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Abstract

The effective theory based on combined chiral and heavy quark symmetry, the heavy meson
chiral perturbation theory, is applied to studying the role of resonances in various processes of
heavy mesons within and beyond the Standard Model.

Chiral corrections including both positive and negative parity heavy meson doublets are cal-
culated to the effective strong couplings featuring in the effective theory leading order interaction
Lagrangian. Bare values of the chirally corrected couplings are extracted from the measured
decay widths of charmed resonances. Chiral behavior of the couplings is studied in the leading
logarithmic approximation. The mass splitting between heavy mesons of opposite parities spoils
the chiral limit of the amplitudes. We restore a well behaved chiral limit by expanding the
relevant loop integral expressions in inverse powers of the mass splitting.

In semileptonic heavy to light decays we determine resonance contributions to the various
form factors within an effective theory inspired model at zero recoil. We employ a form factor
parameterization based on effective theory limits to extrapolate our results to the whole kine-
matical region in charm decays. We compare our results with experimental data and lattice
calculations, and conclude that for a consistent description of the heavy to light semileptonic
form factors, one needs to go beyond a single resonance pole approximation in the form factor
parameterization.

In semileptonic decays of B mesons to charm resonances we calculate chiral corrections to
the relevant Isgur-Wise functions. We evaluate loop contributions of both positive and negative
parity heavy mesons to the chiral running of the amplitudes. A well defined chiral limit is only
restored after an appropriate loop integral expansion is performed.

We calculate chiral loop corrections to the complete set of supersymmetric four-quark oper-
ators mediating heavy neutral meson mixing. The impact of heavy scalar meson contributions
in the chiral loops on the chiral behavior of the bag parameters is studied and a well defined
chiral extrapolation procedure is defined.

Very rare nonleptonic decays of the B, meson are studied within the Standard Model where
they are mediated by box loop diagrams, and within a number of Standard Model extensions.
Based on existing experimental searches for related B meson decays, limits are imposed on some
of the models studied. The most promissing nonleptonic two- and three-body decay channels of
the B, meson in the search for such new physics contributions are identified.

Key Words: heavy meson chiral perturbation theory, decays of charmed mesons, weak decays of
heavy mesons, hadronic decays of heavy mesons, heavy neutral meson oscillations, new physics

searches, lattice quantum chromodynamics

PACS: 12.39.Fe, 13.20.Fc, 13.25.Ft, 13.25.Hw, 12.39.Hg, 12.38.Gc¢
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Povzetek

V doktorskem delu uporabimo efektivno teorijo, ki vkljucuje tako kiralno simetrijo, kot simetrijo
tezkih kvarkov, za studij vplivov resonanc na procese tezkih mezonov znotraj in izven standard-
nega modela.

V mocnih razpadih tezkih mezonov izracunamo kiralne popravke k efektivnim sklopitvenim
konstantam, kjer upostevamo prispevke tezkih mezonov tako pozitivne kot negativne parnosti.
Gole vrednosti efektivnih sklopitev dolo¢imo iz razpadnih Sirin ¢arobnih resonanc. Analiziramo
tudi kiralno obnasanje efektivnih sklopitev v priblizku vodilnih logaritmov. Opazimo, da masna
reza med tezkimi mezoni pozitivne in negativne parnosti pokvari kiralno limito amplitud. S
pomocjo razvoja zancnih integralov po obratni vrednosti masne reze ponovno vzpostavimo dobro
doloceno kiralno limito.

Znotraj efektivnega modela proucujemo prispevke resonanc k semileptonskim razpadom
carobnih v lahke mezone. Napovedi v limiti ni¢tega odboja ekstrapoliramo na celotno kine-
matsko podrocje s pomocjo splosne parametrizacije oblikovnih funkcij, ki temelji na limitah
efektivnih teorij kvantne kromodinamike. Nase rezultate primerjamo z eksperimentalnimi po-
datki in izracuni na mrezi. Zaklju¢imo, da enostavni priblizek enega pola ne more ve¢ zadovoljivo
opisati semileptonskih oblikovnih funkcij.

