in the case of relative change,

as well as absolute change in the optimal costs. The only outlier is the scenario with high

utilization, low demand uncertainty and high capacity uncertainty in Figure 3. While we

cannot conclude that the marginal returns are always increasing with the extended ASI

visibility, it is clear that the majority of the benefits are gained only when we approach Full

information case.
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6. Conclusions

In this paper, we analyze a periodic review inventory system with positive lead time and

stationary stochastic demand and supply capacity. As the No information case of our model

can be considered as a positive lead time generalization of the paper by Ciarallo et al. (1994),

we also extend the scope of the model by incorporating the possibility to obtain information

about the available supply capacity for the pipeline orders. ASI is revealed after the order

has been placed, but before it is replenished.

We show that the optimal policy is highly complex due to the extensive system’s state

description, where apart from the inventory position, the stream of uncertain pipeline orders

has to be monitored and adapted constantly. However, despite this complexity, we show that

the optimal policy is a state-dependent base-stock policy. We show that the base-stock levels

should be increased to compensate for the increased replenishment uncertainty. Despite the

fact that the myopic policy does not provide a good approximation for the optimal base-

stock levels (and optimal costs), we show that by inclusion of the safety factor that would

compensate for the future supply capacity uncertainty, the myopic policy adequately captures

the risk of shortages in pipeline orders.

Numerical calculations show that the benefits obtained through ASI can be relatively

big (although also highly dependent on other system parameters), however in this case ASI

should be revealed for the most of the uncertain pipeline orders as we observe the increasing

returns with the increasing ASI availability.

The analysis in the future could explore different alternatives to the presented ASI model.

These could go into two general directions: further simplification of the system under study,

or the opposite, the study of a more realistic supply chain setting. Due to the complexity

of the optimal policy, obtaining the optimal parameters is still a formidable task, thus fur-

ther insights could be gained by studying simplified settings (for instance constant demand,

Bernoulli distributed supply capacity, etc.). For these settings explicit expressions could be

obtained that would better capture the supply uncertainty structure in the system, and lead

to easier determination of the base-stock levels. On the other hand, the natural extension

to the single-stage inventory models is studying the multi-tier supply chains or supply net-

works. While these represent additional modeling challenges, one should recognize that the

single-stage models provide the basic insights and act as building blocks to analyse more

complex interactions in real-life supply networks. These interactions could involve captur-
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Proof: C(y, �z, z) is expressed in the following way:

C(y, �z, z) = b

∫ �Z −

0

∫ ∞

�Z +

∫ ∞

y−
∑

(�Z −− �Q−)

(
DL − y +

∑
(�Z − − �Q−)

)
r( �Q)d �QgL(DL)dDL

+h

∫ �Z −

0

∫ ∞

�Z +

∫ y−
∑

(�Z −− �Q−)

0

(
y −

∑
(�Z − − �Q−)−DL

)
r( �Q)d �QgL(DL)dDL. (A1)

To prove Part 1, we derive the first partial derivative of (A1) with respect to y, where

we take into account that
∏(

(1−R(�Z +))R(�Z −)
)
= 1:

∂

∂y
C(y, �z, z) = −b+ (b+ h)

∏
(1−R(�Z +))

∫ �Z −

0

GL
(
y −

∑
(�Z − − �Q−)

)
r( �Q−)d �Q−,(A2)

and the second partial derivative:

∂2

∂y2
C(y, �z, z) = (b+ h)

∏
(1−R(�Z +))

∫ �Z −

0

gL
(
y −

∑
(�Z − − �Q−)

)
r( �Q−)d �Q−. (A3)

Since all terms in (A3) are nonnegative, Part 1 holds. It is easy to see that the convexity

also holds in x.

To show Part 2, we obtain the first two partial derivatives of C(y, �z, z) with respect to z:

∂

∂z
C(y, �z, z) = (b+ h)(1−R(z))

[∏
(1−R(�z +))

∫ �z−

0

GL
(
y −

∑
(�z− − �Q−)

)
r( �Q−)d �Q− − b

b+ h

]
,(A4)

∂2

∂z2
C(y, �z, z) = −r(z)(b+ h)

[∏
(1−R(�z+))

∫ �z−

0

GL
(
y −

∑
(�z− − �Q−)

)
r( �Q−)d �Q− − b

b+ h

]

+ (b+ h)(1−R(z))

[∏
(1−R(�z+))

∫ �z−

0

gL
(
y −

∑
(�z− − �Q−)

)
r( �Q−)d �Q−

]
,(A5)

Setting (A4) to 0 proves Part 3. Observe that ŷM(�z) only depends on �z, and not on

z. Intuitively this makes sense, as due to the potential shortages in replenishment of any

of uncertain pipeline orders �z we increase ŷM accordingly. However, when placing order z,

it is not rational to adjust ŷM to account for the potential shortage in replenishment of z.

