Univerza v Ljubljani Fakulteta za matematiko in fiziko Daniel Svensek Vpliv hidrodinamicnih tokov na reorientacijsko dinamiko tekocih kristalov Disertacija Ljubljana, marec 2003 University of Ljubljana Faculty of Mathematics and Physics Daniel Svensek Back ow-a ected reorientation dynamics in liquid crystals Thesis Ljubljana, March 2003 Radovednostjelepacednost.  Zahvaljujemseprof.SlobodanuZumru,kimejetistegadavnegapoznopomladneg. dne,kosemnenadomapotrkalnavratanjegovesobice,karhitrosprejelvsvoj. raziskovalnoskupino.Datasplohnimajhna,semspoznaljeseni.JureB.,Primo. z  Z.-Pizo,AnamarijaB.B.-Pika,GregorS.-Gregovec,AndrejaS.,FahimehK.P. H.,MatejB.-Buzec,BostjanM.,prof.SamoK.-KraljSamoin,seveda,MilanA. -McMillan,hvala!Zelosemhvalezentudiprof.AlojzuKodretuzanasvete,prof. HelmutuBranduzagostoljubnost,podporoinnasveteterkriticnimbralcemdi. sertacijevnastajanju.PriznanjeministrstvuMZ  S(prejMZT)RepublikeSlovenije, S  kije nanciraloraziskovanje.HvalaprijateljeminBrunarci,preka(l)jevalniciidej. HvalaAPZ-ju|vsebibilodrugace, . cenebinaredilavdicije. NajvecjahvaleznostpagresevedaTanji,starseminvsemdomacim. Izvle ce. Vnematskihtekocihkristalihintankihsmekticnih lmihsmoznumericnimisredstv. raziskovalidinamikoureditvenegaparametra,sklopljenoshidrodinamiko.Posluzil. smoseEricksen-Lesliejeveteorijenematskegadirektorjainraziskaliucinkehidrodi. namicnegatoka,kispremljapreklopneprocesenematikavcelicah.Opozorilismon. primere,kosotiucinkiodlocilnegapomena.Zupostevanjemcelotnegatenzorskeg. ureditvenegaparametrasmoresiliproblemanihilacijeparatopoloskihnematski. disklinacijskihlinijterpokazali,dahidrodinamicnitokpospe.. sidisklinacijospozi. tivnomocjogledenadisklinacijoznegativnomocjo,hkratipapospe.. situdiproce. anihilacijevprimerjaviznehidrodinamicnoobravnavanimprimerom.Izka.. zese,d. jetransportstokompomembeninjelahkonjegovprispevekhgibanjudefektovpre. vladujo . c.SposplositvijoEricksen-Lesliejeveteorijenacelotenvektorskiureditven. parametersmoresilitudiproblemanihilacijeparadisklinacijskihvrtincevvtanke. prostostojecem lmusmekticneC-faze,kijevnasemopisuustrezalXY-modelu.  Rezultatisevkvalitativnempogleduujemajostistimiprinematikih.Studiral. smo.. serazpadnematskedisklinacijskelinijezmocjo1napardisklinacijzmocj. 1=2.Vprimerjaviznehidrodinamicnoobravnavanimproblemomtokspetpospe.. siodbojnogibanjenastalihdefektov.Dabiraziskalistabilnost,smoresili uktuacijsk. problemravnedisklinacijskelinijessplosnocelostevilcnomocjozacelotentenzorsk. ureditveniparameter.Naslismodvevrstinara. s . cajocih uktuacij,kivodijodoraz. padaoziromadopobegavtretjodimenzijo. Kljucnebesede:nematskiteko . cikristali,smekticniteko . cikristali,SmC lmi. ureditveniparameter,nematodinamika,hidrodinamika,Ericksen-Lesliejevateorija. Freederickszovprehod,defekti,disklinacije,vrtinci,parskaanihilacija, uktuacij. PACS:61.30.Dk,61.30.Gd,61.30.Jf,83.80.Xz,47.15.Gf,47.15.Rq,61.30.Pq,68.15.+. Abstrac. Dynamicsoftheorderparametercoupledtohydrodynamicsisstudiednumericall. innematicandsmecticthin lmliquidcrystals.TheEricksen-Leslietheoryfo. thenematicdirectorisemployedtodeterminetheback owe ectsaccompanyin. external eldswitchingprocessesofnematicscon nedtocells.Itisdemonstrate. thattherearecaseswherethesee ectsarecrucial.Pair-annihilationoftopologica. nematicdisclinationlinesisstudiedusingthefulltensororderparameter.Iti. foundthatthehydrodynamic owisresponsibleforthespeed-upofthepositiv. strengthdisclinationrelativetothenegativeone,andfortheoverallspeed-upofth. annihilationprocessascomparedtothenonhydrodynamictreatment.Moreover,i. isdemonstratedthatthe owtransportissubstantialandcandominatethemotio. ofdefects.TheEricksen-Leslietheoryisgeneralizedtothecompletevectororde. parameterandusedtostudythepair-annihilationofvorticesinafree-standingthi. lmofthesmectic-CliquidcrystalasarepresentativeoftheXY-model.Theresult. agreequalitativelywiththoseofthenematic.Decayofthenematicstrength. disclinationlineintoapairof1=2disclinationsisstudied.The owagainspeed. uptherepellingmotionofthedecayproductsifcomparedtothenonhydrodynami treatment.Asastabilityanalysis,the uctuationproblemofastraightdisclinatio. linewithageneralintegerstrengthissolvedforthecompletetensororderparameter. Twotypesofgrowing uctuationsarefound,leadingtothedecayandtotheescap. inthethirddimension,respectively. Keywords:nematicliquidcrystals,smecticliquidcrystals,SmC lms,orderpa. rameter,nematodynamics,hydrodynamics,back ow,Ericksen-Leslietheory,Freed. ericksztransition,defects,disclinations,vortices,pair-annihilation, uctuation. PACS:61.30.Dk,61.30.Gd,61.30.Jf,83.80.Xz,47.15.Gf,47.15.Rq,61.30.Pq,68.15.+. Contents Razsirjeni povzetek (Abstract in Slovene) i 1 Introduction 7 2 Theory 11 2.1 Order parameter and thermodynamic potential . . . . . . . . . . . . 11 2.2 Free energy functional . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Dynamic equation for the order parameter . . . . . . . . . . . . . . . 15 2.4 Coupling to the ow . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Nematic order parameter 19 4 Director dynamics in nematics 23 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Ericksen-Leslie theory . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 Characteristic scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3.1 Comment on heat di usion . . . . . . . . . . . . . . . . . . . . 28 4.4 Description of the problem and numerical implementation . . . . . . 28 4.5 2D problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5.1 Mechanisms governing the problem . . . . . . . . . . . . . . . 31 4.5.2 Results and interpretation . . . . . . . . . . . . . . . . . . . . 32 4.5.3 Comparison with the simpli ed treatment . . . . . . . . . . . 43 4.6 Amplifying the kickback e ect . . . . . . . . . . . . . . . . . . . . . . 46 4.6.1 2D problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6.2 Quasi-3D problem . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6.3 Axial magnetic eld . . . . . . . . . . . . . . . . . . . . . . . 49 4.6.4 Oblique magnetic eld . . . . . . . . . . . . . . . . . . . . . . 51 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Dynamics of a vector order parameter 55 5.1 Free-energy density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Coupling to the ow . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 Defects 61 6.1 Disclinations of a 2D director/vector . . . . . . . . . . . . . . . . . . 63 6.2 Disclinations of a 3D director/vector . . . . . . . . . . . . . . . . . . 65 5 . CONTENT. 6.3Structureofdisclinationcores......................6. 7Pair-annihilationofdisclinationlinesinnematic. 6. 7.17.27.37.47.57.6Introduction........................... Dynamicequations....................... Characteristicscales...................... Technicalitiesandmaterialparameters............ Resultsanddiscussion..................... 7.5.1The owasymmetry.................. 7.5.2Reorientation-drivendefectmotionvs owadvection7.5.3In uenceofthedirectororientationangleonthe owSummary............................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6. 7. 7. 7. 7. 7. 8. 8. 8. 8Pair-annihilationofvorticesinSmC lm. 8.1SmCorderparameter...................... 8.2Dynamicequations....................... 8.3Technicalitiesandmaterialparameters............ 8.4Resultsanddiscussion..................... 8.5Summary............................ . . . . . . . . . . . . . . . . . . . . . . . . . 8. 8. 8. 8. 8. 9. 9Decayofintegerdisclinationsinnematic. 9.1Fluctuationproblem...................... 9.1.1Fluctuationeigenmodes................ 9.1.2Eigenmodesleadingtodecay.............. 9.1.3Eigenmodesleadingtoescape............. 9.1.4Remarksonthe uctuationproblem......... 9.2Hydrodynamicspeedup..................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. 9. 9. 9. 10. 10. 10. 10Conclusio. 10.1Futureperspectives............................ 10. 11. Bibliograph. 11. Razsirjeni povzetek (Abstract in Slovene) Uvod Tekoci kristali so bolj urejeni kot tekocine, a manj kot trdne snovi | so nekaksna vmesna faza. Potreben pogoj za obstoj tekocekristalne faze so molekule podolgovate ali ploscate oblike. Pri termotropskih tekocih kristalih je stopnja urejenosti odvisna predvsem od temperature, pri liotropnih pa od koncentracije tekocekristalne komponente v raztopini. Zaradi urejenosti imajo tekoci kristali anizotropne makroskopske lastnosti. Najblizji izotropni tekocini je nematski tekoci kristal ali kratko nematik, ki premore orientacijsko molekulsko urejenost dolgega dosega. Povprecno smer molekul oznacimo z direktorjem n, ki je del tenzorskega ureditvenega parametra nematika. Bolj urejena je smekticna tekocekristalna faza, za katero je poleg orientacijskega reda znacilen pozicijski red v eni dimenziji. Ploskvam maksimalne gostote pravimo smekticne plasti. V SmA fazi je direktor pravokoten na plasti, v SmC fazi pa je nagnjen. Modeliranje tekocih kristalov je zazivelo s prihodom dovolj zmogljivih in dostopnih racunalnikov. Najprej so obdelali staticne probleme, nato so se raziskave usmerile v studij dinamike, ki jo najveckrat obravnavajo v okviru direktorskega opisa in brez upostevanja hidrodinamike. Za opis defektov moramo nujno poseci po tenzorskem opisu ter upostevati tudi hidrodinamicni tok. Predvsem slednje je precej tezavno. V disertaciji se ukvarjamo s simulacijo dinamike v nematskem in SmC tekocem kristalu z upostevanjem hidrodinamike. V prvem delu obravnavamo relaksacijske procese direktorja pri preklapljanju celice z zunanjim poljem, kjer pokazemo, da vloga hidrodinamskega toka ni omejena zgolj na kvantitativne popravke. V drugem delu se posvetimo glavnemu izzivu | hidrodinamicni obravnavi dinamike defektov. Z nadgrajeno metodologijo iz prvega dela uspemo pokazati, da na anihilacijo para nasprotnih defektov kot tudi na odboj para enakih defektov mocno vpliva tok, ki pospesi procese in v prvem primeru povzroci asimetrijo pri gibanju defektov. Teorija Na kratko bomo predstavili dinamicno teorijo kompleksnih disipativnih tekocin, se prej pa bomo uvedli pojem ureditvenega parametra in vpeljali ustrezen termodii i. Razsirjenipovzete. namicnipotencial.Teorijasezazdaj.. senebonanasalananekizbraniureditven. parameter,ampakbosplosna,karbokoristnovnadaljevanju,kobomoobravnaval. sistemezrazlicnimiureditvenimiparametri. Ureditveniparameterintermodinamipotencial cni Teko . cikristalisourejenisistemi.Uredijoseobfaznemprehodu,prikateremsezlom. simetrijasistema.Zaopisurejenostivpeljemomezoskopskokolicino|ureditven. parameter,kimorabitinicelnvvisokotemperaturnifazi,vurejenifazipaodni razliceninodvisenodurejenosti,ssimetrijskimilastnostmi,kotjihimaurejenafaza. Vsplosnemjelahkosistemkrajevnonehomogen,takodajeureditveniparamete. polje.De niramogakotpovprecjevmezoskopskemvolumnu,kinajbibildovoljve. lik,dajepovprecjedobrode nirano,hkratipadovoljmajhenvprimerjavizznaciln. skalonehomogenosti,takodajesistemznotrajnjegadovoljhomogen.Pristudij. dinamikesezanimamozaneravnovesnelastnostisistema.Odmikeodravnovesj. opisemozneravnovesnimivrednostmiureditvenegaparametra.Topomeni,das. neravnovesnelastnostisistemadolocenezdinamikoureditvenegaparametra,kole. tegaizmaknemoizravnovesja. Tekocekristalnitermodinamicnisistemivsplosnemzdruzujejotermicne,elek. tricneinmagnetneprostostnestopnje,medtemkodeloprispremembiprostornin. zanemarimo.PrikonstantnitemperaturiTinkonstantnihjakostihzunanjegaelek. tricnegainmagnetnegapoljaEinHjeustrezentermodinamicnipotencia. F=U..TS..VEP.. 0 VHM. (1. dF=..SdT..TdS i ..pdV..VPdE.. 0 VMdH+dA 0 ;(2. kigaimenujemokarprostaenergija;Ujenotranjaenergija.Sprememboentropij. Ssmorazdelilinareverzibilni(dQ=T)inireverzibilnidel,dS i >0.Vravnovesj.  jeprostaenergijaminimalna.CesistemprikonstantnihT,EinHspravimoi. ravnovesja,jespremembaprosteenergijeenakaminimalnemudeludA 0 ,kijezat. potrebno,t.j.deluprinadomestnireverzibilnispremembi.Elektricnoinmagnetn. delosta.. zevkljuceniv(2),takodajeprostaenergijasistemavpoljuH,katereg. kon guracijaustrezaravnovesjupripoljuH 0 ,z. Z. . F=.. 0 VdVM(H)d. (3. . visjaodravnovesne(analognozaelektricnopolje). Zastudijdinamikejetorejtrebapoiskatiodvisnostprosteenergijeodure. ditvenegaparametraq,kiimavsplosnemveckomponentq i .Prinehomogeni. sistemihvpeljemogostotoprosteenergije,takodajeprostaenergijafunkcional. . F=dVf(q;rq). (4. Prifenomenoloskempristopugostotoprosteenergijerazvijemoposkalarnihinvari. antah,kijihsestavimoizq,rqinzunanjihpolj.Pritemnastopapetkategoricni. Razsirjenipovzetek(AbstractinSlovene. ii. tipovprispevkov:homogeni,elasticni,kiralni,prispevkizunanjihpoljterpovrsinsk. prispevki,kijihtukajnebomonatancnejeopisovali. Ravnovesnokon guracijopoi. scemotako,daminimiziramoprostoenergijo. . ZZ @f@f@. AF=dV..rAq+dSAq=0;(5. @. @r. @r. odkoderdobimoEuler-Lagrangeveenacbezavolumskiinpovrsinskidel.Slednjeg. bomoodzdajnaprejopu. scali.Kadarmorajokomponenteureditvenegaparametr. zado. scativezem,vpeljemoLagrangevemultiplikatorjekotponavadi,karjeekviva. lentnoprojiciranjuEuler-Lagrangevihenacbvprostoruureditvenegaparametran. podprostor,pravokotennatistega,kigadolo . cajovezi. Hidrodinamikaureditvenegaparametr. Kosesistempriblizujeravnovesju,semuprostaenergijamanj.. sanaracunvecanj. entropije. . Z @f@. S_ i_ T=..F=..dV..r. _q;(6. @. @r. kjerpikaoznacujesubstancialniodvod.Priireverzibilnihpojavihvecanjeentropij. splosnoopisemostokovi i inpripadajocimisilamiF i . . S_ i T=dVF i  i . (7. vrezimusibkihtokovpapredpostavimo.. selinearnozvezomedsilamiintokovi[17]. F i =K ij  j ;K ij =K ji . (8. kjerjepoOnsagerju[18],[19,p.365]matrikatransportnihkoe cientovsimetricna. Poenacbi(6)lahkoimamo. _qzatok,izrazvoklepaju(zminusom),kigaoznacim. . @f@. h=r... (9. @rq@. pazasilo.GibanjetekocineopisemosposplosenoNavier-Stokesovoenacb. . _v=r. (10. pricemersevsakompleksnostskrivavnapetostnemtenzorju.Polegtlacnegadel. tavsebuje.. seelasticnidel,kijeposledicadejstva,dadeformacijasistemaspremen. krajevneodvodeureditvenegaparametra,torejtudigostotoprosteenergije. @.  . =..@ j q. (11) ij @(@ i q. Hgostotiprosteenergijemoramozdajdodatitudikineticniprispevek 1 v 2 . . Entropijskiizvirjeste. . h. S_ i T=dV.. . +h. _q:(12) ( ij +pA ij ij )@ i v j i. Razsirjenipovzete. Knara. scanjuentropijetorejprispevatadvatokova|casovniodvodureditveneg. parametra. _qingradienthitrostirv.Pripadajo . cisilistageneraliziranasilan. ureditveniparameterhinviskozninapetostnitenzor=+pI.. e .Ugodno  v je, . cetenzorjerazcepimonasimetricniinantisimetricnidel.Gostotaentropijskeg. izvirajepote.  s T. _s i = ij A ij + a W ij +h i . _q i . (13) ij  s  a kjerstainsimetricniinantisimetricnidelviskozneganapetostnegatenzorja. AinWpasimetricniinantisimetricnidelgradientahitrosti.Splosnalinearnazvez.  a (8)medsilamiintokovi(enacbe(2.35)-(2.37))namdolo . cisile s ,inh(slednj. imenujemotudiviskoznageneraliziranasilah v ),odkodersledijogibalneenacbe. A. ..+h . =0. (14. A. . _v=..rp+r( v + e ). (15. rv=0. (16. Ureditveniparameternematik. Zaureditveniparameternematikaizberemoprvinetrivialninenicelnimomentpo. razdelitvesmerimolekuld=(sin 0 cos 0 ;sin 0 sin 0 ;cos 0 ),tojekvadrupolnimo. ment.Prispevekle-tegakporazdelitvenifunkcijigponavadizapisemokartezicno. 5. g (2) (e)=Q ij e i e j ;Q ij = (3hd i d j i..A ij );(17. 4. pricemerjeeenotskivektor,kipodajasmer.Vpeljalismosimetricniinbrezsledn. tenzorskiureditveniparameternematikaQ.Vlastnemsistemugazapisemoko. 2. .. 1 (S..P. . 67 .. 1 Q= . (S+P) 5 . (18. . . vsplosnempako. 1. . Q ij = S(3n i n j ..A ij )+ P(e 1 e 1 ..e 2 e 2 );(19. 22 ijij kjerj. S. 3hcos 2  0 i . ... (20. skalarniureditveniparameter. P. . . hsin 2  0 cos2 0 . (21. pastopnjadvoosnosti.Venacbi(19)smovpeljalitrojicoortonormalnihvektor. jev(n;e 1 ;e 2 ),kidolo . cajolastnisistemtenzorjaQ:nimenujemodirektor,pa e 1 sekundarnidirektoroziromadirektordvoosnosti. Razsirjenipovzetek(AbstractinSlovene. . Dinamikanematskegadirektorj. PredstavilibomoEricksen-Lesliejevoteorijo|hidrodinamicnoteorijonematskeg. direktorja.Numericnobomoobdelaliprocespreklapljanja/relaksacijedirektorj. vmagnetnempolju.Ogledalisibomoosnovnemehanizmenastankatokazarad. vrtenjadirektorjainnjegovegapovratnegavplivanadirektor.Relaksacijostoko. bomoprimerjalispoenostavljenimprimerombreztoka. Ericksen-Lesliejevateorij. Grezaposebniprimersplosnihenacb(14)in(15),kojeureditveniparameterdi. rektorn|enotskivektorssimetrijon=..n. GostotoprosteenergijevzunanjemmagnetnempoljuzapisemopoFrankuko. [46{48],[49,pp.102,119. 1. 2 . 2 . f. . K 11 (rn) 2 + . K 22 [n(rn)]+ . K 33 [n(rn)]..  a  0 (nH) 2 ;(22. 222. kjersoK 11 ,K 22 inK 33 temperaturnoodvisneelasticnekonstantezapahljacno. zvojnoinupogibnodeformacijodirektorja,Hjejakostmagnetnegapolja, a p. razlikamedmagnetnimasusceptibilnostmavsmerehvzporednoinpravokotnon. direktor.Vpriblizkueneelasticnekonstante,tudienokonstantnempriblizku,s. izrazpoenostavi. . f one = K(rn) 2 . (23. . pricemersenismomenilizapovrsinskeprispevke. Generaliziranoelasticnoinmagnetnosilonadirektordobimoz(9). . @f@. h e. . =..+@ . . (24. @n . @(@ j n i . Viskoznageneraliziranasilaslediizsplosnelinearnezveze(2.37)medsilamiintokov. [50,p.142]. ..h v = 1 N+ 2 An. (25. kjerje 1 = 3 .. 2 rotacijskaviskoznost, 2 = 3 + 2 = 6 .. 5 , . pas. Lesliejeviviskoznostnikoe cienti[49,p.206].Njerelativnisubstancialnicasovn. odvoddirektorjagledenavrtenjetekocine,en.(4.7).Zaradivezi=1jetrebaob. n 2 siliprojiciratipravokotnonadirektor,takodajenakratkozapisanaenacbagibanj. . h em +h . =0. (26. ?. PosplosenaNavier-Stokesovaenacba. ". @. +(vr)v=..rp+r( v + e );(27. @. v. Razsirjenipovzete. kjerjegostotainptlak,vsebujedvaprispevkaknapetostnemutenzorju.Viskozn. sledipoenacbah(2.35)in(2.36),[50,p.142].  . = 1 n n(nAn)+ 2 n N+ 3 N n. 4 A+ 5 n (An)+ 6 (An) n. (28. elasticnipapoenacbi(11),[49,p.152]. @.  . =. (29) ij @ j n k . @(@ i n k . Tlakvenacbi(27)dolocimotako,dazadostimopogojunestisljivosti(16). ZnacilnikrajevniskaliproblemastavelikostceliceLinmagnetnakoherencn. dolzina[49,p.123. . 1K 11  m =. (30. H 0 j a . znacilnacasapastarelaksacijskicasdirektorskegapolj. . K 1  . = . (31. 1. inrelaksacijskicashitrostnegapolj. L . .  0 =. (32. . zakateraveljaocena(parameternestacionarnostitoka. L 2 .. K 1.  0 ==L 2 = 2 10 ..6 . (33. .  . . m . . Adiabatnaaproksimacijazahitrostnopolje,kjerzanemarimocasovniodvodvenacb. (27),jetorejupravicena.OcenazaReynoldsovosteviloj. LK 1. Re=L= m 10 ..6 . (34. 2 .  . . torejlahkozavrzemotudinelinearniadvekcijskiclenven.(27). Obstaja.. setretjiznacilnicas,tojerelaksacijskicastemperaturnegapolj. c p l .  Q =. (35. . kjerjelznacilnadolzinatemperaturnihnehomogenosti,c p speci cnatoplotnaka. paciteta,patoplotnaprevodnost.Primerjavacasovd. Kc .  Q ==. (36. 1 . karjeredavelikosti510 ..4 .Ocenajesplosnainveljatudi,koimamoopravka. defekti.Torejlahkoresvednoprivzamemo,dajetemperaturakonstantna. Razsirjenipovzetek(AbstractinSlovene. vi. Obdelaniprimer. Prviobdelaniprimerjedvodimenzionalen(slika4.1).Magnetnopoljele.. zivy-smeri. Privzamemomocnosidranje,ssmermirazvidnimisslike4.1. Oglejmosimehanizmenastankatoka.Direktorparametrizirajmoskotomn. (cos';sin';0).Priokvirniobravnavijepotrebnoupostevatisamoviskoznosilo. kijopodajaclenskoe cientom 2 .Prispevektegaclenalahkorazdelimonadv. dela|silo,kijeodvisnaodgradientakotnehitrosti!vrtenjadirektorja,insilo. kizavisiodgradientadirektorskegapolja.Prvonajlep.. sevidimopri'=0. . @. f 1 = 2 0;. (37. @. Tasilajetorejpravokotnanadirektor,njenavelikostpajesorazmernazodvodo. !vsmeridirektorja,nr!.Drugosilopoglejmovprimerur'=(' x ;0). f 2 =.. 2 !' x (cos2';sin2'). (38. Velikosttesilejeodvisnaleod!jr'j,njenasmerpajetaka,dazgradiento. r'oklepadvakratvecjikotkotdirektor.Pazitijepotrebnonanegativnipredzna. parametra 2 innato,dajesmersilodvisnaodpredznaka!. Sedajsioglejmose,kaksenjevplivtokanadirektor.Tokovnopolje,kiustrez. homogenemuvrtenju(W=60,A=0),povzroci,dasetudidirektorvrtienako,seved. . cenanjnedelujejodrugesile.Tokovnopolje,kiustrezacistemudeformacijskem. toku(W=0,A=60),pasku.. saporavnatidirektorvtistilastnismeriA,kiustrez. raztegu.Vprimerustriznegatoka,kijevsotaobehpravkaromenjenihtokov,enacb. (26)d. . 1 2 '_=.. cos2'+1. (39. 2 . kjerjevelikoststriznehitrosti,kot'pajemerjengledenasmerhitrosti,slika4.2. Stacionarnaresitevobstajale, . cejej 2 = 1 j>1,torej . ceje 3 <0,inseglas. j' 0 j1. (40. sajje 2 = 1 ..1.Topomeni,dasevstriznemtokudirektorpribliznoporavn. ssmerjohitrosti.Resitevs' 0 >0jestabilna,tistas' 0 <0panestabilna.Z. nematikMBBAkot' 0 zna.. sapriblizno' 0 7A.Opozoritijetrebanato,das. direktorktemukotuvrtivnasprotnismeriurinegakazalcalezaj'j0,a.. sevednomocno,= m 1,veljaocena,dasehitrosthidrodinamicneg. tokazmanjsujekot1..3= m ,stempatudinavortokanadirektor. Zdodatniminumericnimiracunismougotovili,daoblikacelicenimaodlocilneg. vplivanadinamiko, . cejelevelikostcelicevposameznihsmerehpribliznoenaka.  Cetorejkvadratnadomestimoskrogom,nebovelikihsprememb,cistodruga . cep. je, . cecelico,znatnoraztegnjenovx-smeri,nadomestimostako,kijeraztegnjena. y-smeri. Dinamikavektorskegaureditvenegaparametr. Izpeljalibomodinamicneenacbezavektorskiureditveniparameterc.Grezapos. plositevEricksen-Lesliejeveteorijezdodatkomnehidrodinamicneprostostnestopnj. |dolzinevektorja.Opozoritijetreba,dajeEricksen-Lesliejevateorijavektorsk. teorija,zatojolahkokonsistentnoposplosimolenapopolnvektorskiureditvenipa. rameterinnenatenzorskega.Obravnavalibomosplosentridimenzionalniprimer. dvodimenzionalnarazlicicapaboprislapravpriopisutankega lmasmektika-C. Gostotaprosteenergij. Osredotocilisebomonahomogeniinelasticnidelgostoteprosteenergijef(c;rc). 1 2 1 4 . f= Ac+ Cc+ . L ijkl (@ i c j )(@ k c l ):(41. 24. A 0 Homogenaclena,kjerveljaA=A 0 (T..T 0 ),>0,C>0,opisujetafaznipreho. . indolocataravnovesnovelikostvektorjac,c 0 =..A=C.Velasticnidelvkljucim. Razsirjenipovzetek(AbstractinSlovene. i. samoclene,kvadratnevprvihodvodih,nepaclenovzdrugimiodvodiL ijk @ i @ j c k . kiprinesejosamododatnepovrsinskeprispevke. A A . L PoiskatijetorejtrebamatrikoL ijkl .Zahtevalibomo,dajeprostaenergijain. variantnanainverzijo(r!..r,c!..c),karpomeni,damorabitiL ijkl pose. bejinvariantnanatooperacijo.Polegtegamorazado. scatipermutacijskisimetrij. ijkl =L klij .MatrikoL ijkl smemosestavitileizkomponentvektorjactermatri. ik in ijk .Posamezniprispevkisozbranivtabeli5.1.Vpeljalismofundamentaln. elasticnekonstanteL i ,kisoneodvisneoddolzinevektorjac.  ClenzL 1 jeizotropeninvsedeformacijepoljacobravnavaenako.ClenizL 2 . L 4 inL 9 ustrezajopahljacni,zvojni,oziromaupogibnideformaciji,clenzL 3 p. jepovrsinski.Ostaliprispevkisonenicelnile, . cesespreminjavelikostvektorjac. PosebejzanimivastaclenazL 6 inL 7 ,kiustrezatasklopitvimedspreminjanjemve. likosticinpahljacnooziromaupogibnodeformacijo,slika5.1.Primerjavazizrazo. (22)pove.. zeFrankoveelasticnekonstantesfundamentalnimikonstantamiL i . . K 11 =c 2 L 1 +c 2 L 2 . (42. c 2 +c 4 . K 22 =L 1 L 9 . (43. c 2 +c 4 . K 33 =L 1 L 4 . (44. pricemersmodolocilitudiodvisnostFrankovihkonstantodvelikostivektorjac. najnizjemredu. Sklopitevstoko. .  Najtimoramoizrazzaviskozninapetostnitenzorinviskoznogeneraliziranosilon. vektorc,karpomeni,damoramodolocitimatrikeS,M,R,C,DinBvenacba. (2.35)-(2.37)zlastnostmi(2.39).Tuditukajzahtevamo,dajegostotaentropijskeg. izvirainvariantnanainverzijo,torejmorajobitimatrikeS,M,RinBsodevc,. inDpalihi.MatrikesmemosestavitileizkomponentvektorjactermatrikA ik i. ijk .Prispevki,kipodajajodisipacijovizotropnitekocini,sozbranivtabeli5.2. ostalipavtabeli5.3.Vpeljalismofundamentalneviskozneparametre i ,kisospe. neodvisniodvelikostivektorjac. Zahtevatimoramo,dapritogirotacijisistemanidisipacije(2.38)insil(2.35). (2.37).Simetricniinantisimetricnidelviskozneganapetostnegatenzorjastatak.  . . i. = 0 A ij + 1 (A ik c k c j +A jk c k c i )+ 2 A kl c k c l c i c j . . 1  4 (N i c j +N j c i )+ 6 c k c_ k c i c j . .  . . . i. = 3 (N i c j ..N j c i )+ 4 (A ik c k c j ..A jk c k c i );(45. 2. viskoznageneraliziranasilanavektorcp. ..h v = 3 N i + 6 Ac j c k c i + 9 c j c_ j c i ;(46) i + 4 A ij c jjk kjerj. N i =c_ i +W ij c . (47. relativnisubstancialnicasovniodvodvektorjacgledenavrtenjetekocine. . Razsirjenipovzete. PrimerjavazizraziEricksen-Lesliejeveteorije(4.13)in(4.6)pove.. zeLesliejev. viskoznostnekoe ciente i sfundamentalnimikoe cienti i . 4 = 0 . c 2 5 + 6 = 1 . c 4 1 = 2 . (48. c 2 1 = 3 . c 2 2 = 4 . kjerje 1 = 3 .. 2 in 2 = 3 + 2 kotobi . cajno.DolocilismoodvisnostLesliejevi. koe cientovodvelikostivektorjacvnajnizjemredu. Vsplosnemvektorskemprimeruviskoznesiledolocatadvaparametrave . c, 6 i.  9 ,kistapovezanazdisipacijo,kadarjecvzporedensc.Pratakoprispevekclena _vz 4 hgeneraliziranisilizdajnivecomejennasmer,pravokotnonac. Defekt. Nakratkobomospregovoriliotockovnihdefektihvektorja/direktorjavdvodimen. zionalnemsistemuinolinijskihdefektihdirektorjavnematiku.Poenostavljen. lahkorecemo,dajedefektnezveznostalinede niranostureditvenegaparametran. nekimnozicitockvprostoru|tocki,krivuljialiploskvi.Sevedapav zicne. sistemunikolinesrecamonezveznosti.Vnematiku,naprimer,imamoopravka. nezveznostjole,doklervztrajamopridirektorskemopisu,kakorhitropauporabim. celotentenzorskiureditveniparameter,dobimozvezneresitve[61{63].Negleden. topajepojemdefekta.. sevednosmiseln,kerimale-tadaljnosezneposledicezapolj. ureditvenegaparametra|defektlahkodobrode niramo,cetudisplohnepoznam. strukturenjegovegajedra.Vtanamensizamislimozanko,kijosklenemookro. sredi. s . cadefekta,takodapotekapoobmocju,kjerveljadirektorskiopis(slika6.1). Koseponjejenkratsprehodimo,direktoropi.. sekot,kimorabitizaradizveznost. direktorskegapoljainsimetrijen=..nveckratnik,=2n.Pravkarsm. de niraliovojnosteviloalimocdefektan,kistopoloskegavidikadefektpopolnom. doloca.  .  3 n=0; ;1; ;::. (49. 2. Pritemjeslozatockovnidefektvnamisljenemdvodimenzionalnemnematikual. pazapravilinijskidefektvtrehdimenzijah. Defekti,kijihlahkozzveznotransformacijopretvorimoedenvdrugega,so. topoloskemsmisluekvivalentni.Torejtaki,kijihlahkozveznotransformiramo. brezdefektnostrukturo,splohnisodefekti.Vdvodimenzionalnemprimeru,koj. direktorde nirannaravnini,vsaovojnastevila(49)oznacujejorazlicnedefekte,sa.  zveznetransformacijemednjimineobstajajo.Cebibilureditveniparametervekto. zn6..n,stevilskmoDruga . cejevtrehdimenzijah. =bibiledovoljeneleceloeci.Ta. lahkovsecelostevilskedefektestakoimenovanimpobegomvtretjodimenzijo[68,69. pretvorimovbrezdefektnostrukturo.Velja.. seve . c:vsakemudefektulahkozzvezn. transformacijumocspremenimozacelostevilo.Topomeni,davnematikuobstaj. leentopoloskidefekt,tojedefektzmocjo1=2. Razsirjenipovzetek(AbstractinSlovene. x. Tockovnidefektiv2Dprimer. Ogledalisibomokon guracijoinprostoenergijotockovnihdefektovdvodimenzi. onalnegadirektorjavenokonstantnempriblizku,en.(23).Vsiizraziveljajotud. zaravnelinijskedefekte;tiste,kipodajajoprostoenergijo,vtemprimerupa razumemokotdolzinskogostotoprosteenergije.Obparametrizacijin=(cos;sin. seravnovesnipogojzadefektssredi. scemvizhodi. scuglas. r 2 =0. (50. Resitevsmebitiodvisnaleodpolarnegakota. . =n+ 0 =narctg + 0 ;n=0; 1 ;1; 3 ;:::;(51. x 2. kjerje 0 prostiparameter.Polcelostevilonjemocdefekta.Deformacijskaprost. energijatestrukturej. 2. ! . ! 2 . Z . Z 2 K@@ 2 . 45 F d =rdrd+=Knln;(52. 2r. . @x@yr . kjerjeRvelikostvzorca,r 0 pamikroskopskadolzina,prikateriprenehaveljat. direktorskiopis.Vprvempriblizkuvpeljemoizotropnojedrozradijemr 0 ,kis. takojnatonadaljujezdirektorskimpoljeminravnovesnovrednostjoskalarneg. ureditvenegaparametra.Prostaenergijajeizotropnegajedrajetak. F c =r 2 f. (53) 0 kjerjefrazlikagostotprosteenergijeizotropneinurejenefaze.Zminimizacij. celotneprosteenergijeF d +F c dolocimoradijjedra. . Kn . r 0 =. (54. 2. kijetakosorazmerenzmocjodefektainjevelikostnegaredanematskekorelacijsk. dolzine(7.18).Celotnaprostaenergijadefektajekoncn. 2 . 1. . F=F c +F d =nK +ln. (55. 2r .  Ceimamoopravkazvecimidefekti,dobimoresitevzaradilinearnostiravnovesn. enacbe(50)karssestevanjemposameznihresitev(51). XX y..y . =(n i  i + 0i )=n i arctg+ 0 :(56) 0 i. x..x . Prostaenergijadvehdefektovnarazdaljirje[65,p.529. . F=F 1 +F 2 +2Kn 1 n 2 ln. (57. . xi. Razsirjenipovzete. Prvaclenastaprostienergiji(55)posameznihdefektov,tretjipapredstavljain. terakcijskoprostoenergijo.Vidimo,dasedefektazmocmiistegapredznakaodbi. jata,defektazmocminasprotnihpredznakovpaprivlacita.Vposebnemprimer. n 2 =..n 1 jeprostaenergij. 2 . 1. . F=2nK +ln;n=jn 1 j;r 1 =r 2 =r 0 ;(58. 2r . takodaseznebimologaritemskedivergencevodvisnostiodvelikostivzorca.. splosnemsebododefektizmocminasprotnihpredznakov(nenujnoenakimipoab. solutnivrednosti)zdruzevali,sajbonatanacinprostaenergijamanjsa.Nasprotn. pajeugodno, . cedefektzvelikomocjorazpadenavecmanjsih,takodasetipote. oddaljijodrugoddrugegainzmanj.. sajoprostoenergijo. Anihilacijadisklinacijskihlinijvnematik.  Cezelimostudiratistatikoalidinamikodefektovvnematiku,semoramoposluzit. popolnegatenzorskegaopisanematskefaze.Zavkljucitevhidrodinamike,kijo. direktorskemopisuobravnavamovokviruEricksen-Lesliejeveteorije,potrebujem. tenzorskorazlicicoteteorije[89,90,92]. Resilibomoproblemanihilacijeravnihdisklinacijskihlinijmo . ci1/2vne. matiku,pricemerbomoizhajaliiztenzorsketeorije[92].Vkljucilibomosamotist. disipacijskeclene,kivdirektorskemopisuskonstantnostopnjoureditvepreidejo. Lesliejeveclene.TakoboviskoznihparametrovtolikokotpriLeslieju,znjimip. bodopreprostolinearnopovezani. Dinamicneena cb. GostotoprosteenergijevodvisnostiodQzapisemovpriblizkueneelasticnekon. stante[10,p.156]. 111. ) 2 f=AQ ij Q ji +BQ ij Q jk Q k. +C(Q ij Q ji +L(@ i Q jk )(@ i Q jk ):(59. 234. Dabilocilimedpahljacnoinupogibnodeformacijo,bimoralivkljucititudielasticn. clene,kubicnevQ[99].Euler-Lagrangevaenacbazafunkcionalprosteenergij. . F=dV[f(Q;rQ)..Q ii .. i  ijk Q jk ];(60. pricemersmozahtevalisimetricnostinbrezslednostQ,namdahomogeniinelasticn. delgeneraliziranesilenaureditveniparameterQ. @. h h. . i. =L@ k Q ij ..+A ij + k  kij . (61. @Q i. Lagrangeovihmultiplikatorjevseznebimo, . ceenacbo(61)projiciramonasimetricn. inbrezslednipodprostor(odstejemonjensimetricniinizotropnidel).Elasticn. Razsirjenipovzetek(AbstractinSlovene. xii. napetostnitenzorjepoenacbi(11. @.  . ij =..@ j Q. (62) kl @(@ i Q kl . ViskozninapetostnitenzorinviskoznageneraliziranasilanatenzorQsta[92. .  . = 1 Q ij Q kl A kl + 4 A ij + 5 Q ik A kj + 6 Q jk A ki + 2 N ij .. 1 Q ik N kj + 1 Q jk N ki ;(63) ij . ..h . = .  2 A ij + 1 N ij . (64) ij . kjerj. _ . N ij =Q ij +W ik Q k. ..Q ik W kj . (65. _ . Q i. =@Q ij =@t+(vr)Q i. pajesubstancialniodvod.AinWstasimetricnii. antisimetricnidelgradientahitrosti.Medviskoznimikoe cientiv(63)in(64)velj. zveza 2 = 6 .. 5 . GibalnaenacbazaureditveniparameterQjeravnovesjebrezslednegasimetricneg. dela(?)generaliziranihsil. n. h he +h . =0. (66. . zvezm. Q ii =0; ijk Q j. =0. (67. HitrostnopoljejedolocenosposplosenoNavier-Stokesovoenacbo(15)inpogoje. nestisljivosti(16),pricemerjenapetostnitenzorpodanzenacbama(62)in(63). Znacilnakrajevnaskalaproblemajenematskakorelacijskadolzina(tipicnozna.. sanekajnanometrov. . 3. =. (68. 2f 00 j S. f 00 j S0 kjerjevrednostdrugegaodvodagostoteprosteenergijeposkalarnemured. itvenemparametrupriravnovesnivrednostile-tega.Znacilnicas,kiimapome. relaksacijskegacasaureditvenegaparametranakrajevniskaliinzna.. satipicn. nekajdesetnanosekund,paj. = 1  2 =K= 1  2 =L. (69. kjerje 1 direktorskarotacijskaviskoznost,Kpadirektorskaelasticnakonstanta. Rezultat. Slika7.2kaze,dazaradihidrodinamicnegatokaanihilacijapotekahitrejei. asimetricno,pricemerjedefektspozitivnomocjohitrej.. sioddefektaznegativn. mocjo.Nasliki7.3pavidimo,datokvplivapredvsemnadefektspozitivnomocjo. medtemkohitrostnegativneganitakomocnospremenjena.Izka.. zese,datoknade. fektevnajvecjimerivplivaprekadvekcije.Rezultatejemockvalitativnopojasnit. zupostevanjempoglavitnihprispevkovknapetostnemutenzorju,kizenejotok:t. xi. Razsirjenipovzete. soelasticninapetostnitenzorincleniz 1 in 2 vviskoznemnapetostnemtenzorju. Ssimetrijskimiargumentilahkopokazemo,dajetok,kigapoganjaelasticnitenzor. simetricenzaobadefektainjusevedazeneskupaj,medtemkojetok,kigapoganj.  1 clen,tocnoantisimetricen,njegovasmerpajeodpozitivnegadefektaknega. tivnemu,slika7.6.Kpospesitvianihilacijetorejnajboljprispevajoelasticnesile,.  asimetrijipaviskozniclenz 1 .Seve . c,prispevkasezapozitivnidefektkonstruk. tivnosestejeta,medtemkosezanegativnegaodstejeta,scimerpojasnimomocnej.. sitoknamestuprvega. Primerjavaslik7.4in7.5pokaze,dastaadvekcijskiprispevekkhitrostidefekt. inprispevekzaradireorientacijeureditvenegaparametraenakihvelikostnihredov. Primajhnihmeddefektnihrazdaljah(nekajkorelacijskihdolzin)prevladadrugi,pr. vecjihpajeadvekcijapomembnej.. sa(slika9.10).  Clenvviskoznemnapetostnemtenzorjuz 2 nimaposebnesimetrijegledespre. membepredznakadefektov,razlikujepatudimedkon guracijami,kiselocij. pohomogenirotacijidirektorskegapolja,slika7.1(elasticniin 1 clenison. toneobcutljivi).Venokonstantnempriblizkubreztokasetaksnekon guracij. obna.. sajoenako,stokompane,slika7.2,zakarjenajprejodgovoren 2 clen. Zakljucimolahko,dajezaasimetrijoinpospesitevanihilacijepomembn. razmerje 1 = 4 ,insicerzvecanjemrazmerjahidrodinamicniucinkinara. s . cajo.Ra. zlikavdinamikikon guracij,kiserazlikujejopohomogenirotacijidirektorja,p. nara. s . cazvecanjemrazmerja 2 = 1 .Pasivniviskoznicleniz 1 , 5 in 6 vkvalita.  tivnempogledunisopomembni.Cespremenimoelasticnokonstanto,setopozn. samopriznacilnemcasuprocesa,takodazreskaliranjemcasovnedimenzijeanihi. lacijapotekaenako. Anihilacijadefektovv lmihSm. UreditveniparameterSmCfaz. VSmAfazijedirektor,kipodajapovprecnosmermolekul,pravokotennasmekticn. plasti,vSmCfazipajenagnjen.Zeksperimentalnegavidikajezelopripravensiste. zaopazovanjedinamikedefektovprostostoje . ci lmSmC,debellenekajsmekticni. plasti.Projekcijadirektorjanasmekticnoravninojedvodimenzionalnivektor. takoimenovanic-direktor,kijeprimerenureditveniparameterSmCfaze.Tako. jetrebaopozoriti,dajec-direktorimenunavkljubvresnicivektor,c=6..c.Nje. govavelikost(nagib,amplituda)kondenzirainpostaneodnicrazlicnaobprehodui. SmAvSmCfazo,medtemkojesmer(faza)hidrodinamicnakolicinazGoldstoneov. ekscitacijo. Topoloskidefektic-direktorjasodisklinacijskelinijescelimiovojnimistevili. vrtinci.Daseizognemosingularnostivsredi. scudefekta,moramodovoliti,das. spreminjavelikostc,takodasesistemlahkozate . cekSmAfazi. Poudaritijepotrebno,dastaureditvenaparametraSmCinnematskefaze. osnovirazlicnaindalahkoSmCsistem|sspodnjimiomejitvami|prevedemon. XY-model,nematikapane.Zatorejsezdi,daimadinamikavrtincevvSmCsistem. zelosplosnoveljavo.Opozoritimoramo.. senato,dasodisklinacijescelimimocm. Razsirjenipovzetek(AbstractinSlovene. x.  vnematikunestabilneinrazpadejonavsaksebibe.. ze . ce1=2disklinacije.Cezelim. studiratidinamikovrtincev,semoramonujnozate . cikvektorskemuureditvenem. parametru. Dinamicneena cb. IzhajamoizhidrodinamicneteorijeCarlssona,Leslieja,StewartainClarkazaSm. tekocekristalnofazo[108,109],kiprivzamesmekticneplastiskonstantnodebelin. terkonstantenpovprecninagibmolekul.Zaopisdefektovjetrebadovolitivsa. spreminjanjenagiba,torejmoramoteorijonekolikoposplositi.Podrugistranipaj. bomobistvenopoenostavili,sajbomoobravnavalisistemzvariacijamivsamodve. dimenzijahinzravnimismekticnimiplastmi.Takoizsistemadinamicnihkolici. izlocimonormalonasmekticneravnine,kinajbokar. ^e z .Kerimamoopravka. prostostojecimtankim lmom,vpeljemodveneodvisnikrajevnispremenljivkixi. y,zr=. ^e x @ x +. ^e y @ y ,pravtakopatuditokomejimonaravnino,v=v x . ^e x +v y . ^e y . Stemsmona. ssistemprevedlinaXY-model.Izka.. zese,dasevtemprimer. teorija[108,109]prevedenaEricksen-Lesliejevoteorijozanematskiteko . cikristal. Dodatnobomomoraliposkrbeti.. sezaspreminjanjenagibamolekul.Takosm. prispelinatancnododvodimenzionalnerazlicicedinamikevektorskegaureditveneg. parametra.Vdvehdimenzijahse,razenodsotnostizvojnedeformacije,nespremen. nicdrugega. Povrsinskeelasticneclenebomospustili,pravtakopatudivecinoprispevko. iztabele5.1,sajzanjenepoznamoelasticnihkonstant.Razlikovatizelimoleme. pahljacnoinupogibnodeformacijo,kerstalahkozaradispontanepolarizacijevSm. energijskozelorazlicni[110{112].Gostotoprosteenergijetakozapisemoko. 1 2 1 4 1. f= Ac+ Cc+ B 1 (rc) 2 + B 2 (rc) 2 :(70. 242. Primerjavazelasticnimicleniiztabele5.1pokaze,da,nemenecsezapovrsinsk. prispevke,velj. B 1 =L 1 ;B 2 =L 1 +L 2 . (71. karpomeni,dasmoclenezL 4 -L 8 spustilikonsistentno.Opozoritizelimo,dast. elasticnikonstantiB 1 inB 2 neodvisniodnagiba.Euler-Lagrangeovaenacbaz. . funkcionalprosteenergijeF=dVf(c;rc)dahomogeniinelasticnidelgeneral. iziranesilenavektorc. 2 @ 2 h i =..(A+Cc)c i +B 1 j c i +(B 2 ..B 1 )@ i @ j c j :(72. Elasticninapetostnitenzordobimopoenacbi(2.26)iz(70). @.  . =. (73) ij @ j c k . @(@ i c k . Neokrnjenateorija[109]zajema20viskoznihclenov,odkaterihpavprimer. ravnihsmekticnihplasti,ravninskegatokainodsotnostigradientovvsmerinor.  malenaplastiostanejozgoljLesliejevi.Ceupostevamo.. sespreminjanjedolzinec. xv. Razsirjenipovzete. nampravenacbe(45)in(46)podajajotocenopisdisipativnihsil.Kljubtemus. bomoomejilisamonastandardneLesliejeveprispevke,katerihviskozneparametr. poznamo,inspustiliclenesparametroma 6 in 9 .Viskozninapetostnitenzorj. tak.  . = 0 + 2 c k c l A k c i c j + 1  3 (N i c j ..c i N j )+ i. A ijl . 111  4 (N i c j +c i N j )+( 1 .. 4 )c i A jk c k +( 1 + 4 )A ik c k c j ;(74. 22. viskoznageneraliziranasilanavektorcp. ..h v =+ 4 =_(75) i  3 N i A ij c j ;N i c i +W ij c j ; kjerjec=@c=@t+(vr)csubstancialniodvodvektorjacgledenavrtenje _casovnitekocine,AinWpastasimetricnioziromaantisimetricnidelgradientahitrosti.  Cetudistaenacbi(74)in(75)natancnotaki,kotvEricksen-Lesliejeviteoriji,j. pomembnarazlikata,datukajviskozniparametrinisoodvisniodkondenziran. kolicine|velikostivektorjac,medtemkoLesliejeviso,en.(48). Zavedatisemoramo,dasmosspreminjanjemvelikosticnaravnoposplosil. Ericksen-Lesliejevoteorijozaprimerneenotskegavektorja,scimersmotudiav. tomatskodolocilipravilneodvisnostisilodnagibamolekul.Nasprotnozanematik. seletenzorskateorijadapraveodvisnostisilodskalarnegaureditvenegaparame. trainstopnjebiaksialnosti.Naslismotorejsistem,zakateregaEricksen-Lesliejev. teorijatocnovelja. Gibalnaenacbazavektorcjenakratk. h+h v =. (76. inskupajsposplosenoNavier-Stokesovoenacbo(15)inpogojemnestisljivosti(16. predstavljasistemtrehparcialnihdiferencialnihenacb,kiopisujejodinamikomod. eliranegaSmCsistema.Spetvpeljemoznacilnodolzino,kijetokratkorelacijsk. dolzinanagibamolekul. . . B 0 . . (77. (A+3Cc 2 ) 0 tipicnonekajnanometrov,inkarakteristicnica.  3  . =. (78. . B .  kjerjeB 0 =(B 1 +B 2 )=2.Casjerelaksacijskicasdeformacijvektorjacn. dolzinskiskali,aliekvivalentno,casprilagajanjavelikostivektorjac,tipicnoneka. desetnanosekund. Rezultat. Najprejpoglejmoprimerzizotropnoelasticnostjo,B 1 =B 2 .Anihilacijapotek. kvalitativnoenakokotprinematskihdefektihspolovicnomocjo,slika8.3.Hidrodi. namicnitok(slika8.2)spetpospe.. siprocesinpovzro . ciasimetrijovgibanjudefek. tov.Tok,kigapoganjajoelasticnesile,dajeglavniprispevekkpospesitvi,tok,kig. Razsirjenipovzetek(AbstractinSlovene. xvi. poganjavrtenjeureditvenegaparametra(natancnejeclenz 3 vviskoznemnapetost. nemtenzorju),pakasimetriji(slika8.5).Tokjemocanobpozitivnemdefekt. insibakobnegativnem,kerseomenjenatokovnaprispevkaenkratkonstruktivno. drugicdestruktivnosestavita.Hitrostobehprispevkovgledenahitrostgibanj. defektasamozaradireorientacijec-direktorjajesorazmernaz 3 = 0 .Asimetrij. medkon guracijami,kiserazlikujejozahomogenorotacijovektorskegapoljac. spetprina.. savglavnemviskozniprispevekclenaz 4 ,takodasetaasimetrijave . ca. vecanjemrazmerja 4 = 0 .Ostali(pasivni)viskozniclenikvalitativnonisopomembni. Reskaliranjeelasticnihkonstantgledenaviskoznostispetspremenisamoznacilnica. procesa.Vmanj.. simerikasimetrijiprispevatudielasticnaanizotropija,kotpoka.. zeslika8.6. Razpaddefektovscelimicmi mo Brezupostevanjahidrodinamikebomoresilisplosenproblemstabilnostineskoncnih. ravnihdisklinacijskihlinijscelimimocmivnematiku,takodabomopoiskalilastn. resitveperturbacijokrogtehstruktur.Vnelinearnemrezimubomopreucilivpli. hidrodinamikenarazpaddisklinacijezmocjo1terodbojnogibanjenastalegapar. enakihdefektovmo . ci1=2. Lineariziraniproble. Posluzimosecilindricnihkoordinat(r;;z)spripadajocimibaznimivektorji(. ^e r ;. ^e  ;. ^e z ). pricemerdisklinacijskalinijale.. zinaosiz.Venokonstantnempriblizku(59)jeprost. energijainvariantnanahomogenorotacijotenzorjaQ.Topomeni,daselastnisiste. tenzorjavrtikot = 0 +(s..1),kogremookrogdefektazmocjosvizhodi. scu,pr. cemerje 0 prostiparameterdefektnestruktureinpredstavljakotmeddirektorje. pri=0inosjox(zaradialnidefektje 0 =0,zatangencialnegapa 0 ==2). Odkotajeodvisnasamoorientacijalastnegasistema,skalarneinvariantetenzorj. Qpane.Zaraditeposplosenecilindricnesimetrijejeproblemlastnihresitevmo dovoljenostavnoresiti. De nirajmo.. seenoortonormalnotrojicovektorjev(. ^e 1 ;. ^e 2 ;. ^e z ). . . ^e . cos sin . ^e r . . (79. . ^e . ..sin cos . ^e . takodaprineperturbiraniresitvi(imenujmojoosnovnostanje)lastnisistemtenzorj. Qpovsodsovpadastotrojico.Vpeljemo.. sepetortonormalnihbaznihtenzorjevT i . en.(9.2),inzapisem. Q(r;t)=a i (r;t)T i (r);i=..2;..1;0;1;2:(80. Osnovnostanjezaradisimetrijevsebujelekomponentia 0 ina 1 ,perturbacijepas. splosne. . q i (r)+x i (r;t);i=0;. a i (r;t). ;(81. x i (r;t);i=..1;2;... xviii Razsirjeni povzetek q0;1 sta komponenti osnovnega stanja, xi pa so komponente perturbacij, xi  q0;1. Komponenti osnovnega stanja zadoscata enacbam (9.6) in (9.7) in ju dobimo iz numericne resitve. Iz enacb moramo izlusciti le njun potek v blizini r = 0. Linearizirane enacbe za perturbacije pa tvorijo dva sistema: x_ 0 = r2x0 .. f0(r) x0 + f01(r) x1; (82) x_ 1 = r2x1 .. 4s2 r2 x1 .. 4s r2 @x..1 @ .. f1(r) x1 + f01(r) x0; (83) x_..1 = r2x..1 .. 4s2 r2 x..1 + 4s r2 @x1 @ .. f..1(r) x..1 (84) in x_ 2 = r2x2 .. s2 r2 x2 .. 2s @x..2 @ .. f2(r) x2; (85) x_..2 = r2x..2 .. s2 r2 x..2 + 2s @x2 @ .. f..2(r) x..2; (86) kjer je r2 Laplaceov operator v cilindricnih koordinatah, fi(r) pa so polinomi druge stopnje v komponentah q0 in q1, en. (9.15). Sicer preprosta odvisnost od koordinate z nas zaenkrat ne bo zanimala. Poudarimo se to, da za defekta z mocema s in ..s dobimo identicne enacbe, ce ustrezno popravimo bazne tenzorje: s ! ..s in T ..1;..2 !..T ..1;..2 ne spremeni enacb. Lastne resitve sistemov (82)-(84) in (85)-(86) iscemo z nastavkom 8> <> : x0 x1 x..1 9> => ; = 8> <> : R0(r) cos(m) R1(r) cos(m) R..1(r) sin(m) 9> => ; exp(..t); (87)  x2 x..2  =  R2(r) cos(m) R..2(r) sin(m) exp(..t); (88) kjer je m celo stevilo. Zaradi preglednosti smo izpustili prosto fazo v kotnem delu. Preostaneta lastna sistema za radialne funkcije Ri(r) z lastno vrednostjo : r2R0 +  .. f0(r) .. m2 r2 !R0 + f01(r)R1 = 0; (89) r2R1 +  .. f1(r) .. m2+4s2 r2 !R1 .. 4sm r2 R..1 + f01(r)R0 = 0; (90) r2R..1 +  .. f..1(r) .. m2+4s2 r2 !R..1 .. 4sm r2 R1 = 0 (91) in r2R2 +  .. f2(r) .. m2+s2 r2 !R2 .. 2sm r2 R..2 = 0; (92) r2R..2 +  .. f..2(r) .. m2+s2 r2 !R..2 .. 2sm r2 R2 = 0: (93) Resimo ju z metodo streljanja [54, p. 582]. Razsirjeni povzetek (Abstract in Slovene. xi. Razpaddefekt. Lastneekscitacije,kivodijodorazpadadefekta,zaradisimetrijevsebujejolekom. ponentex 0 ,x 1 inx ..1 .Zadefektzmocjo1najdemoenosamonara. s . cajo . colastn. resitev(<0),insicerprim=2,karustrezarazpadunadvadefektazmocjo1=2. sliki9.2in9.3.Vplivhidrodinamicnegatokanacasovnokonstantonara. s . cajo . ceeksc. itacijejepricakovanomajhen(manj.. siod5%)inpospe.. sinara. scanje.Izjavanicist. trdna,sajnismoupostevalivsehviskoznihprispevkov,polegtegajesamkoncep. hidrodinamikepritehdolzinskihincasovnihskalah(1nm,10ns)precejvprasljiv. Pridefektihzvecjimicelostevilskimimocminajdemovecnara. s . cajocihekscitacij. Ekscitacijez<0imajodiskretenspekterinsolokalizirane,spekteronihz>. pajezvezen.Takolahkonara. s . cajo . ceresitveprestevamo.Izka.. zese,dazavsa. topoloskodovoljenrazpadobstajavsajenanara. s . cajo . caresitev, . celenobenaodmo . cinastalihdefektovniprevelika.Resitveimajoznacilnokotnosimetrijo,doloceno. m.Vsplosnemdefektzmocjosrazpadenamdefektovzmocmi1=2,simetricn. razporejenihokrogdefektazmocjosm=2,slika9.4.Vserazpadnemoznost. defektovzs=2ins=3sozbranevtabelah9.1in9.2.Razpadsamona1=. defektejevednonajhitrejsi. Pobegdefekt. Vneomejenemsredstvulahkocelostevilskidefektipobegnejovnedeformiranostruk. turo,kateredeformacijskaenergijajenicelna.Poglejmotorej,kakojesstabilnos. tjonamajhneperturbacije.Tokratnastopatalekomponentix 2 inx ..2 ,priceme. pricakujemo,dabozapobegpomembnakomponentax 2 ,kiustrezavrtenjudirek. torjaizravnine.Prim=0seenacbi(92)in(93)resrazklopitainugotovimo,das. vseekscitacijex 2 nara. s . cajoce,hkratipatudilokaliziraneinzdiskretnimspektrom. Resitvex ..2 prim=0invseostaleresitveprim=60sopojemajoce.Izka.. zese,das. nara. s . cajo . ceekscitacije,kivodijodopobega,velikorazseznej.. seinstempocasnej.. seodonih,kiprivedejodorazpada.Zadefektzmocjo1jerazmerjecasovnihkonstan. okrog53.Torejbodefektrazpadel,predenmubouspelopobegniti. Vplivhidrodinamitoka cnega Oglejmosi.. sevplivhidrodinamikenadefektazmocjo1=2,kinastanetazrazpado. 1defekta.Tokratasimetrijeprigibanjusevedani,zatopaimatoktolikovecj. vplivnahitrostdefektov(slika9.7),sajobaprispevka,elasticniinviskozni(clen.  1 ),poganjatatokvistismeri.Vplivhidrodinamikejevecjiprivecjihrazmerji.  1 = 4 ,karjelepovidnotudinasliki9.8. Kervtemprimerunite.. zavzzacetnimpogojem(tukajjetokoncnostanje)ko. prianihilaciji,lahkozvemovecotem,kajsedogajashitrostjodefektovpriveliki. meddefektnihrazdaljah.Posebejzanimivjegraf9.10,kiprikazuje,kakoserazmerj. medadvekcijskohitrostjo(transportstokom)incelotnohitrostjodefektaspreminj. zrazdaljomeddefektoma.Razmerjezrazdaljonara. s . cainznatnoprese.. zepolovico. Hidrodinamicnegatokatorejnegrezanemarjati,.. seposebej, . ceupostevamodejstvo. x. Razsirjenipovzete. dassimulacijamizaenkratdosezemolemajhnemeddefektnerazdalje|nagraf. 9.10okrog80ali0.17m. Zaklju ce. Vdisertacijisempredstavilnekajproblemovdinamiketekocihkristalovzupostevanje. hidrodinamike,kismojihizbralizvidikaeksperimentalneinteoreticnerelevantnosti. nenazadnjepasevedatudizvidikaresljivosti. Relaksacijskeproblemesmov4.poglavjuobravnavalizuveljavljenoEricksen. Lesliejevoteorijonematskegadirektorja.Sluzilisopredvsemkotpripravazakasnej.. setezjepodvige.Zizbirodovoljkompleksnegeometrijesmovseenouspeliopozoritin. primere,kohidrodinamicnitokpovsemspremenicasovnirazvojsistema. Dinamicneenacbezavektorskiureditveniparameter,izpeljanev5.poglavju. potrebujemozaopisdefektovvsistemustemureditvenimparametrom,vnase. primerujebilto lmSmCfaze.Zizpeljavosmohkratipokazali,dajeEricksen. Lesliejevateorijanatancnoteorijazaenotskivektorskiureditveniparameterinni. nikakrsnizveziznematskimureditvenimtenzorjem. Zastudijdinamikedefektovvnematikujetakotrebazacetiznovainizdelat. tenzorskoteorijo.Le-tojepotemmocpoenostavitidodirektorske.Obratnapot,kje. biEricksen-Lesliejevoteorijo,vkateridirektornastopalinearno,razsirilistem,dab. dovolilivariacijoskalarnegaureditvenegaparametra,seneobnese.V7.poglavjusm. zokrnjenotenzorskoteorijoresilihidrodinamicniproblemanihilacijepararavni. nematskihdisklinacijskihlinij.Pokazalismo,dajezaasimetrijoprigibanjudefekto. odgovorenpredvsemtoknematsketekocine. Kljubeksperimentalnipripravnostivliteraturinismozasledilinobenihnu. mericnihstudijdinamikedefektovvSmC lmih.Edenodmoznihrazlogovj. zapletenostenacbzvelimistevilomsnovnihparametrov,povecinineizmerjenih.Pr. tembimoraliupostevati.. sespreminjanjedolzinec-direktorja.V8.poglavjusm. sevecinite.. zavizognili,stemdasmoobdodatnihpredpostavkahdinamicnoteorij. SmCfazepoenostavilidoEricksen-Lesliejeveteorije,sistemSmC lmapaprevedl. naXY-model,kateregadinamikoopisujejovektorskeenacbeiz5.poglavja.Pokazal. smo,dajevplivtokanaanihilacijoparadisklinacijzmocjo1kvalitativnoena. kotprinematiku. Vnematikujedisklinacijazmocjo1nestabilnainspontanorazpadenapa. enakih1=2disklinacij.Dabiraziskalizacetnistadijrazpada,smov9.poglavj. studiralidinamikoperturbacijravnihnematskihdikslinacijskihlinijscelimimocmi. Vpriblizkueneelasticnekonstantesmouspeliresititenzorski uktuacijskiprob. lemravnihdikslinacijskihlinijsplosnihcelostevilskihmoci.Naslismodvevrst. nara. s . cajocih uktuacij,odgovornihzarazpadnadisklinacijezmanjsimimocm. oziromapobegvtretjodimenzijo.Vobehprimerihjespekterdiskreten, uktuacij.  palokalizirane.Casovnakonstantaprvihjezaveckotredvelikostimanjsa,tore. disklinacijezvelikimimocmirazpadejo,.. sepredenjimuspepobegniti.Preverilism. tudivplivhidrodinamikenaodbojnogibanjedvehenakih1=2disklinacij,nastali. porazpadu,kijezaraditokavelikohitrejse. Razsirjenipovzetek(AbstractinSlovene. xx.  Cebisiodpredstavljenegamoralizapomnitileenostvar,najbotopomembnos. hidrodinamicnegatokapridinamikidefektovvtekocihkristalih.Pokazalismo,d. jeprispevekadvekcije(transportastokom)hgibanjudefektapovsemprimerljiv. prispevkomzaradireorientacijeureditvenegaparametra.Vprimeruizbireviskozni. parametrov,kiustrezajonematikuMBBA,jeprirelevantnihmeddefektnihrazdalja. advekcijacelopomembnejsa. xxi. Razsirjenipovzete. 1 Introduction Liquid crystals are mesophases between the liquid and solid phases, in the sense that they are more ordered than liquids, yet less ordered than solids. There exist many liquid-crystalline phases as there are many steps in which the translational and rotational symmetry of the liquid can be reduced to that of the solid. Microscopically, the required condition for a material to exhibit a liquid-crystalline phase is that it consists of elongated or disc-like molecules/particles. In thermotropic liquid crystals the order is controlled by the temperature, whereas in lyotropic liquid crystals it is controlled by the concentration of the liquid-crystalline material in a solution. Due to the ordering, liquid crystals exhibit anisotropic properties on the macroscopic level. The least ordered among liquid crystals is the nematic [1], which possesses a long-range orientational order of the molecules, Fig. 1.1. The average orientation of the molecules is speci ed by the director n, which is a part of the nematic tensor order parameter. The name \nematic" was invented by Friedel [2] in the early twentieth century. It originates from the Greek word for a thread, many of which can be observed between crossed polarizers due to line defects in the nematic. A more ordered phase is the smectic phase [3], which, if present, occurs at a lower temperature than the nematic phase. The name is again due to Friedel and comes from the Greek word for soap (smectics can form thin lms). Besides orientational order, the smectic possesses also an one-dimensional long-range translational order in the cast of a density wave. The surfaces of maximum density are called smectic layers or planes. In the smectic-A (SmA) phase the director n is normal to the layers, while in the smectic-C (SmC) phase occurring at a yet lower temperature the director is tilted with respect to the layer normal. One must point out that the notion of the translational ordering is di erent than in solid crystals, where the molecules/atoms are actually bound to crystal sites and can merely oscillate around them. In smectics, the molecules are not bound to the layers. Owing to the optical anisotropy, thermotropic liquid crystals are used in applications related to optics | liquid crystal displays (LCD's), optical switches, shutters, polarization rotators, tunable color lters, etc. On the other hand, lyotropic liquid crystals are widely used in chemical and food industry. The modelling of liquid crystal systems has come to life with powerful enough 7 . Introductio. (a)isotropi (b)nemati (c)smecti Figure1.1Schematicrepresentationof(b)thenematicand(c)smecti phases.Theaverageorientationofthemoleculesisspeci edbythedirec. torn,Eq.(3.10).Thesmecticphaseischaracterizedbyanone-dimensiona. periodicdensitymodulation. computers.Staticstructuresofcon nedliquidcrystalshavebeenstudiedthor. oughlyinthelasttwodecades;thesamecanbesaidforthestructuresofthedefec. cores.Dynamicstudieshavefollowednext,eitherassimulationsofappliedorap. plicableset-ups,orarisingfromthesheertheoreticalinterestindynamicprocesses. Mostfrequently,thedynamicsofthenematicliquidcrystals,includingthatofth. defects,hasbeenstudiedinthedirectordescription,neglectingthehydrodynami owentirely.WhilethedirectordescriptioniseAcientandperfectlyadequatefo. theproblemsnotinvolvinganydefects,theneglectofthe owisalwaysquestionable. Hence,inapropertreatmentofdefectdynamics,onemustbothusethecomplet. tensororderparameteraswellastakeintoaccountthehydrodynamicpartofth. problem.Theuseofthetensororderparameterdoesnotbringanysigni cantcom. plications|itonlyyieldsricherstructures.Thedrawbackisthatitintroduces. microscopiclengthscale,whichsetsanupperlimittothe(possiblymacroscopic. lengthscalesthatcanbereachedinasimulation.Ontheotherhand,theinclusio. ofthehydrodynamicsmakesthetreatmentdiAcult,bothconceptuallyandcompu. tationally.Theproblemsareparticularlydemandingiftheyinvolvemorethanjus. onespatialcoordinate,becauseinthiscasetheincompressibilityofthe uidmus. beensuredby ndingtheproperpressuredistribution. IntheThesis,westudythedynamicsofnematicandSmCliquidcrystals.Inpar. ticular,wefocusonthehydrodynamicphenomenaaccompanyingthetimeevolutio. oftheorderparameter.Moreprecisely,weareinterestedintheso-calledback o. e ects|thegenerationofthe uid owbymotionoftheorderparameter(e.g.. bythedirectorreorientation)andconversely,thein uenceofthegenerated owt. themotionoftheorderparameter.Inthe rstpartoftheThesiswestudydirecto. relaxationprocessesinliquidcrystalcellstriggeredbyexternal eldswitching[4,5]. One-dimensionalproblemsofthiskindwerestudiedinthe1970s(seetheIntro. ductiontoChapter4foramoredetailedreview).Ourgeometryismorecon ne. leadingtothedependenceontwospatialcoordinates.Thismakestheproblem. muchhardertosolverequiringinvolvedcomputationapproaches.Weshowtha. theback owcanbemorethanjustquantitativelyimportant|itcancauseth. Introductio. . switchingtooccurintwocharacteristicstepsratherthanjustinone. Thesecondpartisdevotedtothedynamicsofdefects,whichhasbeenth. primarychallengetous.Forthemotivationandashortreviewoftheprecedin. researchseealsotheIntroductiontoChapter7.Ourambitionhasbeentosolveaful. hydrodynamicannihilationproblemofadefect-antidefectpair.Forthispurposew. makeuseofthenumericalmethoddevelopedwiththeswitchingproblems,properl. modi edinordertobeabletodescribethedefects.Thedependenceontwospatia. coordinatesisaminimumfortheseproblems.Westudytwoliquidcrystalsystems. thenematicandtheSmCfree-standingthin lm,showingthatboththeannihilatio. [6,7]andrepulsionofdefectsarealwayssubjecttostrongback ow,whichspeed. uptheprocessesremarkably.Inthecaseoftheannihilation,itintroducesalsoa. asymmetryindefectmotion,i.e.,itmakesonedefectmovefasterthantheother. ThestructureoftheThesisisasfollows.InChapter2thedynamictheor. couplingtheorderparameterdynamicsandthehydrodynamicsisreviewed.Th. theoryiskeptgeneralinthisChapter,notassuminganyspeci cformoftheorde. parameter.Chapter3de nesthenematicorderparameterinarigorousmanner. illuminatingitfromthephysicalandmathematicalviewpoints.InChapter4th. Ericksen-Leslietheory|thedynamictheoryofthenematicdirector|ispresente. andappliedtotheswitchingphenomena.InChapter5thedynamictheoryfor. vectororderparameterrepresentingageneralizationoftheEricksen-Leslietheor. isderived.ThestartingpointofthederivationisthegeneraltheoryofChapter2. Chapter6providesthebasicsondisclinationdefectsinliquidcrystals,neededt. understandtheforthcomingChapters.InChapter7thetensorialdynamictheoryi. presentedandappliedtothepair-annihilationofdisclinationlinesinnematics.I. Chapter8thevectorialtheoryofChapter5isusedtostudythepair-annihilatio. ofvorticesinamodelledSmCthin lmsystembelongingtotheclassoftheXY. model.Finally,Chapter9isdevotedtothe(in)stabilityanddecayofdisclination. withintegerwindingnumbersinnematics. 