V semileptonskih razpadih mezonov B v ¢arobne mezonske resonance izra¢unamo kiralne
popravke k funkcijam Isgur-Wise. Pri tem upostevamo prispevke tezkih mezonov obeh parnosti
h kiralnemu obnasanju amplitud. Dobro definirano kiralno limito dobimo le po primernem
razvoju zancnih integralov.

Izracunamo kiralne popravke k celotnemu naboru kvarkovskih operatorjev, ki povzrocajo
oscilacije tezkih nevtralnih mezonov. Obravnavamo prispevke tezkih skalarnih mezonov h kiral-
nemu obnasanju parametrov “vrece” ter predpiSemo dobro definiran postopek njihove kiralne
ektrapolacije.

Zelo redke neleptonske razpade mezonov B, obravnavamo znotraj standardnega modela,
kjer potekajo le preko skatlastih zank, ter znotraj nekaterih njegovih razsiritev. Na podlagi
obstojecih eksperimentalnih iskanj sorodnih razpadov mezona B, postavimo meje na parametre
nekaterih obravnavanih modelov. Nato predlagamo najobetavnejSe dvo- in trodeléne razpadne
kanale mezona B, za bodoca iskanja signalov nove fizike.

Klju¢ne besede: kiralna perturbacijska teorija s tezkimi mezoni, razpadi ¢arobnih mezonov, Sibki

razpadi tezkih mezonov, hadronski razpadi tezkih mezonov, oscilacije nevtralnih tezkih mezonov,
signali nove fizike, izrac¢uni kvantne kromodinamike na mrezi

Stvarni vrstilec - PACS: 12.39.Fe, 13.20.Fc, 13.25.Ft, 13.25.Hw, 12.39.Hg, 12.38.Gc¢
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Notation

The characters from the middle fo the Greek alphabet pu, v,...in general run over space-time
indices 0, 1, 2, 3, while the Latin indices ¢, j, k,...tun over spatial indices 1, 2, 3.

The characters from the beginning of the Latin alphabet a, b,...in general run over light quark
flavor indices 1, 2,...,N in case of SU(N) chiral flavor theory.

Spatial vector quantities are denoted with bold Latin letters e.g. p, while indices of Lorentz
covariant quantities are writen explicitely e.g p*.

The metric used in the thesis is n*¥ = diag(1, —1, —1, —1), where the indices run over 0, 1, 2, 3,
with O the temporal index.

The Levi-Civita tensor €#“#? is defined as a totally antisymmetric tensor with €23 = 1.

The Einstein summation over repeated indices is assumed unless stated otherwise. The dot-
product p - k denotes p*k,,.

The Dirac matrices are defined so that v,v, + Y7, = 21 Also, 75 = i70717273. The matrix
ot = g[y*,~"]. The slash on a character denotes y = p'~,. The trace Tr runs over Dirac
matrix indices.

The Hermitian adjoint of a vector, matrix or operator O is denoted Of. A bar on a Dirac
bispinor u denotes @ = uf~.

The imaginary and real part of a complex number z are deonted (z) and R(z) respectively.

Natural units with A and the speed of light taken to be unity are used. The fine structure
constant is thus ae,. = €?/4m ~ 1/137.
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Povzetek doktorskega dela

1 Uvod

Standardni model (SM) fizike osnovnih delcev je kvantna teorija umeritvenih polj, ki opisuje te-
meljne elektromagnetne, Sibke in moc¢ne interakcije. Izoblikoval se je v Sestdesetih letih prejsnjega
stoletja in je vse odtlej popolnoma obvladoval podrocje [1]. Osnovni gradniki SM so fermioni —
leptoni in kvarki — ki so uvrséeni v tri druzine. Umeritvena grupa SM je SU (3).xSU(2)r.xU(1)y,
kjer SU(3). zaznamuje umeritveno grupo kvantne kromodinamike (ang. quantum chromodyna-
mics — QCD), SU(2)r, je umeritvena grupa sibkega izospina, medtem ko je U(1)y umeritvena
grupa Sibkega hipernaboja. Samo levoro¢ni kiralni ferminoi se transformirajo kot izospinski
dubleti pod SU(2)r, medtem ko kvarki hkrati tvorijo fundamentalno tripletno reprezentacijo
SU(3).. