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Abstract

A skew morphismϕ of a finite groupA is a permutation onA fixing the identity element
of A and for which there exists an integer-valued function π on A such that ϕ(ab) =
ϕ(a)ϕπ(a)(b) for all a, b ∈ A. In the case where π(ϕ(a)) = π(a), for all a ∈ A, the
skew morphism is smooth. The concept of smooth skew morphism is a generalization of
that of t-balanced skew morphism. The aim of this paper is to develop a general theory
of smooth skew morphisms. As an application we classify smooth skew morphisms of
dihedral groups.
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1 Introduction
Throughout the paper all groups considered are finite, unless stated otherwise. A skew
morphism ϕ of a finite group A is a bijection on the underlying set of A fixing the identity
element of A and for which there exists an integer-valued function π : A → Z such that
ϕ(ab) = ϕ(a)ϕπ(a)(b), for all a, b ∈ A. Note that π is not uniquely determined by ϕ,
however, as a permutation if ϕ has order n, then π can be viewed as a function π : A→ Zn.
In this sense the function π is uniquely determined by ϕ, and it will be called the power
function of ϕ.

Jajcay and Širáň introduced the concept of skew morphism as an algebraic tool to in-
vestigate regular Cayley maps [10]. Conder, Jajcay and Tucker have shown in [5] that skew
morphisms are also closely related to group factorisations with a cyclic complement. Thus
the study of skew morphisms is important for both combinatorics and algebra.

LetX be a generating set of a groupA such that 1 /∈ X andX = X−1, let P be a cyclic
permutation of X . A Cayley map M = CM(A,X,P ) is a 2-cell embedding of the Cayley
graph Cay(A,X) into an orientable closed surface such that the local cyclic orientation of
the arcs (g, x) emanating from any vertex g induced by the orientation of the supporting
surface agrees with the prescribed cyclic permutation P ofX . An automorphism ofM is an
automorphism of the underlying Cayley graph which extends to an orientation-preserving
self-homeomorphism of the supporting surface. It is well known that the automorphism
group Aut(M) of M acts semi-regularly on the arcs of M . In the case where this action is
transitive, and hence regular, the map M is called a regular Cayley map. The left regular
representation of A induces a subgroup of map automorphisms which acts transitively on
the vertices of M . It follows that M is regular if and only if M admits an automorphism
which fixes a vertex, say the identity vertex 1, and maps the arc (1, x) to (1, P (x)). It is a
nontrivial result proved by Jajcay and Širáň that a Cayley map CM(A,X,P ) is regular if
and only if there is a skew morphism ϕ ofA such that the restriction ϕ �X of ϕ toX is equal
to P [10, Theorem 1]. A skew morphism of A will be called a Cayley skew morphism if it
has an inverse-closed generating orbit. Thus the study of regular Cayley maps of a group
A is equivalent to the study of Cayley skew morphisms of A.

Among the variety of problems considered with regard to skew morphisms the most
important seems to be the classification of regular Cayley maps for given families of groups.
This problem is completely settled for cyclic groups [6], and only partial results are known
for other abelian groups [4, 5, 23]. For dihedral groups Dn of order 2n, if n is odd this
problem was solved in [14], whereas if n is even only partial classification is at hand [11, 12,
17, 21, 24, 25]. For other non-abelian groups the interested reader is referred to [18, 20, 21].

Although skew morphisms are usually investigated along with regular Cayley maps,
they also deserve to be studied independently in a purely algebraic setting. Let G = AC
be a group factorisation, where A and C are subgroups of G with A ∩ C = 1. If C = 〈c〉
is cyclic, then the commuting rule ca = ϕ(a)cπ(a), for all a ∈ A, determines a skew
morphism ϕ of A with the associated power function π. Conversely, each skew morphism
ϕ of A determines a group factorisation LA〈ϕ〉 with LA ∩ 〈ϕ〉 = 1, where LA denotes
the left regular representation of A [5, Proposition 3.1]. Thus, there is a correspondence
between skew morphisms and group factorisations with cyclic complements.

Let ϕ be a skew morphism of a group A. A subgroup N of A is ϕ-invariant if
ϕ(N) = N . Note that the restriction of ϕ to N is a skew morphism of N , so it is
important to study ϕ-invariant subgroups. The first important ϕ-invariant subgroup is
Fixϕ, the subgroup consisting of fixed points of ϕ [10]. Later, Zhang discovered in [25]
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another important ϕ-invariant subgroup, called the core of ϕ and denoted by Coreϕ.
This is a normal subgroup of A, so ϕ induces a skew morphism ϕ̄ of the quotient group
Ā := A/Coreϕ in a natural way. As a consequence, we obtain a new ϕ-invariant sub-
group Smoothϕ = {a ∈ A | ā ∈ Fix ϕ̄} by means of coverings of skew morphisms; see
Section 3.

Section 4 is devoted to a study of the extremal case where Smoothϕ = A. In this case
the skew morphism ϕ is termed smooth. We prove that a skew morphism ϕ of A is smooth
if and only if π(ϕ(a)) = π(a) for all a ∈ A. It follows that the power function of a smooth
skew morphism takes constant value on orbits of ϕ, so smooth skew morphisms may be
viewed as a generalization of t-balanced Cayley skew morphisms studied in [4]. Note that
for abelian groups smooth skew morphisms are identical with the coset-preserving skew
morphisms studied by Bachratý and Jajcay in [1]. We establish in Theorems 4.5 and 4.9
an unexpected relationship between smooth skew morphisms and kernel-preserving skew
morphisms. Note that a skew morphism ϕ of A is kernel-preserving if its kernel Kerϕ is a
ϕ-invariant subgroup of A.

Kovács and Kwon [13] have recently announced a complete classification of regular
Cayley maps of dihedral groups. Thus, to complete the classification of skew morphisms
of dihedral groups, it remains to determine the non-Cayley skew morphisms. As shown
in [8], every non-Cayley skew morphism of dihedral groups is smooth. Our last aim of
this paper is to employ the newly-developed theory to give a classification of smooth skew
morphisms of the dihedral groups, see Section 5.

2 Preliminaries
In this section we summarize some basic results concerning skew morphisms which will
be used throughout the paper.

Let ϕ be a skew morphism of a group A, let π be the power function of ϕ, and let n be
the order of ϕ. As already mentioned above, the sets

Kerϕ = {a ∈ A | π(a) = 1}, Fixϕ = {a ∈ A | ϕ(a) = a}

and

Coreϕ =

n⋂
i=1

ϕi(Kerϕ)

form subgroups of A. Note that, for any two elements a, b ∈ A, π(a) = π(b) if and only
if ab−1 ∈ Kerϕ. Thus, the index |A : Kerϕ| is equal to the number of distinct values of
the power function. This number is called the skew type of ϕ, and it is strictly less than n
if ϕ is not trivial. Clearly, ϕ is an automorphism of A if and only if it has skew type 1. If
ϕ is not an automorphism, then it will be termed proper. On the other hand, Coreϕ is the
largest ϕ-invariant subgroup contained in Kerϕ, and in particular, it is normal in A [25].