One merely has to hope that by ordering z up to ŷM , the available supply capacity will be

sufficient.

For z ≤ ẑM , the bracketed part in the first term of (A5) is not positive, thus the first part

is nonnegative as a whole. Since also the second term is always nonnegative, the function

19

ing the uncertain supply market conditions through the use of bayesian learning to model

the supply information, incentives to stimulate the information sharing in the form of sup-

ply contracts, exploring the influence of ASI on the bullwhip effect, inventory competition

and allocation problems due to limited supply availability and the resulting speculative and

gaming behavior of supply chain parties in response to the disclosed supply information, etc.

Appendix

Before giving the proofs, we first provide the needed notation and the definitions, which

enables us to give the proofs in a concise manner. For clarity reasons, we elect to suppress

the time subscripts in certain parts of the proofs. We also assume α = 1 for the same reason.

For the m uncertain pipeline orders in �zt, we know that any particular order zi, where i =

t−m. . . t−1 can either be delivered in full or only partially depending on the available supply

capacity revealed through ASI. Based on this we define the vector �z−
t , which represents the

set of orders zi that will not be delivered in full, zi > Qi. The vector �z+
t represents the set

of orders zi that will be fully replenished, zi ≤ Qi. Thus, �z−
t ∩ �z+

t = �zt and �z−
t ∪ �z+

t = ∅
holds. As it will be useful in some of the following derivations to include also the order zt

into the two vectors �z−
t and �z+

t , we also define the extended vectors �Z −
t and �Z +

t . The two

corresponding supply capacity vectors are denoted as �Q−
t and �Q+

t .

We denote the cumulative distribution function of the demand with G(Dt), and the cor-

responding probability density function with g(Dt), and the lead time demand counterparts

with GL
t (D

L
t ) and gLt (D

L
t ). The cumulative distribution function and the probability density

function of supply capacity Qt are denoted as Rt(Qt) and rt(Qt). We assume that all the

distributions are stationary.

In the following lemma, we provide the convexity results and the optimal solution to a

single period cost function Ct(yt, �zt, zt).

Lemma 2 Let ŷMt be the smallest minimizer of Ct(yt, �zt, zt) to which the optimal order ẑMt

is placed, where ẑMt = ŷMt − xt:

1. Ct(yt, �zt, zt) is convex in yt.

2. Ct(yt, �zt, zt) is quasiconvex in zt.

3. ŷMt (�zt) is the state-dependent optimal myopic base-stock level.
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Proof: C(y, �z, z) is expressed in the following way:

C(y, �z, z) = b

∫ �Z −

0

∫ ∞

�Z +

∫ ∞

y−
∑

(�Z −− �Q−)

(
DL − y +

∑
(�Z − − �Q−)

)
r( �Q)d �QgL(DL)dDL

+h

∫ �Z −

0
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�Z +

∫ y−
∑

(�Z −− �Q−)

0

(
y −

∑
(�Z − − �Q−)−DL

)
r( �Q)d �QgL(DL)dDL. (A1)

To prove Part 1, we derive the first partial derivative of (A1) with respect to y, where

we take into account that
∏(

(1−R(�Z +))R(�Z −)
)
= 1:

∂

∂y
C(y, �z, z) = −b+ (b+ h)

∏
(1−R(�Z +))

∫ �Z −

0

GL
(
y −

∑
(�Z − − �Q−)

)
r( �Q−)d �Q−,(A2)

and the second partial derivative:

∂2

∂y2
C(y, �z, z) = (b+ h)

∏
(1−R(�Z +))

∫ �Z −

0

gL
(
y −

∑
(�Z − − �Q−)

)
r( �Q−)d �Q−. (A3)

Since all terms in (A3) are nonnegative, Part 1 holds. It is easy to see that the convexity

also holds in x.