1. Introductio. 2 Theory In this section, an outline of the dynamic theory of dissipative complex uids will be presented after an introductory discussion on the order parameter and the thermodynamic potential. At this stage the theory will be kept general, not depending on the speci c choice of the order parameter. This will appear convenient later on as diverse systems with di erent order parameters will be studied. 2.1 Order parameter and thermodynamic poten- tial Liquid crystals are ordered systems, the order of which emerges at a symmetry breaking phase transition. To describe the ordering, a mesoscopic quantity | the order parameter | is introduced, which must vanish in the high temperature phase and be nonzero in the ordered phase, depending on the ordering and re ecting its symmetry properties. As the system may be spatially inhomogeneous in general, the order parameter is a eld quantity. It is de ned as an average over the mesoscopic volume of the sample, which, ideally, is large enough to serve a well-de ned average, and small enough compared with the inhomogeneities to contain essentially a homogeneous portion of the sample. In dynamic studies, one is interested in nonequilibrium properties of the system. Departures from equilibrium are described by the order parameter taking a di erent value than the equilibrium one. Thus, the nonequilibrium properties of the system are to be related to the dynamics of the order parameter when out of equilibrium. Thermodynamic systems to be considered will generally involve thermal, electric, and magnetic degrees of freedom. The total di erential of the internal energy, dU = dQ + dA, where TdS = dQ + TdSi; (2.1) is thus dU = T(dS .. dSi) .. p dV + V E  dP + 0V H dM+ dA0: (2.2) In Eq. (2.1) the entropy change has been split into reversible (dQ=T) and irreversible parts, dSi > 0. The last term in Eq. (2.2) represents the work of any contingent 11 1. Theor. forcesnotaccountedforexplicitly.AtconstanttemperatureTandconstantelectri andmagnetic eldstrengthsEandH,theproperthermodynamicpotential|th. freeenergyF|isobtainedbyaLegendretransformation. F=U..TS..VEP.. 0 VHM. (2.3. dF=..SdT..TdS i ..pdV..VPdE.. 0 VMdH+dA 0 :(2.4. Changesinthevolumearenormallyneglectedinliquidcrystalsystems.Atconstan. T,E,andH,thefreeenergyisdecreasingwhenthesystemisapproachingequilib. rium,whereitreachesitsminimumvalue.Itistheorderparameterdependenceo. thefreeenergythatdescribesthisbehavior.Before ndingit,letusalerttoho. thefreeenergyofnonequilibriumstatescanbecalculated.Beingathermodynami variable,itdependsonthestateofthesystemandnotontheparticularpathleadin. toit.Hence,weareallowedtochooseadi erent|reversible|pathrunningonl. throughequilibriumstates,forwhichdS i vanishesinEq.(2.4)enablingustoper. formtheintegration.ThefreeenergychangeisthusequaltotheminimalworkdA . requiredtoputthesystemintothe nalstateatconstanttemperatureandexterna. elds.Letusconsideranisothermalsystemofdipolesbelowthephasetransitiona. anexample.Clearly,theequilibriumstateishomogeneouswithalldipolespointin. inthesamedirectiononaverage.Nowthinkofaspatiallymodulatedcon guratio. |anonequilibriumstatewithahigherfreeenergy.Todeterminethefreeenerg. increase,onecanimagineapplyingsomeforcesthatconveythesystemfromtheho. mogeneoustothemodulatedstateviaanequilibriumpath.Theincreaseofthefre. energyisequaltotheworkdA . oftheseforces.Similarly,ifthesampleissubjectt. anexternal eldH,withacon gurationcorrespondingtoequilibriumatadi eren. eldH 0 ,thefreeenergycostofthisnonequilibriumstateisgivenb. Z. . F=.. 0 VdVM(H)dH. (2.5. . wheretheintegrationisperformedovertheequilibriumpathM(H).Fortheelectri eldthesituationisanalogous. 2.2Freeenergyfunctiona. InthisSection,thestandardLandauphenomenologicalapproach[8]willbetake. toderivetheequationofmotionforageneralorderparameter(theapplicationo. theLandautheorytothenematicphaseisduetodeGennes[9]).Lettheorde. parameterqbemulticomponent,withthecomponentsdenotedq i .Aslearnedi. thepreviousSection,thefreeenergydependenceontheorderparametermustb. obtainedinordertostudynonequilibriumdynamics.Itwillbeestablishedinth. formofanexpansionaroundtheequilibriumstate.Thefreeenergydensityf(q;rq. isintroducedasafunctionoftheorderparameter eldanditsspatialderivatives. Aconsistentderivationofthisconceptonthethermodynamicbasisisgivenin[10. pp.143-153].Hence,thefreeenergyisafunctional. . F=dVf(q;rq). (2.6. Theor. 1. Inthephenomenologicalspirit,thefreeenergydensityfunctionalisconstructe. fromscalarinvariantsformedwithq,rq,andanyexternal elds.Thereare v. classi abletypesofcontributions. 1.Homogeneousterms.ThesearethestandardLandautermsdescribingth. phasetransitionandconsistofscalarinvariantsofq,whicharethecondense. quantitiesexhibitingasoftmode,i.e.,theyspontaneouslybecomenonzeroa. thephasetransition.Schematically. 11. f hom = Aq 2 + Bq 3 + Cq 4 :(2.7. 23. ThelineartermisabsentduetotherequirementthatFandsodoesfbe. minimumatequilibrium.Thequadratictermmodelsthetransition|atth. supercoolingtemperatureitchangessign,A=A 0 (T..T  ).Thethirdorde. T . termispresentonlyinthecaseq=6..q,otherwiseBiszerobysymmetry.I. isthistermthatgivesadiscontinuousphasetransition.Thefourthorderter. isnecessarytoprovidetheexistenceofaglobalminimum.TheconstantsA 0 . B,andCaretemperature-independent. 2.Elasticterms.Theygivethefreeenergydensitycostofspatialinhomo. geneities.IntheoriginalspirittheyrelatetotheGoldstonedegreesoffree. dom[11],buthavebeengeneralizedtoapplytothecompleteorderparameter. Thistermsareinvarianttoinversionandalwaysgivepositivecontributions. Schematically. . f elast = L(rq) 2 . (2.8. . whereLisatemperature-independentelasticconstant.Dependingonth. complexityoftheorderparameter,therecanexistmanyscalarinvariant. formedwithrandqandthusmanyelasticterms,eachwithitsownelasti constantL i .Themostgeneralexpression,second-orderinthederivative,i. . f elast = . L ijkl (@ i q j )(@ k q l ). (2.9. . wherethefourth-ranktensorofelasticconstantsmustre ectthesymmetryo. thesystemandthuscanbecomposedonlyoftheidentitymatrixA ij ,theLevi. Civitaantisymmetricmatrix ijk ,andtheorderparameterq i .Furthermore. thepermutationsymmetr. . L ijkl =L kli. (2.10. mustbeobeyedonthebasisofthede nition(2.9).Hence,thematrixL ijk. canbediagonalizedinthesensethatL ijkl vanishesunlessi=kandj=l. i.e.,thequadraticform(2.9)canbewrittenasasumofsquaretermsonly. TheelasticcoeAcientsofthediagonalizedformmustbeallpositivetoyield. positivede nitefreeenergydensity.Inprinciple,onecanincludealsohighe. orderderivativesortermsofhigherorderinq. 1. Theor. 3.Chiral(Lifshitz)terms.Thesearepseudoscalarsofthefor. f chir =L c  ijk q i @ j q k . (2.11. Astheychangesignuponinversiontheyareallowedonlyinchiralsystems. systemslackingtheinversionsymmetry. 4.External eldterms.Theycoupletheorderparametertoexternal elds(elec. tric,magnetic,elasticdeformation,etc.).Inliquidcrystals,theaveragedensit. ofpermanentelectricormagneticmomentsisusuallyzero,whichimpliesth. couplingtobequadraticinthe elds,schematically. 1. f em =.. " 0 X e EqE..  0 X m HqH:(2.12. 2. Theactualwayofcontractiondependsontheorderparameter.Theconstant. X e andX m aremicroscopicparametersrelatedtomolecularsusceptibilities. FormingscalarswithEandrqresultsintheso-called exoelectrictermso. theformrqE,[12,13].In exoelectricphenomena,theinhomogeneityofth. orderparameterproducesapolarization,whichcouplestotheexternal eld. orviceversa. 5.Surfaceterms.Someoftheelastictermscanbewrittenasadivergence,an. thereforeconvertedtoasurfaceintegralwhenperforming(2.6).Physically. theyappearonaccountofthereducedsymmetryduetothepresenceofth. surface,wherethereisanothervector|thesurfacenormal|thatcantak. partinthescalarcontraction. Anothertypeofsurfacetermsisdeliveredbytheanchoring,whichrepresent. acontributiontothefreeenergyofthesampleduetotheinteractionwit. thewallsaswellasduetothecon nement-reducedphasespace.Commonly. theanchoringismodelledbythesurfacefavoringacertainvalueoftheorde. parameterq 0 [14{16],schematically. 1(q..q 0 ) 2 f anch =W. (2.13. . Iftheorderparameteris xedatthesurfaceorifthereisnosurface,th. surfacetermscanbeignoredwhendeterminingthecon guration. To ndtheequilibriumcon guration,thefreeenergyasafunctionaloftheorde. parameterhastobeminimized. . Z @f@f Z @. AF=dV..rAq+dSAq=0;(2.14. @. @r. @r. whichyieldstheEuler-Lagrangeequationsforthebulkandthesurface.Inth. following,thesurfacecontributionswillbeomittedforbrevity.Incasetheorde. parameterissubjecttoanyconstraints,Lagrangemultipliersareintroducedin. standardmanner,whichisequivalenttoprojectingEq.(2.14)intheorderparamete. spacetothesubspacenormaltotheonede nedbytheconstraints.Thelatternotio. isquiteconvenientandwillbeusedinthenumerics. Theor. 1. 2.3Dynamicequationfortheorderparamete. Outofequilibrium,thefreeenergydensityfailstosatisfy(2.14).Whenthesyste. isapproachingequilibrium,thefreeenergyisdecreasingonaccountoftheincreasin. entropy. . Z @f@. S_ i_ T=..F=..dV..r. _q;(2.15. @. @r. wherethedotstandsforthematerialtimederivativeandthesurfacecontribution. havebeenomitted. Ingeneralirreversibleprocesses,theentropyproductionisexpressedintermso. uxes i andforcesF i . . S_ i T=dVF i  i . (2.16. Inthelimitofweak uxestheforcesdependlinearlyonthe uxes[17]. F i =K ij  j ;K ij =K ji . (2.17. wherethematrixoftransportcoeAcientsissymmetricaccordingtoOnsager'sreci. procityprinciple[18],[19,p.365].CombiningEqs.(2.16)and(2.17),aquadrati formresultsfortheentropyproduction. Z. S_ i T=dV2D=dVK ij  i  j . (2.18. wherewehavede nedthedissipationfunctionD[19,p.368].Theforcescanb. obtained,butneednot(Eq.(2.17)isjustasgood),directlyfromthedissipatio. functiona. @. F i =. (2.19. @ . ThesymmetricmatrixK i. canbediagonalized,i.e.,suchlinearcombinationso. the uxescanbefoundthatthedissipationisexpressedasasumofsquaresofth. uxes. AccordingtoEq.(2.15),wecanidentify. _qasthe ux.Thesimplest(thelowes. orderinq)choiceforthecoeAcientmatrixisK i. = A ij ,where isamateria. parameterwiththedimensionoftheviscosity.Now,comparingEqs.(2.15)an. (2.18)theequationofmotionfortheorderparameterisobtained[20]. @f@. r..= . _q. (2.20. @rq@. Frequently,Eq.(2.20)isinterpretedasabalanceoftwogeneralizedforces,h+h v =0. wherehisthedrivingforce,tobedenotedbrie . @f@fA. h=r..... (2.21. @rq@. A. h v and=.. . _qistheopposingor\viscous"force. 1. Theor. 2.4Couplingtothe o. Ingeneral,theorderparameterdynamicsiscoupledtothe uid ow,whichmean. thateithercangeneratetheother.The uid owisgovernedbyageneralize. Navier-Stokesequatio. . _v=r. (2.22. whereisthestresstensortobedetermined.Besidesthepressure,ifthefre. energydensitycontainsgradientterms,thereisanelasticcontributiontothestres. tensor.ItarisesbecauseachangeinthedeformationofthesystemAu(whilekeepin. Aq=0)changesthegradientofq. @. @q@u j A=..A. (2.23. @x . @x . @x . andthusthefreeenergydensity. @f@f@u j Af=A@ i q=..@ j qA:(2.24. @(@ i q)@(@ i q)@x . ComparingEq.(2.24)withtheconstitutiverelatio. @u . Af= ij A. (2.25. @x . theelasticcontributiontothestresstensorfollows. @.  . ij =..@ j q. (2.26. @(@ i q. LetusinspecttheequilibriumconditionAF=0,allowingalsoadeformationA. ofthesystem(omittingthesurfacetermseverywhere). ". . A. 0=AF=dV ij A(@ i u j )+Aq:(2.27. A.  e Putting ij = ij ..pA ij ,wherepisthepressure,andinsertingEq.(2.26),wege. (. #. Z @f@. A. 0=AF=dV@ . @ j q+@ j @ i q+@ j pAu j +Aq:(2.28. @(@ i q)@(@ i q. A. Expressingthe rsttermbytheequilibriumconditionfortheorderparameter. Af=Aq=0,theexpressioninthebracket|thebodyforce|simpli est. ". ZZ @f@. 0=dV@ j q+@ j @ i q+@ j pAu j =dV@ j (f+p)Au j ;(2.29. @. @(@ i q. i.e.,inequilibriumthepressureissuchthatf+pisconstant. Theor. 1. Outofequilibrium,inpresenceofthe uid owthedensityofthekineticenerg. 1 v 2 mustbeaddedtothefreeenergydensity;nowtheentropyproductioni. . Z. d. S_ i T=..dV v 2 +f(q;rq):(2.30. dt. InsertingEq.(2.22)anddroppingsurfaceterms,wege. ". Z AfA. S_ i T=dV ij @ i v j ... _q..@ i v . ;(2.31. A. A(@ i u j .  . ij pA ij . productioni. wherethe rstfactorofthelasttermisrecognizedas..Theentrop. ". . A. S_ i .. e T=dV( ij +pA ij ij )@ i v j ... _q;(2.32. A. recallthat. _qisthematerialtimederivative:. _q=@q=@t+(vr)q.Thus,therear. two uxesthatraisetheentropyinthe ow-coupledsystem|thetimederivativ. oftheorderparameter. _qandthevelocitygradientrv.Theforceconjugatedt. thelatteristhedi erencebetweenthetotalstresstensorwithoutthepressur. contributionandtheelasticstresstensorandwillbecalledtheviscousstresstenso.  v =+pI.. e .Conveniently,theentropysourcedensity. _s i isexpressedbysplittin. thetensorsintosymmetricandantisymmetricparts. T. _s i = s A ij + a W ij +h i . _q i . (2.33) ijij  s  a whereandarethesymmetricandantisymmetricviscousstresstensorparts. whileAandWarethesymmetricandantisymmetricpartsofthevelocitygradient. . A 1. ij = (@ i v j +@ j v i );W ij = (@ i v j ..@ j v i ):(2.34. 2. Theforcesrea.  . i. =S ijkl A kl +M ijkl W kl +C ijk . _q k ;(2.35.  . i. =M klij A kl +R ijkl W kl +D ijk . _q k ;(2.36. ..h v h . =C kli A kl +D kli W kl +B ij . _q j ;(2.37) i andtheentropysourcedensityi. T. _s . =S ijkl A kl A ij +M ijkl W kl A ij +C ijk . _q k A ij . . M klij A kl W ij +R ijkl W kl W ij +D ijk . _q k W ij +(2.38. . C kli A kl . _q i +D kli W kl . _q i +B ij . _q j . _q i . ThecoeAcientmatricesobeythefollowingpropertiesregardingthepermutationo. indices. . S ijkl =S klij ;S ijkl =S jikl . . R ijkl =R klij ;R ijkl =..R jikl . . M ijkl =M jikl ;M ijkl =..M ijlk . (2.39. . C ijk =C jik ;D ijk =..D jik . . B ij =B ji . 1. Theor. Recallthatthequadratic(2.38)canbediagonalized.Furthermore,theentrop. productionmustbeinvariantunderthesymmetryoperationsofthesystem.As. consequence,thecoeAcientmatricescanconsistonlyofquantitiescharacterizin. thesystem|theorderparameterq,theidentitymatrixA ij ,andtheLevi-Civit. antisymmetricmatrix ijk .Eachtermcomeswithitsownmaterialparameter.On. canverifythattheentropyproductionisalsoinvarianttotimereversal.Finally. theremustbenoentropyproduction(2.38)andnoforces(2.35)-(2.37)forahomo. geneousrotationofthesample,whichimposesessentialrelationsonthemateria. parameters,reducingthenumberofindependentconstants. Tosummarize,inabriefformthedynamicequationsfortheorderparamete. coupledtotheincompressible uid owread. A. .. +h . =0. (2.40. A. . _v=..rp+r( v + e );(2.41. rv=0. (2.42.  v h v  e wheretheforcesandaregivenbyEqs.(2.35)-(2.37),isgivenbyEq.(2.26). andthefunctionalderivativein(2.40)hasbeende nedinEq.(2.21).Adetaile. derivationoftheequationsforavectorialorderparametercoupledtothehydrody. namic owiscarriedoutinChapter5. 3 Nematic order parameter In this Chapter we will de ne the order parameter of the nematic liquid crystal. Nematic substances consist of molecules with an elongated or a disc-like shape, which are e ectively cylindrical objects due to their rotation. Let us assign a unit vector d = (sin 0 cos 0; sin 0 sin 0; cos 0) to the long axis of the liquid crystal molecule. In case of disc-like molecules d is the normal of the disc. The distribution of molecular orientations, i.e., the distribution of vectors d, de ned in the mesoscopic volume, is naturally speci ed by an angular probability distribution function g(e) = g(; ); (3.1) where e is a unit vector e = (x; y; z) = (sin  cos ; sin  sin ; cos ). In nematics, we nd empirically that g(e) = g(..e), or g(; ) = g( .. ;  + ); (3.2) i.e., there is no polar ordering. The distribution function g carries to much information on the ordering | it cannot be determined experimentally, neither is it convenient for analytical work. Therefore, the lowest nontrivial moment of g is chosen to serve as the order parameter. The probability density g can be expanded in spherical harmonics [21, p. 338]: g(; ) =Xl g(l)(; ) =Xl;m gl;mY R l;m(; ); gl;m = Z d Y R l;m(; )g(; ); (3.3) where real combinations of the spheric functions Yl;m have been used: Y R l;m =8> ><> >: Yl;m ; m = 0 1 p2 (Yl;m + (..1)mYl;..m) ; m >0 1 p2i (Yl;m .. (..1)mYl;..m) ; m <0 : (3.4) Due to (3.2) gl;m is zero for l odd. Thus, the lowest nontrivial moment is the quadrupole, l = 2, and the set of 5 quantities q2;m represents the nematic order parameter. In the isotropic phase, where g = g(0) = 1=4, the order parameter is zero as required. In the ordered phase, the quadrupole moment is nonzero, and 19 2. Nematicorderparamete. g (2) correspondstothedeviation(uptothequadrupolemoment)oftheprobabilit. distributiongfromtheisotropicdistribution.ItiscustomarytousetheCartesia. notatio. . . g (2) R =g 2;m Y 2;m . m=... qq. i 3z 2 ..1 . 1. (x 2 ..y 2 g 2;. +g 2;1 2zx+g 2;..1 2zy+g 2;2 )+g 2;..2 2xy. 416 . . Q . ij e i e j . (3.5. 4. e 2 x 2 y 2 z 2 Recallingthat=++=1,wehavede nedthenematictensororde. parameterQ.Beingsymmetricbyde nition,thequadraticformcanbediagonalize. forbriefness.  . g (2) z 2 x 2 y 2 =Q z. +Q xx +Q y. . (3.6. 4. wher. .  0 . Q 3hcos 2 i... z. = 4 g 2;0 . . (3.7. . . q.  0 . 13hcos 2 i..1 3. 14.  0 g 2;0 = hsin 2 cos2 0 i. ;(3.8) . Q x. =g 2;2 .. . 2. . 2. q.  0 . 13hcos 2 i..1 3. 14.  0 . Q y. =..g 2;2 ..g 2;0 =.. hsin 2 cos2 0 i. :(3.9. . 2. . 2. NotethatQistraceless.Brie y. 2. .. 1 (S..P. . 67 .. 1 Q= . (S+P) 5 ;(3.10. . . whichcanbeexpressedalsoinageneralcoordinatesystema. . Q 1. ij =S(3n i n j ..A ij )+ ii P(e 1 e 1 ..e 2 e 2 );(3.11. 22 jj wher. 3hcos 2 i..1  0 S. (3.12. . isthescalarorderparameter,alsocalledthedegreeoforder,an. .  0 P= hsin 2 cos2 0 . (3.13. . isthebiaxiality.InEq.(3.11)wehaveintroducedanorthonormaltriad(n;e 1 ;e 2 . specifyingtheQ-tensoreigensystem:nisthedirector,ande 1 isthesecondarydirec. tor.Usually,thedirectornrepresentstheeigenvectorwiththelargestinabsolut. eigenvalue,butnotnecessarily(asinChapter9).Inageneralcoordinatesystem,i. followsfromEq.(3.5)tha. 5. g (2) (e)=Q ij e i e j ;Q ij = (3hd i d j i..A ij );(3.14. 4. Nematic order parameter 21 (a) uniaxial, P = 0 (b) biaxial, P 6= 0 Figure 3.1 The quadrupole contribution to the probability distribution func- tion, g (2), in the case of (a) uniaxial and (b) biaxial ordering. In Cartesian coordinates, g (2) is given by the quadratic form g (2)(e) = 5 4 Qij eiej, where e is a unit vector. and g(2)(e) = 5 8 3h(d  e)2i .. 1: (3.15) 2. Nematicorderparamete. 4 Director dynamics in nematics The aim of this Chapter presenting the early stages of our research is to provide the machinery for the hydrodynamic description of liquid crystal dynamics and to get acquainted with the basic principles of ow generation and its in uence on the nematic director. Moreover, we present numeric solutions to two-dimensional and quasi-three-dimensional switching processes, which are scarce in literature. We demonstrate that in con ned systems the back ow can lead to drastic e ects far from mere perturbations, for which it is usually recognized. 4.1 Introduction Problems involving hydrodynamic motion of the nematic liquid crystal due to the director reorientation have been studied mainly in terms of the Ericksen-Leslie continuum theory of the nematic liquid crystal [22{24]. For one-dimensional geometry, Clark and Leslie [25] have given a thorough approximative analysis of nematic relaxation upon removal of electric or magnetic eld; a complete numerical treatment of the problem has been contributed by van Doorn [26]. One-dimensional back- ow dynamics in the twist cell has been studied by Berreman [27,28]. Recently, an optical observation of the back ow in the twist cell was reported [29]. Pieranski, Brochard and Guyon [30,31] have studied, both theoretically and experimentally, one-dimensional dynamic behavior in magnetic eld for three geometries (twisted, planar to homeotropic, homeotropic to planar), limited to small deformations (applying near-critical elds). They give the distortion wave vector and e ective viscosity dependence on the magnetic eld strength. The instability against periodic distortion in the case of the Freedericksz transition ( rst observed by Carr [32]) has been studied by Guyon et al. [33] for the two-dimensional case, and by Hurd et al. [34] for three dimensions. The pattern formation in a rotating magnetic eld has been observed experimentally and accounted for by a numerical study based on the Ericksen-Leslie equations [35,36]. An experiment measuring the rotational viscosity is presented by Bajc et al. [37], together with a full hydrodynamic numerical treatment in cylindrical geometry (one-dimension), yielding an exact expression for the e ective viscosity, depending on the director eld con guration. Lately, the interest in hydrodynamic description of pattern formation in uids has been increasing, 23 2. Directordynamicsinnematic. amongstothersinvolvingalsonematicandnematicpolymer uids[38{44]. InthisChapterafulltwo-dimensionalhydrodynamicstudyofanematicsam. pleinmagnetic eldispresented,producingnontrivialback ow eldseveninth. simplestgeometrieslikeasquareorarectangle.Firstashortreviewofnemato. dynamicequationsisgiven,followedbyanintroductionofcharacteristicscaleso. theproblem.Inthesecondpartthe ow eldsaretentativelyinterpretedbystric. analyticaswellaslessstrictarguments.Also,thein uenceoftheback owonth. directorreorientationisdiscussed.TheideapursuedthroughouttheChapterist. giveenoughqualitativephysicalunderstandingoftheback owgenerationandit. e ectonthedirector eldtobeabletoexplainorevenforeseetheglobaltimepat. ofrelaxationprocesses[45].Therelaxationwiththeback owisthencomparedt. thesimpli edcasewhereback owisnottakenintoaccount.Theissuesinques. tionherearethechangeintheswitchingtimeofthecellcausedbytheback ow. andthelocaldepartureofdirectororientationfromtheorientationinthesimpl. case,pursuedalongthewholepathofrelaxation.Thedrasticback owe ectasth. consequenceofaspecialmagnetic eldswitchingisdemonstratedinthe2Dan. quasi-3Dexamples.The3Dgeometryisclosertoapossibleexperiment. 4.2Ericksen-Leslietheor. HerewearegoingtopresenttheEricksen-Leslietheory[22,23],whichisthedynami theoryforthenematicdirectorcoupledtohydrodynamic ow.Itcanbederive. followingthetheoreticalbasissetinChapter2.Atthispoint,wewillskipth. derivationandinvitethereadertovisitChapter5,wheretheEricksen-Leslietheor. inageneralizedformisderivedthoroughly. Threebasicequationsareinvolvedintheproblemofnematodynamics;thesear. theequationofmotionofthedirector eld(2.40),thegeneralizedNavier-Stoke. equation(2.41),andtheequationofcontinuity.Thelatterissimplyreducedtoth. equationofincompressibility(2.42),whereastheformertwoarerelativelyextensiv. duetothe(uniaxial)anisotropyofthenematic uidaswellastothecouplin. betweenthedirectorreorientationand ow. Thetimeevolutionequationforthedirector eldisabalancebetweengeneral. izedelastic,electric,magnetic,andviscousforces.Inprinciple,bothelectrican. magnetic eldscanbeusedtomanipulatethenematicdirector.However,theus. oftheelectric eld,thoughmoreeAcientduetolargersusceptibilityanisotropies. bringsaboutsomediAcultiestodealwith,i.e.,thedielectricproblemhastob. solvedexactly,andtheconvectionofionsshouldbetakenintoaccount.Asaresul. ofthis,thetheoreticalstudytobepresentedinthisChapterusesamagnetic eld. Toobtaintheelasticandmagneticpart,theFrankelasticfreeenergydensit. [46{48],[49,pp.102,119]isused. 1. 2 . 2 . f= . K 11 (rn) 2 + . K 22 [n(rn)]+ . K 33 [n(rn)]..  a  0 (nH) 2 ;(4.1. 222. wherenisaunitvectorrepresentingthedirector,K 11 ,K 22 ,andK 33 arethesplay. twist,andbendelasticconstants,respectively,Histhemagnetic eld,and a isth. Directordynamicsinnematic. 2. magneticsusceptibilityanisotropy,i.e.,thedi erencebetweenthesusceptibilitie. parallelandperpendiculartothedirector.Thecaseof a >0willbeconsidere. here,asthisisthesituationpresentinmostnematicsubstances.Intheoneelasti constantapproximation,theelasticpartofEq.(4.1)reducest. . f one = K(rn) 2 . (4.2. . ThesurfacetermshavebeendroppedinEqs.(4.1)and(4.2)onaccountof xe. boundaryconditions,correspondingtoin nitelystronganchoring. TheEuler-Lagrangeequationsforthefreeenergyfunctiona. . . F=dVf(n;rn)..(r)n . (4.3. n 2 withtheconstraint=1andfgivenby(4.1),givethegeneralizedelastican. magneticforce. . @f@. h e. . =..+@ . . (4.4. @n . @(@ j n i . Theequilibriumconditionread. h em =..(r)n. (4.5. h em whereistheLagrangemultiplier,i.e.,theforcemustbeparalleltonevery. where.Onegetsridoftheredundantdirectordegreeoffreedomandthemultiplie. byprojectingEq.(4.5)ontotheplaneperpendiculartothedirector. Thegeneralizedviscousforceisobtainedfromthedissipationfunction,Eq.(2.19. containingscalarinvariantsformedwithn,. _n,andrv,beingbilinearinthelatte. two[50,p.142]. ..h v = 1 N+ 2 An. (4.6. wheretherotationalviscosity 1 and 2 areexpressedintermsoftheLeslieviscosit. coeAcients i [49,p.206], 1 = 3 .. 2 , 2 = 3 + 2 .With. _nbeingthemateria. timederivativeofthedirector. . N=. _n..(rv)n=. _n+W. (4.7. . isthevectoroftherelativedirectorrotationwithrespecttotherotationofthe uid. Thesymmetricandantisymmetricpartsofthevelocitygradient,A ij andW ij ,hav. beende nedinEq.(2.34).Theviscousforcealsoneedstobeprojectedtothe h v planeperpendiculartothedirector.Theequationofmotionofthedirectorread. brie . . h em +h . =0. (4.8. ?. orinmoredetai. . @. @. . . h em .. 2 An.. 1 [Wn+(vr)n. . ?. :(4.9. 2. Directordynamicsinnematic. ThegeneralizedNavier-Stokesequation. ". @. +(vr)v=..rp+r( v + e );(4.10. @. whereisthedensity,pisthepressure,andthedivergenceofatensorde neda. (r) i =@ j  ji ,involvestwostresstensorcontributions.Theviscouspartisobtaine. fromthesamedissipationfunctionasthegeneralizedforce(4.6)[50,p.142].  . = 1 n n(nAn)+ 2 n N+ 3 N n. 4 A+ 5 n (An)+ 6 (An) n;(4.11. withtheLesliecoeAcientsobeyingtheParodirelation[51. 6 .. 5 = 3 + . (4.12. duetotheOnsager'sreciprocityprinciple.Forfuturepurposes,letussplitth. viscousstresstensorintothesymmetricandantisymmetricparts.  . = 1 n n(nAn)+ 4 A. 1. 2 (N n+n N)+ ( 5 + 6 )[(An) n+n (An)]. 2. 1.  . = 1 (N n..n N)+ 2 [(An) n..n (An)]:(4.13. 2. Theelasticpartofthestresstensor(Eq.(2.26))isaconsequenceofdeformation. changingthedirector eldgradients,Eq.(2.26),[49,p.152]. @.  . ij =..@ j n k . (4.14. @(@ i n k . Thepressure eldinEq.(4.10)issetbytheincompressibilitycondition(2.42),i.e.. ithastobedeterminedinsuchawaythatEq.(2.42)issatis ed. 4.3Characteristicscale. TheproblemstobeaddressedinthisChapterinvolvetwolengthscales:thecon. tainersizeorthethicknessofthecapillaryLandthemagneticcoherencelength[49. p.123. . 1K 1.  m =. (4.15. H 0 j a . Inorderthat elde ectsbeprominent, m mustbesmallcomparedwithL.There. fore, m isthelengthrelevantforthedynamicsofthesystem. Thedirectorequationofmotion(4.9)andthegeneralizedNavier-Stokesequatio. (4.10)introduceacharacteristictimescaleeach.Typicalrelaxationtimeofth. director eldi. . 1  . m . (4.16. K 1. Directordynamicsinnematic. 2. if m isthecharacteristiclengthofthedirectorvariation.Sincethedynamicsi. governedbythedirector eldrelaxation,isthecharacteristictimeoftheswitchin. process. Theothertimescaleisgivenbyatypicaltransitiontimeduringwhichth. velocity eldisequilibratedtoitsstationaryvalueduetoviscousforces. L .  0 =. (4.17. . . TheisotropicviscositycoeAcient 4 (seeEq.(4.11))isofthesameorderofmagni. tudeastherotationalviscosity 1 ,soitisconvenienttousethelatterintheestimat. (4.18).Typically,theratioofthetwotimescales|theunsteadinessparameter. isoftheordero. L 2 .. K 1. L 2  0 =. m = 2 10 ..6 . (4.18. .  . . . . ThismeansthatunlessthecontainersizeLismuchlargerthanthecoherencelength. thevelocity eldisadaptedquicklytoagivendirector eldanditstimederivative. sothatduringthereorientationprocessitbehavesquasi-stationary|thepartia. timederivativein(4.10)canbedropped. Thecharacteristicmagnitudeofthevelocitycanbeestimatedbyequatingth. viscousforce(the 4 termin(4.11))andtheviscousforceexertedbythedirecto. rotation,whichdrivesthe ow(the 2 and 3 termsin(4.11)),yieldin. . K 11 v 0 == m =. (4.19. 1  . Asindicatedin(4.19),thesameestimatecanbeobtainedinasimplerfashion. althoughitmightnotseemaslucid.Againitwasassumedthat 4  2  1 . ThecharacteristiclengthofthevelocityvariationisestimatedtoL.Tobemor. precise,bothlengthscales,Land m ,areintertwinedhere,butLisusedinorde. tooverestimatetheReynoldsnumber. LK 11 Re= L= m 10 ..6 . (4.20. 2 .  . . UnlessthemagneticcoherencelengthistinyincomparisonwithL,theReynold. numberismuchsmallerthanunity,andthenonlinearadvectivederivativetermi. (4.10)canbedropped.Inaddition,iftheratio(4.18)issmallaswell,alsoth. partialtimederivativein(4.10)canbeomitted,asmentionedabove.Thereade. shouldnotethatusuallytheReynoldsnumberismorethananorderofmagnitud. smallerthantheunsteadinessparameter.The nalequationtosolveisthu. 0=..rp+r( v + e ). (4.21. MaterialparameterssuchastheviscosityandtheelasticcoeAcientswillcorre. spondtothoseforMBBA,listedin[49,pp.105,231].Itisconvenienttogivesom. typicalmagnitudes.Amagnetic eldwithstrength0.1Tgivesacoherencelengtho. about10mandthecharacteristictime(4.16)ofaround2s.Extrapolationlength. [49,p.113]assmallas100nmorevensmallerarereadilyobserved,sothatth. stronganchoringlimitisrealistic. 2. Directordynamicsinnematic. 4.3.1Commentonheatdi usio. ThroughouttheThesisweassumethatthetemperatureisconstant.Oneshoul. notproceedfurtherwithouthavingjusti edthislimit.Inparticular,thedynamic. ofdefectsstudiedinChapters7and8mightbea ectedbytemperaturegradients. sincethemotionofdefectcores|regionsofhighfreeenergydensity|isgenerall. accompaniedbyatransportofheat.Theheatdi usionequatio. @T. .. r(rT)=. (4.22. @tc . introducesyetanothertimescale. c p l .  Q =. (4.23. . wherelisthecharacteristiclengthofthetemperaturevariation,c p isthespeci chea. capacity,andisatypicalcomponentoftheheatconductivitytensor.Comparin.  Q andthecharacteristicdynamictimeoftheorderparameter(4.16),bothatth. samelengthl,oneget. Kc p  Q ==. (4.24. 1 . whichisoftheorderof510 ..4 fortypicalmaterialparametersofliquidcrystals. Theratio(4.24)isthesamealsoifdefectsarepresent(Eq.(7.19)).Thismeanstha. theheatdi usionisfastcomparedtotheorderparameterdi usion,sothatther. cannotexistanysubstantialinhomogeneitiesintemperatureinducedbytheorde. parameterdynamics.Theconstanttemperaturelimitisrealisticinfact. 4.4Descriptionoftheproblemandnumericalim. plementatio. Therelaxationofacon nednematicsampleuponswitchingamagnetic eldwil. bestudied.Acontainerofsquareorrectangularcrosssection(thexyplane)i. adopted,extendingtoin nityinthezdirection.In nitelystronganchoringi. assumed,which xesthedirector eldattheboundaries.Inpractice,thismean. thattheextrapolationlength[49,p.113],,mustbemuchsmallercomparedbot. withthesamplesizeandthemagneticcoherencelength,i.e.,Land m . Standardno-slipboundaryconditionsareprescribedforthe ow,settingthevelocit. tozeroattheboundaries. Thepartialdi erentialequations(4.9)and(4.10)arecastindimensionlessfor. usingcharacteristicscalesintroducedabove.Theyaresolvedusing nitedi erenc. discretisation.Theoutlineofthemethodisasfollows.Atagivendirector el. anditstimederivative,thegeneralizedNavier-Stokesequation(4.10)withoutth. advectivederivativetermisexplicitlyiteratedintime.Afterthat,knowingth. velocity eld,thedirectorequation(4.9)isexplicitlyiteratedintimetoyieldth. newdirector eld.Thenthevelocityisupdatedagain,andsoforth.Accordingt. Directordynamicsinnematic. 2. thebigdi erenceincharacteristictimescales(4.17)and(4.16),onemakesman. iterationsofEq.(4.10)beforeupdatingthedirector eld.Foragenericseto. materialparameterstheunsteadinessparameter(4.18)issmallenough,soonecoul. dropthetimederivativetermin(4.10)inthe rstplace.However,withtheexplici. iterativenumericalschemedescribedabove,thishaslittlesense.Ontheotherhand. Eq.(4.10)withoutthenonlineartermandEq.(2.42)togetherresultinalargese. oflinearequationsforthediscretizedvelocityandpressurevariables,whichca. besolveddirectlyforthestationaryvelocity eld.Inpracticeitturnedouttha. theiterativemethodisfarmoreeAcient.Thevelocityandpressurevariablesar. discretizedonastaggeredgrid[52,p.331]inordertopreventtheoccurrenceo. thewell-knownoscillatorypressuresolution[53].Theincompressibilityconditioni. satis edinastandardwaybysolvingaPoissonequationforpressurecorrectionsa. everyvelocityiterationstep[52,p.340]usingtheSORmethod[54,p.655].Atth. boundaries,normalpressurecorrectionderivativesarespeci edinordertomeetth. incompressibilityconditionthere.Thecalculationsweretypicallydoneonasquar. meshofsize60x60. 4.52Dproble. The rstproblemconsideredisfullytwo-dimensional(Fig.4.1):thequantitiesin. volveddependonxandy,whilethedirectorandthe owvelocityarelyinginthex. plane.Theorientingmagnetic eldpointsalongtheyaxis.Toavoidanyfrustration. thealignmentdictatedbythestronganchoringisparallelforhorizontalsides,whil. forverticalonesitishomeotropic.Whereconvenient,theangleparametrizationo. thedirectorandtheangle-conjugatedgeneralizedforce(thetorque)hwillused. n=(cos';sin';0). (4.25. h=(0;0;h)n. (4.26. ThroughouttheSection4.5,thefollowingdimensionlessquantitiesforlength,time. velocity,andmagnetic eldwillbeused. r r=L;t t= L ;v v L =L;H H=H 0 ;(4.27. wher. 1 L . L .  L ==. (4.28. .  2 . K 1. . isthecharacteristicrelaxationtimeforthedirector elddeformationonthescal. ofthecontainersizeLan. . 1K 11 H 0 . (4.29. L 0 j a . isthemagnetic eldwiththecoherencelengthofL. 3. Directordynamicsinnematic. (a) B Field ON Field OFF (b) y x Figure4.1Thecalculationsareperformedinasquareorrectangulargeome. try.Twotypesofrelaxationarestudied:(a)startingwithauniformdirecto. eld,themagnetic eldisswitchedon,or(b)themagnetic eldisswitche. o todisorienta eld-alignedsample.Thedirectoris xedattheboundarie. asshown. Director dynamics in nematics 31 4.5.1 Mechanisms governing the problem Back ow generation As indicated by calculations, the elastic stress tensor contribution (4.14) alters the velocity eld by up to 10%. Thus, while it is of some importance when studying the ow elds, in rst approximation it can be neglected when the in uence of the back ow on the director eld is in question, this in uence itself also being small. Our interpretation of the velocity elds will be based solely on the viscous coupling given by Eq. (4.11). What is more, it turns out that the anisotropy of the uid viscosity, described by the 1, 5, and 6 terms in (4.11) has no qualitative importance. The driving force of all the interesting ow phenomena observed is the anisotropy of the coupling to the director rotation given by the 2 and 3 terms in (4.11). Since 2= 3  70, only the 2 term needs to be taken into account when trying to interpret the results. There are two contributions to the force exerted on the uid described by this term, one depending on the gradient of director rotation, and the other on the director eld gradient. Putting '_ = ! and ' = 0 one obtains f1 = 2 0 ; @! @x! (4.30) for the rotation gradient dependent force. Generally, this force is always perpendicular to the director, while its magnitude depends on the ! derivative along the director, n  r!. The second contribution is best seen if we put r' = ('x ; 0): f2 = .. 2!'x (cos 2' ; sin 2') : (4.31) Thus, the magnitude of this force depends only on !jr'j, whereas its direction is such that it makes twice the angle with r' as the director. The reader should bear in mind that 2 is negative and that the direction of the force just described depends on the sign of !. In uence of back ow on the director rotation Let us discuss the torque on the director exerted by the ow. A ow eld corresponding to a pure rotation (W 6= 0, A = 0) imposes the same rotation on the director, as Eq. (4.9) suggests putting hem to zero. Conversely, pure extensional ow (W = 0, A 6= 0) aligns the director along the axis of extension. For shear ow, which is a sum of the ows just mentioned, Eq. (4.9) gives '_ = .. 1 2  2 1 cos 2' + 1!; (4.32) where ' measures the angle relative to the velocity direction and  is the shear rate (see Fig. 4.2 for the sign convention). Equation (4.32) has a stationary solution only if j 2= 1j > 1, i.e., if 3 < 0, which is the condition for the ow-aligning nematic, as opposed to the ow-tumbling nematic, where 3 > 0 (see the end of Section 4.5.2 for 3. Directordynamicsinnematic. Figure4.2Thedirectorangle ' inEq.(4.32),ismeasuredrelativetoth. shearasshown. ashortdiscussionontheback owe ectin ow-tumblingnematics).Thestationar. solutionof(4.32)give. j' 0 j1. (4.33. since 2 = 1 ..1.Thedirectoristhusrotatedtowardsthevelocitydirection.Th. solutionwith' 0 >0isstable,whereasthatwith' 0 <0isnot.ForMBBAth. alignmentangleisapproximately' 0 7A.Notethatwhenoutofequilibrium,th. directorisrotatedanticlockwiseonlyforj'j 0.2 0.0 Field ONField OFFwith backflow without backflow 0.00 0.05 0.10 0.15 t Figure4.11Timedependenceofsin . ' (squarecell),averagedoverthecell. forcaseswithandwithouttakingintoaccounttheback ow.Magnetic el. ofstrength H =10isturnedonando . Thesuddenformationoffourvorticesinthesquarecellcanalsobeexplainedb. thismechanism,onlythatnowallfourboundariesareimportant,resultinginamor. complexfourfold owpattern(Fig.4.9(b)).Clearlythe owreversingmechanismi. presentinthiscasealso,yettowardtheendtheoriginal owdirectionisrestored. However,calculationsforL y =L x =2alreadyyieldade nite owreversion. Finally,itshouldbementionedthattheprocessesjuststudieddonotdepen. criticallyonthesignoftheLesliecoeAcient 3 ,whichsetsthe ow-aligningor ow. tumblingpropertiesofthenematic,subjecttothesimpleshear ow.If 3 isse. tozeroorevenitssignisreversed(keepingitsvaluesmall),noradicalchangesar. observed.Forourdiscussiontobevalid,onlytheconditionj 3 = 2 j1mustb. satis ed. 4.5.3Comparisonwiththesimpli edtreatmen. Therelaxationwiththeback owistobecomparednowwiththesimpli edre. laxationwithouttakingintoaccounttheback ow.Figure4.11showsthetim. dependenceofsin 2 ',averagedoverthesquarecell,forboththefullandsimpl. treatments.Herethee ectoftheback owismainlytospeed-uptherelaxatio. process,asituationthatismostfrequentlyobserved.Insomecases,however,th. in uenceoftheback owismorecomplicatedandonecannotspeaksimplyabou. changesoftherelaxationrate.Thisoccursintheverticalcellifastrongenough el. isappliedsothatthetwo-stepprocessbecomesverydistinct(Fig.4.12).Atalowe. 4. Directordynamicsinnematic. (sin 2 ) F 0.8 0.4 0.0 -0.4 F(0,0) with flow F(0,0) without flow F(2,0) with flow F(2,0) without flow 0.00 0.01 0.02 t Figure4.12TimedependenceofthelargestcosineFouriercomponentso. sin . ' ,forthefullandsimpli edtreatments(verticalcell,magnetic eldo. strength H =20isturnedon).TheaverageisdenotedbyF(0 ; 0),wherea. F(2 ; 0)standsforthecomponentbelongingtocos(2 x=L x ).Itisshow. thattheaveragebehaviorcanbemorecomplicatedthannormal(compar. Figs.4.11,4.13,or4.14).Notethatthedi erenceismuchlargerforth. F(2 ; 0)componentsthanfortheaverages,indicatingthatduetotheback o. therotationisindeedfasterinthemiddleofthecellandslowernearth. boundaries(seealsoFig.4.10). eldstrength,ontheotherhand,thesimpleregimeisagainrestored(Fig.4.13). TheimportanceofthegeometryisclearlyseenifonecomparesFigures4.12an. 4.14,showingthetimedependenceoftheFouriercomponentsofsin 2 'inthevertica. andhorizontalcells,respectively.The eldsarerescaledrelativetothecritical el. . K 33 22 H 2 =(=L+(=L. (4.37) c x ) y ) . K 1. sothattheratioH=H c isthesameinbothcases,allowingonetomakeadirectcom. parison.Evidently,whenturningonthe eld,theback owe ectismuchstrongeri. theverticalcell(two-stepprocess)thaninthehorizontalcell(single-stepprocess). Asfarasthe eld-o relaxationisconcerned,thesameconclusionholds.Thereth. e ectisstrongerinthehorizontalgeometry,whichinthiscaseyieldsthetwo-ste. scenario. Directordynamicsinnematic. 4. -0.4 0.0 0.4 0.8 (sin 2 .) F F(0,0) with flow F(0,0) without flow F(2,0) with flow F(2,0) without flow 0.00 0.02 0.04 0.06 0.08 t Figure4.13TimedependenceofthecosineFouriercomponentsofsin . ' ,de. nedinFig.4.12,forthefullandsimpli edtreatments(verticalcell,magneti eldofstrength H =10isturnedon).Notethatduetotheweaker eldth. averagebehaviorislesscomplex,whencomparedwithFig.4.12. -0.4 0.0 0.4 0.8 (sin 2 .) F F(0,0) with flow F(0,0) without flow F(0,2) with flow F(0,2) without flow 0.00 0.01 0.02 0.03 t Figure4.14TimedependenceofthecosineFouriercomponentsofsin . ' . de nedinFig.4.12,forthefullandsimpli edtreatments(horizontalcell. magnetic eldofstrength H =20isturnedon).The gureshouldservea. acontrasttoFig.4.12,showingthattheback owe ectislesspronouncedi. thehorizontalcell. 4. Directordynamicsinnematic. 4.6Amplifyingthekickbacke ec. 4.6.12Dproble. Ifonetakesthe eld-alignedcon guration(theinitialcon gurationinFig.4.3. andappliesasecondarymagnetic eldinthexdirectionimmediatelyafterthe. eldhasbeenturnedof,thekickbackproducedbytheback owisampli edb. thesecondarymagnetic eld.Adomainofoppositedirectorrotationisformed. Fig.4.15,separatedfromtherestofthesamplebyadomainwallwiththicknes. oftheorderofthemagneticcoherencelength m ,Eq.(4.15).Thestrengthsofth. primaryandsecondarymagnetic eldsare20and40units(4.29),respectively.Onc. thedomainisformeditbeginstoshrink,whichisaslowprocesscomparedwit. theformationandisdrivenbythedomainwallcurvature.The nalcon guratio. isundeformed,justlikeinthe eld-o casedepictedinFig.4.3. Letusestimatetheshrinkingtimeofthedomain.Neglectingthe owandth. elasticanisotropy,theshrinkingrateofathincirculardomainwallwithradiusRi. [56,p.213. dR. =.. . (4.38. dt. wherelengthandtimearescaledbyLand L (Eq.4.28),respectively,yieldin. R 2 (0)..R 2 (t)=2t. (4.39. Notethattheshrinkingratedoesnotdependonthemagnetic eld.Assumin. R(0)1=4,theshrinkingtimeisestimatedtot1=32,whichissupportedb. Fig.4.16. Thepresenceofthedomainwallisre ectedinanyintegralpropertyofthecel. A(t),e.g.,inthecellaveragehsin 2 'i,Fig.4.16.Inthecaseofalineardependenc. ofAonthewalllength(theaboveaverageissuchacase),onecanwrit. A(t)=A(0)+C[R(t)..R(0)]. (4.40. whereCisaconstant.ThenitfollowsfromEq.(4.39)tha. 2 t=C 1 [A(t)..A(0)]+C 2 [A(t)..A(0)]:(4.41. TheconstantsC 1 andC 2 aredeterminedby ttingthepolynomial(4.41)toth. slowlyfallingregioninFig.4.16.Thenumericdataandthe tareplotedinFig.4.1. showingexcellentagreement. 4.6.2Quasi-3Dproble. Letusnowconsideramoregeneralexample,whichisclosertoexperimentalset-up. thanthe2Dproblem.Bycontrast,thedirectorandthe owvelocitycanpoin. outoftheplanethistime,whilethereisstillnodependenceonthezcoordinate. Twoswitchingexampleshavebeenchosen.Thenematicsampleiscon nedtoa. Director dynamics in nematics 47 (a) vmax = 94.4 (b) vmax = 13.3 t = 0.0025 (c) vmax = 15.1 t = 0.001 t = 0.015 Figure 4.15 Ampli cation of the kickback: ow (left column) and director elds in selected moments of time. (a) The kickback caused by the anticlock- wise ow gets ampli ed by the horizontal magnetic eld. (b) The domain has formed, the ow changes direction. (c) Shrinkage of the domain, now the ow is clockwise. 4. Directordynamicsinnematic. 0.8 0.6 0.4 0.2 0.0 with backflow without backflow 0.00 0.01 0.02 0.03 t Figure4.16Comparisonofswitchingprocesseswithandwithoutthe ow. timedependenceofthe y directorcomponentsquared,sin . ' ,averagedove. thecell.Theback ow-a ectedswitchingproceedsinthreesteps.Firstalmos. thewholesamplealignswiththe x eld,exceptforthedomainwall.Th. 22 characteristictimeofthisprocessis  =1 =H =1 = 900.Thenthecentra. m domainisslowlyshrinking,drivenbythedomainwallcurvature.Intheend. whenthesizeofthedomainiscomparabletoitsthickness,thecharacteristi 2 timeoftherelaxationisagain  .TimeisscaledbyEq.(4.28). m  L , 0.0125 0.0100 0.0075 t-t 1 0.0050 0.0025 numerical calculation fit with (x,x 2) 0.0000 -0.03 -0.02 -0.01 0.00 - 1 Figure4.17The tofthepolynomial(4.41)tothenumericdataforhsin . ' . inthetimeintervalbetween t 1 =0 : 0075and t 2 =0 : 02,whenthedomainwal. iswellde ned. Directordynamicsinnematic. 4. 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 y x L Figure4.18Theinitialdirector eldcon guration.Shading(althoughredun. dantinthecaseofthedirector eld)representstheout-of-plane( z )compo. nent,whilethein-planecomponentsaredrawnasnailsascustomary.Magneti eldwithcoherencelengthof L= 30isappliedinthe x direction. in nitelylongcapillaryofsquarecrosssection.Thedomainofcalculationcorre. spondstothecross-section(asquareinthexyplane)andisthustwo-dimensional. Theanchoringisin nitelystrong,itsdirectionisparalleltothetubeaxis(zaxis). Initialconditionsareidenticalinbothcases:thesampleisalignedbyanin-plan. magnetic eldwiththecoherencelength(4.15)of1=30ofthetubethicknessL. pointingalongthexaxis(Fig.4.18).FollowingthediscussioninSection4.3,for. 100mthickcapillarythecorresponding eldisaround0.3T,andthecharacteristi time(4.16)isabout0.2s. Theswitchingprocessisstartedbysuddenlyrotatingthemagnetic eldto. perpendiculardirection.Theswitchingtimeofthe eldmustbeshortcompare. withthecharacteristictime(4.16).Inthe rstexample,the nal eldisparallelt. thezaxis,whereasinthesecondexample,itliesintheyzplaneatanangle70A withrespecttothezaxis.Itwillbeshownthat,duetotheback ow,theswitchin. processisagainalteredcompletely. 4.6.3Axialmagnetic el. Afterthemagnetic eldhasbeenswitchedtothezdirection,neartheboundar. thedirectorisrotatedoutoftheplanebyelasticand eldtorques.Ontheothe. hand,theelasticand eldtorquesarealmostzerointhecenter.Ifonedisregard. theback ow,thedirectorwillalignwiththenew eldbyaclockwiserotationabou. theyaxis,proceedingfromtheboundarytowardthecenter. Theback ow,however,canproducealargee ectinthiscase,sincethedirecto. 50 Director dynamics in nematics -1.83 -1.53 -1.22 -0.92 -0.61 -0.31 0 0.31 0.61 0.92 1.22 1.53 1.83 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.23 -0.19 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.19 0.23 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -0.40 -0.33 -0.27 -0.20 -0.13 -0.07 0 0.07 0.13 0.20 0.27 0.33 0.40 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 v max = 0.096 vmax = 0.14 vmax = 0.089 t = 54 t = 4.05 t = 0.45 Figure 4.19 Axial magnetic eld: velocity (left column) and director elds in selected moments of time (in units of  as de ned in Eq. (4.16)). The number of mesh points displayed has been reduced by a factor of two in each direction to gain clarity. The key to the gures is given with Fig. 4.18. Blue and red levels represent components up and down, respectively. The maximum in-plane velocity is denoted vmax. The velocity unit is v0 as de ned in (4.19). The reader should not confuse the heads of nails with the nails themselves, where the directors point almost in the z direction. (a) The kickback caused by the out-of-plane ow. (b) The kickback is ampli ed by the magnetic eld, a domain is formed. (c) As the domain shrinks, a major part of the domain wall becomes a twist wall due to the elastic anisotropy: K11 and K33 are about twice as large as K22. Director dynamics in nematic. 5. orientationinthecentralregionislabilewithrespecttothe eld,andthusquit. sensibletoperturbations.Therateofdirectorrotationhastwominima|atth. boundaryandinthecenter,andamaximuminbetween.Asaresult,anout. of-plane uid owisgenerated(Fig.4.19,(a)),wherethevelocitychangessig. three-timesaswemovealongxdirection,whereasonpassingalongyitissingle. signed.ThemechanismsgoverningthisphenomenonareexplainedinSection4.5.1. The owrotatesthedirectorinthecenterintheoppositedirectionthanexpecte. (thekickbacke ect).Thisrotationisampli edbythemagnetic eld.Thus,w. areleftwiththecenterrotatingintheoppositedirectionastheouterpartofth. sample,whichleadstotheformationofadomain(Fig.4.19,(b)).Theshrinkin. timet=R 2 (0)=2(Eq.(4.39)),whereR(0)L=3 m =10istheinitialradiusofth. domain,isestimatedtot50inunitsof,Eq.(4.16).Ontheotherhand,th. characteristictimefortheformationofthedomainisjust. 4.6.4Obliquemagnetic el. Inordertoshowthatthee ectisnotlimitedonlytoacertaindirectionofthe na. magnetic eld,asecondexampleistobedemonstrated.Theinitialcon guratio. isthesameasinthepreviouscase(Fig.4.18),butnowthe nal eldisinthey. planeatanangle70A withrespecttothezaxis.Itisimportantthattheinitialan. nal eldsarestillperpendiculartoeachother,orcloseenoughtothis,i.e.,afe. degrees.Ifnotso,the eldtorqueoutweighstheback ow-generatedoneeveni. thebeginning,andtheback owcangiveonlyquantitativee ects.Thesituationi. similarasinthepreviousexample,onlythatnowthe owisbothout-of-planean. in-planeandthedomainwallismorecomplex(Fig.4.20). Itisworthmentioningthat,ifthe nal eldistooclosetothecross-sectionplan. (afewdegrees),evenintheabsenceofthe owthedirectorrotationiscomplicate. bytheelasticanisotropy.Namely,duetotheanisotropy,thedirectordeviate. slightlyfromthexdirectioninitially,whichcausesthedirectortorotateinopposit. directionsindi erentpartsofthesample.Despitetheback owisimportantinthi. casealso,wedonotaimtogiveexamples,sincetheyaretoocomplicatedandthu. notparticularlyinstructive. 4.7Summar. InthisChapter,nematodynamicproblemshavebeenstudiedintheirfullform. makingnoapproximationotherthanalowReynoldsnumber,whichispracticall. exactfortheproblemsconcerned.First,onemustnotetheremarkablenon-trivialit. ofthegeneratedvelocity elds,i.e.,theformationofseveralvortices,despiteth. simplegeometryandstrictlylaminar ow.Itisaconsequenceofthedelicateinter. connectionbetweenthedirectorandthe ow eld.Inaddition,ithasbeenshow. thattheformoftheback ow,aswellasitstimeevolution,dependverymucho. thegeometryofthesystem,asdoesthein uenceoftheback owonthedirecto. reorientation.Itisstrongerforthetwo-stepprocesses,whicharecharacterizedb. 52 Director dynamics in nematics t = 67.5 t = 9.9 t = 0.45 -0.83 -0.69 -0.56 -0.42 -0.28 -0.14 0 0.14 0.28 0.42 0.56 0.69 0.83 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.075 -0.063 -0.050 -0.037 -0.025 -0.013 0 0.013 0.025 0.037 0.050 0.063 0.075 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -0.150 -0.125 -0.100 -0.075 -0.050 -0.025 0 0.025 0.050 0.075 0.100 0.125 0.150 -0.8 -0.2 0 0.2 0.4 0.6 0.8 1 v max = 0.025 vmax = 0.079 vmax = 0.51 Figure 4.20 Oblique magnetic eld: velocity (left column) and director elds in selected moments of time. The number of mesh points displayed has been reduced by a factor of two in each direction to gain clarity. The key to the gures is given with Figs. 4.18 and 4.19. (a) Both the out-of-plane and in-plane ow velocities are comparable in magnitude, resulting in the kickback around an oblique axis. (b) A part of the splay-bend domain wall rst created (not shown) is transformed to a twist wall due to the elastic anisotropy, resulting in a complex wall structure. (c) As the domain shrinks, the structure of the wall becomes simpler. Director dynamics in nematic. 5. aglobalreversalofthe owdirection. Besidesnumericalsolutions,thequalitativepictureoftheback owproblemi. alsohighlightedinthisChapter.Thus,followingthediscussioninSection4.5.2,on. isabletoforeseetheglobal owdynamicsinthecell,withouthavingtoperforman. extensivenumericalcalculations.Inparticular,itisworthpointingoutagaintha. theback owscenariodependscruciallyontherelativeorientationofthemagneti eldwithrespecttothelongaxisofthecell.Ithasbeenassumedthatj 3 = 2 j. holdsforthetwoLesliecoeAcients,whereasthesignof 3 hasprovednottob. signi cant. Ithasbeenshownthattherearecaseswheretheback owe ectiscrucial.I. inapartofthesamplethedirectorisnearanunstableequilibriumwithrespec. tothe eld,theback owusuallyproducesaperturbationstrongenoughtochang. thedirectorrotationinthatpart.Ofcourse,onlythosecasesareinteresting,wher. theback owhasafrustratingin uenceonthedirector eld,i.e.,itcreatesregion. ofoppositedirectorrotation.Suchrelaxationprocesseshavebeenreferredtoa. thetwo-stepprocesses,asopposedtotheone-stepprocesses,whereback owisles. important. In nitelystronganchoringhasbeenassumedthroughouttheChapter4.I. ordertoobserveanyrelevantback owe ectsinpractice,theanchoringshouldb. strongenough(= m 1),whichcanbereadilyachievedinexperiments.Numerica. evidencefortheceasingback owe ectinthecaseof niteanchoringhasbeengive. towardtheendof[57].Disregardinganysurfaceviscositye ects,onecanmake. simpleestimateforthecasewhentheanchoringbecomes nite,>0,butremain. strong,= m 1.Comparingthedirectorpro lesneartheboundaryforthein nit. andthe niteanchoringinthepresenceofthemagnetic eld,one ndsthedirecto. gradienttodecreaseas m =( m +)1..= m .Uponremovalofthe eld(or,i. the3Dexamples,rotatingthe eldintoaperpendiculardirection),thedirectori. rotatedbyelasticforces(Eq.(4.9)),decreasingas m 1..2= m .Itthen  2 =( m +) 2 followsthatthedivergenceofthe 2 and 3 termsinEq.(4.11),whichrepresent. thesourcedrivingthe owinEq.(4.10),decreasesas1..3= m astheanchorin. getsweaker.Hence,themagnitudeoftheback owanditstorqueexertedonth. director(Eq.(4.9))decreasethesameway. Asindicatedbyadditionalcalculationsnotpresented,thequalitativepictur. doesnotdependontheexactgeometryofthetubecrosssection,i.e.,thesquar. couldbereplacedbyacircleorarectangle,etc.,providedthattheaspectrati. staysroughlythesame.Also,thedetailedstructureofthedomainwallappearst. dependontheratiooftheelasticconstants,asmentionedincaptionstotheFigure. 4.19and4.20. ThereorientationproblemsdescribedinthisChaptermayberegardedasa. overturetotheprimarychallenge|thein uenceofhydrodynamic owondefec. dynamics.Fromtheearlydaysofourresearchwehavespeculatedthatthesear. theprocesseswherethe owshouldreallycomeintoplay.Richerinexperienceand. inparticular,equippedwiththenumericalmethod,wearenowreadytomeetth. challenge.Ofcourse,thereisstillacrucialstepthatyethastobedone|w. mustgobeyondthedirectordescription.Therearetwopathsleadingfromherean. 