Lemma 2.1 ([10]). Let ϕ be a skew morphism of a group A, let π be the power function of
ϕ, and let n be the order of ϕ. Then, for any a, b ∈ A,

ϕk(ab) = ϕk(a)ϕσ(a,k)(b) and π(ab) ≡ σ(b, π(a)) (mod n),

where k is an arbitrary positive integer and σ(a, k) =
k∑
i=1

π(ϕi−1(a)).
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Lemma 2.2 ([7]). Let ϕ be a skew morphism of a group A, let π be the power function of
ϕ. Then for any automorphism γ of A, ψ = γ−1ϕγ is a skew morphism of A with power
function πψ = πγ. Moreover, Kerψ = γ−1(Kerϕ) and Coreψ = γ−1(Coreϕ).

Proof. Since γ is an automorphism of A, for any a, b ∈ A, we have

ψ(ab) = γ−1ϕγ(ab) = γ−1ϕ(γ(a)γ(b)) = γ−1
(
ϕ(γ(a))ϕπγ(a)(γ(b))

)
= γ−1ϕγ(a)γ−1ϕπγ(a)γ(b) = ψ(a)ψπγ(a)(b).

Thus, ψ is a skew morphism of A with power function πψ = πγ. Since |ψ| = |ϕ|, we have

a ∈ Kerψ ⇐⇒ πψ(a) ≡ 1 (mod |ψ|) ⇐⇒
πγ(a) ≡ 1 (mod |ϕ|) ⇐⇒ a ∈ γ−1(Kerϕ).

Therefore, Kerψ = γ−1(Kerϕ). Similarly, Coreψ = γ−1(Coreϕ).

Lemma 2.3 ([1, 5]). Let ϕ be a skew morphism of a groupA, let π be the power function of
ϕ, and let n be the order of ϕ. Then for any positive integer k, µ = ϕk is a skew morphism
of A if and only if the congruences

kx ≡ σ(a, k) (mod n) (2.1)

are solvable for all a ∈ A. Moreover, if µ is a skew morphism of A, then it has order
m = n/ gcd(n, k) and for each a ∈ A, πµ(a) is the solution of the equation (2.1) in Zm.

Lemma 2.4 ([5]). Letϕ be a skew morphism of a groupA. IfA is nontrivial, then |ϕ| ≤ |A|
and |Kerϕ| > 1.

Lemma 2.5 ([9]). Let ϕ be a skew morphism of a group A, and let Oa denote the orbit
of ϕ containing the element a ∈ A. Then for each a ∈ A, Oa−1 = O−1

a , where O−1
a =

{g−1 | g ∈ Oa}.

The following result was partially obtained for Cayley skew morphisms in [4].

Lemma 2.6 ([7]). Let ϕ be a skew morphism of a group A, and let π the power function of
ϕ, and let n be the order of ϕ. Then for any a ∈ A,

σ(a,m) ≡ 0 (mod m),

where m = |Oa| is length of the orbit Oa containing a. Moreover, σ(a, n) ≡ 0 (mod n).

Proof. By Lemma 2.1, we have

1 = ϕm(aa−1) = ϕm(a)ϕσ(a,m)(a−1) = aϕσ(a,m)(a−1),

so ϕσ(a,m)(a−1) = a−1. By Lemma 2.5, m = |Oa−1 |. Thus, σ(a,m) ≡ 0 (mod m).
Since m divides n, we obtain

σ(a, n) =

n∑
i=1

π(ϕi−1(a)) =
n

m
σ(a,m) ≡ 0 (mod n),

as required.
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Lemma 2.7 ([7]). Let ϕ be a skew morphism of a group A. Then for any a, b ∈ A, |Oab|
divides lcm(|Oa|, |Ob|).

Proof. Denote c = |Oa|, d = |Ob| and ` = lcm(|Oa|, |Ob|). Then ` = cp = dq for some
positive integers p, q. By Lemma 2.1, we have ϕ`(ab) = ϕ`(a)ϕσ(a,`)(b) = aϕσ(a,`)(b).
By Lemma 2.6,

σ(a, `) =
∑̀
i=1

π(ϕi−1(a)) = p
c∑
i=1

π(ϕi−1(a)) = pσ(a, c) ≡ 0 (mod `).

Thus, ϕ`(ab) = ab, and consequently, |Oab| divides `.

Lemma 2.8. Let ϕ be a skew morphism of a group A, and let π the power function of
ϕ, and let n be the order of ϕ. If A = 〈a1, . . . , ar〉, then n = lcm(|Oa1 |, . . . , |Oar |).
Moreover, for any g ∈ A, ϕ(g) and π(g) are completely determined by the action of ϕ and
the values of π on the generating orbits Oa1 , . . . , Oar .

Proof. The first part was first proved in [26, Lemma 3.1]. The reader is invited to give an
alternative proof using Lemma 2.7 (and induction on the length of words in the generators).

To prove the second part we use induction on the length k of g in the generators. If
k = 1 then g is a generator of A, the assertion is trivially true. Assume that the assertion is
true for words of length k. Then, for a word g of length k+ 1, we have g = ha, where h is
a word of length k and a ∈ {a1, . . . , ar}. By Lemma 2.1, we have

ϕ(g) = ϕ(ha) = ϕ(h)ϕπ(h)(a) and π(g) ≡ π(ha) ≡
π(h)∑
i=1

π(ϕi−1(a)) (mod n).

Since ϕ(h) and π(h) are completely determined by the action of ϕ and the values of π on
the generating orbits, so are ϕ(g) and π(g), as required.

Lemma 2.9. Let ϕ be a skew morphism of a group A, let π the power function of ϕ, and
let n be the order of ϕ. If N is a ϕ-invariant normal subgroup of A, then

(a) ϕ induces a skew morphism ϕ̄ of Ā = A/N by defining ϕ̄ as ϕ̄(ā) = ϕ(a) and
the power function π̄ : Ā → Zm associated with ϕ̄ is determined by π̄(ā) ≡ π(a)
(mod m) where m = |ϕ̄|,

(b) KerϕN/N ≤ Ker ϕ̄, CoreϕN/N ≤ Core ϕ̄ and FixϕN/N ≤ Fix ϕ̄.

Proof. The proof of (a) can be found in [26, Lemma 3.3] while (b) is obvious.

3 Invariant subgroups
In this section, we introduce covering techniques to the study of skew morphisms and define
several new invariant subgroups.

Proposition 3.1. Let ϕ be a skew morphism of a group A. If M and N are ϕ-invariant
subsets of A, so are M ∩N and MN .
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Proof. For any y ∈ ϕ(M ∩N), there exists x ∈M ∩N such that y = ϕ(x). Since M and
N are both ϕ-invariant, ϕ(x) ∈ M and ϕ(x) ∈ N , so y ∈ M ∩N , whence ϕ(M ∩N) =
M ∩ N . Therefore M ∩ N is also ϕ-invariant. Similarly for any y ∈ ϕ(MN), there
exist u ∈ M and v ∈ N such that y = ϕ(uv). We have y = ϕ(uv) = ϕ(u)ϕπ(u)(v) ∈
ϕ(M)ϕ(N) = MN , so ϕ(MN) = MN , whence MN is also ϕ-invariant.

Let Π be a finite set of primes, a positive integer k will be called a Π-number if all
prime factors of k belong to Π. For instance, if Π = {2, 3}, then 2, 6, 9 are Π-numbers,
whereas 5, 10, 30 are not. We define 1 to be a Π-number for any set Π of primes.

Now let ϕ be a skew morphism of a group A. An orbit of ϕ will be called a Π-orbit if
its length is a Π-number. Define OrbitΠ ϕ to be the union of all Π-orbits of ϕ, namely,

OrbitΠ ϕ = {a ∈ A | |Oa| is a Π-number}.