To show Part 2, we obtain the first two partial derivatives of C(y, �z, z) with respect to z:

∂

∂z
C(y, �z, z) = (b+ h)(1−R(z))

[∏
(1−R(�z+))

∫ �z−

0

GL
(
y −

∑
(�z− − �Q−)

)
r( �Q−)d �Q− − b

b+ h

]
,(A4)

∂2

∂z2
C(y, �z, z) = −r(z)(b+ h)

[∏
(1−R(�z+))

∫ �z−

0

GL
(
y −

∑
(�z− − �Q−)

)
r( �Q−)d �Q− − b

b+ h

]

+ (b+ h)(1−R(z))

[∏
(1−R(�z+))

∫ �z−

0

gL
(
y −

∑
(�z− − �Q−)

)
r( �Q−)d �Q−

]
,(A5)

Setting (A4) to 0 proves Part 3. Observe that ŷM(�z) only depends on �z, and not on

z. Intuitively this makes sense, as due to the potential shortages in replenishment of any

of uncertain pipeline orders �z we increase ŷM accordingly. However, when placing order z,

it is not rational to adjust ŷM to account for the potential shortage in replenishment of z.

One merely has to hope that by ordering z up to ŷM , the available supply capacity will be

sufficient.

For z ≤ ẑM , the bracketed part in the first term of (A5) is not positive, thus the first part

is nonnegative as a whole. Since also the second term is always nonnegative, the function
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C(y, �z, z) is convex on the respected interval. For z > ẑM this does not hold, however we see

that (A4) is nonnegative, thus C(y, �z, z) is nondecreasing on the respected interval, which

proves Part 2. Due to this, the C(y, �z, z) has a quasiconvex form, which is sufficient for ŷM

to be its global minimizer.

Note, that one can show that C(y, �z, z) is quasiconvex in any of zi, where i = t −
m. . . t− 1, in the same way as presented above. The above derivation can be considered as

a generalization of the derivations for the zero lead time model presented in Ciarallo et al.

(1994). We have shown that the convexity properties of the single period function also holds

for the positive lead time case. �

Proof of Lemma 1: The proof is by induction on t. For period T it holds JT (yT , �zT , zT ) =

CT (yT , �zT , zT ), which by using the result of Lemma 2 proves the convexity of JT (yT , �zT , zT )

in yT , and using (6) for T , also the convexity of fT (yT , �zT ) in xT .

Assuming that ft+1 is convex in xt+1, we now want to show that this implies convexity

of Jt in yt and ft in xt. Using (5) we write Jt as:

Jt(yt, �zt, zt) = Ct(yt, �zt, zt)

+

∫ ∞

0

∫ zt−m

0

ft+1(yt − (zt−m −Qt−m)−Dt, �zt+1)r(Qt−m)dQt−mg(Dt)dDt

+ (1−R(zt−m))

∫ ∞

0

ft+1(yt −Dt, �zt+1)g(Dt)dDt. (A6)

By taking the second partial derivative of (A6) with respect to yt we quickly see that

the convexity of Jt in yt is preserved due to the convexity of Ct in yt coming from Lemma 2,

while the the remaining two terms are convex due to the induction argument.

To show that this also implies convexity of ft in xt, we first take the first partial derivative

of Jt with respect to zt
1:

∂

∂z
J(yt, �zt, zt) =

∂

∂z
C(yt, �zt, zt)

+

∫ ∞

0

∫ zt−m

0

f ′
t+1(yt − (zt−m −Qt−m)−Dt, �zt+1)r(Qt−m)dQt−mg(Dt)dDt

+ (1−R(zt−m))

∫ ∞

0

f ′
t+1(yt −Dt, �zt+1)g(Dt)dDt, (A7)

Partially differentiating (6) with respect to xt twice, using (A2) and taking into account

1We define the first derivative of a function ft(x) with respect to x as f ′
t(x).
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the first-order optimality condition by setting (A7) to zero, yields the following:

∂2

∂x2
t

f(xt, �zt) = (b+ h)
∏

(1−R( �Zt

+
))

∫ �Zt
−

0

gL
(
xt + ẑt −

∑
( �Zt

−
− �Qt

−
)
)
r( �Qt

−
)d �Qt

−

+

∫ ∞

0

∫ zt−m

0

f ′′
t+1(xt + ẑt − (zt−m −Qt−m)−Dt, �zt+1)r(Qt−m)dQt−mg(Dt)dDt

+ (1−R(zt−m))

∫ ∞

0

f ′′
t+1(xt + ẑt −Dt, �zt+1)g(Dt)dDt. (A8)

While the expression does not get simplified as in the zero lead time case, we can easily

conclude that the convexity of ft in xt is also preserved as all the terms above are nonnegative.

�

Proof of Theorem 1: The convexity results of Lemmas 1 and 2 imply the proposed

optimal policy structure. �
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