5. Directordynamicsinnematic. wewilltakeboth,oneafteranother.Fornematicdefects,onehasnochoiceothe. thanresortingtothedynamictheoryofthetensororderparameter.Ontheothe. hand,defectsinavectororderparameter eldlikethatofthesmectic-Cphasear. masteredbyadirectgeneralizationoftheEricksen-Leslietheory. . Dynamicsofavecto. orderparamete. InthisChapter,thedynamictheoryforageneralvectororderparameterwillb. derived.ItrepresentsageneralizationofthestandardEricksen-Leslietheoryt. includethenonhydrodynamicdegreeoffreedom|themagnitudeofthevector. OneshouldstressthattheEricksen-Leslietheoryisavectorialtheory,andtherefor. aconsistentgeneralizationistheonetothefullvectororderparameter,nottoth. tensor.Moreover,theEricksen-Leslietheoryisnotatallconnectedwiththetenso. orderparameter,exceptforthemissingpolare ects(e.g.,electricpolarization). theelasticfreeenergyandthecouplingtothe owareofthevectorialnature.A. wehavenotcomeacrossthisstatementintheliterature,wedecidedtosupporti. inthisChapter.Thegeneralthree-dimensionalcasewillbeconsidered.Althoug. vectorialquantitiesliketheelectricpolarizationappearinthiscase,wewillomi. theelectricandmagneticdegreesoffreedomandlimitthediscussiontotheelasti distortionsand owcouplingonly.Atwo-dimensionalversionofthetheorywillb. usedinChapter8forthedescriptionoftheSmCthin lmsystem. 5.1Free-energydensit. Wewillfocusonthehomogeneousandelasticpartsofthefree-energydensit. f(c;rc),wherecisthevectororderparameter. 11. f=Ac 2 +Cc 4 + . L ijkl (@ i c j )(@ k c l ):(5.1. 24. Thehomogeneousterms(the rsttwoterms)describethephasetransition,A. . A 0 (T..T 0 ),A . >0,C>0,andgivetheequilibriummodulusofc,c 0 =..A=C. whichisthecondensedquantity.Inprinciple,theelasticpartcouldcontainalsosec. ondderivativetermsL ijk @ i @ j c k ,buttheseyield,besidesthetermsalreadycontaine. in(5.1),onlysurfacecontributions[50,p.77]). Thedemandingtaskisto ndtheelasticcoeAcientsL ijkl thatareallowedb. symmetry.Onerequiresthatfisinvarianttotheinversion(r!..r,c!..c). whichimpliesthatL ijkl mustbeinvariantaswell.Furthermore,thepermutatio. symmetry(2.10),L ijkl =L klij ,mustbeobeyed.Itturnsoutthatthesetofscala. 5. . L 5. Dynamicsofavectororderparamete. ijk. elasticter. commen. A A A A A A ik A j. ij A k. il A j. c i c k A j. c j c l A i. (c k c l A ij +c i c j A kl . (c j c k A il +c i c l A jk . c i c j c k c . c p c r  pij  rk. L 1 (@ i c j ) . L 2 (@ i c i ) . 2L 3 (@ i c j )(@ j c i ) L 4 c i c k (@ i c j )(@ k c j ) L 5 c j c l (@ i c j )(@ i c l ) 2L 6 c j c k (@ j c k )(@ i c i ) 2L 7 c j c k (@ i c j )(@ k c i ) L 8 c i c j c k c l (@ i c j )(@ k c l ) L 9 (c p  pij @ i c j ) . Table5.1Elastictermsforthevector isotropi spla. @ i (c j @ j c i ..c i @ j c j )+(@ i c i ) 2 ,surfac. 2 [c(rc)],derivativeparallelto 2 [(rc)c],Acparallelto [c(rc)c](rc),length-spla. [(rc)c][c(rc)],length-ben. 2 [c(rc)c],deriv.andAcparall.to twis. orderparameter,Eq.(5.1),withou. theprefactor1/2de nedinEq.(5.1).Inthenonquadratictermsthefactor. hasbeenincludedforconvenience. (a. (b. Figure5.1The(a)length-splayand(b)length-benddistortions,accounte. forbythe L 6 and L 7 terms,respectively. invariantstoformtheelasticcontributionisnotunique,i.e.,someinvariantsforme. with ijk canbeexpressedbythoseformedwithA ik .Wedecidetointroduceth. minimumnumberofinvariantscontaining ijk .Amongthesequenceofinvariant. lik. (@ i c i ) 2 ;c 2 (@ i c i ) 2 ;::. (5.2) j wechoosetheonethatislowestorderinc.Thisdoesnotmean,ofcourse,thatterm. oforderandhigheraredroppedeverywhereinL ijkl .Thenonzerocomponent. . L c 2 ijkl andthecorrespondingscalarinvariantsarelistedinTable5.1.Elasticconstant. L i ,independentofthelengthofc,havebeenintroduced.TheL 1 termisanisotropi term,i.e.,ittreatsalldistortionsequally.TheL 2 andL 9 termsarethesplayan. twistterms,respectively.TheL 3 termisessentiallyasurfaceterm.TheL 4 termi. relatedtothebenddistortion,i.e.,itisnonzeroifthederivativeofcinthedirectio. ofcisnonzero.ThetermswithL 5 ,L 6 ,L 7 ,andL 8 aredi erentfromzeroonlyifth. lengthofcvaries.TheL 6 andL 7 termsareparticularlyinteresting:theycorrespon. todistortionsinvolvingthevariationofthelengthofcandasimultaneousspla. orbenddeformation(Fig.5.1).Thereisnosuchtermconnectedwiththetwis. distortion. Dynamicsofavectororderparamete. 5. AcomparisonwiththeFrankdistortionterms(4.1)canbemadetoconnec. theFrankelasticconstantswiththefundamentalelasticconstantsL i .Thespla. andtwisttermsarealreadyamongtheinvariantsinTable5.1.Thebendtermi. expressedasfollows. 2 [c(rc)]=c i c k (@ i c j )(@ k c j )+c j c l (@ i c j )(@ i c l )..c j c k (@ i c j )(@ k c i ):(5.3. c 2 mustbeequalcontributionsfromtheisotropic(L 1 )termtothesplay,twist,an. benddistortion.Thus. Onlythe rstterm(theL 4 term)contributesifisconstant.Inaddition,ther. c 2 +c 2 . K 11 =L 1 L 2 . (5.4. c 2 +c 4 . K 22 =L 1 L 9 . (5.5. c 2 +c 4 . K 33 =L 1 L 4 . (5.6. wherealsotheleadingorderdependenceoftheFrankelasticconstantsonthelengt. ofchasbeenobtained(recallthattheFranktermsinvolvetheunitvector).Tose. thecontributionfromtheL 1 termexplicitly,oneexpressesthebendterminanothe. way. h. [c(rc)] 2 =c 2 (@ i c j ) 2 ..(@ i c j )(@ j c i )..[c(rc)] 2 :(5.7) . c 2 Hence,ifisconstant,Eq.(5.7)representsarelationbetweentheinvariants,s. thatoneofthemisredundant.IntheFrankexpression,onegetsridoftheisotropi term(@ i c j ) 2 .Furthermore,thesecondterminthebracketcannowbewrittenas. divergence,asindicatedinTable5.1.Thisleadst. 1 2 . 2 (@ i c j ) 2 =(rc) 2 +[c(rc)]+[c(rc)]+@ i (c j @ j c i ..c i @ j c j );(5.8. c . c . showingthatinfacttheL 1 termmerelyrenormalizestheconstantsforsplay,twist. andbend. AsmentionedinSection2.2,theelasticfreeenergydensitycanbewrittenas. sumofsquaretermsonly.AllelastictermsinTable5.1arealreadyinthesquar. form,excepttheL 3 ,L 6 ,andL 7 terms.Aftertakingcareofthese,onegets. f e. 111 = (L 1 ..2L 3 )(@ i c j ) 2 + (L 2 ..L 6 )(@ i c i ) 2 + L 3 (@ i c j +@ j c i ) 2 . 22. 111 (L 4 ..L 7 )(c j @ j c i ) 2 + (L 5 ..L 7 )(c j @ i c j ) 2 + L 6 (@ i c i +c j c k @ j c k ) 2 . 22. 111 L 7 (c j @ i c j +c k @ k c i ) 2 + (L 8 ..L 6 )(c i c j @ i c j ) 2 + L 9 (c k  kij @ i c j ) 2 :(5.9. 22. Forthefreeenergydensitytobepositivede nitethecoeAcientsofthesquar. termsmustallbepositive,whichintroducesinequalityrelationsbetweentheelasti parametersL i . 5.2Couplingtothe o. Todescribethecouplingtothe ow,wemust ndtheexpressionsfortheviscou. stresstensorandthegeneralizedviscousforceonthevectorc,i.e.,wemustdetermin. 5. Dynamicsofavectororderparamete. dissipationterm dissipationter. . S ijk. . R ijk. A A ij A k. (A ii ) 2 ,compressibl. 11 (A ik A jl +A jk A il ) 0 (A ij ) . (A ik A jl ..A jk A il )(W ij ) 2 ,forbidde. 2. Table5.2PartsofthematricesSandR,notdependingonc.Thesear. thetermsthatremaininthecaseoftheisotropic uid(c=0).Thereisn. c-independentcontributiontoM.Thedissipationgivenbythesetermsmus. vanishforarigidrotation,whichinterdictstheterm(W ij ) 2 . .  thematricesS,M,R,C,D,andBinEqs.(2.35)-(2.37)withtheproperties(2.39). Inaddition,theentropysourcedensity(2.38)mustbeinvarianttotheinversion. implyingthatthematricesS,M,R,andBareeveninc,whereasCandDareodd. Again,thesetofscalarinvariantstoformtheentropysourcedensityisnotunique. i.e.,someinvariantsformedwith ijk canbeexpressedbythoseformedwithA ik . Oncemore,wedecidetointroducetheminimumnumberofinvariantscontainin. ijk .Thetermsdescribingthedissipationintheisotropic uidarecollectedi. Table5.2,thoseappearingadditionallyintheanisotropiccaseinTable5.3.Viscou. parameters i independentofthelengthofchavebeenintroduced. Theremustbenodissipation(2.38)andnoforces(2.35)-(2.37)forarigidrota. tion,v=!r,_=!c,forwhic. c . A=0;! k = .  ijk W ij ;c_ i =..W ij c j :(5.10. . Requiringthisfortheisotropicpart(Table5.2)forbidsthe(W ij ) 2 term.Inth. anisotropicpart(Table5.3)itforbidsthetermc p c r  pij  rkl W ij W k. andintroduce. thefollowingrelationsbetweenthematerialparameters.  8 = 7 = 3 .  5 = 4 . (5.11. Finally,thesymmetricandantisymmetricpartsoftheviscousstresstensor. Eqs.(2.35)and(2.36),rea.  . =+ . +Ac k c i )+ 2 Ac k c l c i c j + i.  0 A ij  1 (A ik c k c jjkkl . 1  4 (N i c j +N j c i )+ 6 c k c_ k c i c j . .  . 1. i. = 3 (N i c j ..N j c i )+ 4 (A ik c k c j ..A jk c k c i );(5.12. 2. andthegeneralizedviscousforceonthevectorc,Eq.(2.37),read. ..h v =_(5.13) i  3 N i + 4 A ij c j + 6 A jk c j c k c i + 9 c j c j c i ; wher. N i =c_ i +W ij c . (5.14. isthevectoroftherelativerotationofcwithrespecttotherotationofthe uid.On. cancompareEqs.(5.12)and(5.13)withtheEricksen-Leslieexpressions(4.13)an. Dynamicsofavectororderparamete. 5. matri. matrixter. dissipationter. 1 . S ijk. (c i c j A kl +c k c l A ij . c i c j A ij A kk ,compressibl. . 1 (c i c k A jl +c i c l A j. +c j c k A il +c j c l A ik ) 1 c i c k A ij A kj . c i c j c k c .  2 c i c j c k c l A ij A k. 1 . R ijk. (c i c k A jl +c j c l A ik ..c j c k A il ..c i c l A jk ) 3 c i c k W ij W kj . c p c r  pij  rk. c p c r  pij  rkl W ij W kl ,forbidde. 1 . M ijk. (..c i c k A jl ..c j c k A il +c i c l A j. +c j c l A ik ) 4 c i c k A ji W jk . C ij. c k A i. c k _c k A ii ,compressibl. . . (c i A j. +c j A ik .  5 c i _c j A i. c i c j c .  6 c i c j c k _c k A i. 1 . D ij. (..c i A j. +c j A ik .  7 c i c_ j W ji . c 2 . B i. A i.  8 _ . c i c .  9 (c i c_ i ) . Table5.3PartsofthematricesSandR,dependingonc,andtheremainin. matrices.Thesetermsappearadditionallyinthecaseoftheanisotropic uid. Thetermcontainingisforbiddenduetotherequirementofvanishing  ijk dissipationatarigidrotation. (4.6),relatingthe veindependentLeslieviscouscoeAcients i tothefundamenta. coeAcients i . 4 = 0 . c 2 5 + 6 = 1 . c 4 1 = 2 . (5.15. c 2 1 = 3 . c 2 2 = 4 . with 1 = 3 .. 2 and 2 = 3 + 2 ascustomary.Theleadingorderdependenceo. theLesliecoeAcientsonthelengthofchasbeenobtained.Inthegeneralcase,ther. aretwoadditionalviscousparameters 6 and 9 ,connectedwiththedissipationwhe. c_isparalleltoc.Theydescribethecomponentofthegeneralizedforceparallelt. candintroducethetimederivativeofctothesymmetricpartoftheviscousstres. tensor.Furthermore,the 4 contributiontothegeneralizedforceisnotrestrictedt. thedirectionperpendiculartocanylonger. Finally,letuswritedownthedissipation,i.e.,theentropysourcedensity. T. _s . = 0 (A ij ) 2 + 1 (A ij c j ) 2 + 2 (A ij c i c j ) 2 + 3 N 2 + . 2 4 N i A ij c j +2 6 A ij c i c j c k c_ k + 9 (c i c_ i ) 2 :(5.16. AsmentionedinSection2.3,theentropysourcedensity(5.16)canbediagonalize. 6. Dynamicsofavectororderparamete. tosquaretermsonly. ! .  .  . 46 T. _s . = 0 (A ij ) 2 + 1 ..(A ij c j ) 2 + 2 ..(A ij c i c j ) 2 . .  .  .  3 h 2 + 9 g 2 . (5.17) i wit. .  4 . h . =N i +A ij c j . (5.18. .  . .  6 g=c i c_ i +A ij c i c j . (5.19. .  . Hence,thereareonly vesquaretermsdeterminingthedissipation,withtheco. eAcientsthathavetobepositive.Thetwoadditionalparametersare 4 = 3 (th. analogueofthereactionparameter 2 = 1 intheEricksen-Leslietheory)and 6 = 9 . Theyde netherotationinthe uxspacetoyieldthe uxeschosenoriginally,i.e.. N i insteadof(5.18)andc i c_ i insteadof(5.19). Wearenowabletowritedownthedynamicequations(2.40)-(2.42).Thereisn. pointinreallywritingthemdownhere. 6 Defects In this Chapter, enough background on the defects will be covered to understand the annihilation processes studied in next Chapters. It is not our aim to give a thorough perspective of the subject here. In particular, we do not go into the group-theoretical considerations of defect topology | the homotopy theory [58,59]. Nevertheless, we do use some of its results relevant in our context. We will restrict the discussion to point defects in a two-dimensional system or line defects in a three-dimensional system, without discussing the point defects in the 3D system, as they will not be studied in the Thesis. The discussion will apply both to defects of the director and vector order parameters | the latter are merely a subset of the former. Defects are a \registration mark" of systems with broken symmetry. Let us rst try to give a useful de nition of the defect. Naively we can say that the defect is an irregularity in the order parameter eld, i.e., a discontinuity. It can take place in a single point, a line, or a plane, resulting in zero-, one-, and two-dimensional defects. Their fundamental properties depend on the order parameter, or more precisely, on its symmetry. Of course, physically it is hardly possible to speak about any discontinuities, so there may be a problem with our naive de nition of the defect. In fact, in the nematic the discontinuity is present only as long as the director description with a xed degree of order is considered. If this restriction is abandoned and changes of the degree of order and/or the biaxiality are allowed, a continuous solution is obtained [60{64]. Therefore, a more general de nition of the defect must be searched for. Fig. 6.1 shows a point defect in two dimensions or a cross-section of a line defect in three dimensions. Orientational defects of the order parameter that carries information on a direction are called disclinations. There are two types of disclinations, wedge (Fig. 6.1) and twist disclinations [55, p. 126]. We will concentrate on the wedge disclinations only, as they are easier to envisage. If a loop is imagined around the defect and then traversed counterclockwise so as to return to the starting point, a winding number s can be de ned as a measure of the total angle  the director/vector is rotated by on this trip, s = =2. Since the loop passes over defectless structure only, the continuity of the director/vector eld imposes that the angle of rotation must be an integer multiple of  or 2, 61 6. Defect. (a)s. 1=. (b)s. . Figure6.1Examplesofwedgedisclinations.Aloopisplacedaroundeac. defecttode neitswindingnumber s ,(a) s =1 = 2,(b) s =1.Inthevecto. case,(a)doesnotrepresentapossiblecon guration. Figure6.2Fingerprint\defects"resembledisclinationsinthenematic.. defect-antidefectpairwithstrengths1 = 2and..1 = 2appearsonmyfore nger. respectively. Defect. 6. .  .  3 0; ;1; ;:::;directo. s= 2. :(6.1. 0;1;2;3:::;vecto. Thewindingnumberdoesnotdependonthesizeoractualshapeoftheloopbu. solelyonthetypeofthedefectencircled.Therefore,itidenti esthedefectcom. pletelyandisalsoreferredtoasthestrengthofthedefect.Evenifthesingularityi. thecenter(thecoreofthedefect)issomehowsmeared(e.g.,bymelting|restorin. theisotropicphase,tobethecasebelow),thewindingnumberdoesnotchange.I. fact,todeterminethestrengthsofthedefectwedonotneedanyinformationo. whatthecentralcon gurationis.Therefore,thecoreregionisnotofimportancefo. themacroscopicdescriptionoftheso-calledtopologicaldefects,i.e.,defectsthatcan. notbeconvertedtoadefectlessstructurebymeansofanycontinuoustransformatio. ofthedirector/vector eld[58].Topologicallyspeaking,alldefectstransformabl. intoeachotherbycontinuoustransformationsareidentical.Thismeansthatthos. whichcanbetransformedinthiswaytoadefectlessstructure,arenotdefectsi. thetopologicalsense.Atthispointoneshouldmentionthatthewedgeandtwis. disclinationlinesaretopologicallyidentical. Usually,topologicaldefectsareenergeticallystable,althoughtheydonotcor. respondtostatesofthelowestfreeenergy[65].Indeed,whentryingtotransfor. themtoadefectlessstructure,ahighenergybarrieroccursduetodiscontinuitie. thatinevitablytakeplaceatsuchatransformation. 6.1Disclinationsofa2Ddirector/vecto. Atwo-dimensionalorderparameterisaconvenientexampletostartwith.Th. systemmaybetwo-orthree-dimensional,itisonlythedirector/vectorwhichi. restrictedtoaplane.Hence,thediscussionwillapplytopointdisclinationsinth. 2Dsystemorlinedisclinations(disclinationlines)inthe3Dsystem.Inthelatte. casethefreeenergies(6.5),(6.7),(6.11),(6.9),and(6.12)mustbeinterpretedasth. energiesperunitlengthofthedisclinationline.Theclassi cationofdefectsisquit. illustrativehere,andintheoneconstantapproximation(Eq.(4.2))thecalculatio. ofstructuresissimple[66,p.147].Anexampleofthephysicalsystempossessin. the2Dvectororderparameteristhesmectic-CliquidcrystalstudiedinChapter. asarepresentativeoftheXY-model. Apartfromthesurfaceterms,thereisnodi erenceinthelowestorderdirecto. andvectorelasticfreeenergies,i.e.,theFrankexpressionappliestobothcases.Inth. oneconstantapproximation(4.2),theequilibriumconditionforapointdisclinatio. locatedatthecenterofthecoordinatesystemreads[67. r 2 =0. (6.2. whereisthepolarangleofthedirector/vector. n=(cos;sin). (6.3. 6. Defect. ThesolutionofEq.(6.2)candependonlyonthepolarangleandmustsatisfyth. continuityconditionforthedirector/vector.Thus. . =s+ 0 =sarctg + 0 ;s=0;( 1 );1;( 3 );:::;(6.4. x 2. where 0 isafreeparameter.The(half-)integralnumbersisthestrengthofth. defectexactlyasde nedabove.Theelasticfreeenergyofthedefectstructurei. obtainedbyintegrationofEq.(4.2)forthesolution(6.4). 2. ! . ! 2 ZZ K . 2. @@ 2 . 45 F d =rdrd+=Ksln;(6.5. 2r. . @x@yr . whereRisatypicalsizeofthesample,andr 0 isamicroscopiccut-o requiredfo. thefreeenergynottodiverge.Physically,thismeansthatatdistancesnearr 0 th. director/vectorcon guration(6.4)cannotpossiblybecorrect.Inthisregionth. deformationbecomeslarge,sothattheFrankelastictheoryceasestobevalidan. changesinthescalarinvariantsoftheorderparametermustbetakenintoaccount. In rstapproximation,acoreofradiusr 0 withthesystemintheisotropic(melted. stateisinvented,havingthe. . 0;rr . whereSisthescalarorderparameterofthenematicorthelengthofthevectororde. parameter.Ofcourse,thisisnotthecon gurationwiththeminimalfreeenergy. ThecorefreeenergyF c duetothepresenceoftheisotropicphasei. F c =r 2 f. (6.7) 0 wherefisthedi erenceinfreeenergydensitiesoftheisotropicandtheordere. phase.ByminimizingthetotalfreeenergyF d +F c ,theradiusofthecoreissett. . Kn . r 0 =. (6.8. 2. soitincreaseslinearlywiththestrengthofthedefects.Thesizeofthecoreiso. theorderofthecorrelationlength,Eqs.(7.18)or(8.8),whichisinthenanomete. range.Itisverysmallifcomparedtowavelengthoflightsoonecanconcludetha. opticscannotbeusedforinvestigationofdefectcores.Finally,thetotalfreeenerg. ofthedefectstructureinthisapproximationi. . 1. F=F c +F d =s 2 K +ln. (6.9. 2r . Incasemultipledefectswithstrengthss i arepresent,duetothelinearityo. Eq.(6.2)theequilibriumcon gurationisobtainedsimplybysummingthesolution. (6.4)forasingledefect. XX y..y i =(s i  i + 0i )=s i arctg+ 0 :(6.10) 0 i. x..x . Defect. 6. Thefreeenergyoftwodefectsis[65,p.529. . F=F 1 +F 2 +2Ks 1 s 2 ln. (6.11. . whereristhedistancebetweenthecentersofthedefects.The rsttwotermsstan. forthefreeenergies(6.9)ofsingledefects,whereasthethirdtermsrepresentsthei. interactionfreeenergy.Evidently,defectswithequallysignedstrengthsrepeleac. other,whilethosewithoppositesignsofthestrengthareattracted.Explicitly,th. freeenergyofadefectpairwiths 2 =..s 1 read. 2 . 1. . F=2sK +ln;s=js 1 j;r 1 =r 2 =r 0 ;(6.12. 2r . i.e.,thelogarithmicdivergencewithsystemsizeiseliminatedinthiscase. Letusnowdiscussbasicpropertiesofthedisclinationsofthetwo-dimensiona. director/vectororderparameter.Ourmaininterestwillbeinhowtopologicallydif. ferentdefectsarecharacterizedandthen,howtheymaycombine.Thedisclination. havealreadybeencharacterizedbytheirwindingnumberorstrengths.Forth. two-dimensionaldirector/vectoritisfoundthatdisclinationsofdi erentstrength. aretopologicallydi erent[58],i.e.,theycannotbecontinuouslytransformedint. eachother.Furthermore,twodefectswithstrengthss 1 ands 2 cancombinein. continuoustransformationtoformadefectwithstrengths 1 +s 2 ,i.e.,incombin. ingthewindingnumbersaresimplysummed[58].Particularly,itfollowsthattw. defectswithoppositewindingnumberscancombinetoformadefectlessstructur. withzerowindingnumbers=0.Evenifthepairremainsunannihilated,Eq.(6.12. showsthatthelogarithmicdivergenceiseliminatedifs 1 +s 2 =0,sothefreeenerg. ofthedefectsissmall,providedthattheyarenotveryfarapart.Thiscanbeun. derstoodapriori,sinceusingaloopthatencirclesbothdefectsawindingnumbe. s=s 1 +s 2 =0isdetected,whichre ectsadefectlessstructurewithlowdistortio. energyoutsidetheloop. Generally,defectswithoppositelysigned(notnecessarilyequalinmagnitude. strengthswillcombineinordertoreducethedistortionenergy.Ontheotherhand. itisenergeticallyfavorableforadefectwithalargestrengthtodecayintodefect. withlowerstrengths,whichcanthenmoveapartreducingthedistortionenergy.I. principle,oneshouldbemorepreciseandapplyEq.(6.12)tothiscases,accountin. forthecoreenergiesandcut-o sr 0 thatdependonthewindingnumber.However. thesearesmallenergycorrections,toosubtletobedescribedinthecurrentapprox. imation.Nevertheless,Eq.(6.12)shows,thatchangingtheseparationofthedefect. foraslittleasonlyafewcoresizesalreadypredominatestheotherfreeenerg. contributions. 6.2Disclinationsofa3Ddirector/vecto. Allowingforathree-dimensionalorderparameter,thetopologicalpictureischange. dramatically.Continuoustransformationschangingthewindingnumberbyanin. tegerarenowpossible[58].Thisimpliesthattopologicallyalldefectswithintege. 6. Defect. 0.60 0.60 0.45 0.45 0.30 0.30 0.15 0.15 0.00 0.00 -0.15 -0.15 -0.30 -0.30 -10 -5 0 510 -10 -5 0 510 rr (a)s=1=. (b)s=. Figure6.3RadialdependenceoftheQ-tensoreigenvaluesfor(a)the1 = . and(b)1disclinations.Lengthisscaledbythecorrelationlength(7.18). Analyticexpansionsforsmall r aregiveninEq.(9.8). strengthsarenodefectsatall,sincetheycanbecontinuouslytransformedtoade. fectlessstructure.ForthedefectinFig.6.1(b)suchatransformation(aso-calle. escapeinthethirddimension[68,69])isachievedbyaprogressiverotationofdirec. torsaroundtheperpendicularaxeslyingintheplanewhengoingfromtheboundar. towardsthecenter.Hence,inthecaseofthevectororderparameterthereexistn. topologicaldisclinationlines(orpointsinthe2Dsystem).Similarly,half-intege. defectsarecontinuouslytransformableintoeachother,thusbeingtopologicall. identical.Hence,inthecaseofthedirectororderparameterthereexistsonly. singletopologicallinedefect(orpointdefectinthe2Dsystem);wechooseittob. thedisclinationlinewithwindingnumbers=1=2,Fig.6.1(a).Thecombinatio. lawisagainsimplytheadditionofwindingnumbers[58].Withonlyonetopologica. defect,thereislittlepossibilityleft:twodisclinationswithstrengthss=1=2ca. combinetoformadefectlessstructurewiths=0. Letusjustmentionthatthereexistanexactanalogybetweenthedisclinatio. linesandmagneticsystems[65,p.530]. 6.3Structureofdisclinationcore. Inthecaseofthevectororderparametercthestructureofthedisclinationcorei. verysimple,i.e.,themagnitudecofthevectorvanishesinthecenter.Intheon. elasticconstantapproximation,thegeneralsolutionforsmallri. r jsj c/. (6.13. wherethevectorcisexpresseda. c=c(r)(. ^e r cos +. ^e  sin ); =(s..1)+ 0 :(6.14. Inthecaseofthedirector,thefulltensororderparametermustbesolvedfo. [60{62].Intheoneelasticconstantapproximation(7.1),thesolutionforsmallri. Defect. 6. giveninEq.(9.8).Thecrosssectionthroughthestrength1=2and1disclination. isdepictedinFig.6.3.Farfromthecoretheorderingisuniaxial,butalsointh. center,wherethelargestinabsoluteeigenvalueisnegative,i.e.,thedistributio. ofmoleculesisplanar.ThiscanbebestseeninFig.6.4containingthecomplet. informationontheQ-tensor eldinthedisclinationcores. 6. Defect. (a)s=1=. (b)s=. Figure6.4Crosssectionsthroughthedisclinationlineswith s =1 = 2an. s =1.TheQ-tensoreigensystemisrepresentedbythebox,thelengthso. theedgescorrespondtotheeigenvalues(aconstantisaddedtomakethe. non-negative). 7 Pair-annihilation of disclination lines in nematics 7.1 Introduction The research of defects in order parameter elds corresponding to various condensed matter systems is driven by many aspects of motivation. Defects can be readily observed, either directly (e.g., by optical methods) or through other physical properties of the system, which are crucially modi ed in the presence of defects. In many cases of application defect-free structures are required, while in the others (e.g., in some liquid crystal displays) structures containing defects might be essential. In the latter case, one must know something about static or dynamic properties of defects. Theoretically, defects o er a rich playground for mathematically oriented excursions. Their topological properties can be very interesting and nontrivial, if only the order parameter has enough degrees of freedom. Defects play a decisive role in any phase transition, since in the late stages the ordering is governed exclusively by the dynamics of the defects created at the transition. An important part of the motivation arises from the universality of defects, i.e., they can occur in any system with a rich enough order parameter. Their major properties are independent of the underlying physics, determined solely by symmetries and dimensionalities of the order parameter, the defect, and the system. Lately the aim towards the exploitation of this universality has been experienced in the area, motivating the research of laboratory-friendly condensed matter systems such as liquid crystals in order to yield knowledge in completely di erent realms of physics (e.g., the physics of the universe, elementary particles, and elds) [70{74]. In order to study the statics or dynamics of defects in nematic liquid crystals, the full tensorial description of the nematic ordering must be considered. Nevertheless, there have been some attempts using the director description. The monopoleantimonopole annihilation of point defects has been studied in the scaling regime by Pargellis et al. [75]. The annihilation of a wedge disclination pair in a hybrid nematic cell and the annihilation of straight disclination lines have been studied by Minoura et al. [76] and Denniston [77], respectively. Peroli, Bajc, et al. [78{81] have studied the annhilation of point defects in a capillary. The dynamics of loop disclinations has been modelled by Sonnet and Virga [82]. Stark and Ventzki [83] have calculated the Stokes drag of spherical particles in a nematic solvent. 69 7. Pair-annihilationofdisclinationlinesinnematic. Therearetworeasonsforthenecessityofthetensordescription.First,thehalf. integerdefectsareonlypossiblewhentheorderparameterpossessesthetensoria. symmetry.Onecanevadethisproblembyusingadirectordescriptionthatpreserve. thissymmetry[84].However,theapproachisstillinadequateforthesecondreason. whichistheinabilityofdescribingthedefectcore.Thecoremustnecessarilyb. included,foritisonlyinthiswaythatthelengthscaleisde nedtowhichothe. lengthscanbecompared,i.e.,theinterdefectdistance!Also,intheabsenceo. thecoreproblemsregardingthediscretisationarise,e.g.,theartifacturalpinningo. defects.Puncturingaholeatthespotofthedefectcoreandshrinkingittoapoin. assuggestedbyGartlandetal.[85]cannotbeofbene t,asthelengthscaleisstil. notintroduced,nottomentiontheobscureboundaryconditionsemergingatth. cuttingsurface.Auniaxialtensordescriptionwithavaryinglengthofthedirecto. hasbeenusedbyPismenandRubinstein[86].Thecompletetensorapproachha. beentakenbyKilian[87].Anicetensorialcalculationusinganadaptivemes. re nementapproachhasbeenperformedbyFukudaetal.[88]. Ifonewantstoincludehydrodynamice ects,normallydescribedbytheEricksen. Leslietheory[22,23],Chapter4,ageneralizationofthelatterisrequiredtodescrib. thecouplingofthetensorialdynamicsandthe ow[89{92].Stillkeepingthedirec. tordescription,onemightexpecttoremedytheproblemjustbyallowingavariatio. ofthedegreeoforder.Itturnsout,however,thatinthedefectcentertheequation. soobtainedareill-conditionedandincapableofaccuratelydescribingthehydrody. namicpartoftheproblem. Thee ectofhydrodynamic owonkineticsofnematic-isotropictransitionha. beenstudiedbyFukuda[93],asimilartopic,howeverwithadi erentmethod|th. latticeBoltzmannalgorithm[94],hasbeenstudiedbyDennistonetal.