Proposition 3.2. Let ϕ be a skew morphism of A, and let Π be a finite set of primes, then
OrbitΠ ϕ is a ϕ-invariant subgroup of A containing Fixϕ.

Proof. By definition, all fixed points of ϕ belong to OrbitΠ ϕ, so OrbitΠ ϕ is not empty.
Moreover, for any a, b ∈ OrbitΠ ϕ, |Oa| and |Ob| are Π-numbers, so lcm(|Ox|, |Oy|) is
also a Π-number. By Lemma 2.7, |Oab| divides lcm(|Oa|, |Ob|). It follows that |Oab| is
also a Π-number. Hence, ab ∈ OrbitΠ ϕ. Therefore, OrbitΠ ϕ is a subgroup of A, which
is clearly ϕ-invariant.

Example 3.3. Consider the skew morphism of the cyclic group Z21 defined by

ϕ = (0) (1, 2, 4, 8, 16, 11) (3, 6, 12) (5, 10, 20, 19, 17, 13) (7, 14) (9, 18, 15).

This is an automorphism of Z21. We have

Orbit{2} ϕ = 〈7〉, Orbit{3} ϕ = 〈3〉, Orbit{5} ϕ = 〈0〉, and Orbit{2,3} ϕ = Z21.

Now we introduce covering techniques to the study of skew morphisms.

Definition 3.4. Let ϕi be skew morphisms of finite groups Ai, i = 1, 2. If there is an
epimorphism θ : A1 → A2 such that the identity

θϕ1(a) = ϕ2θ(a)

holds for all a ∈ A1, then ϕ1 will be called a covering (or a lift) of ϕ2, and ϕ2 will be
called a projection (or a quotient) of ϕ1. The covering will be denoted by ϕ1 → ϕ2, and
the epimorphism θ : A1 → A2 will be said to be associated with the covering.

Lemma 3.5. Let ϕ1 → ϕ2 be a covering between skew morphisms ϕi of groups Ai, i =
1, 2, and let θ : A1 → A2 be the associated epimorphism. Then

(a) every ϕ1-invariant subgroup M of A1 projects to a ϕ2-invariant subgroup θ(M)
of A2,

(b) every ϕ2-invariant subgroupN ofA2 lifts to a ϕ1-invariant subgroup θ−1(N) ofA1.

Proof. (a): For any y ∈ θ(M), y = θ(x) for some x ∈ M . Since M is ϕ1-invariant,
ϕ1(x) ∈M , so ϕ2(y) = ϕ2θ(x) = θϕ1(x) ∈ θ(M), whence θ(M) is ϕ1-invariant.

(b): For any x ∈ θ−1(N), y = θ(x) ∈ N . Since N is ϕ2-invariant, ϕ2(y) ∈ N , so
θϕ1(x) = ϕ2θ(x) = ϕ2(y) ∈ N . Hence ϕ1(x) ∈ θ−1(N).
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Since {1}, Fixϕ2 and Coreϕ2 are all ϕ2-invariant subgroups of A2, by Lemma 3.5,
Ker θ = θ−1(1), θ−1(Fixϕ2) and θ−1(Coreϕ2) are all ϕ1-invariant subgroups of A1. In
particular, both Ker θ and θ−1(Coreϕ2) are normal in A1.

Now we are ready to introduce another new ϕ-invariant subgroup for skew morphisms.
Let ϕ be a skew morphism of a group A, and let π be the power function of ϕ. Recall that
Coreϕ is a normal ϕ-invariant subgroup of A. Let Smoothϕ be a subset of A defined by

Smoothϕ = {a ∈ A | ϕ(a) ≡ a (mod Coreϕ)}.

Proposition 3.6. Let ϕ be a skew morphism of a group A, let π be the power function of
ϕ, and let ϕ̄ be the ϕ-induced skew morphism of Ā = A/Coreϕ. Then, for any a ∈ A, the
following are equivalent:

(a) a ∈ Smoothϕ,

(b) π(ϕi(a)) = π(a) for all positive integers i,

(c) ā ∈ Fix ϕ̄.

Proof. (a) =⇒ (b): Since a ∈ Smoothϕ, by definition, ϕ(a) = ua for some u ∈ Coreϕ,
and so ϕi(a) = ϕi−1(u) · · ·ϕ(u)ua for all positive integers i. Since Coreϕ is a ϕ-invariant
subgroup, we have ϕi−1(u) · · ·ϕ(u)u ∈ Coreϕ. Therefore, π(ϕi(a)) = π(a).

(b) =⇒ (c): Since π(ϕ(a)) = π(a), we have ϕ(a) = ua for some u ∈ Kerϕ and then
ϕ2(a) = ϕ(ua) = ϕ(u)ϕ(a) = ϕ(u)ua. Since π(ϕ2(a)) = π(a), we get ϕ(u)u ∈ Kerϕ
and hence ϕ(u) ∈ Kerϕ. Repeating the above process, we get ϕi(u) ∈ Kerϕ for all
positive integers i. Consequently, u ∈ Coreϕ and hence ϕ̄(ā) = ā, that is, ā ∈ Fix ϕ̄.

(c) =⇒ (a): Since ā ∈ Fix ϕ̄, we have ϕ̄(ā) = ā and so ϕ(a) = ua for some u ∈
Coreϕ. Since CoreϕEA, we obtain a ∈ Smoothϕ.

The following result is a direct corollary of Proposition 3.6.

Corollary 3.7. Suppose that ϕ, A, ϕ̄ and Ā are defined as Proposition 3.6. Then

Fixϕ = Smoothϕ

and Smoothϕ is a ϕ-invariant subgroup of A. In particular,

(a) Smoothϕ = Coreϕ if and only if Fix ϕ̄ = 1̄,

(b) Smoothϕ = A if and only if Fix ϕ̄ = Ā, and

(c) Smoothϕ = Fixϕ if Coreϕ = 1.

Example 3.8 ([22]). Consider a skew morphism of the cyclic group Z18 defined by

ϕ = (0) (1, 15, 17, 7, 3, 5, 13, 9, 11) (2, 14, 8) (4, 10, 16) (6) (12),

π = [ 1 ] [ 2, 5, 8, 2, 5, 8, 2, 5, 8 ] [ 7, 7, 7 ] [ 4, 4, 4 ] [ 1 ] [ 1 ].

Then Coreϕ = Kerϕ = 〈6〉, so ϕ̄ = (0̄) (1̄, 3̄, 5̄) (2̄) (4̄) and Smoothϕ = 〈2〉.

The following example is due to Conder, as mentioned in [1],
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Example 3.9. Consider a skew morphism

ϕ = (1) (a, a2) (b, bc, c) (ab, a2bc, ac, a2b, abc, a2c),

π = [ 1 ] [ 1, 1 ] [ 1, 4, 4 ] [ 1, 4, 4, 1, 4, 4 ]

of the non-abelian group A = D3 × C2, where

D3 = 〈a, b | a3 = b2 = (ab)2 = 1〉 and C2 = 〈c | c2 = 1〉.

We have Kerϕ = 〈a, b〉 and Coreϕ = 〈a〉. Thus, ϕ̄ = (1̄) (b̄, b̄c̄, c̄), and hence

Smoothϕ = Coreϕ.

4 Smooth skew morphisms
In this section we establish a relationship between kernel-preserving skew morphisms and
smooth skew morphisms.

