
BLED WORKSHOPS
IN PHYSICS
VOL. 20, NO. 1
p. 85

Proceedings of the Mini-Workshop
Electroweak Processes of Hadrons

Bled, Slovenia, July 15–19, 2019

The enigmatic ∆(1600) resonance

B. Golli

Faculty of Education, University of Ljubljana and Jožef Stefan Institute, 1000 Ljubljana,
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Abstract. Our recently proposed model of the ∆(1600) resonance, in which the dominant
component is a quasi-bound state of the ∆(1232) and the pion, is confronted with a similar
model of the N∗(1440) resonance as its counterpart in the P11 partial wave. We stress an
essentially different mechanism responsible for generating the two resonances.

The two low-lying resonances in the P11 and P33 partial waves, the Roper reso-
nance (N∗(1440)) and the ∆(1600) resonance, have been attracting special atten-
tion due to their relatively low masses compared to the prediction of the quark
model in which they figure as the first radial excitations in the respective channel,
and have been considered as candidates for dynamically generated resonances.
In order to understand the mechanism of their formation we study these two res-
onances in a chiral quark model, which may produce either a genuine resonance
by exciting the quark core, or a dynamically generated resonance involving a
baryon-meson quasi-bound state. We use a coupled channel approach involv-
ing the πN, π∆, and σN channels which — based on our previous experience —
dominate the intermediate energy regime in the P11 and P33 partial waves. The
Cloudy Bag Model (CBM) is used to fix the quark-pion vertices while the s-wave
σ-baryon vertex is introduced phenomenologically with the coupling constant gσ
as a free parameter. Labeling the channels by α,β, γ, the Lippmann-Schwinger
equation for the meson amplitude χαγ for the process γ → α can be cast in the
form

χαγ(kα, kγ) = Kαγ(kα, kγ) +
∑
β

∫
dk
Kαβ(kα, k)χβγ(k, kγ)
ω(k) + Eβ(k) −W

. (1)

The half-on-shell pion amplitude consists of the resonant and non-resonant part,

χαγ(k, kγ) = cγRVαR(k) +Dαγ(k, kγ) , (2)

with the non-resonant part Dαγ(k, kγ) satisfying the same Lippmann-Schwinger
equation, while the dressed vertex VαR(k) satisties the Lippmann-Schwinger equa-
tion with the same kernel and the bare vertex for the non-homogeneous part. Ap-
proximating the kernel K by a separable form, the integral equations reduce to a
system of linear equations which can be solved exactly. The resulting amplitude
is proportional to the Kmatrix which, in turn, determines the scattering T matrix.
The Laurent-Pietarinen expansion is finally used to extract the information about
the S-matrix poles in the complex energy plane.
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The formation of the Roper resonance (N∗(1440)) is studied in Ref. [1], con-
fronting two mechanisms for resonance formation: the explicit inclusion of a res-
onant three-quark state in which one quark is promoted to the 2s state, and the
dynamical generation in the absence of the resonant state. In both cases the nu-
cleon pole is explicitly included. While the p-wave πN interaction is repulsive in
the P11 channel, the s-wave σN interaction is attractive, and is able to support
a (quasi) bound state for sufficiently strong gσ. The resulting mass of the reso-
nance is close to the PDG value in a relatively wide interval of gσ, while its width
is smaller than the PDG value and drops with increasing gσ. Including a three-
quark resonant state, the mass of the resonance remains almost the same, while
its width increases and comes very close to its PDG value (see Table III in [1]). The
result is rather insensitive to the mass of the three-quark resonant state, which al-
lows us to use a value around 2 GeV, in agreement with the quark-model ordering
of the 2s and 1p states, as well as with the recent results of the lattice calculations
[2,3] which have not found a sizable three-quark component below ∼ 1.7 GeV.
We conclude that while the mass of the S-matrix pole is determined by the dy-
namically generated state, its width and modulus are strongly influenced by the
three-quark resonant state. This conclusion is further supported by a smooth evo-
lution of the S-matrix pole in the complex energy plane as the coupling of the σ as
well as of the pion to the quark core is gradually increased on (see Fig. 1). Starting
with two bare masses of 1750 MeV and 2000 MeV, both curves end up almost at
the same point with the mass and width consistent with the PDG values.

Fig. 1. Evolution of theN∗(1440)
mass (ReW) and the width (pro-
portional to the radius of the cir-
cle) as a function of the interac-
tion strength for two bare masses
of the three-quark configura-
tion, 1750 MeV and 2000 MeV;
g/g0 denotes the reduction fac-
tor, equal for each coupling con-
stant. The radius at g/g0 = 1 cor-
responds to ImW = 180MeV.
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Though we might expect that, because of apparently the same three-quark
configuration, the situation with the ∆(1600) is similar to that with the N∗(1440)
resonance, this is not the case. One important difference is the nature of the p-
wave πN interaction which is attractive in the P33 partial wave, in contrast to its
repulsive character in the P11, P13, and P31 waves. Furthermore, the analog of
the σN system, the σ∆(1232) system, turns out to make a sizable contribution to
the scattering amplitude only above 1700 MeV, and hence the σ plays a minor role
in the formation of the ∆(1600) resonance. In [5] we therefore consider only the
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πN and the π∆ channels. Since the πN coupling constant is fixed by the behavior
of the scattering amplitudes near the threshold, the only free parameter in the
underlying model (CBM) is the bag radius R which is inversely proportional to
the cutoff energy; for the value of R = 0.8 fm, leading to the most consistent
results for the nucleon as well as for the low lying resonances, it corresponds to
≈ 550MeV.

Fig. 2. Evolution of the poles
as a function of the bag ra-
dius in the P33 partial wave
in three different approxima-
tions: (i) including only the
nucleon and the pion (or-
ange curve and circles), (ii)
including the nucleon and
the ∆ but without a reso-
nant state (green), (iii) with
the ∆ resonant states (red).
The width of the resonance
−2ImW is proportional to
the radius of the circle.
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Already a few years after the discovery of the ∆(1232) resonance, it was con-
jectured that this resonance arises as a consequence of the attraction in the πN
system at sufficiently strong cutoff [6]. In our model we do observe a resonance
in the πN system manifesting itself as a pole in the complex energy plane at
a mass around 1200 MeV, with a width that decreases with increasing interac-
tion strength (decreasing R) (orange curve in Fig. 2). For R = 0.123 fm the mass
and the width reach the values which agree well with the PDG values, and for
R = 0.050 fm the system becomes bound. We next include the ∆ (in addition to
the nucleon) as the u-channel exchange particle in the kernel, and solve (1) for
the nonresonant amplitude D. Besides the pole at around 1200 MeV another pole
slightly below 1400 MeV emerges (green curves in Fig. 2). The second pole is
dominated by the π∆ configuration and can be interpreted as a progenitor of the
∆(1600) resonance.

We next include a three-quark state corresponding to the ∆(1232) in the s-
channel and fix its bare mass such that the resulting Breit-Wigner mass (i.e., the
zero of Re T ) appears at 1232 MeV. With decreasing R the resonant state mixes
more and more strongly with the lower dynamically generated state, forming the
physical ∆(1232). The latter component dominates below R = 0.2 fm, nonethe-
less, the mass and the width of the resonance pole remain constant (red curves in
Fig. 2) and stay close to the PDG value. The upper dynamically generated reso-
nance is pushed toward a slightly higher mass and acquires a larger width. In the
physically sensible region around R ≈ 0.8 fm, the mass and the width come close
to the PDG values for the ∆(1600) resonance. The attribution of this pole to the
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∆(1600) resonance is, however, not justified for smaller R, where its mass keeps
increasing, and, in addition, another branch emerges, approaching the upper dy-
namically generated resonance.

We finally add a bare (1s)2(2s) configuration representing the first radial ex-
citation of the ∆(1232). In the harmonic oscillator model, its mass is expected to
lie ∼ 1 GeV above the (1s)3 configuration, so we fix its (bare) mass at 2.2 GeV,
while its coupling is taken from the CBM. Apart from the two resonances dis-
cussed above, the third resonance emerges with a mass (ReW) close to the bare
value. Increasing the strength of the interaction (decreasing R) we notice that it
stays almost constant and — at least in the physically relevant regime of R’s —
well separated from the other two resonances.

Fig. 3. Evolution of the
poles in the model in-
cluding two resonant states
with the second state at the
bare mass of 2.2 GeV (blue
curves) and at 2.0 GeV (vio-
let), respectively, compared
with the model involving∆
alone (red, the same curve
as in Fig. 2).
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We can therefore conclude that the radially excited quark state plays a very
minor role in the formation of the ∆(1600) resonance, which in our model turns
out to be primarily a quasi-bound state of ∆(1232) and the pion. This mechanism
is therefore fundamentally different from that responsible for the formation of the
N∗(1440) resonance, discussed above, and originates in the different nature of the
pion interaction in the two partial waves.

This work has been done in collaboration with H. Osmanović (Tuzla) and S.
Širca (Ljubljana).
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