[95].Recentl. aworkonhydrodynamicsoftopologicaldefectswaspublishedbyToth,Denniston. andYeomans[96].Theystudiedthee ectofback owandelasticanisotropyonth. pair-annihilationofstraightlinedefectswithstrengths1/2,againusingthelattic. Boltzmannalgorithm.Theirtreatment,however,isnotbasedontheEricksen-Lesli. theoryandinvolvesonlytwoviscouscoeAcients.Thereisalsoasigni cantamoun. ofexperimentalworkonthedynamicsofdefectsinnematics[97,76,98]. TheaimofthisChapteristopresentthesolutiontothepair-annihilationo. straightdisclinationlineswithstrengths1/2,startingfromthedynamictheor. forthetensororderparameter[92].Weconsideranuncon nedbulksystem.I. thetheory[92],onlythosedissipationtermsareincludedthatreducetotheLesli. termsintheuniaxiallimitwithaconstantdegreeoforder.Therefore,thetensoria. theoryinvolvesthesamenumberofviscousparametersastheEricksen-Leslietheory. expressedassimplelinearcombinationsoftheLeslieviscositycoeAcients. Symmetrypropertiesofthestresstensorwithrespecttochangingthesigno. thewindingnumberwillbediscussed,resultinginasimpleidenti cationofstres. tensorterms,responsiblefortheobserved owasymmetryandtheaccelerationo. theannihilationprocess.Further,itistobeshownthatthehydrodynamice ec. dependsonthedirectorphaseangle,i.e.,unliketheorderparameterdynamicsi. caseofelasticisotropyconsideredhere,itisnotinvariantunderthehomogeneou. rotationofdirectors.Againthecorrespondingstresstensortermwillbepointe. Pair-annihilationofdisclinationlinesinnematics7. out. Itshouldbestressedthatalthoughthetensorialapproachworksverywella. smalldefectseparations,thepassageto>1mlengthscalesthatcanberesolve. experimentallyishinderedbyenormouscomputationalcomplexityoftheproble. andthelarge(severalordersofmagnitude)ratioofthedefectseparationtothesiz. ofthedefectcore. 7.2Dynamicequation. ThestartingpointisthebulkfreeenergydensityexpressionintermsofQ[10,p. 156]. . f=(Q)+L(@ i Q jk )(@ i Q jk ). (7.1. . wherethehomogeneouspartisgivenb. 11. ) 2 (Q)= AQ ij Q j. +BQ ij Q jk Q ki +C(Q ij Q ji :(7.2. 23. ItwastakenintoaccountthatC 1 (Q ij Q ji ) 2 +C 2 Q ij Q jk Q kl Q l. =(C 1 +1=2C 2 )(Q ij Q ji ) . andanewconstantC=C 1 +C 2 =2wasintroduced.Intheelasticpartof(7.1),onl. thetermwithL 1 Lisretained,resultinginisotropicelasticity.Termsofthir. orderinQareneededtoreachthesplay-bendelasticanisotropy[99],thee ectso. whichhavebeenstudiedin[96]. RequiringtheQtensorbetracelessandsymmetric,theEuler-Lagrangeequatio. forthefreeenergyfunctiona. . F=dV[f(Q;rQ)..Q ii .. i  ijk Q jk . (7.3. givesthehomogeneousandelasticpartofthegeneralizedforceonthetensororde. parameterQ. @. h h. . i. =L@ k Q ij ..+A ij + k  kij . (7.4. @Q i. TheLagrange-multipliertermsmerelystatethattheisotropicandantisymmetri componentsof(7.4)arenotspeci edandhavetobedeterminedbytheconstraints. h he i.e.,theisotropicandantisymmetricpartsmustbesubtractedfromtheforce i. h he (projectiontothetracelesssymmetricsubspace).Toputitinanotherway, mustbeprojectedontothesymmetricandtracelesssubspaceofQ.Theelasti stresstensorisobtainedinastandardmanner,Eq.(2.26),a. @.  . ij =..@ j Q kl . (7.5. @(@ i Q kl . TheviscousstresstensorandtheviscousgeneralizedforceontheQtensorare[92. .  . ij = 1 Q ij Q kl A kl + 4 A ij + 5 Q ik A k. + 6 Q jk A k. + 2 N ij .. 1 Q ik N k. + 1 Q jk N ki . . (7.6. 7. Pair-annihilationofdisclinationlinesinnematic. . ..h . =  2 A ij + 1 N ij . (7.7) ij . wher. dQ ij . N ij =+W ik Q k. ..Q ik W kj . (7.8. d. withthematerialtimederivativedQ ij =dt=@Q ij =@t+(vr)Q ij andthesymmetri andantisymmetricpartsofthevelocitygradientAandW,Eq.(2.34).Onlythos. termshavebeenincludedthatintheuniaxiallimitwithaconstantdegreeoforde. reducetothestandardLeslieviscousterms i .Thus,theviscouscoeAcientsi. (7.6)and(7.7),linkedbytherelation 2 = 6 .. 5 ,canbeexpressedintermso. theLesliecoeAcientsandtheconstantvalueofthescalarorderparameter[92]. Finally,theequationofmotionfortheQ-tensoristhetracelesssymmetricpar. (denotedby?)ofthegeneralizedforcebalance. n. h he +h . =0. (7.9. . . Q withtheconstraint. ii =0; ijk Q j. =0. (7.10. ThegeneralizedNavier-Stokesequationwithinthelow-Reynolds-numberapprox. imation(omittingthenonlinearadvectivederivativeterm(vr)v),regularlyusedt. describetheorderparameterelasticitydrivendynamicsinliquidcrystals(Chapte. 4),read.  @v i =..@ i p+@ j ( v + e ). (7.11) j. ji @. withthedensityandtheviscousandelasticstresstensorsgivenin(7.6)and(7.5). Usually,alsothesteadystateapproximationismade,omittingthetimederivativ. term(Chapter4).Thepressure eldpmustbesuchthattheincompressibilit. conditio. @ i v i =. (7.12. issatis ed. 7.3Characteristicscale. Letusrewritethefreeenergydensityusingtheuniaxialansatz(3.11. . Q . ij =S(3n i n j ..A ij ). (7.13. . 3 2 1 3 9 4 . 9 f= AS+ BS+CS+ L(rS) 2 + LS 2 (rn) 2 :(7.14. 4416. . TheEuler-LagrangeequationforS,puttingrntozero,read. . @. Lr 2 S..=0. (7.15. . @. Pair-annihilationofdisclinationlinesinnematics7. Forahomogeneoussystem,thesecondtermmustvanishinequilibrium,fromwher. thebulkequilibriumvalueofSisobtained. . q . S 0 = ..B=3C+(B=3C) 2 ..8A=3C:(7.16. . LinearizingEq.(7.15)forsmalldeviationsfromequilibrium,S(r)=S 0 +S(r). oneget. 2@ 2 . r 2 S.. S=0. (7.17. 3L@S 2 S. fromwhereacharacteristiclengthscalecanbeextracted|thenematiccorrelatio. lengt. . 3. = . (7.18. 2f 00 j S. Usingthecorrelationlength(coupleofnanometersusually)andacorrespondin. characteristictime(Eq.(4.16). = 1  2 =K= 1  2 =L. (7.19. where 1 isthedirectorrotationalviscosityandKisthedirectorelasticconstant. Eq.(7.9)andthestationaryEq.(7.11)arebothputtoadimensionlessform.Th. timeisthecharacteristicrelaxationtimeoftheorderparameterdeformationo. thelengthscaleof,whichistypicallytensofnanoseconds.Inthefollowing. dimensionlessquantitieswillbeused,i.e.r r=forlength,t t=fortim. andv v=forthevelocity.Afterdoingso,thematerialparametersenterth. equationsonlythroughcombinationsgivenin(7.22)and(7.23). LetusestimatetheReynoldsnumberandtheunsteadinessparameterofth. ow,i.e.,theratioofcharacteristicdynamictimesofthe ow eldandtheorde. parameter eld.Theestimatedi ersfromthosemadeinChapter4,inthatno. thereisnosimplerelationbetweencharacteristicdeformationlength(7.18)ofth. orderparameter eldanditsrelaxationtime.Instead,onecanempiricallyidentif. thelatterwiththeannihilationtime.ThisyieldstheReynoldsnumberandth. unsteadinessparametero. .. K R . R . 0. Re=10 ..6 . (7.20. . . t. R 2 where 0 istheinitialdefectseparationandtistheannihilationtime.Theisotropi viscositywasputequaltoforbrevity.Thevalueof=t,obtainedempirically,is . R . 1 0 oftheorderofafewunits.Whatismore,followingthephenomenologicalequatio. ofmotiongivenbyPleiner[100,101,96]. . dR1. /ln ... . (7.21. .  0 dt.  . R 2 whereR(t)istheactualdefectseparationandscaleswith,thevalueof 0 =. exhibitsonlyaweaklogarithmicdependenceonR.Thus,forlargeenoughdefec. separationscomparedwith,theempiricalestimateisquitegeneralinvalidity.I. conclusion,theReynoldsnumberandtheunsteadinessparameteraretinyindeed. sothatinEq.(7.11)boththeadvectiveandpartialtimederivativescanbeomitted. 7. Pair-annihilationofdisclinationlinesinnematic. 7.4Technicalitiesandmaterialparameter. ThenumericalmethodusedisdescribedinChapter4.Thecalculationsweredon. onaninhomogeneoussquaremesh,consistingofa nemeshof160x160pointsinth. centercontainingbothdefects,andacoarserinhomogeneousgridwithincreasin. spacingaroundittoyieldthetotalof280x280points.Thepositionofthedefect. wasdeterminedby ndingalocalminimumofthetraceQ ij Q ij . Thevelocitywassettozeroattheboundary.Inordertomeetthesituatio. presentinabulksystem,thedefectseparationwassmallcomparedtothesizeofth. computationalarea(theratioofthetwowas3/20)andthederivativesoftheorde. parameternormaltotheboundaryweresettozero.Initially,theQtensorwasse. . P S. . y..yk toQ ij =(3n i n j ..A ij ),wheren=(cos;sin)and=m k arctan. . k=1 x..x. whichistheoneelasticconstantequilibriumdirectorcon gurationwithtwodefect. ofstrengthm k positionedat(x k ;y k ),Eq.(6.10).Afterwards,enoughcomputin. stepswithoutthehydrodynamicswereperformedto rstestablishthefulltensoria. con guration.Theinitialdefectseparationwasabove70correlationlengths(7.18). inordertoreachthefarregimeofmotion,wherethedefectsarewellisolated.Ason. realizes,therearethreelengthscalesinthesystem,whichshouldbewellenoug. separated:thecorrelationlengthandthedefectspacingastherelevantphysica. scales,plusthecontainersizeasthetechnicalone. TheviscositycoeAcientsin(7.6)and(7.7)wereobtainedfromthestandar. LesliecoeAcientscorrespondingtoMBBA[49,p.231]asdescribedin[92].Numer. icalvaluesoftherelevantratiosar.  2 = 1 ..1:92; 1 = 1 0:17; 4 = 1 1:99; 5 = 1 0:70; 6 = 1 ..0:79. (7.22. TheLandaucoeAcientsA,B,CandtheelasticconstantLin(7.1)and(7.2)wer. takenfrom[102].Numericalvaluesoftherelevantratiosar. A 2 =L..0:064;B 2 =L..1:57;C 2 =L1:29;(7.23. withthecorrelationlength(7.18)2:11nm.Thecharacteristictime(7.19. 32:6nscompletesthesetofmaterialparameters. 7.5Resultsanddiscussio. Theresultsforthepairannihilationof1=2defects(Fig.7.1)arepresentedi. Fig.7.2.Itshouldbepointedoutthatduetothehighcomputationalcomplexityo. theproblemandthebroadrangeoflengthscalesinvolved,onlydefectseparationso. lessthan1mandannihilationtimesoflessthan1mscanbereached.Thismean. thatforthetimebeingtherestillexistsalargegapbetweennumericcapabilitie. andpossibleexperimentalobservations. InFig.7.2onenoticestwodistinctfeatures:duetothehydrodynamic owth. annihilationisfasterandasymmetric.Fig.7.3showsthatitisparticularlythe+1=. defectwhosemotionisa ectedbythe ow.AlsoclearlydemonstratedbyFig.7.. Pair-annihilation of disclination lines in nematics 75 (a) (b) Figure 7.1 A schematic representation of a pair of 1=2 defect lines: the eigenvectors corresponding to the largest absolute eigenvalue of Q (directors) are depicted in the cross-sectional plane, perpendicular to the disclination lines. Two isomorphs (a) and (b) are shown, di ering only in a homogeneous rotation of the directors. For clarity, the number of mesh points has been reduced by a factor of 4 in each dimension and the correlation length has been increased by a factor of 2 (only the central homogeneous region of the mesh is shown). 7. Pair-annihilationofdisclinationlinesinnematic. 30 y 0 -30 0 1000 2000 (b) (c) (a) +1/2 -1/2 t Figure7.2Positionofthedefectsasafunctionoftime,measuredfromth. initialmiddlepointbetweenthedefects.Threesituationsaredisplayed:th. twoisomorphs(a)and(b)(seeFig.7.1)andthecasewithoutthe ow(c). wheretheisomorphsbecomedegenerate.Recallthatlengthismeasuredrel. ativeto  2 : 1nm,andtimeismeasuredrelativeto  33ns. 0.3 +1/2 -1/2 no flow 0.2 v 0.1 0.0 r Figure7.3Velocityofthedefectsasafunctionoftheinterdefectdistanc. (isomorph(a)).Forcomparison,thesameisshownforthecasewithoutth. hydrodynamic ow.Thevelocityofthe+1 = 2defectisstronglyincrease. bythe ow.Notethenonmonotonicbehavioratearlystagesoftheprocess. wheretheinitialequilibriumQ-tensorcon gurationisadaptingtoadynami one.Thedistanceandthevelocityaremeasuredrelativeto  2 : 1nman. = 65nm = s,respectively. 0 20 40 60 Pair-annihilationofdisclinationlinesinnematics7. 0.12 0.08 0.04 v 0.00 -0.04 -0.08 +1/2 -1/2 isomorph (a) isomorph (b) no flow 1020304050 6070 r Figure7.4Velocityofthedefectswithoutthecontributionofadvectiona. afunctionoftheinterdefectdistance.Withoutthehydrodynamic ow,bot. defectsmovesymmetrically.Notethatthepartofthevelocitycomingfro. theorderparameterdynamicsislargerforthe..1 = 2defect.Alsonoteth. di erencebetweentheisomorphsoriginatingfromthedi erentcouplingt. owanddi erent ow elditself,bothofwhicharemostlyduetothe  . viscousterm. (seealsoFigs.7.4and7.5)isthenonmonotonicbehaviorofthedefectvelocitie. atearlystagesoftheannihilation[86],[72,p.58].Itisaconsequenceofstartin. withtheequilibriumcon gurationof xeddefectsratherthanwithadynamicone. whichisbeingapproachedbythesysteminthecourseofannihilation.Sinceou. simulationsrepresentonlytheverylatestageofanactualannihilationprocess,thi. nonmonotonicbehaviorshouldbeviewedasanunphysicalartifactoftheinitia. condition.Laterwewillshowthatitcanbeeliminatedbystartingwithaprope. dynamiccon guration,evenwithoutthrowingawaycomputationalresourcesfo. simulatinglargerdefectseparations.Alternatively,itcanberegardedasaninertia. e ectduetoane ectivemassthatcanbeattributedtothedefect[100].Asth. defectmoveswithaspeedv,itdistortstheorderparameteraroundit,thedistortio. dependingonv.Thepartofthedistortionenergyquadraticinvcanberegarde. asane ectivekineticenergy,fromwherethee ectivemasscanbeextracted. First,letusconcentrateonqualitativefeaturesofthe ow-drivingmechanis. byinspectingthestresstensors(7.5)and(7.6).Oneistemptedtoexplaintheeasil. perceivedcharacteristicofthe ow eld(Fig.7.6(a)):duetoadvectionthe+1=. defectisspedup,whilethe owismuchweakeraroundthe..1=2defect. AsestimatedinChapter4andveri ednumerically,the\passive" 1 , 5 ,an. 6 termsintheviscousstresstensor(7.6)(ortheircounterpartsinthestandar. Ericksen-Leslietheory, 1 , 5 ,and 6 ),describingthedependenceofthe uidvis. 7. Pair-annihilationofdisclinationlinesinnematic. 0.00 -0.02 v -0.04 -0.06 -1/2 +1/2 isomorph (a) isomorph (b) 10 20 3040 50 60 70 r Figure7.5Theadvectivecontributiontothevelocityofthedefectsforth. twoisomorphiccases.Thesurprisinglylargedi erencebetweenthevelocitie. ofthe+1 = 2defectismainlyduetothe  2 viscousterm.Atsmallseparation. notshown,themotiondrivenbytheorderparameterdynamics(Fig.7.4. becomesdominant. cosityontheorderparameter,giveonlyminorquantitativee ects.Thereforeon. canignoretheminstrivingtogainaqualitativepicture.Ontheotherhand,th. _ remaining 1 and 2 terms,whichcontaintheorderparametertimederivativeQ. andalsotheelasticstresstensor(7.5),representthesourcedrivingthe owan. thereforehavetobeanalyzedcarefully. 7.5.1The owasymmetr. Atthisstage,weareinterestedonlyinsymmetries,i.e.,thebehaviorofthestres. tensortermsconsidereduponchangingtheorderparameter eldlocallyastotrans. formthe+1=2and..1=2defectsoneintotheother.Inoneelasticconstantap. proximation,thiscanbeachievedbymirroringtheQtensorontheaxisjoiningth. defects(theyaxis,Fig.7.1)[95]:Q xy !..Q xy ,sincethefreeenergydensity(7.1. isleftunchangedbythisprocedure.Anystresstensorterms,invariantwithrespec. tothistransformation,treatbothdefectsequallyandclearlydonotcontributet. the owasymmetry.Ontheotherhand,anynoninvarianttermsmustbeidenti e. asthe owsymmetry-breakingcomponents. Byde nition(7.5)theelasticstresstensorisinvariant,whichisadirectconse. quenceoftheelasticisotropy.Asaresult,the ow eldisthesameforbothdefect. (Fig.7.6(b)).Inaddition,itsdirectionissuchastoreducetheinterdefectsepara. tionandtherebythefreeenergyofthesystem.Thisfollowsimmediatelyfromth. de nitionofanystresstensor,Eq.(2.25). Theviscoustermswillbeanalyzedforthecasev=0,i.e.,onlythedriving(Q_ . Pair-annihilation of disclination lines in nematics 79 (a) complete stress tensor, vmax = 0:011 (b) elastic terms, vmax = 0:0057 (c) 1 term, vmax = 0:0085 (d) 2 term, vmax = 0:0041 Figure 7.6 Flow elds resulting from di erent driving stress tensor terms: (a) the complete stress tensor, (b) elastic stress, (c) the 1 viscous term, and (d) the 2 viscous term. In all cases also the isotropic 4 viscous term is included. For clarity, the number of mesh points has been reduced by a factor of 4 in each dimension; only the central homogeneous region of the mesh is shown. The approximate positions of defects are marked with circles, the radius of the defect core is roughly four grid points. The maximum velocity magnitude vmax corresponding to the longest velocity vector is given for each ow eld (relative to =). 8. Pair-annihilationofdisclinationlinesinnematic. dependent)partin(7.8)willbeconsidered.The 2 termhasnode nitesymmetr. forsomeofitscomponentstransformsymmetricallyandsomeantisymmetrically. Atthedefectspotsthe owdrivenbythistermisratherweakcomparedtoth. _ contributionfromtheothertermsinquestion,becauseQisextremalthereyieldin. avanishingdivergence.Hence,the 2 termdoesnotgiveadominantcontributio. totheadvectivemotionofthedefects. Ontheotherhand,the 1 termisfullyantisymmetricwithrespecttothetrans. formation,yieldingexactlytheopposite owforthe..1=2defectascomparedwit. thatnearthe+1=2defect(Fig.7.6(c)).Onenoticesthatthe owisthestronges. atthedefectpositionsinthiscase.Thus,duetoadvectionthistermalonecangiv. risetothe owasymmetryobserved.OnecanverifybyinspectingEqs.(7.6)an. (7.7)thattherelativemagnitudeofthisantisymmetriccontributiontotheadvectiv. derivativeterm(vr)Qin(7.9)isapproximatelyproportionalto 1 ,providedtha. allothermaterialparametersarekept xed.Ontheotherhand,scalingallvis. cositiesequallywithrespecttotheelasticconstantleavesthedynamicsunchange. completelyandmerelyaltersthecharacteristictime(7.19),astatementbasedpurel. ondimensionalgrounds(seeSection7.2). Inadditiontothe owasymmetry,theannihilationprocessisalsosigni cantl. spedupwhencomparedtotheannihilationwithoutthe ow.Followingthepreviou. discussion,thise ectiscausedmostlybytheelasticstressdriven ow.Thus,th. annihilationdynamicso ersaniceexampleshowingtheimportanceoftheelasti stressinliquidcrystals,whichisusuallyconsideredlesssigni cant,e.g.inLCcells. Additionally,theelasticand 1 viscoustermsactinconcordnearthe+1=2defect. whereasforthe..1=2defecttheycombinedestructively.Thisexplainsthedi eren. velocitymagnitudesinthevicinityofthedefects(Fig.7.6(a)). 7.5.2Reorientation-drivendefectmotionvs owadvectio. Itisalsoofone'sinteresttoquantifytheratioofdefectmotionduetoadvectiona. opposedtothemotionpropelledbytheorderparameterdynamics.Figures7.4an. 7.5showthatthevelocitiesinquestionarequitecomparableinmagnitude.More. over,inChapter9,wheretherepulsivemotionoftwo1/2disclinationisstudied,w. ndthatthecontributionoftheadvectivetransporttothetotalmotionincrease. withtheincreasinginterdefectseparation(Fig.9.10).Weexpectthistobethecas. alsofortheattraction.Onceagainthisre ectstheimportanceofthe owindefec. dynamicsascomparedwiththelimitedperturbinge ectsitnormallyhas,e.g.i. LCcells,Chapter4.Furthermore,onemustrealizethatalsoasecondary owe ec. besidesadvectionisimportant,namelythein uenceofthe owontheorderpa. rameterdynamics.ItisclearfromFig.7.4thattheorderparameterdynamicsitsel. isfasterbecauseofthecouplingtothe ow.ComparingFigs.7.4and7.5oneca. statethatthecontributionofthiscouplingtothe owasymmetryislessimportan. thanthatoftheadvection,whereasitsacceleratinge ectisjustasimportant. Pair-annihilationofdisclinationlinesinnematics8. 7.5.3In uenceofthedirectororientationangleonthe o. Inoneelasticconstantapproximation,thefreeenergydensity(7.1)andthusth. orderparameterdynamicsareinvariantwithrespecttoahomogeneousrotationo. theeigensystemoftheQ-tensorineveryspacepoint.Consequently,defectpair. di eringonlyinthisconstantphaseangleofdirectorrotation|letuscallthe. isomorphs(Fig.7.1)|behaveexactlyinthesameway(e.g.,forthecaseofa+. defectsuchisomorphsaretheradialandtangentialdefects,aswellasanyothe. formbetweenthetwo).Withthe owpresent,however,thissymmetryisbroke. (Fig.7.2).Itisquiteinstructivetostudythedependenceoftheimportantstres. tensortermsuponsucharotation.Besidestheelasticterm(7.5),the 1 pairo. termsisalsoleftunchangedbytherotation.Thisiswhythee ectofadvectio. shouldberoughlysimilarforallisomorphs.Itisworthmentioningthatalsoth. in uenceofthe owontheQ-tensorgivenbythe 1 termin(7.7)isnota ectedb. therotation. Ontheotherhand,the 2 stresstensortermisnotinvariant.Onecanse. inFigure7.5thatitintroducessigni cantdi erencesevenasfarastheadvectio. ofthedefectsisconcerned.Forgeneralisomorphsthe 2 termyieldsa ow el. lackingthesymmetryofre ectionontheaxisjoiningthedefects.Additionally. the 2 termintheviscousforce(7.7)isdi erentfordi erentisomorphs.Itisdu. bothtothedi erentcouplingofthe owtotheorderparameterdynamicsandt. thedi erencesinadvectionthattheisomorphsarenotequivalentdynamically.A. veri ednumerically,the 1 , 5 ,and 6 termsagainbringonlyaverysmalldi erence. 7.6Summar. Wehavestudiedtheattractionandannihilationofstraightlinedefectswithstrengt. 1=2inbulknematics.OurapproachisbasedontheEricksen-Leslie-likedynami theoryforthetensororderparameterofthenematicliquidcrystals.Ithasbee. shownthatduetothehydrodynamic ow,theannihilationisfasterandasymmetric. Further,wehaveidenti edthegoverningstresstensorterms:the 1 and 2 viscou. termsandtheelasticstress.Symmetriesofthetermsuponinvertingthesigno. thewindingnumberandperformingahomogeneousin-planerotationoftheQ. tensoreigensystemhavebeendiscussed.Boththe 1 termandtheelasticstressar. invariantupontherotationandhenceidenticalforallisomorphs.The 1 termi. antisymmetricwithrespecttochangingthesignofthedefects,therebycontributin. dominantlytotheannihilationasymmetry.Ontheotherhand,theelasticstressi. symmetric,sothatitcausestheannihilationprocesstogoonfaster.Theonlyterm. distinguishingbetweendi erentisomorphsarethe 2 termsin(7.6)and(7.7)(the. alsodistinguishbetweenthe+1=2and..1=2defect).Thus,onecanconcludetha. thedi erenceindynamicsbetweentheisomorphsisgovernedbytheratio 2 = 1 . Theremaining 1 , 5 ,and 6 termsintheviscousstresstensor(7.6)introduceonl. inferiorcorrectionstothe ow eld. Oneshouldemphasizeoncemorethatduetolengthscalesseveralorderso. magnitudeapartandenormouscomputationalcomplexityoftheproblem,withth. 8. Pair-annihilationofdisclinationlinesinnematic. presentmethodoneisunabletoreachthe>1mrangeofinterdefectdistances. whichcanberesolvedinexperiments.Nevertheless,itisquitereasonabletobeliev. thatthehydrodynamice ectsdescribedinthisChapter,i.e.,the owasymmetr. andthereductionoftheannihilationtime,willbepresentandevenstrongera. largerdefectseparations. 8 Pair-annihilation of vortices in SmC lms Our research of defect dynamics in SmC lms has been motivated by a preliminary experiment on the free-standing SmC thin lm system by Link et al. [103{106], showing an unexpected behavior of a pair of annihilating vortices. This triggered speculations on the ow e ects being responsible for it. Apart from an approximate analytical study of forces on a single defect by Pleiner [100], there have been no hydrodynamic studies of defects in SmC lms reported so far. For a nonhydrodynamic treatment see the work by Pargellis et al. [107]. In this Chapter, we de ne the SmC order parameter and set the scene for an adequate description of defect dynamics in SmC lms. The SmC thin lm system is reduced to the XY -model. Then we show that the pair-annihilation of vortices with winding numbers 1 (Fig. 8.2) is accompanied by strong hydrodynamic ow, which speeds up the process as compared with the model situation without the ow, and, assisted by the elastic anisotropy, gives rise to asymmetry in defect speeds. 8.1 SmC order parameter In the phase sequence I | N | SmA | SmC, the SmC phase occurs, if present, at the lowest temperature. In the SmA phase, the director n is normal to the smectic layers, whereas in the SmC phase, this symmetry is broken and the director is tilted. Experimentally most convenient liquid crystal system for the study of defects is the free-standing SmC thin lm, only a few smectic layers in thickness. The projection of the director onto the smectic plane is a two-dimensional vector, called the c-director, which is the order parameter of the SmC phase. One has to point out immediately, that the c-director, despite its name, is in fact a vector, i.e., c 6= ..c. The length of the vector (also called the tilt or amplitude) is the condensed quantity that becomes nonzero at the transition, while its angle (or phase) is the hydrodynamic quantity with a Goldstone mode. Originally, the c-director has been considered a unit vector, representing only the hydrodynamic degree of freedom. For description of defects, however, one must include also the variation of its length. In general, the c-director is coupled to the smectic order parameter and possesses also the nematic tensorial structure. To rst approximation, both will be neglected, assuming a uniaxial nematic ordering with a constant degree of order and straight 83 8. Pair-annihilationofvorticesinSmC lm. and xedsmecticlayerswithaconstantthickness,irrespectiveofthec-director. Topologicaldefectsofthec-directoraredisclinationlineswithintegerwindin. numbers,i.e.,vortices.Halfintegerstrengthsarenotallowedduetoc=6..c.I. ordertoavoiddiscontinuitiesinthec eld,thetiltmustbeallowedtovary.Wit. that,inthedefectcorethesystemrevertslocallytotheSmAcon guration. ItmustbestressedthattheorderparametersoftheSmCandnematicphasesar. fundamentallydi erent,anditistheSmCthin lmsystem|withintherestriction. givenbelow|ratherthanthenematicthatisarepresentativeoftheXY-model. Therefore,itisbelievedthattheSmCdynamicshasawiderrangeofapplicability. whichessentiallymotivatesitsanalysis.Moreover,the1vortexisunstablei. thenematiccase(Chapter9)|itisdecomposedintoarepellingpairof1=. disclinations,sothatitsdynamicscannotbefollowed.Thus,onehastoresortt. thevectororderparametertostudyvortices. 8.2Dynamicequation. ThestartingpointisthehydrodynamictheoryofSmCliquidcrystalsproposedb. Carlsson,Leslie,Stewart,andClark[108,109].Itassumesaconstantsmecticlaye. thicknessandaconstantaveragetiltofthemolecules.Inordertodescribeth. structureofthevortices,however,atleasttheconstraintofconstanttilthastob. relaxed,i.e.,aslightgeneralizationofthetheoryisnecessary.Atthesametime. asubstantialsimpli cationwillbemade,thatis,asystemwithvariationsonlyi. twodimensionsandwithstraightsmecticlayerswillbeassumed,eliminatingth. layernormaldegreeoffreedomcompletelyand xingitto. ^e z .Experimentally,Sm. thin lmsaremuchclosertothetwo-dimensionaltheoreticaldescriptionthanth. nematicsinChapter7,wherethedisclinationlinescancurveand uctuate.Duet. thethin lmgeometry,twospatialvariablesxandy,withr=. ^e x @ x +. ^e y @ y ,an. aplanar ow,v=v x . ^e x +v y . ^e y ,areassumed.Hence,wehavereducedtheSm. thin lmsystemtotheXY-model.Itcanbeshownthatundertheseassumptions. theconstant-tiltSmCtheory[108,109]reducestotheEricksen-Leslie(EL)theor. ofthenematicliquidcrystalexactly.Inaddition,themodulusofc,correspondin. tothesineofthetilt,willbeallowedtovary[100].Wehavethusarrivedatatwo. dimensionalversionofthevectororderparameterdynamics,consideredinChapte. 5.Nothingchangesinthe2Dcase,exceptforthemissingtwistterminEq.(5.1). Thereis,however,aprincipaldi erenceintheinversionsymmetryofthegenera. 3Dvectorandc-directorsystems,stemmingfromthefactthatinrealitythe2. c-directorisembeddedinthe3Dspaceandthatn=..nstillholds:cisinvarian. toaglobalinversionc!..c.Asaresult,thefreeenergyandthedissipationo. theSmCsystemareinvarianttoseparateinversionsofthecoordinateandtheorde. parameter,i.e.,theyareinvarianttor!..r,c!c,aswellastor!r,c!..c,a. opposedtothe3Dsystem.Forexample,thedistortionsdepictedinFig.8.1areno. equivalentinthegeneralvectorcase,whereasinthecaseofthec-directorde ne. onstraightsmecticlayerstheyareidentical.Onejustneedsto ipoverthesmecti layerstoseethis.Nevertheless,thisdistinctiondoesnotplayarolewiththefre. Pair-annihilationofvorticesinSmC lm. 8. (a. (b. Figure8.1Thedistortions(a)and(b)ofageneralvector eldarenotequiv. alent,whereasintheSmCsystemmodelledtheyare. energyoftheform(5.1)andthedissipationoftheform(2.38),astheyarealread. invarianttotheseparateinversions. Inspiteofthethin lmgeometry,weignorethesurfacetermsinthefreeenerg. density.Moreover,inordertokeepthenumberofmaterialparametersaslowa. possible,wewillneglectagreatnumberoftheelastictermsinTable5.1.However. wedowanttoaccountforthesplay-bendelasticanisotropy,whichinSmCliqui. crystalscanbelargeduetospontaneouspolarizatione ects[110{112].Thenth. freeenergydensitycanbeconvenientlyexpresseda. 1 2 1 4 1. f= Ac+ Cc+ B 1 (rc) 2 + B 2 (rc) 2 :(8.1. 