In general, the kernel Kerϕ of a skew morphism ϕ does not have to be a ϕ-invariant
subgroup. However, as we already mentioned above, a skew morphism ϕ will be called
kernel-preserving if Kerϕ is ϕ-invariant. Clearly, ϕ is kernel-preserving if and only if
Coreϕ = Kerϕ. It is well known that every skew morphism ϕ of an abelian group is
kernel-preserving [4, Lemma 5.1]. For non-abelian groups, there do exist skew morphisms
which are not kernel-preserving, see Example 3.9.

Kernel-preserving skew morphisms have many interesting properties.

Lemma 4.1. Let ϕ be a skew morphism of a group A, π be the power function of ϕ, and
let n be the order of ϕ. If ϕ is kernel-preserving, then

(a) Kerϕ is a normal subgroup of A, and ϕ restricted to Kerϕ is an automorphism
of Kerϕ,

(b) for some positive integer k, if µ = ϕk is a skew morphism ofA, then Kerϕ ≤ Kerµ,

(c) for any automorphism γ of A, γ−1ϕγ is a kernel-preserving skew morphism of A,

(d) for any pair of elements a ∈ A and u ∈ Kerϕ there is a unique element v ∈ Kerϕ
such that au = va and ϕ(a)ϕπ(a)(u) = ϕ(v)ϕ(a). In particular, ifA is abelian then
π(a) ≡ 1 (mod m) where m is the order of the restriction of ϕ to Kerϕ.

Proof. (a): Since ϕ is kernel-preserving, Kerϕ = Coreϕ, which is a normal subgroup of
A. Moreover, for all a, b ∈ Kerϕ, we have ϕ(ab) = ϕ(a)ϕ(b), so ϕ restricted to Kerϕ is
an automorphism of Kerϕ.

(b): For any a ∈ Kerϕ = Coreϕ, π(ϕi−1(a)) = 1, i = 1, 2, . . . , n. By Lemma 2.3,
the power function πµ of µ is determined by the the congruence kπµ(a) ≡ σ(a, k) = k
(mod n), so πµ(a) ≡ 1 (mod n/ gcd(n, k)), which implies that a ∈ Kerµ.

(c): This is an immediate consequence of Lemma 2.2.
(d): Since KerϕE A, for any pair (a, u) of elements a ∈ A and u ∈ Kerϕ, there is a

unique element v ∈ Kerϕ such that au = va. Then ϕ(a)ϕπ(a)(u) = ϕ(au) = ϕ(va) =
ϕ(v)ϕ(a). In particular, ifA is abelian, then u = v and ϕπ(a)(u) = ϕ(u) for all u ∈ Kerϕ,
so π(a) ≡ 1 (mod m), where m is the order of the restriction of ϕ to Kerϕ.

Proposition 4.2. Every kernel-preserving skew morphism of a non-abelian simple group
A is an automorphism of A.
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Proof. If ϕ is not an automorphism of A, then 1 < Kerϕ < A by Lemma 2.4. Since ϕ is
kernel-preserving, by Lemma 4.1(a) KerϕEA, a contradiction.

Let ϕ be a skew morphism of a group A. Recall that Smoothϕ consists of elements
a ∈ A such that ϕ(a) ≡ a (mod Coreϕ). If Smoothϕ = A, then ϕ will be called a
smooth skew morphism. The concept of smooth skew morphism was first introduced by
Hu in the unpublished manuscript [7]. Bachratý and Jajcay rediscovered it under the name
of coset-preserving skew morphisms [1].

Lemma 4.3. Let ϕ be a skew morphism of a group A. If ϕ is smooth, then every subgroup
of A containing Coreϕ is ϕ-invariant; in particular, ϕ is kernel-preserving.

Proof. Suppose that ϕ is a smooth skew morphism of A. By Proposition 3.6, the induced
skew morphism ϕ̄ of Ā = A/Coreϕ is the identity permutation on Ā, so every subgroup
of Ā is ϕ̄-invariant. Therefore, by Lemma 3.5, every subgroup of A containing Coreϕ is
ϕ-invariant. In particular, since Coreϕ ≤ Kerϕ, ϕ(Kerϕ) = Kerϕ.

The following lemma characterizes smooth skew morphisms in terms of their power
functions.

Lemma 4.4. Let ϕ be a skew morphism of a group A, and let π be the power function of
ϕ. Then ϕ is smooth if and only if π(ϕ(a)) = π(a), for all a ∈ A.

Proof. Ifϕ is smooth, then, by Proposition 3.6, π(ϕ(a)) = π(a), for all a ∈ A. Conversely,
suppose that, for any a ∈ A, π(ϕ(a)) = π(a). Then ϕ(a) = ua for some u ∈ Kerϕ. By
the assumption, we have π(ϕn−1(u)) = · · · = π(ϕ(u)) = π(u) = 1, where n = |ϕ|, so
u ∈ Coreϕ. Therefore, ϕ(a) ≡ a (mod Coreϕ), that is, ϕ is smooth.

The smallest positive integer d such that π(ϕd(a)) ≡ π(a) (mod |ϕ|), for all a ∈ A,
is called the period of ϕ. It is easily seen that d is a divisor of n uniquely determined by ϕ.
Bachratý and Jajcay proved that ifA is abelian, then µ = ϕd is a smooth skew morphism of
A; in particular, if ϕ is nontrivial and contains a generating orbit, then d is a proper divisor
of n [1]. In what follows we present a generalization.

Theorem 4.5. Let ϕ be a skew morphism of a group A, let d be the period of ϕ, and let ϕ̄
be the ϕ-induced skew morphism of Ā = A/Coreϕ. Then the following hold true:

(a) d is equal to the order of ϕ̄,

(b) σ(a, d) ≡ 0 (mod d) for all a ∈ A,

(c) µ = ϕd is a smooth skew morphism of A,

(d) µ = ϕd is an automorphism of A if and only if σ(a, d) ≡ d (mod n) for all a ∈ A.

Proof. Denote n = |ϕ| and m = |ϕ̄|.
(a): By the assumption, for any a ∈ A, we have π(ϕd(a)) = π(a), and so ϕd(a) = ua

for some u ∈ Kerϕ. Thus,

π(ϕd+1(a)) = π(ϕ(ua)) = π(ϕ(u)ϕ(a)).

Since π(ϕd+1(a)) = π(ϕ(a)), we obtain ϕ(u) ∈ Kerϕ. Repeating this process we get
ϕi−1(u) ∈ Kerϕ, i = 1, 2, . . . , n. Thus, u ∈ Coreϕ, and consequently, ϕ̄d(ā) = ā.
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Therefore, m ≤ d. On the other hand, since |ϕ̄| = m, ϕ̄m(ā) = ā for any a ∈ A, so
ϕm(a) = ua for some u ∈ Coreϕ. Thus, π(ϕm(a)) = π(ua) = π(a). The minimality of
d then implies that d ≤ m.

(b): For each a ∈ A, by (a) we have

σ(a, n) =

n∑
i=1

π(ϕi−1(a)) =
n

d

d∑
i=1

π(ϕi−1(a)) =
n

d
σ(a, d) (mod n).

By Lemma 2.6, σ(a, n) = 0 (mod n) and hence, σ(a, d) ≡ 0 (mod d).
(c): By (b) and Lemma 2.3, µ = ϕd is a skew morphism of A with its power func-

tion determined by πµ(a) ≡ σ(a, d)/d (mod n/d). Since π(µ(a)) = π(ϕd(a)) ≡ π(a)
(mod n), we obtain πµ(µ(a)) ≡ πµ(a) (mod n/d). Therefore, µ is smooth by Proposi-
tion 4.4.

(d): Since πµ(a) ≡ σ(a, d)/d (mod n/d), µ is an automorphism if and only if
σ(a, d) ≡ d (mod n).

Corollary 4.6. Let ϕ be a kernel-preserving skew morphism of a group A, and let n be the
order of ϕ. If ϕ is nontrivial, then the period d of ϕ is a proper divisor of n, and so µ = ϕd

is a nontrivial smooth skew morphism of A.

Proof. If ϕ is nontrivial, then |A : Kerϕ| < |ϕ| = n. By Lemma 2.4, d = |ϕ̄| ≤ |Ā| =
|A : Kerϕ|. Thus, d is a proper divisor of n and therefore, ϕd is a nontrivial smooth skew
morphism by Theorem 4.5.

Example 4.7 ([22]). Consider the skew morphism of the cyclic group Z18 given by

ϕ = (0) (1, 5, 13, 11, 7, 17) (2, 16, 8, 10, 14, 4) (3, 5) (6, 12) (9),

π = [ 1 ] [ 3, 5, 3, 5, 3, 5 ] [ 5, 3, 5, 3, 5, 3 ] [ 1, 1 ] [ 1, 1 ] [ 1 ].

Then Kerϕ = Coreϕ = 〈3〉 and ϕ̄ = (0̄) (1̄, 2̄). Note that ϕ has period 2, which is
precisely the order of ϕ̄. Since σ(x, 2) ≡ 0 (mod 2), for all x ∈ Z18, by Theorem 4.5(c),
µ = ϕ2 is an automorphism of A.

Let us revisit the skew morphism ϕ of the non-abelian group D3 × C2 considered in
Example 3.9. It has period 3, which is a proper divisor of the order of ϕ. As we already
mentioned, the skew morphism is not kernel-preserving. This leads us to pose the following
problem.

Problem 4.8. Let d be the period of a nontrivial skew morphism ϕ of a group A. If ϕ is
not kernel-preserving, under what condition is µ = ϕd nontrivial?

We close this section with some important properties of smooth skew morphisms, see
also [1, 7].

Theorem 4.9. Let ϕ be a skew morphism of A, let π be the power function of ϕ, and let n
be the order of ϕ. If ϕ is smooth, then

(a) π : A → Z∗n is a group homomorphism from A to the multiplicative group Z∗n with
Kerπ = Kerϕ,

(b) for any ϕ-invariant normal subgroupN ofA, the induced skew morphism ϕ̄ onA/N
is also smooth; in particular, if N = Kerϕ then ϕ̄ is the identity permutation,
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(c) for any positive integer k, µ = ϕk is a smooth skew morphism,

(d) for any automorphism γ of A, ψ = γ−1ϕγ is a smooth skew morphism of A.

Proof. (a): Since ϕ is smooth, π(a) = π(ϕ(a)) = · · · = π(ϕn−1(a)). By Lemma 2.1, we
have

π(ab) ≡
π(a)∑
i=1

π(ϕi−1(b)) ≡ π(a)π(b) (mod n).

Since 1 ≡ π(ab−1) = π(a)π(a−1) (mod n), π(a) ∈ Z∗n. Therefore, π is a group homo-
morphism from A to the multiplicative group Z∗n.

(b): Since ϕ is smooth, for any a ∈ A, we have π(ϕ(a)) = π(a), and so π̄(ϕ̄(ā)) =
π̄(ā) (mod m), where m = |ϕ̄|. By Lemma 4.4, ϕ̄ is smooth.

(c): For any positive integer k, since π(ϕi−1(a)) = π(a), i = 1, 2, . . . , k, we have

σ(a, k) =

k∑
i=1

π(ϕi−1(a)) ≡ kπ(a) (mod n).

It follows that the equations kx ≡ σ(a, k) (mod n) are solvable for all a ∈ A. Thus,
by Lemma 2.3, µ = ϕk is a skew morphism of A and the associated power function
πµ : A → Zm is determined by πµ(a) ≡ π(a) (mod m), where m = n/ gcd(n, k) is the
order of µ. Since πµ(µ(a)) ≡ π(ϕk(a)) ≡ π(a) ≡ πµ(a) (mod m), by Lemma 4.4, µ is
also smooth.

(d): By Lemma 2.2, ψ = γ−1ϕγ is a skew morphism with Coreψ = γ−1(Coreϕ).
For any a ∈ A, since ϕ is smooth, ϕ(γ(a)) ≡ γ(a) (mod Coreϕ), or equivalently,
γ−1ϕγ(a) ≡ a (mod γ−1(Coreϕ)). Thus, ψ(a) ≡ a (mod Coreψ) and hence, ψ is
smooth.

5 Smooth skew morphisms of dihedral groups
Throughout this section, Dn will denote the dihedral group of order 2n with presentation

Dn = 〈a, b | an = b2 = 1, b−1ab = a−1〉, n ≥ 3. (5.1)

Moreover, for positive integers u and k, τ(u, k) and ρ(u, k) are functions defined by

τ(u, k) =

k∑
i=1

uk−1 and ρ(u, k) =

k∑
i=1

(−u)k−1. (5.2)

If k is even, we use λ(u, k) to denote the function defined by

λ(u, k) =

k/2∑
i=1

u2(i−1). (5.3)

The following result on normal subgroups of Dn is well known.

Lemma 5.1 ([16, Section 1.6, Exercise 8]). Let K be a proper normal subgroup
of Dn, n ≥ 3.

(a) if n is odd then K = 〈au〉, where u divides n,
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(b) if n is even, then either K = 〈a2, b〉, K = 〈a2, ab〉 or K = 〈au〉, where u divides n.

Lemma 5.2 ([5]). Let ϕ be a skew morphism of Dn, n ≥ 3, then Kerϕ 6= 〈a〉.

Lemma 5.3. Let ϕ be a smooth skew morphism of Dn, n ≥ 3. If n is odd, then ϕ is
an automorphism of A, whereas if n is even and ϕ is not an automorphism of Dn, then
Kerϕ = 〈a2〉, Kerϕ = 〈a2, ab〉 or Kerϕ = 〈a2, b〉. Moreover, the involutory automor-
phism of Dn taking a 7→ a−1, b 7→ ab transposes the smooth skew morphisms of Dn with
kernels 〈a2, b〉 and 〈a2, ab〉.

Proof. Assume that ϕ is not an automorphism of Dn, then 1 < Kerϕ < Dn. Since ϕ is
smooth, by Theorem 4.9(a), the power function π : Dn → Z∗|ϕ| is a group homomorphism
with Kerπ = Kerϕ. It follows that Kerϕ is a proper normal subgroup of A. Since Z∗|ϕ| is
abelian, D′n ≤ Kerϕ, where D′n is the derived subgroup of Dn.

If n is odd then D′n = 〈a〉, which is a maximal subgroup of Dn. By Lemma 5.2
Kerϕ 6= 〈a〉, so Kerϕ = Dn, and hence ϕ is automorphism of Dn, a contradiction.

On the other hand, if n is even, then D′n = 〈a2〉, so 〈a2〉 ≤ Kerϕ. By Lemma 5.1,
one of the following three cases may happen: Kerϕ ≤ 〈a〉, Kerϕ = 〈a2, b〉, or Kerϕ =
〈a2, ab〉. For the first case, by Lemma 5.2, we have Kerϕ 6= 〈a〉, so Kerϕ = 〈a2〉.

Finally, by Theorem 4.9(d), the automorphism of Dn taking a 7→ a−1, b 7→ ab trans-
poses the smooth skew morphisms of Dn with kernels 〈a2, b〉 and 〈a2, ab〉.

The following result classifies smooth skew morphisms of the dihedral groups Dn with
Kerϕ = 〈a2〉 for even integers n ≥ 4.

Theorem 5.4. Let Dn = 〈a, b〉 be the dihedral group of order 2n, where n ≥ 4 is an even
number. Then every smooth skew morphism ϕ of Dn with Kerϕ = 〈a2〉 is defined by

ϕ(a2i) = a2iu,

ϕ(a2i+1) = a2iu+2r+1,

ϕ(a2ib) = a2iu+2sb,

ϕ(a2i+1b) = a2iu+2r+2sτ(u,e)+1b

and


π(a2i) = 1,

π(a2i+1) = e,

π(a2ib) = f,

π(a2i+1b) = ef,

(5.4)

where r, s, u, e, f are nonnegative integers satisfying the following conditions

(a) r, s ∈ Zn/2 and u ∈ Z∗n/2,

(b) the order of ϕ is the smallest positive integer k such that rτ(u, k) ≡ 0 (mod n/2)
and sτ(u, k) ≡ 0 (mod n/2),

(c) e, f ∈ Z∗k generate the Klein four group,

(d) ue−1 ≡ 1 (mod n/2) and uf−1 ≡ 1 (mod n/2),

(e) rτ(u, e− 1) ≡ u− 2r − 1 (mod n/2) and sτ(u, f − 1) ≡ 0 (mod n/2),

(f) rτ(u, f − 1) + sτ(u, e− 1) ≡ u− 2r − 1 (mod n/2).

Proof. First suppose that ϕ is a smooth skew morphism ofDn with Kerϕ = 〈a2〉. Then by
Theorem 4.9(b), the induced skew morphism ϕ̄ on Dn/Kerϕ is the identity permutation,
so there exist integers r, s ∈ Zn/2 such that

ϕ(a) = a1+2r and ϕ(b) = a2sb.
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Since ϕ is kernel-preserving, the restriction of ϕ to Kerϕ = 〈a2〉 is an automorphism, so
ϕ(a2) = a2u where u ∈ Z∗n/2. Assume that π(a) ≡ e (mod k) and π(b) ≡ f (mod k),
where k = |ϕ|.

From the above identities we derive the following formulae by induction:

ϕj(a) = a1+2rτ(u,j) and ϕj(b) = a2sτ(u,j)b,

where j is a positive integer and τ(u, j) =
∑j
i=1 u

i−1. Since Dn = 〈a, b〉, by Lemma 2.8,
the order k = |ϕ| is equal to lcm(|Oa|, |Ob|), the least common multiple of the lengths of
the orbits containing a and b. That is, k is the smallest positive integer such that ϕk(a) = a
and ϕk(b) = b. Using the above formulae we then deduce that k is the smallest positive
integer such that rτ(u, k) ≡ 0 (mod n/2) and sτ(u, k) ≡ 0 (mod n/2).

Now we determine the skew morphism and the associated power function. By the
assumption we have

ϕ(a2i) = (a2u)i = a2iu,

ϕ(a2ib) = ϕ(a2i)ϕ(b) = a2iu+2sb.

Similarly, we have

ϕ(a2i+1) = ϕ(a2ia) = ϕ(a2i)ϕ(a) = a1+2r+2iu,

ϕ(a2i+1b) = ϕ(a2i)ϕ(a)ϕe(b) = a2iu+1+2r+2sτ(u,e).

Since π : Dn → Z∗k is a group homomorphism, we have e2 ≡ π(a)2 = π(a2) ≡ 1
(mod k) and f2 ≡ π(b)2 ≡ π(b2) ≡ 1 (mod k), so e2 ≡ 1 (mod k) and f2 ≡ 1
(mod k). Hence, π(a2i) ≡ 1, π(a2i+1) ≡ e, π(a2ib) ≡ f , π(a2i+1b) ≡ ef . In particular,
since |Dn : Kerϕ| = 4, 〈e, f〉 ≤ Z∗k is the Klein four group. Therefore ϕ and π have the
claimed form (5.4).

Moreover, we have

a1+2r+2ue

= ϕ(a)ϕe(a2) = ϕ(a)ϕπ(a)(a2) = ϕ(aa2) = ϕ(a2a)

= ϕ(a2)ϕ(a) = a1+2r+2u,

and so ue−1 ≡ 1 (mod n/2). Similarly, since

ϕ(b)ϕf (a2) = ϕ(b)ϕπ(b)(a2) = ϕ(ba2) = ϕ(a−2b) = ϕ(a−2)ϕ(b),

we have

a2s−2uf

b = a2sba2uf

= ϕ(b)ϕf (a2) = ϕ(a−2)ϕ(b) = a2s−2ub.

Thus, uf−1 ≡ 1 (mod n/2).
Furthermore, since

a2u = ϕ(a2) = ϕ(a)ϕπ(a)(a) = ϕ(a)ϕe(a) = a2+2r+2rτ(u,e),

we get

r(1 + τ(u, e)) ≡ u− 1 (mod n/2). (5.5)
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Similarly,

1 = ϕ(b2) = ϕ(b)ϕπ(b)(b) = ϕ(b)ϕf (b) = a2sba2sτ(u,f)b = a2s−2sτ(u,f),

we obtain

sτ(u, f) ≡ s (mod n/2). (5.6)

Employing induction it is easy to deduce that ϕj(a−1) = a1−2uj+2rτ(u,j), where j is
an arbitrary positive integer. Then

ϕ(a)ϕe(b) = ϕ(ab) = ϕ(ba−1) = ϕ(b)ϕf (a−1).

Upon substitution we get

a1+2r+2sτ(u,e)b = ϕ(a)ϕe(b) = ϕ(b)ϕf (a−1) = a2sba1−2uf+2rτ(u,f)

= a2s−1+2uf−2rτ(u,f)b.

Hence,
rτ(u, f) + sτ(u, e) ≡ s+ uf − r − 1 (mod n/2).

Since uf ≡ u (mod n/2), the congruence is reduced to

rτ(u, f) + sτ(u, e) ≡ s+ u− r − 1 (mod n/2). (5.7)

Recall that ue−1 ≡ 1 (mod n/2) and uf−1 ≡ 1 (mod n/2), so

τ(u, e) ≡ τ(u, e− 1) + 1 (mod n/2),

τ(u, f) ≡ τ(u, f − 1) + 1 (mod n/2).

Upon substitution the congruences (5.5), (5.6) and (5.7) are reduced to the numerical con-
ditions in (e) and (f).

Conversely, for a quintuple (r, s, u, e, f) of nonnegative integers satisfying the stated
numerical conditions, we verify that ϕ given by (5.4) is a smooth skew morphism of Dn

with Kerϕ = 〈a2〉 and the function π is the associated power function. It is evident that ϕ
is a bijection on Dn and ϕ(1) = 1.

It remains to verify the identity ϕ(xy) = ϕ(x)ϕπ(x)(y) for all x, y ∈ Dn. By Lem-
ma 2.8, it suffices to verify this for x, y ∈ Oa ∪ Ob, where Oa and Ob are the generating
orbits of ϕ of the form

Oa = (a, a1+2rτ(u,1), a1+2rτ(u,2), . . . , a1+2rτ(u,i), . . .),

Ob = (b, a2sτ(u,1)b, a2sτ(u,2)b, . . . , a2sτ(u,j)b, . . .).

It follows that one of the following four cases may happen:

(i) x, y ∈ Oa;

(ii) x, y ∈ Ob;
(iii) x ∈ Oa, y ∈ Ob or

(iv) x ∈ Ob, y ∈ Oa.
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We shall demonstrate the verification for the first case, and leave other cases to the reader.
If x, y ∈ Oa, then x = a1+2rτ(u,i) and y = a1+2rτ(u,j) for some i, j. We have

ϕ(x)ϕ(y) = ϕ(a2r(τ(u,i)+τ(u,j))+2) = a2ru(τ(u,i)+τ(u,j))+2u

and

ϕ(x)ϕπ(x)(y) = ϕ(a1+2rτ(u,i))ϕe(a1+2rτ(u,j)) = a2r(τ(u,i+1)+τ(u,j+e))+2.

By the numerical conditions (d) and (e), we have

r(τ(u, i+ 1) + τ(u, j + e)) + 1− (ru(τ(u, i) + τ(u, j)) + u)

= r
(

(τ(u, i+ 1)− uτ(u, i)) + (τ(u, j + e)− uτ(u, j))
)

+ 1− u
(d)
≡ r
(

1 + (τ(u, j + e)− ueτ(u, j))
)

+ 1− u

≡ r(2 + τ(u, e− 1)) + 1− u
(e)
≡ 0 (mod n/2).

Therefore, ϕ(xy) = ϕ(x)ϕπ(x)(y).
Finally, from the choices of the parameters it is easily seen that distinct quintuples

(r, s, u, e, f) give rise to different skew morphisms of Dn, as required.

Remark 5.5. In Theorem 5.4, consider the particular case where u = 1. By Condition (b)
we have

k = lcm

(
n/2

gcd(r, n/2)
,

n/2

gcd(s, n/2)

)
.

The numerical conditions are reduced to
r(e+ 1) ≡ 0 (mod n/2),

s(f − 1) ≡ 0 (mod n/2),

r(f + 1) + s(e− 1) ≡ 0 (mod n/2),

where r, s ∈ Zn/2 and 〈e, f〉 ≤ Z∗k is the Klein four group. If n = 8m, where m ≥ 3
is an odd number, then it can be easily verified that the quintuple (r, s, u, e, f) =
(m + 4,m, 1, 4m − 1, 2m − 1) fulfills the numerical conditions. Therefore, we obtain
an infinite family of skew morphisms of D8m of order 4m with Kerϕ = 〈a2〉. This exam-
ple was first discovered by Zhang and Du in [26, Example 1.4].

Example 5.6. By computations using the MAGMA system we found that the smallest n
for which there is a smooth skew morphism ϕ of Dn with Kerϕ = 〈a2〉 is the number
24. In this case, all such skew morphisms have order 12, and the corresponding quintuples
(r, s, u, e, f) are listed below:

(r, s, u, e, f) = (1, 3, 1, 11, 5), (1, 4, 1, 11, 7), (1, 9, 1, 11, 5), (1, 10, 1, 11, 7),

(5, 2, 1, 11, 7), (5, 3, 1, 11, 5), (5, 8, 1, 11, 7), (5, 9, 1, 11, 5),

(7, 3, 1, 11, 5), (7, 4, 1, 11, 7), (7, 9, 1, 11, 5), (7, 10, 1, 11, 7),

(11, , 2, 1, 11, 7), (11, 3, 1, 11, 5), (11, 8, 1, 11, 7), (11, 9, 1, 11, 5).
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Note that in each case we have u = 1, so the restriction of ϕ to Kerϕ is the identity
automorphism of Kerϕ. However, further computations show that, for other n, there do
exist examples with u 6= 1.

For even numbers n, by Lemma 5.3, the involutory automorphism γ of Dn taking
a 7→ a−1, b 7→ ab transposes the smooth skew morphisms of Dn with kernels 〈a2, b〉 or
〈a2, ab〉. Thus, to complete the classification of smooth skew morphisms of Dn, it suffices
to determine the smooth skew morphisms of Dn with kernel Kerϕ = 〈a2, b〉.

Theorem 5.7. Let Dn be the dihedral group of order 2n, where n ≥ 8 is an even number.
If ϕ is a smooth skew morphism of Dn with Kerϕ = 〈a2, b〉, then ϕ belongs to one of the
following two families of skew morphisms:

(I) skew morphisms of order k defined by
ϕ(a2i) = a2iu,

ϕ(a2i+1) = a2iu+2r+1,

ϕ(ba2i) = ba2iu+2s,

ϕ(ba2i+1) = ba2r+2s+2iu+1

and


π(a2i) = 1,

π(a2i+1) = e,

π(ba2i) = 1,

π(ba2i+1) = e,

(5.8)

where r, s, u, k, e are nonnegative integers satisfying the following conditions

(a) r, s ∈ Zn/2 and u ∈ Z∗n/2,

(b) k is the smallest positive integer such that rτ(u, k) ≡ 0 (mod n/2) and
sτ(u, k) ≡ 0 (mod n/2),

(c) e ∈ Z∗k such that e 6≡ 1 (mod k) and e2 ≡ 1 (mod k),
(d) ue−1 ≡ 1 (mod n/2),
(e) rτ(u, e− 1) ≡ u− 2r − 1 (mod n/2) and

sτ(u, e− 1) ≡ −u+ 2r + 1 (mod n/2).

(II) skew morphisms of order 2(e− 1) defined by
ϕ(a2i) = a2iu,

ϕ(a2i+1) = ba2r−2iu+1,

ϕ(ba2i) = ba2s+2iu,

ϕ(ba2i+1) = a2r−2s−2iu+1

and


π(a2i) = 1,

π(a2i+1) = e,

π(ba2i) = 1,

π(ba2i+1) = e,

(5.9)

where r, s, u, e are nonnegative integers satisfying the following conditions

(a) r, s ∈ Zn/2, u ∈ Z∗n/2 and e > 1 is an odd number,

(b) ue−1 ≡ −1 (mod n/2),
(c) sτ(u, e− 1) ≡ u+ 2r + 1 (mod n/2),
(d) rρ(u, e− 1) ≡ sλ(u, e− 1)− 1 (mod n/2).

Proof. First suppose that ϕ is a smooth skew morphism of Dn with Kerϕ = 〈a2, b〉. By
Theorem 4.9, the induced skew morphism ϕ̄ of Dn/Kerϕ is the identity permutation and
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the restriction of ϕ to Kerϕ = 〈a2, b〉 is an automorphism of Kerϕ. It follows that there
exist integers r, s, u ∈ Zn/2 and ` ∈ Z2 such that

ϕ(a) = b`a1+2r, ϕ(b) = ba2s and ϕ(a2) = a2u.