242. BycomparisonwiththeelastictermsinTable5.1,onecanshowthatuptoth. surfacetermstherelation. B 1 =L 1 ;B 2 =L 1 +L . (8.2. hold.Thus,disregardingthesurfaceterms,thetermswithL 4 -L 8 havebeencon. sistentlyomittedfromEq.(8.1).Theirrelevanceislimitedtoregions,whereth. modulusofcvaries,i.e.,tothedefectcores. Intheoriginalconstant-tiltdescription[108],theelasticpartinvolves9coeA. cients,whichfor xedandstraightsmecticlayersreducetoabendandsplayter. only.Inourcase,allowingforavariationofthelengthofcthebendandspla. elasticconstantsB 1 andB 2 aretilt-independent,Eq.(8.2).Ifonewantedtous. adirectorofunitlengthinsteadofc,Eq.(8.1)wouldimplytheelasticconstant. ~ c 2 todependonthetiltasB i /=sin 2 ,whichisinaccordwiththesymmetr. considerationsin[108]. . TheEuler-LagrangeequationforthefreeenergyfunctionalF=dVf(c;rc. givesthehomogeneousandelasticpartofthegeneralizedforceactingonthevecto. c. 2 @ 2 h i =..(A+Cc)c i +B 1 j c i +(B 2 ..B 1 )@ i @ j c j :(8.3. Theelasticstresstensorisobtainedfrom(8.1)usingEq.(2.26). @.  . ij =..@ j c k . (8.4. @(@ i c k . Originally,thetheory[109]involves20viscousterms,ofwhichonlythestandar. Leslietermsareleftinthepresentlimitoflateral ow,straightsmecticlayersandn. gradientsinthedirectionofthelayernormal.Accountinginadditionforthevariabl. 8. Pair-annihilationofvorticesinSmC lm. lengthofc,Eqs.(5.12)and(5.13)representtheproperdescriptionofthedissipativ. forcesinoursystem.Nevertheless,toresorttotheknownmaterialparameters,w. wewillreducethenumberofviscoustermstotheLeslietermsonly,omittingth. termswiththecoeAcients 6 and 9 inEqs.(5.12)and(5.13).Again,theomitte. termsa ectonlythecoreregionofthedefect.Hence,theviscousstresstensori.  . . i. = 0 A ij + 2 c k c l A kl c i c j + 3 (N i c j ..c i N j ). . 111  4 (N i c j +c i N j )+( 1 .. 4 )c i A jk c k +( 1 + 4 )A ik c k c j ;(8.5. 22. andthegeneralizedviscousforceonthevectorci. ..h . i = 3 N i + 4 A ij c j ;N i =c_ i +W ij c j ;(8.6. withthematerialtimederivative_=@c=@t+(vr)candthesymmetricandanti. c symmetricpartsofthevelocitygradientAandW,Eq.(2.34).AlthoughEqs.(8.5. and(8.6)areexactlythoseoftheEricksen-Leslietheory(Eqs.(4.11)and(4.6)). thereisafundamentaldistinctioninthatheretheviscousparametersdonotde. pendonthecondensedquantity|thetilt,whereastheoriginalLesliecoeAcient. do(Eq.(5.15)). Onemustemphasize,thatbyallowingthemodulusofctovaryinEqs.(8.1). (8.5),and(8.6),wemakeanaturalgeneralizationoftheELdescriptiontoth. caseofthenon-unitvectororderparameter.Herebyweautomaticallyrecoverals. thecorrecttiltdependenceoftheviscousforces,whichin[109]mustberegulate. bytilt-dependentcoeAcients,suggestedbysymmetryarguments.Fornematics. incontrast,onlythetensorialdescriptionwillprovidetheproperdependenceo. thematerialparametersonthedegreeoforder/biaxiality.Hence,itisexactlyth. modelledSmC lmsystemratherthanthenematictowhichtheELtheoryapplie. rigorously(withintherestrictionsconsidered). Theequationofmotionforthevectorcreadsbrie . h+h v =0. (8.7. TogetherwiththegeneralizedNavier-Stokesequation(2.41)andtheincompressibil. itycondition(2.42)itformsthesetofthreepartialdi erentialequationsgovernin. thedynamicsoftheSmC lmsystem. Theequationsarecastindimensionlessformbyintroducingacharacteristi length,i.e.,thetiltcorrelationlengt. . . B 0 . . (8.8. 2 (A+3Cc 0 . coupleofnanometersusually,andacharacteristictim.  3  . =. (8.9. . B . whereB 0 =(B 1 +B 2 )=2.Thetimeisthecharacteristicrelaxationtimeofth. cdeformationsonthelengthscaleof,orequivalently,thedynamictimeofth. Pair-annihilationofvorticesinSmC lm. 8. modulusofc,typicallytensofnanoseconds.Inthefollowing,dimensionlessquan. titieswillbeused,i.e.r r=forlength,t t=fortimeandv v=forth. velocity.Doingso,thematerialparametersentertheequationsonlythroughratio. givenbelow. 8.3Technicalitiesandmaterialparameter. ThenumericalmethodisthesameasinChapter7.Thecalculationsweredoneo. asquaremesh,consistingofa nehomogeneousmeshof80x80pointsinthecente. containingbothdefects,andaninhomogeneousgridwithincreasingspacingaroun. ittoyieldthetotalof140x140points.Thevelocitywassettozeroattheboundary. Inordertosimulateabulksystem,thedefectseparationwassmallcomparedtoth. sizeofthecomputationalarea(theratioofthetwowas3/20)andthederivative. oftheorderparameternormaltotheboundaryweresettozero. Agenericsetofviscousparametersin(8.5)and(8.6)wasused,correspondin. totheLesliecoeAcientsofthenematicsubstanceMBBA[49,p.231],withth. relevantratios 4 = 3 ..1:0, 2 = 3 0:085, 0 = 3 1:1, 1 = 3 0:19,TheLanda. coeAcientsA,C,andtheelasticconstantsin(8.1)wereintheratiosofA 2 =B 0 . ..0:50,C 2 =B 0 2:0(yieldingequilibriumtiltvalueof30A),withthecorrelatio. length2:4nm.Thecharacteristictime88nscompletesthesetofmateria. parameters. Earlystagesoftheannihilationprocessexhibitadependenceontheinitialcon. guration(Fig.8.4).Startingwiththeequilibriumstructurecontainingtwo xe. defects,atransitionperiodexists,duringwhichtheequilibriumcon gurationi. changingtoadynamicone[72,86],Chapter7.Itcanbealsoregardedastheinertia. e ectduetothee ectivemass[100],asmentionedinChapter7.Astherelaxatio. timeofthec eldonthelengthscaleoftheinterdefectdistanceRisproportiona. toandsoistheannihilationtimeinthelimitofR=1,thetransitionperio. R 2 makesuproughlyaconstantfractionoftheannihilationtime,whichisunpleasan. asitwastesthecomputationalresources.Therefore,ascalingtechniquewasuse. toobtainamoresuitablestartingcon guration,basedontheself-similarityofth. c eld,attainedwhenfarawayfromthestartbutstillinthelimitR.Th. defectswerelefttoannihilatetohalftheinitialseparation,followedbyarescalingo. thec eldtotheinitialdefectseparationandashortsimulationruntoequilibrat. thetilt.Thisstartingcon gurationisconsideredasausefulapproximation|i. reality,thescalingregime,whereR/(t 0 wouldhold,isapproachedonlyat ..t) 1=2 verylargedistancesduetologarithmiccorrections[101]. 8.4Resultsanddiscussio. Firstwefocusonthehydrodynamice ectsonthepair-annihilationintheoneelasti constantapproximation,B 1 =B 2 .Signi cantasymmetryinthedefectmotionan. reductionoftheannihilationtimeascomparedtothenonhydrodynamictreatmen. isobserved(Fig.8.3),verysimilartothecaseof1=2defectsinnematics(Chapte. 88 Pair-annihilation of vortices in SmC lms Figure 8.2 Left: radial-hyperbolic pair of annihilating 1 disclinations in c eld (the grid has been coarsened for clarity, only the central region of the mesh is shown). Vector heads have been omitted for legibility; yet there is no ambiguity, since in the absence of any external elds the system is invariant under a global transformation c ! ..c. Right: the central part of the corre- sponding ow eld. The +1 defect is subject to strong advection, as opposed to the ..1 one. 7). It is possible to understand this easily by inspecting the ow-driving terms in the stress tensor (those containing _c): the elastic terms (8.4) and the 3 and 4 terms in the viscous stress (8.5). The main ow e ect appears to be the advection, i.e., the hydrodynamic mass transport, which is to be discussed in the following. The viscous in uence on the c vector comes second, though it is not negligible. If one performs a re ection of the c vectors in the line joining the defects, the winding number of the defects is reversed, but the order parameter dynamics stays the same in the one elastic constant approximation. To recover the original con guration (up to an irrelevant global minus sign), a  rotation of the sample around an axis perpendicular to the lm through the middle point between the defects is required. Performing the re ection on the stress tensor terms mentioned, one can verify that the 3 term is antisymmetric (provided that the ow is generated by this term only and that the 1 and 2 terms are neglected), the 4 term has no de nite symmetry, while the elastic stress is symmetric by de nition. This means that the ow generated by the elastic stress is symmetric with respect to the rotation about the perpendicular axis, while the one driven by the 3 viscous term is antisymmetric (Fig. 8.5). With other words, the elastic stress driven ow carries the defects symmetrically toward each other (Fig. 8.5(b)), as in this way the free energy is reduced. Thereby it contributes to the speedup of the process. On the other hand, the ow driven by the 3 term carries both defects with equal speeds and in the same direction, downward in Fig. 8.5(c). This is the main reason for the +1 defect moving Pair-annihilationofvorticesinSmC lm. 8. 12 8 4 y 0 -4 -8 -12 t 0 150 300 450 -1 (f) (e) (d) (a) (b) +1 (c) Figure8.3Positionofthedefectsvs.time,measuredfromtheinitialmid. dlepointbetweenthedefects.Thecaseswithoneelasticconstant:(a)R. (Fig.8.2)and(b)THdefectpair,(c)thecasewithouthydrodynamics,(d. RHpairwiththe  3 coeAcientdoubled.Combinede ectof owandelasti anisotropy,withtheaverageelasticconstant B 0 xed:(e) B 1 =B 2 =5(RH). (f) B 2 =B 1 =5(TH).Lengthandtimearemeasuredrelativeto  2 : 4n. and  88ns,respectively. 0.6 +1 0.5 -1 no flow equilibr. struct. initially 0.4 v 0.3 0.2 0.1 0.0 r Figure8.4Velocityofthedefects(relativeto = 27nm/  s)vs.inte. defectdistance,oneelasticconstant.The+1defectisstronglyspedupb. the ow,the..1isslightlysloweddown(therethe owisoppositetoit. motion,Fig.8.2).Startingwiththeequilibriumcon gurationof xeddefects. anonmonotonicbehaviorisobserved(dashed). 4 8 12162024 9. Pair-annihilationofvorticesinSmC lm. faster.Whatismore,onthisbasisitcanbeunderstoodwhythe ownearthe+. defectismuchstrongerascomparedwiththatnearthe..1defect(Fig.8.5(a)):i. the rstcasethe ow eldsfromthetwosourcesareadded,whileinthesecondthe. combinedestructively.Finally,thevelocitymagnitudeofboth owsrelativetoth. speedofdefectmotionjustduetoreorientationofcisproportionalto 3 = 0 . Theasymmetric 4 viscoustermcomplicatesthesituation(Fig.8.5(d)).Itisthi. termthatismainlyresponsibleforthedi erent owe ectincaseofdi erentdefec. pairs(e.g.radial-hyperbolic(RH)vs.tangential-hyperbolic(TH,ahomogeneou. =2rotationofcvectorsontheRHstructure),Fig.8.3(a),(b)),sincethe 3 an. theelastictermsareleftunchangedbythehomogeneousrotation,andsoisth. viscoustorqueonthecvector,givenbythe 3 partoftheviscousforce(8.6).Th. passiveviscousterms( 1 , 2 , 4 )neednotbediscussedinthequalitativepicture. Theasymmetryofdefectmotionisgivenrisetoalsobyelasticanisotropy.I. SmCchiralsystems,thiscanbelargeduetoc-vectordeformationinducedgradient. ofpolarizationPandthusappearanceofanelectriccharge,e=..rP.Thepolar. izationvectorliesinthesmecticplane,usuallyperpendicularlytoc,thusincreasin. thebendelasticconstant[110].However,inverythinsystemssurfacepolarizatio. mightdominate[112],strengtheningtheresistancetothesplaydeformation[111]. Theannihilationprocessesatdi erentratiosoftheelasticconstantsarepresentedi. Fig.8.6,combinede ectofthe owandtheanisotropyisdemonstratedinFig.8.3. curves(e)and(f).Withoutthe ow,invertingtheratioandcorrespondinglychang. ingthestructure,RH$TH,doesnotchangethedynamics,soitisenought. consideronetypeofelasticanisotropyonly. 8.5Summar. UndertherestrictionsmappingtheSmCthin lmsystemtotheXY-model,w. havereducedtheSmCdynamictheory[108,109]totheELtheory.Wehavedemon. strated,thatthelatter,naturallygeneralizedtothevariablemodulusofthevecto. orderparameter,exactlydescribesthemodelsystemcontainingvortices.Numeri. cally,wehaveshownthatthein uenceofhydrodynamicsdependsprimarilyonth. ratioofrotationalandtranslationalviscosity 3 = 0 ,controllingthehydrodynami accelerationoftheprocessandthedefectspeedasymmetry,andontheratio 4 = 0 . breakinginvarianceuponcon gurations,di eringonlybyahomogeneousrotatio. ofthevectorsc.Toalesserextent,themotionasymmetryiscontributedtoals. bytheelasticanisotropy.Ontheotherhand,rescalingtheelasticconstantswit. respecttotheviscositieshasnoe ectonthedynamicsotherthanchangingth. characteristictime. Pair-annihilation of vortices in SmC lms 91 (a) complete stress tensor, vmax = 0:01 (b) elastic terms, vmax = 0:0049 (c) 3 term, vmax = 0:0043 (d) 4 term, vmax = 0:0019 Figure 8.5 Flow elds resulting from di erent driving stress tensor terms: (a) the complete stress tensor, (b) elastic stress, (c) the 3 viscous term, and (d) the 4 viscous term. In all cases also the isotropic 0 viscous term is included. For clarity, the number of mesh points has been reduced by a factor of 2 in each dimension; only the central homogeneous region of the mesh is shown. In (a) the approximate positions of defects are marked with circles, the radius of the defect core is roughly two grid points. The maximum velocity magnitude vmax corresponding to the longest velocity vector is given for each ow eld (relative to = as de ned in Eqs. (8.8) and (8.9)). 9. Pair-annihilationofvorticesinSmC lm. -12 -8 -4 0 4 8 12 (f) (e) (d) (c) (b)(a) y -1 +1 0 300 600 900 t Figure8.6Thee ectofelasticanisotropy(withoutthehydrodynamics).Th. ratioofelasticconstantsis(a)1,(b)2,(c)4,(d)8,and(e)16; B 0 iskep. constant.(f)Forcomparison,thehydrodynamiconeelasticconstantcasewit.  3 doubledisshown. 9 Decay of integer disclinations in nematics In this Chapter, we study in some respects an opposite phenomenon to the annihilation | the decay of disclinations with integer strengths and the subsequent motion of the resulting disclinations. The study has been motivated by a numerically observed instability of the strength 1 disclination line, leading to the decomposition into a pair of repelling strength 1/2 disclinations. Like in Chapter 7, straight and in nitely long disclination lines are assumed. First we focus on the early stage of the process, performing a stability analysis of the integer strength disclination. We want to check whether there exists any local stability. Should it not, it will be interesting to see what is the nature of the uctuations responsible for the instability, i.e., which components of the order parameter are coupled. With this intention we study the complete Q-tensor dynamics without the ow for small deviations from the initial structure. The uctuation problem of the strength 1 disclination line has been studied in the director description with and without variable degree of order by Ziherl and Zumer [113,114]. In the former case, a model radial pro le for the scalar order parameter was assumed, but with an incorrect behavior near the origin. In the spherical geometry, the stability of a radial point defect (hedgehog) has been studied in [115] by constructing a speci c perturbation without solving the eigenmode problem, and in [116] by assuming the Lyuksyutov's constraint [117] and a restriction to a subspace of perturbations. We solve a general linearized Q-tensor uctuation problem for a disclination line with any integer winding number. This enables us to nd the growing uctuations, which are responsible for the instability of the integer disclination. For the strength 1 disclination, we determine the correction to the growth rate of the critical uctuations due to the ow. In the nonlinear regime, we study numerically the in uence of the ow on the repulsive motion of the 1=2 disclinations, created after the decay of the strength 1 disclination. 9.1 Fluctuation problem In this Section, we study the dynamics of perturbations of a long and straight nematic disclination line with a general integer winding number. Cylindrical coordi- 93 94 Decay of integer disclinations in nematics nates (r; ; z) with corresponding orthonormal base vectors (^er; ^e; ^ez) will be used. The disclination line coincides with the z axis. In the one elastic constant approximation (9.3), the free energy is invariant upon a homogeneous rotation of the Q-tensor. This implies that the Q-eigensystem will rotate as = 0+(s..1) with respect to the above base vectors when we encircle a defect of strength s located at the origin; is the angle between the director and ^er and 0 is the free parameter of the defect con guration, corresponding to the angle between the director at  = 0 and the x axis (e.g., for +1 defects 0 = 0 represents the radial defect, while the circular one has 0 = =2). There is no dependence on  other than this rotation, i.e., the scalar invariants of Q (the degree of order and biaxiality) are independent of . It is due to this generalized cylindrical symmetry of the unperturbed defect structure that the eigenmode problem is tractable. Let us de ne another orthonormal triad (^e1; ^e2; ^ez), ^e1 ^e2  =  cos sin ..sin cos ^er ^e : (9.1) With this, in the unperturbed con guration (or ground state, as referred to below) the Q-tensor eigensystem coincides with the triad everywhere. Further, we de ne the ve orthonormal symmetric traceless base tensors [118{120], Fig. 9.1, T0 = 1=p6(3^ez ^ez .. I); T1 = 1=p2(^e1 ^e1 .. ^e2 ^e2); T ..1 = 1=p2(^e1 ^e2 + ^e2 ^e1); (9.2) T2 = 1=p2(^ez ^e1 + ^e1 ^ez); T ..2 = 1=p2(^ez ^e2 + ^e2 ^ez); with Tr(TiTj) = Aij . By virtue of the de nition (9.1), the resulting eigenmode equations will be independent of 0, but will depend on the winding number s through spatial derivatives of the base tensors (9.2). In one elastic constant approximation, Eq. (7.1), the standard free energy density in terms of Q reads f = 1 2ATrQ2 + 1 3B TrQ3 + 1 4C (TrQ2)2 + 1 2LTr(rQ  rQ); (9.3) where in the last term the contraction over the gradient components is denoted by the dot. Expressing the Q-tensor as Q(r; t) = ai(r; t)Ti(r); i = ..2;..1; 0; 1; 2; (9.4) and inserting it into Eq. (9.3) while being careful with the gradient r = ^er@=@r + ^e@=r@ of the base tensors, f is expressed in terms of the tensor components ai. The balance of generalized forces leads to the equations of motion for the components ai, in a dimensionless form: 1 _ai = r  @f @rai .. @f @ai = @ @r @f @ @ai @r + 1 r @f @ @ai @r + @ r@ @f @ @ai r@ .. @f @ai : (9.5) Decay of integer disclinations in nematics 95 Figure 9.1 Schematic representation of the perturbations described by the base tensors (9.2) for a uniaxial distribution with a positive degree of order (dashed). The Q-tensor eigensystem is represented by the box, the length of the edges corresponds to the eigenvalue (plus a constant). The long axis of the box (usually called the director) is parallel to ez. T0 describes a perturbation of the degree of order, T1 describes a biaxial perturbation, T ..1, T2, T ..2 represent rotations of the eigensystem. The interpretation of the perturbations varies according to which of the axes has been identi ed with the director. Irrespective of this, the perturbations given by T ..1, T2, and T ..2 possess Goldstone modes, while those given by T0 and T1 are massive. By symmetry, the ground state consists solely of the components a0 and a1, as opposed to perturbations, where all the components are allowed. According to Eq. (9.5), the ground state components, q0 = a0, q1 = a1, satisfy @2q0 @r2 + 1 r @q0 @r .. A L q0 .. 1 p6 B L (q2 0 .. q2 1) .. C L (q2 0 + q2 1)q0 = 0; (9.6) @2q1 @r2 + 1 r @q1 @r .. 4s2 r2 q1 .. A L q1 + s2 3 B L q0q1 .. C L (q2 0 + q2 1)q1 = 0; (9.7) and in the vicinity of r = 0 behave as q0  c0 + c2 r2; q1  b rj2sj; (9.8) with c2 = c0(A + Bc0=p6 + Cc2 0)=4 and c0, b extracted from the numerical solution if needed. Putting ai(r; t) = ( qi(r) + xi(r; t) ; i = 0; 1 xi(r; t) ; i = ..1; 2;..2 ; (9.9) where q0;1 are the ground state components and xi are the perturbations, xi  q0;1, and linearizing the equations (9.5), one obtains two groups of coupled linear equations for the perturbations xi: x_ 0 = r2x0 .. f0(r) x0 + f01(r) x1; (9.10) x_ 1 = r2x1 .. 4s2 r2 x1 .. 4s r2 @x..1 @ .. f1(r) x1 + f01(r) x0; (9.11) x_..1 = r2x..1 .. 4s2 r2 x..1 + 4s r2 @x1 @ .. f..1(r) x..1; (9.12) 96 Decay of integer disclinations in nematics and x_ 2 = r2x2 .. s2 r2 x2 .. 2s @x..2 @ .. f2(r) x2; (9.13) x_..2 = r2x..2 .. s2 r2 x..2 + 2s @x2 @ .. f..2(r) x..2; (9.14) where r2x = @2x @r2 + 1 r @x @r + @2x r2@2 is the Laplacian in cylindrical coordinates and f0(r) = A + q2=3Bq0 + C(3q2 0 + q2 1); f1(r) = A .. q2=3Bq0 + C(q2 0 + 3q2 1); f..1(r) = A .. q2=3Bq0 + C(q2 0 + q2 1); (9.15) f01(r) = (q2=3B .. 2Cq0)q1; f2(r) = A + B=p6(q0  p3q1) + C(q2 0 + q2 1): In Eqs. (9.10)-(9.15), dimensionless quantities have been introduced: r r=, t t= , (A;B;C) (A;B;C)2=L, with the correlation length of the degree of order (7.18) and the characteristic time (7.19). It is worth pointing out that there is no di erence between defects with strengths s and ..s except for two minus signs, which can be absorbed in the base tensors, i.e., s ! ..s and T ..1;..2 ! ..T ..1;..2 conserves the equations (9.10)-(9.15). 9.1.1 Fluctuation eigenmodes The eigensolutions of the systems (9.10)-(9.12) and (9.13)-(9.14) are sought by separation of variables using the ansatze (we write cos(m) instead of C1 cos(m) + C2 sin(m), m is an integer) 8> <> : x0 x1 x..1 9> => ; = 8> <> : R0(r) cos(m) R1(r) cos(m) R..1(r) sin(m) 9> => ; exp(..t); (9.16)  x2 x..2  =  R2(r) cos(m) R..2(r) sin(m) exp(..t): (9.17) Proper combinations of the angular functions have been chosen in (9.16) and (9.17) to satisfy the equations. One could also include a factor cos(kz) and add the dependence on z to Eqs. (9.10)-(9.14), which is only through @2=@z2 in the Laplacian, so that the z coordinate is easily separated. Then the eigenvalue  (the inverse time constant) would be  = r + k2; (9.18) where r is the eigenvalue of the radial and angular part. This time we are not interested in the z dependence and have omitted it from the equations for brevity. Decay of integer disclinations in nematic. 9. Ineithercase,onlyeigenvaluesystemsfortheradialfunctionsR i (r)remain,wher.  r istheeigenvalue(wewriteinsteadof r ). . r 2 R 0 +..f 0 (r). m . r . R 0 +f 01 (r)R 1 =0. (9.19. . . r 2 R 1 +..f 1 (r). m 2 +4s . r . R 1 . 4s. r . R ..1 +f 01 (r)R 0 =0;(9.20. . . r 2 R ..1 +..f ..1 (r). m 2 +4s . r . R ..1 . 4s. r . R 1 =0;(9.21. an. . . r 2 R 2 +..f 2 (r). m 2 +s . r . R 2 . 2s. r . R ..2 =0;(9.22. . . r 2 R ..2 +..f ..2 (r). m 2 +s . r . R ..2 . 2s. r . R 2 =0:(9.23. Onenoticesthatthethree-andtwo-functionoperators(9.10)-(9.12)and(9.13). (9.14)areself-adjoint,implyingrealeigenvaluesandorthogonaleigenmodes.Thes. mustbesolvedfornumerically,eitherbydiscretization,Bessel-functionexpansion. relaxation,orshooting.Althoughforlinearsystemsthe rsttwomethodswoul. usuallybepreferred[121],wedecidetousetheshootingprocedure[54,p.582]a. itissimpleandquiteeAcientwhenonlyafeweigenfunctionsaresearchedfor.I. whatfollows,wewillfocusourattentiontopossiblegrowingmodes,i.e.,thosefo. which<0. Duetothesingularityofthecylindricalcoordinates,thebehavioroftheradia. eigenfunctionsneartheoriginmustbedeterminedanalyticallypriortonumericall. solvingtheeigensystems(9.19)-(9.23).Onemakesuseofthegroundstateexpan. sion(9.8),whichentersthefunctionsf i .TheunknowncoeAcientsoftheradia. eigenfunctionexpansionhavetobedeterminedtogetherwiththeeigenvalue.Fo. numericalreasons,werestricttheeigenmodestovanishatanarbitrary,butnotto. largeavalueofr=r 0 .Themodesconcernedarelocalizedandhenceremainun. a ectedbytherestriction,ifonlyr 0 islargeenoughcomparedtothecharacteristi decaylengthofthemode.Fornonlocalizedmodestherestrictioncorrespondst. aphysicalcylindriccon nementofthedefectwithstronganchoring;inthiscase. however,nonumericaldiAcultiespreventr 0 fromlargervalues.Thus,startingwit. theanalyticexpansionoftheradialfunctionsandatrialvalueof,theequationsar. integratedtor 0 byaRunge-Kuttamethodwithanadaptivestepsize[54],wherei. isrequiredthatR i (r 0 )=0.Withnradialfunctionscoupled,therearenunknow. coeAcientsofexpansion,oneofwhichisarbitrary.Togetherwiththisgives. freeparameters,whichintheshootingprocedurearedeterminedbythenendin. conditions. 9.1.2Eigenmodesleadingtodeca. Themodesresponsibleforthedecaydonotinvolvethecomponentsx 2 orx ..2 ,sinc. bysymmetrytheQ-tensoreigensystemdoesnotgetrotatedoutofthexyplanei. 9. Decayofintegerdisclinationsinnematic. 0 5 10 15 -1.0 -0.5 0.0 0.5 1.0 r R0 R1 R-1 Figure9.2Radialeigenfunctionsofthegrowing uctuation, s =1, m =2.  ..0 : 22.Thelengthunitis  =2 : 11nm,thetimeunitis  =32 : 6ns.Th. fastestgrowingmodeleadingtotheescapeofthedefecthas  ..0 : 0042. thisprocess.Therefore,thesystem(9.10)-(9.12)mustbeexamined.Thelowest. orderexpansionofthesystem(9.19)-(9.21)aroundtheorigindoesnotinvolveth. groundstatecoeAcients(9.8),butrequire. . r jm..2sj a 1 r m R 0 ;R 1 . . (9.24. r jm+2sj a 2 wherethetwosolutionsforR 1 andR ..1 areindependentandthecoeAcientsa 1 ,a . mustbedeterminedtogetherwiththeeigenvalue. Westudyindetailthesimplestcase,i.e.,thedecayofthe1defect.The. wemakeageneralizationtodefectsofhigherintegerstrengths.Inthecaseofth. decayofthe1defecttotwo1=2defects,themodesinquestionmustexhibit. quadrupolarsymmetry,whichsetsm=2intheangularpartofEq.(9.16).Asingl. growingmode(..0:22)isfound(Figs.9.2and9.3),whichislocalizedwithin. fewcorrelationlengths,whilealltheothers(includingthosewithdi erentm)ar. decayingandnonlocalized.Duetothelocalization,thegrowingmodecannotb. a ectedbyanycon nementunlessitcomesdowntothescale|itisanintrinsi featureofthedefectstructure.Itisnosoonerthanatacon nementofr 0 3:5. thatthemodebecomesdecaying. Moreprecise,andapplyingtoanyintegerstrength,itisthefunctionR ..1 tha. islocalizedifandonlyiftheeigenmodeisofthegrowingtype,whichcanbesee. fromitsasymptoticbehavio. . r ..1=2..r e  R ..1 . (9.25. Decayofintegerdisclinationsinnematic. 9. Figure9.3Crosssectionthroughthedisclinationlinewith s =1:thegroun. state(gray)isperturbedbythegrowingmode(red,shownexaggerated),lead. ingtotwo1/2disclinationsonthe x axis. 10. Decayofintegerdisclinationsinnematic. ThefunctionsR 0 andR 1 arefoundtobelocalizedalsoforthedecayingmodesi. theregionoflowenough.Signi cantly,themodeswith<0haveadiscret. spectrum,whereasthespectrumofthosewith>0iscontinuous.Thus,th. growingmodescanbecounted. Onecantestthetimeevolutionofthegrowingmodeinapurenumericsim. ulation.Regardlessoftheinitialperturbation,i.e.,ifonlyitcontainsanonzer. projectionontothegrowingmode,anexponentialgrowthofanyquantitylinearl. dependingonthemodeamplitudeisobservedafterashorttransient(decayofothe. modes),withatimeconstantverycloseto. Itisinstructivetostudythein uenceofthehydrodynamic owgeneratedb. theorderparameterdynamicsonthegrowthrateofthemode.Thisisperforme. numerically,wherethecouplingofthe owandQ-tensor eldsisdescribedbyth. tensorialversionoftheEricksen-Leslietheory[92],Chapter7.Theoneelasti constantapproximationisused,thenumericalmethodandthematerialparameter. arethesameasinChapter7.Itisfoundthatthehydrodynamiccorrectiontoth. growthrateissmall,i.e.,lessthan5%,speedingupthemodes.Thecorrectio. isexpectedtobesmall,sincethevelocityofthe owgenerateddecreaseswit. decreasingQ(thatis,decreasingTrQ 2 ),asdoesitsin uenceonQ(Eqs.(7.6)an. (7.7)).Atthesametime,oneshouldbequitereserved,sincethedescriptiono. the ow-to-Q-tensorcoupling[92]isnotcomplete[122],andthemissingterms[123. couldplayanimportantroleinthedynamicsofthedefectcore.Besides,on. mustalsorealizethattheapplicabilityofhydrodynamicequationsisquestionabl. atlengthandtimescalesthatsmall(1nm,10ns). Inthecaseofdefectswithhigherstrengthsthereisanincreasingnumbero. growingmodes,astherearemoreandmorewaysthedefectcandecay.Itturn. outthatforeverydecompositionallowedtopologically,onecan ndatleaston. growingmode,providedthatnoneoftheresultingwindingnumbersistoohigh. Eachofthesemodesexhibitsadistinctiveangularsymmetry,setbyitsvalueofm. Generally,adefectofstrengthsdecaystomsymmetricallyplaced1=2defect. surroundingasm=2defect,whichremainsinthecenter(Fig.9.4).Forexample. apossibledecaychannelofadefectwithstrength2is:2!..1+61=2,whereth. ..1defectstaysinthemiddle,surroundedbythe1=2defects.Thecorrespondin. modehasasixfoldsymmetry,m=6.Ontheotherhand,the+2defectisstabl. withrespecttothedecay2!..3=2+71=2andhigher.Allpossibledecaypath. ofdefectswithstrengths2and3aregiveninTables9.1and9.2.Thedecayto1=. defectsonlyisalwaysthefastest. Inprinciple,thereisnolimitationtothewindingnumbers.Thereare,however. twotechnicalpoints.Firstly,thecoresizeofthedefectincreasesproportionall. toitsstrengths,whichgetstimeandspaceconsumingwithprogressingwindin. numbers.Secondly,moretermsshouldbeaddedtotheexpansion(9.24)toreac. betteraccuracy,requiredparticularlyforthelocalizedmodeswithhighervalueso. m.Theseriesismorecomplicatedinthiscase,asitcontainsboththegroundstat. coeAcients(9.8)andtheeigenvalue.Itisbeyondouraimtopursueaccurac. issueshere. Instead,onemustemphasizeanimportantpointregardingthenumericsimu. Decay of integer disclinations in nematics 101 Figure 9.4 A ninefold (m = 9) decay of the s = 3 defect. On the lower diagram we can see a -3/2 defect in the center and nine 1/2 defects around it. 10. Decayofintegerdisclinationsinnematic. decay m ... 1!21=2 2 0.2. 2!1+21=2 2 0.06. 2!1=2+31=2 3 0.2. 2!41=2 4 0.3. 2!..1=2+51=2 5 0.2. 2!..1+61=2 6 0.04. Table9.1Fastestdecaymodeswithagiven m ofthe s =1 ; 2disclinatio. line. decay m ... 3!2+21=2 2 0.04. 3!3=2+31=2 3 0.1. 3!1+41=2 4 0.2. 3!1=2+51=2 5 0.3. 3!61=2 6 0.4. 3!..1=2+71=2 7 0.3. 3!..1+81=2 8 0.2. 3!..3=2+91=2 9 0.1. 3!..2+101=2 10 0.01. Table9.2Fastestdecaymodeswithagiven m ofthe s =3disclinationlin. lationofdefectswithwindingnumbershigherthan1.Thesquaregridstandardl. usedinsimulationsreducesthesymmetryofthespacetoafourfoldsymmetryonly. i.e.,C . !C 4 .IfagrowingmodeisinvariantunderC 4 (m=4;8;12;:::),itwil. experienceanarti cialboostfromthegrid,suchthatitsgrowthratewillnotvanis. withvanishingamplitude!Now,assoonasthespectrumcontainsasinglesuc. mode,itwilloverwhelmotherpossiblyfastermodes,leadingtoanarti cialfourfol. decayofthedefect.AnexampleofsuchdecayisshowninFig.s9.5and9.6.T. envisagetheoriginoftheboostitisappropriatetoaskwhythereisnotanywit. anonfourfold-symmetricmode.Inthiscase,therotationsofC 4 generateatleas. twodi erentmodes,asopposedtotheidentityrepresentationinthepreviouscase. Thesearedegeneratedwithrespecttotheirplacementonthegrid,sincethegridi. invarianttoC 4 .Therefore,inapuregroundstateneithermustbefavoredandhenc. theirgrowthratemustvanishatzeroamplitude.Sincealldefectstructuresexcep. the1onepossessfourfold-symmetricgrowingmodes,thenumericalsimulationo. themodedynamicsisonlypossibleforthe1defect. 9.1.3Eigenmodesleadingtoescap. Inanuncon nedsystem,planardefectsofintegerstrengthscanescapetotheun. deformedcon gurationwithazerodeformationfreeenergy(escapeinthethir. dimension)[68,69].Theissuesconcerningthe(meta)stabilityofdefectcoreshav. Decay of integer disclinations in nematics 103 0 5 10 15 20 -1.0 -0.5 0.0 0.5 1.0 r R0 R1 R-1 (a) 0 5 10 15 20 -1.0 -0.5 0.0 0.5 1.0 r R0 R1 R-1 (b) Figure 9.5 Radial eigenfunctions of the growing modes with m = 4 for the s = 2 defect: (a)   ..0:39, (b)   ..0:035 Figure 9.6 Decay of the s = 2 defect to four 1/2 defects, m = 4; the corresponding radial eigenfunctions are depicted in Fig. 9.5. The four- fold-symmetric (m = 4) modes are numerically boosted due to the fourfold (m = 4) symmetry of the computational grid. 10. Decayofintegerdisclinationsinnematic. beenaddressedbyR.Meyer[69]in1973.Atthattimethetensorialdefectstructur. hadnotbeenpresentedyet,soadirectanswercouldnothavebeengiven.Equippe. withthepresentformalism,oneshouldlookforanothertypeofpossiblygrowin. modesleadingtotheescape.AsheretheQ-tensoreigensystemisrotatedouto. thexyplane,thesystem(9.13)-(9.14)mustbeexaminedthistime.Inparticular. oneexpectstheperturbationx 2 tobecrucial,asitcorrespondstoarotationofth. directoroutoftheplane.Thelowest-orderexpansionofthesystem(9.22)-(9.23. aroundtheorigini. . r jm..sj a 1 R 2 . . (9.26. r jm+sj a 2 theratioofa 1 anda 2 isdeterminedtogetherwiththeeigenvalueintheshootin. procedureasbefore.Form=0theequations(9.22)and(9.23)aredecoupled.Iti. indeedinthiscasethatone nds<0andthediscretespectrumforallthemode. x 2 .Themodesx ..2 aredecaying,asarealltheothermodeswithm=60. Notingthatf 2 (r)!0andf ..2 (r)!f ..2 (1)>0,thegenera. asymptoticbehaviori. . . r ..1=2 e . r ..1=2 e . f .. 2(1). ..rr R 2 ;R ..2 ;(9.27. i.e.,R 2 islocalizedfor<0.Itturnsoutthatherethelocalizedmodesaremuc. moreextensivethanthoseofthedecay. Onemaythinkthereislittlepointinstudyingthedecayifthedefectsarealway. unstabletotheescape.Thereexist,however,alargedi erenceingrowthrateso. thetwotypesofunstablemodes,connectedwiththelargedi erenceinlocalization. Inthecaseofthestrength1defectthedecayisapproximately53-timesfastertha. theescape.Whence,providedwepreparedthecon gurationwiththestrength1. itwouldalwaysdecaybeforeitcouldevenstartescaping.Ofcourse,itisjustdu. tothefastdecaythattheinitialcon gurationisveryhardtoprepare. 9.1.4Remarksonthe uctuationproble. . Q Theeigenmodeproblemhasbeensolvedintheoneelasticconstantapproximation. Beyondthisapproximation,onewouldhavetoincludemoreelastictermsinthefre. energydensity(9.3).ThereisonlyoneadditionalbulktermquadraticinQan. inthe rstderivative:(@ i Q ik )(@ j Q jk ).Itdistinguishesbetweenthesplayandben. distortions(relevantforthedecay)onlyifthescalarinvariantsofQvary,whichdoe. takeplaceinourcase.Todistinguishbetweenthesplayandbendintheuniaxia. limitwithconstantdegreeoforder,however,onehastoincludethethird-orderter. ij (@ i Q kl )(@ j Q kl ).Inbothcasesthegeneralizedcylindricalsymmetryofthegroun. stateislost,makingtheeigenmodeproblemtwo-dimensional,i.e.,thevariables. andcannotbeseparatedanylonger.Itisonlyinthecaseofthe+1disclinatio. with 0 =0or 0 ==2(radialandcirculardisclinations)thatthecylindrica. symmetryisretained,sothatwithoutthethird-ordertermtheseparationwoul. stillbepossible.Thethird-orderterm,however,bringsaboutmixedderivatives. whichinevitablypreventtheseparation. Decayofintegerdisclinationsinnematic. 10. 40 20 y 0 -20 -40 (c) (b) (a) 0 500 1000 1500 2000 2500 t Figure9.7Positionoftherepellingdefectsasafunctionoftime,afterth. strength(a)1and(b)..1defectshasdecayed:(a)1 = 2defects,(b)..1 = . defects,and(c)thedegeneratecasewithoutthe ow.Recallthatthelengt. unitis  =2 : 11nmandthetimeunitis  =32 : 6ns. Asmentioned,thedependenceoftheeigenmodesonthecoordinatezissimpl. cos(kz)orsin(kz),withkenteringEq.(9.18)togivetheeigenvalue.Furthermore. itisalsopossibletostudythedisclinationswiththehalf-integerwindingnumbers. inparticularthe1/2disclinationline.Tosatisfythecontinuityoftheeigenso. lutionsinthiscase,intheangularpartoftheansatz(9.17)itisrequiredtha. m=1=2;3=2;5=2;:::,whiletheansatz(9.16)remainsthesame.Thus,withth. approachtakeninthisChapter,oneisabletosolvethefull uctuationproblemo. astraightandin nitelylong1/2disclinationline. 9.2Hydrodynamicspeedu. Nowletusstudytherepulsivemotionofthetwo1=2disclinations,createdafte. thestrength1disclinationhasdecayed.Weshallfocusonthein uenceofth. hydrodynamic ow.Duetothesymmetryoftheproblem,thereisno ow-induce. asymmetry(Fig9.7)liketheoneencounteredinChapter7.However,thespeedu. causedbythe owislargerthistime,becauseboththeelasticstress(7.5)an. theviscousstressgivenbythe 1 term(Eq.(7.6))drivethedefectsapart(seeth. discussionofChapter7).Thee ectdependsontheratio 1 = 4 ,Fig.9.8. Thereisalsonosubtletywiththeinitialcondition(the nalstateinthiscase. likethatinChapter7.Thisenablesustostudythebehaviorofthedefectvelocit. atlargerseparations.Figure9.9(a)showsthevelocityofthedefectvasafunctio. ofthedefectseparationr.Afterthedefectshavebeenwellisolatedfromeachother. 10. Decayofintegerdisclinationsinnematic. 8060 r 40 20 0 1 2 4 0.5 0 100 200 300 400 t (a. 0.20 0.15 v 0.10 0.05 0.00 1 2 4 0.5 0 20 40 60 80 r (b. Figure9.8(a)Defectseparation r asafunctionoftimeand(b)defectve. locity v asafunctionoftheseparationfordi erentratios  1 = 4 .Duetoth. questionablehydrodynamicsituationandill-de neddefectpositionatsmal. separations,in(b)thecurvefortheratio0.5isabovethatfortheratio. initially.Thekinkofthecurvesin(b)isanartifactoftheinhomogeneou. grid. 0.4 with flow3.0 with flow without flow without flow 0.3 2.0 v 0.2 v r 1.0 0.1 0.0 0.0 0 20 40 60 80 0 20 40 60 80 rr (a. (b. Figure9.9(a)Defectvelocity v and(b)thequantity vr asfunctionsofth. separation r .Thebehavioratsmall r isnotparticularlyinformativeasth. defectpositionisill-de nedthere. Decayofintegerdisclinationsinnematic. 10. thevelocitydecreaseswithr.Beforethat,thevelocitycannotbeproperlyde ned. Figure9.9(b)showsther-dependenceofthequantityvr,whichatleastforth. nonhydrodynamiccaseisconstantinthelimitr=!1(scaleinvariance). Figure9.10isparticularlysigni cant.Itdisplaystheratiooftheadvectiv. velocity(transportbythe ow)andthetotalvelocityofthedefect.Onecanse. thattheratioincreaseswithr,andreachesavaluewellabove0:5ashintedb. arougheye-madeextrapolationtothedatapoints.Thismeansthatatlarge. separationsthecontributionofthetranslationalmotion(advection)tothedefec. speedismoreimportantthanthatofthedirectorreorientation,especiallyifon. recallsthattheseparationsreachedinourcalculationsarestillquitesmall|onl. 80or0.17m. 10. Decayofintegerdisclinationsinnematic. 0.50 v adv v 0.25 tot 0.00 0 20 40 60 80 r Figure9.10Ratiooftheadvectiveandtotalvelocitiesofthedefectas. functionoftheinterdefectseparation.Byaroughextrapolation,therati. iswellabove0 : 5atlargeseparations,indicatingtheimportanceofthe o. transport. 10 Conclusion It is now time to summarize what has been presented in the Thesis, reviewing the concepts and results and putting them into context of the research going on in the eld. The aim of the Thesis has been to study selected problems coupling hydrodynamics and order parameter dynamics in liquid crystals. They were chosen according to theoretical and experimental interest, and, of course, our capability of solving them. The back ow switching problems of Chapter 4 have been studied in terms of the well-established Ericksen-Leslie theory for the nematic director. Primarily they were intended to serve as an introduction to the research area, setting up the numerical approach to be used in the work to follow. Conceptually, they do not represent any novelty. Regarding their computational complexity, however, they are quite advanced compared to the one-dimensional examples that had been studied previously. More con ned geometries increase the number of spatial variables, but at the same time o er more possibility for manipulation with external elds. Having managed to cope with the increasing complexity, we were able to point out special cases, where the hydrodynamic ow causes the perturbation enough to completely alter the time evolution of the system. E ects of this kind had only been studied in context of spinodal instabilities of liquid crystals, mostly in the linearized form, and in various pattern-forming systems involving electro- and thermal convection. The derivation of the dynamic theory for the complete vector order parameter presented in Chapter 5 features two viewpoints of importance. The vectorial theory is required if one wants to study defects in a medium with the vector order parameter | the SmC system in our case. On the other hand, by demonstrating that the Ericksen-Leslie theory can be naturally extended to yield the vectorial theory, or, in other words, the latter can be consistently reduced to the former, we have shown that the Ericksen-Leslie theory is exactly the reduced version of the vectorial theory, restricted to the unit vector. Despite the Ericksen-Leslie theory has been derived and used for nematics, it does not have any connection with the nematic tensor order parameter. To study the dynamics of defects in nematics, which has been our primary objective, one has to start over and construct the tensorial theory. It can be reduced to the Ericksen-Leslie theory in the limit of constant scalar invariants of the ten- 109 11. Conclusio. sororderparameter.Theconversepathisnotpossible,i.e.,tryingtoupgradeth. Ericksen-Leslietheory,whichislinearinthedirector,byaddingavariationofth. scalarorderparameterresultsinahybridwithseveredrawbacks.InChapter7,w. havesolvedthehydrodynamicpair-annihilationproblemofstraightnematicdiscli. nationlinesusinganabridgedformofthetensorialtheory.Wewereabletoaccoun. forthespeculatedvelocitydi erenceofthetwodisclinations,whicharisesmainl. duetothe owe ects.Unfortunately,coupleofmonthsbeforeourstheworko. anothergroupwaspublished[96],demonstratingessentiallyidentical owe ects. Thefactthattheirtreatmentisnotbasedonthecustomaryphenomenologicalde. scriptionofnematicsbutrestsonasomewhatleanermicroscopicmodelwithfewe. materialparametershasbeenlessimportantsofar.Thesituationmightchangei. thefuture. DespiteexperimentalconvenienceoftheSmC lmsystem,therehavebeenn. numericalstudiesofdefectdynamicsreportedintheliterature.Apossiblereasonfo. thede ciencycouldbetheenormouscomplexityofthegoverningequationsandth. greatnumberofmostlyunknownmaterialparameters.Inaddition,thegeneraliza. tionoftheoriginalequationstothevariablelengthofthesmecticc-directorneede. forthedescriptionofdefectswouldbeabackbreakingtask.Instead,inChapter. wehavebene tedfromtheobservationthatundertherestrictingassumptionsth. equationscanbereducedtotheEricksen-Leslieequationsexactly.Atthislevel. thepassagetothevariablelengthofthec-directorisalsoquitecomfortable.Th. modelledSmC lmsystemcorrespondstotheclassoftheXY-model.Itsdynam. icsisgovernedbythedynamicequationsforthevectororderparameterderivedi. Chapter5.Wehaveshownthatthe owe ectaccompanyingthepair-annihilatio. ofvorticesisqualitativelyequaltotheoneinnematics,i.e.,thedisclinationwit. thepositivewindingnumberisfaster. Vorticesofstrength1areunstableinthenematiccase,i.e.,theyspontaneousl. decaytoapairofidentical1=2disclinations,whichwe rstobservednumerically. InChapter9,thismotivatedustostudythedynamicbehaviorofaperturbe. strength1disclinationline.Inoneelasticconstantapproximationwewereabl. tosolvethecompletetensor uctuationproblemforthestraightdisclinationlin. withageneralintegerwindingnumber.Wefoundtwotypesofgrowing uctuatio. eigenmodes,leadingtothedecaytodisclinationswithlowerwindingnumberso. totheescapeinthethirddimension,respectively.Theyarelocalizedandexhibi. discretespectra.Inaccordwiththestrongerlocalization,thecharacteristictimeo. themodesleadingtothedecayismorethananorderofmagnitudesmallerthantha. oftheescapingtype,suggestingthatthedecayingscenarioiswhattakesplace,e.g.. afteratemperaturequench,ratherthantheescapingone.Wehavealsostudie. thehydrodynamiccorrectiontothegrowthrateofthe uctuationleadingtoth. decayofthestrength1disclination,andfoundittobeunder5%,increasingth. growthrate.Thevalidityofthisresultisquestionableduetotheincompletenes. ofthetensorialapproachandshort(nonhydrodynamic)lengthandtimescales.I. Chapter9wealsostudiedthein uenceofthe owontherepulsivemotionofth. two1=2or..1=2disclinations,createdafterthestrength1or..1disclinationha. decayed.Astrongspeed-uphasbeenobserved. Conclusio. 11. IfthereisonethingoneshouldlearnfromtheThesis,itistheimportanceo. thehydrodynamic owaccompanyingthedynamicsofdefectsinliquidcrystals.W. haveshownthatthecontributionofthe owtransport(advection)tothemotio. ofthedefectisquitecomparabletothecontributionduetotheorderparamete. reorientation.Forthespeci cchoiceofviscousmaterialparameters,correspondin. tothenematicsubstanceMBBA,theadvectivecontributionevendominatesa. relevantdefectseparations. 10.1Futureperspective. Thereisstillalotofworktodo,eitherimprovingthemethodsused,orchallengin. newproblemsrelatedtothosethathavebeensolved. Inmyopinion,byfarthemostimportantimprovementtobedoneistoreplac. thesomewhatcumbersomemethodofsolvingtheNavier-Stokesequationwith. moreeAcientmethod,e.g.,aFourier-basedsolver,orafunctionexpansionmethod. ThemaindiAcultyindefectsimulationsisthelargediscrepancybetweenthesiz. ofthedefectcoreandtheinterdefectdistancerelevantforexperiments,whichar. readilyinaratioof1=10 5 .ThereplacementoftheNavier-Stokessolverisabsolutel. inevitableifonewantstoreachdefectseparationsoftheorderof100m,sotha. numericalresultscouldbedirectlycomparedwiththemeasurements. Oneoftheproblemstobeattackedinthefutureisthedynamicsofnematicpoin. defects,e.g.,theannihilationofahedgehog-antihedgehogpair,eitherinacapillar. wheremostofthemeasurementshavebeendone,orinbulk.Thisisa3Dproblem. Onecouldgetridoftheextraspatialcoordinatebyassumingcylindricalsymmetr. abouttheaxisjoiningthedefects.However,numericalindicesexistthattheactua. con gurationdoesnotpossessthissymmetry. Anotheropenproblem,whichhasbeenalreadysolvedtosomeextentinChapte. 9,arethe uctuationsofthestrength1=2nematicdisclinationline.Assuggeste. bytheequations,apartofthe uctuationspectrumcorrespondstothesimpleone. dimensionaldi usionspectrumwiththedispersion=k 2 ,whereistherelaxatio. rateandkisthewavevectorofthemode,whichisparalleltothedisclinationlinei. thiscase.Inotherwords,asfarasthese uctuationsareconsidered,thedisclinatio. linebehaveslikeadampedmasslessstringsubjecttolinetension.Inaddition,i. wouldbeinterestingandquitenontrivialtostudythein uenceofhydrodynamicso. therelaxationratesofthe uctuations,particularlythosejustmentioned.Accordin. towhatwehavelearnedaboutthe owe ectsondefectdynamicsweshouldexpec. signi cantcorrections,especiallyforlongwavelength uctuations. Similarcalculations(abitsimpler)asinChapter9canbeperformedalsoforth. disclinationsofthevectororderparameter.Inthesesystems,onecouldthusstud. the uctuationsofthestrength1disclinationandthedecayofhigherstrengt. 11. Conclusio. disclinations. ??. Isitinthehumannatureorjustinminetheimpressionthataftertheproblem. havebeensolvedtheyinescapablystarttoseemtrivial?Afterafortnightorso.I. Iwastostartoverfromscratchagain,Iwouldhavedonemanythingsdi erently. Muchbetter,Ibelieve.Nevertheless,afteralltheuncertaintyoftheearlydays. months(years?!),Iamprettysatis edwiththeoutcome.AndIcanhardlyconside. myselfbeingsomeonewhogetssatis edeasily.Still,Iwouldhavedonemanything. di erently...Butifsomeonehadforetoldmeaboutthepresentsituationwhen. wasjuststartingwithmyresearch,Iwouldprobablyneverhavehadthenervet. competewithit.Timeisakiller.Especiallyifonemakese ort. Bibliograph. [1]L.Onsager,Ann.N.Y.Acad.Sci.51,627(1949). [2]G.Friedel,Ann.Physique18,273(1922). [3]W.L.McMillan,Phys.Rev.A4,1238(1971).  [4]D.SvensekandS.Zumer,Liq.Cryst.28,1389(2001). . [5]D.SvensekandS.Zumer,ContinuumMech.Thermodyn.14,231(2002). . [6]D.SvensekandS.Zumer,Phys.Rev.E66,021712(2002). . [7]D.SvensekandS.Zumer,acceptedforpublicationinPhys.Rev.Lett. [8]L.D.Landau,Fiz.Z.Sowjetunion11,26(1937). [9]P.G.deGennes,Mol.Cryst.Liq.Cryst.12,193(1971). [10]P.ShengandE.B.Priestley,IntroductiontoLiquidCrystals,editedbyE.B. Priestley,P.J.Wojtowicz,andP.Sheng(PlenumPress,NewYork,1974). [11]J.Goldstone,NuovoCimento19,155(1961). [12]R.B.Meyer,Phys.Rev.Lett.22,918(1969). [13]J.ProstandJ.P.Marcerou,J.Phys.France38,315(1977);J.P.Marcero. andJ.Prost,Mol.Cryst.Liq.Cryst.58,259(1980). [14]A.K.SenandD.E.Sullivan,Phys.Rev.A35,1391(1987). [15]G.BarberoandG.Durand,Surfaceanchoringofnematicliquidcrystals,i. Liquidcrystalsincomplexgeometriesformedbypolymerandporousnetworks.  editedbyG.P.CrawfordandS.Zumer(TaylorandFrancis,London,1996). [16]M.NobiliandG.Durand,Phys.Rev.A46,R6174(1992). [17]R.Kubo,Statisticalmechanics(North-HollandPublishingCompany,Amster. dam,1965). [18]L.O.Onsager,Phys.Rev.37,405(1931). [19]L.D.LandauandE.M.Lifshitz,StatisticalPhysics,Part1,3rdEdition(Ree. EducationalandProfessionalPublishing,Oxford,1980). [20]L.D.LandauandI.M.Khalatnikov,Dokl.Akad.naukSSSR96,469(1954). [21]I.Ku. scer,A.Kodre,Matematikav zikiintehniki(DMFASlovenije,Ljubl. jana,1994). [22]J.L.Ericksen,Arch.ration.Mech.Analysis4,231(1960). [23]F.M.Leslie,Quart.J.Mech.appl.Math.19,357(1966);Arch.ration.Mech. Analysis28,265(1968). [24]P.C.Martin,O.Parodi,andP.S.Pershan,Phys.Rev.A6,2401(1972). [25]M.G.Clark,F.M.Leslie,Proc.R.Soc.Lond.A.361,463(1978). 11. 11. Bibliograph. [26]C.Z.vanDoorn,J.Physique36,C1-261(1975). [27]D.W.Berreman,J.Appl.Phys.46,3746(1975). [28]D.W.Berreman,J.Appl.Phys.50,3746(1979). [29]N.J.Smith,M.D.Tillin,andJ.R.Sambles,Phys.Rev.Lett.88,08830. (2002). [30]F.Brochard,P.Pieranski,andE.Guyon,Phys.Rev.Lett.26,1681(1972). [31]P.Pieranski,F.Brochard,andE.Guyon,J.Physique34,35(1973). [32]E.F.Carr,Mol.Cryst.Liq.Cryst.34,159(1977). [33]E.Guyon,R.Meyer,andJ.Salan,Mol.Cryst.Liq.Cryst.54,261(1979). [34]A.J.Hurd,S.Fraden,F.Lonberg,andR.B.Meyer,J.Physique46,90. (1985). [35]K.MiglerandR.Meyer,Phys.Rev.Lett.66,1485(1991). [36]K.MiglerandR.Meyer,Phys.Rev.E48,1218(1993). [37]J.Bajc,G.Hillig,andA.Saupe,J.Chem.Phys.106,7372(1997). [38]M.Kaiser,W.Pesch,andE.Bodenschatz,PhysicaD59,320(1992). [39]M.Grigutsch,R.Stannarius,Mol.Cryst.Liq.Cryst.A304,455(1997). [40]H.R.Brand,C.Fradin,P.L.Finn,W.Pesch,andP.E.Cladis,Phys.Lett. A235,508(1997). [41]E.PlautandW.Pesch,Phys.Rev.Lett.79,2367(1997). [42]A.D.ReyandT.Tsuji,Macromol.Theor.Simul.7,623(1998). [43]E.PlautandW.Pesch,Phys.Rev.E59,1747(1999). [44]J.J.Feng,J.Tao,andL.G.Leal,J.FluidMech.449,179(2001). [45]G.Durand,privatecommunication,SILCMiniSchool,April2000,Portoro.. z, Slovenija. [46]C.Oseen,Trans.FaradaySoc.29,883(1933). [47]H.Zocher,Trans.FaradaySoc.29,945(1933). [48]F.C.Frank,Discuss.FaradaySoc.25,19(1958). [49]P.G.deGennesandJ.Prost,ThePhysicsofLiquidCrystals(ClarendonPress. Oxford,1995). [50]G.Vertogen,W.H.deJeu,ThermotropicLiquidCrystals,Fundamental. (Springer-Verlag,Berlin,1998). [51]O.Parodi,J.Phys.France31,581(1970). [52]C.A.J.Fletcher,ComputationalTechniquesforFluidDynamics(Springe. Verlag,Berlin,1988),Vol.II. [53]A.Kodre,privatecommunication,1999. [54]W.H.Press,B.P.Flannery,S.A.Teukolsky,andW.T.Vetterling,Numerica. Recipes(CambridgeUniversityPress,Cambridge,1986). [55]S.Chandrasekhar,LiquidCrystals(CambridgeUniversityPress,Cambridge. 1992). [56]A.J.Bray,inSoftandFragileMatter,Proceedingsofthe53rdSUSP,St. Andrews,July1999,editedbyM.E.CatesandM.R.Evans(TheScottis. UniversitiesSummerSchoolinPhysics,2000). [57]J.G.McIntosh,andF.M.Leslie,J.Eng.Math.37,129(2000). Bibliograph. 11. [58]N.D.Mermin,Rev.Mod.Phys.51,591(1979). [59]M.V.KurikandO.D.Lavrentovich,Usp.Fiz.Nauk154,381(1988)[Sov. Phys.Usp.31,196(1988)]. [60]N.SchopohlandT.J.Sluckin,Phys.Rev.Lett.59,2582(1987). [61]E.PenzenstadlerandH.-R.Trebin,J.Phys.France50,1027(1989). [62]A.Sonnet,A.Kilian,andS.Hess,Phys.Rev.E52,718(1995).  [63]S.Kralj,E.G.Virga,andS.Zumer,Phys.Rev.E60,1858(1999).  [64]D.Andrienko,M.P.Allen,G.Skacej,andS.Zumer,Phys.Rev.E65,04170. (2002). [65]P.M.ChaikinandT.C.Lubensky,Principlesofcondensedmatterphysic. (CambridgeUniversityPress,Cambridge,1997). [66]L.D.LandauandE.M.Lifshitz,TheoryofElasticity,3rdEdition(Ree. EducationalandProfessionalPublishing,Oxford,1986).  [67]G.P.Crawford,D.Svensek,andS.Zumer,Someaspectsofpolymer-disperse. andpolymer-stabilizedchiralliquidcrystals,inChiralityinliquidcrystals. editedbyH.-S.KitzerowandC.Bahr(Springer-Verlag,NewYork,2001). [68]P.CladisandM.Kleman,J.Phys.France33,591(1972). [69]R.B.Meyer,Philos.Mag.27,405(1973). [70]W.H.Zurek,Nature317,505(1985). [71]H.-R.Trebin,Liq.Cryst.24,127(1998). [72]L.M.Pismen,VorticesinNonlinearFields(OxfordUniversityPress,Oxford. 1999). [73]I.Chuang,R.Durrer,N.Turok,andB.Yurke,Science251,1336(1991). [74]T.W.B.Kibble,PhysicaC369,87(2002). [75]A.Pargellis,N.Turok,andB.Yurke,Phys.Rev.Lett.67,1570(1991). [76]K.Minoura,Y.Kimura,K.Ito,andR.Hayakawa,Phys.Rev.E58,643(1998). [77]C.Denniston,Phys.Rev.B54,6272(1996). [78]G.GuidonePeroliandE.G.Virga,PhysicaD111,356(1998). [79]G.GuidonePeroliandE.G.Virga,Phys.Rev.E59,3027(1999). [80]J.Bajc,Statikaindinamikadefektovvograjenihnematskihtekocekristalni. fazah,PhDThesis(UniverzavLjubljani,1998). . [81]J.Bajc,G.GuidonePeroli,E.G.Virga,andS.Zumer,Liq.Cryst.29,21. (2002). [82]A.M.SonnetandE.G.Virga,Phys.Rev.E56,6834(1997). [83]H.StarkandD.Ventzki,Europhys.Lett.57,60(2002). [84]A.KilianandS.Hess,Z.Naturforsch.44a,693(1989). [85]E.C.Gartland,Jr.,A.M.Sonnet,andE.G.Virga,ContinuumMech.Ther. modyn.14,307(2002). [86]L.M.PismenandB.Y.Rubinstein,Phys.Rev.Lett.69,96(1992). [87]A.Kilian,Mol.Cryst.Liq.Cryst222,57(1992). [88]J.Fukuda,M.Yoneya,andH.Yokoyama,Phys.Rev.E65,041709(2002). [89]S.Hess,Z.Naturforsch.31a,1507(1976). [90]P.D.OlmstedandP.Goldbart,Phys.Rev.A41,4578(1990). 11. Bibliograph. [91]P.D.OlmstedandP.M.Goldbart,Phys.Rev.A46,4966(1992). [92]T.QianandP.Sheng,Phys.Rev.E58,7475(1998). [93]J.Fukuda,Eur.Phys.J.B1,173(1998). [94]C.Denniston,E.Orlandini,andJ.M.Yeomans,Phys.Rev.E63,05670. (2001). [95]C.Denniston,E.Orlandini,andJ.M.Yeomans,Phys.Rev.E64,02170. (2001). [96]G.Toth,C.Denniston,andJ.M.Yeomans,Phys.Rev.Lett.88,10550. (2002). [97]P.E.Cladis,W.vanSaarloos,P.L.Finn,andA.R.Kortan,Phys.Rev.Lett. 58,222(1986). [98]A.Bogi,P.Martinot-Lagarde,I.Dozov,andM.Nobili,Phys.Rev.Lett.89. 225501(2002).  [99]S.KraljandS.Zumer,Phys.Rev.A45,2461(1992). [100]H.Pleiner,Phys.Rev.A37,3986(1988). [101]B.Yurke,A.N.Pargellis,T.Kovacs,andD.A.Huse,Phys.Rev.E47,152. (1993). [102]H.J.Coles,Mol.Cryst.Liq.Cryst.49,67(1978). [103]D.R.Link,A.Tewary,G.Natale,V.Ginzburg,J.E.Maclennan,L.Radzi. hovsky,N.A.Clark,unpublished. [104]D.R.Link,privatecommunication,September2000,Erice,Italy. [105]N.A.Clark,privatecommunication,ILCC,July2002,Edinburgh,UK. [106]D.R.Link,L.Radzihovsky,G.Natale,J.E.Maclennan,N.A.Clark,M. Walsh,S.S.Keast,andM.E.Neubert,Phys.Rev.Lett.84,5772(2000). [107]A.N.Pargellis,P.Finn,J.W.Goodby,P.Panizza,B.Yurke,andP.E.Cladis. Phys.Rev.A46,7765(1992). [108]T.Carlsson,I.W.Stewart,andF.M.Leslie,Liq.Cryst.9,661(1991). [109]T.Carlsson,F.M.Leslie,andN.A.Clark,Phys.Rev.E51,4509(1995). [110]C.Y.Young,R.Pindak,N.A.Clark,andR.B.Meyer,Phys.Rev.Lett.40. 773(1978). [111]C.Rosenblatt,R.Pindak,N.A.Clark,andR.B.Meyer,Phys.Rev.Lett.42. 1220(1979). [112]D.R.Link,J.E.Maclennan,andN.A.Clark,Phys.Rev.Lett.77,223. (1996).  [113]P.ZiherlandS.Zumer,Liq.Cryst.21,871(1996).  [114]P.ZiherlandS.Zumer,Phys.Rev.E54,1592(1996). [115]E.C.Gartland,Jr.andS.Mkaddem,Phys.Rev.E59,563(1998). [116]R.RossoandE.G.Virga,J.Phys.A:Math.Gen.29,4247(1996). [117]I.F.Lyuksyutov,Zh.Eksp.Teor.Fiz.75,358(1978)[Sov.Phys.JETP48. 178(1978)]. [118]S.Hess,Z.Naturforsch.TeilA30,728(1975). [119]V.L.PokrovskiiandE.I.Kats,Zh.Eksp.Teor.Fiz.73,774(1977)[Sov.Phys. JETP46,405(1977)]. Bibliograph. 11.  [120]A.Sarlah,E ectofthecon ningsubstratesonnematicorder- uctuationsi. liquidcrystals,PhDThesis(UniverzavLjubljani,2001). [121]A.Kodre,privatecommunication,2002. [122]H.R.Brand,privatecommunication,2002. [123]H.Pleiner,M.Liu,andH.R.Brand,Rheol.Acta41,375(2002). Izjav. Vdisertacijisempredstavilrezultatelastnegaznanstvenoraziskovalnegadela. Ljubljana,marec200. DanielSvense. ERRATU. WhileEqs.(5.9)and(5.17)(pp.57and60)themselvesareintact,theydono. f el representthediagonalizedquadraticsandT. _s i asreferredtointhetext,bu. merelyexpressthemasthesumsofsquareterms.Thus,Eqs.(5.9)and(5.17)d. notstipulatethepositivityofthecoeAcients,asfalselystatedinthetext.Th. quadraticscanbediagonalizedinprinciple.However,thediagonalizedformsar. tooconvolutedtobeuseful.