Assume that π(a) ≡ e (mod k), where k = |ϕ| denotes the order of ϕ. Since b ∈
Kerϕ, π(b) ≡ 1 (mod k). By Theorem 4.9, the power function π : Dn → Zk is a group
homomorphism from Dn to the multiplicative group Z∗k, so

e−1 ≡ π(a−1) ≡ π(b−1ab) ≡ π(a) ≡ e (mod k),

and hence e2 ≡ 1 (mod k). It follows that π(a2i) ≡ π(a2ib) ≡ 1 and π(a2i+1) ≡
π(a2i+1b) ≡ e. Since ϕ has skew type 2, e 6≡ 1 (mod k). To proceed we distinguish two
cases:

Case (I): ` = 0.
In this case, we have

ϕ(a) = a1+2r, ϕ(b) = ba2s and ϕ(a2) = a2u.

Then

ϕ(a2i) = ϕ(a2)i = a2iu,

ϕ(ba2i) = ϕ(b)ϕ(a2)i = ba2iu+2s.

Similarly,

ϕ(a2i+1) = ϕ(a2ia) = ϕ(a2)iϕ(a) = a2iu+2r+1,

ϕ(ba2i+1) = ϕ(ba2ia) = ϕ(b)ϕ(a2i)ϕ(a) = ba2r+2s+2iu+1.

Hence, the skew morphism has the form given by (5.8).
Using induction it is easy to prove that

ϕj(a) = a1+2rτ(u,j) and ϕj(b) = ba2sτ(u,j),

where j is a positive integer and τ(u, j) =
∑j
i=1 u

i−1. Since Dn = 〈a, b〉, k = |ϕ| is the
smallest positive integer such that ϕk(a) = a and ϕk(b) = b, which implies that

rτ(u, k) ≡ 0 (mod n/2) and sτ(u, k) ≡ 0 (mod n/2).

Moreover, we have

a1+2r+2ue

= ϕ(a)ϕe(a2) = ϕ(aa2) = ϕ(a2a) = ϕ(a2)ϕ(a) = a1+2r+2u,

so ue−1 ≡ 1 (mod n/2).
Furthermore, since

a2u = ϕ(a2) = ϕ(a)ϕe(a) = a1+2ra1+2rτ(u,e) = a2+2r+2rτ(u,e),

we obtain

r
(
τ(u, e) + 1

)
≡ u− 1 (mod n/2). (5.10)
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Similarly,

ϕ(a)ϕe(b) = ϕ(ab) = ϕ(ba−1) = ϕ(b)ϕ(a−1) = ϕ(b)ϕ(a−2a) = ϕ(b)ϕ(a−2)ϕ(a).

By the above formula we have

ϕ(a)ϕe(b) = a1+2rba2sτ(u,e) = ba−1−2r+2sτ(u,e)

and
ϕ(b)ϕ(a−2)ϕ(a) = ba1+2r+2s−2u.

Consequently, upon substitution we obtain

s(τ(u, e)− 1) ≡ −u+ 2r + 1 (mod n/2). (5.11)

Recall that ue−1 ≡ 1 (mod n/2), so

τ(u, e) = τ(u, e− 1) + ue−1 ≡ τ(u, e− 1) + 1 (mod n/2).

Upon substitution the equations (5.10) and (5.11) are reduced to

rτ(u, e− 1) ≡ u− 2r − 1 (mod n/2),

sτ(u, e− 1) ≡ −u+ 2r + 1 (mod n/2).

Case (II): ` = 1.
In this case we have

ϕ(a) = ba1+2r, ϕ(b) = ba2s and ϕ(a2) = a2u.

Then

ϕ(a2i) = a2iu,

ϕ(ba2i) = ϕ(b)ϕ(a2i) = ba2s+2iu.

Similarly,

ϕ(a2i+1) = ϕ(a2ia) = a2iuba1+2r = ba2r−2iu+1,

ϕ(ba2i+1) = ϕ(b)ϕ(a2i)ϕ(a) = a2r−2s−2iu+1.

Hence ϕ has the form (5.9).
Using induction it is easy to derive the following formula

ϕj(b) = ba2sτ(u,j) and ϕj(a) =

{
a2rρ(u,j)−2sλ(u,j)+1, if j is even,
ba2rρ(u,j)+2suλ(u,j−1)+1, if j is odd,

where τ, ρ and λ are the functions defined by (5.2) and (5.3). Since ϕ(a) = ba1+2r and
Dn = 〈a, ba1+2r〉, k = |ϕ| = |Oa|. Thus, k is the smallest positive integer such that

rρ(u, k) ≡ sλ(u, k) (mod n/2).
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In particular, since elements from the cosets 〈a〉 and b〈a〉 alternate in the orbit Oa, k is
even, and hence e is odd. Thus,

a2u = ϕ(a2) = ϕ(a)ϕe(a) = ϕ(a)ϕe(a) = a2rρ(u,e)−2r+2suλ(u,e−1).

Consequently, we obtain

rρ(u, e) + suλ(u, e− 1) ≡ r + u (mod n/2). (5.12)

Furthermore, we have

ba1+2r+2ue

= ϕ(a)ϕe(a2) = ϕ(aa2) = ϕ(a2a)

= ϕ(a2)ϕ(a) = a2uba1+2r = ba2r−2u+1,

so ue−1 ≡ −1 (mod n/2). Similarly

a−1−2r+2sτ(u,e) = ϕ(a)ϕe(b) = ϕ(ab) = ϕ(ba−2a)

= ϕ(b)ϕ(a−2)ϕ(a) = a1+2r−2s+2u.

Hence

sτ(u, e) ≡ 1 + 2r + u− s (mod n/2). (5.13)

Recall that ue−1 ≡ −1 (mod n/2), so

τ(u, e) ≡ τ(u, e− 1)− 1 (mod n/2),

ρ(u, e) ≡ ρ(u, e− 1)− 1 (mod n/2).

Upon substitution the equations (5.12) and (5.13) are reduced to

rρ(u, e− 1) + suλ(u, e− 1) ≡ 2r + u (mod n/2), (5.14)
sτ(u, e− 1) ≡ 2r + u+ 1 (mod n/2). (5.15)

Subtracting we then get

rρ(u, e− 1) ≡ sλ(u, e− 1)− 1 (mod n/2).

Finally, note that

ρ(u, 2(e− 1)) =

2(e−1)∑
i=1

(−u)2(e−1)

=

e−1∑
i=1

(−u)i−1 + ue−1
e−1∑
i=1

(−u)i−1 ≡ 0 (mod n/2),

and

λ(u, 2(e− 1)) =

e−1∑
i=1

u2i

=

(e−1)/2∑
i=1

u2(i−1) + ue−1

(e−1)/2∑
i=1

u2(i−1) ≡ 0 (mod n/2),
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Hence,
rρ(u, 2(e− 1)) ≡ sλ(u, 2(e− 1)) (mod n/2).

The minimality of k yields k | 2(e− 1). But e− 1 < k, which forces k = 2(e− 1).

Conversely, in each case for any quadruple (r, s, u, e) satisfying the numerical condi-
tions, it is straightforward to verify that ϕ of the given form is a smooth skew morphism of
Dn with Kerϕ = 〈a2, b〉 and π is the associated power function. In particular, from the
choices of the parameters it is easily seen that distinct quadruples (r, s, u, e) give rise to
different skew morphisms of Dn, as required.

Remark 5.8. Let ϕ be any skew morphism from (II) of Theorem 5.7. Note that the orbit
of ϕ containing a also contains ba2r+1, so the orbit Oa generates Dn. Clearly, it is closed
under taking inverses. Therefore, such skew morphisms give rise to the e-balanced regular
Cayley maps of Dn, which were first classified by Kwak, Kwon and Feng [17].
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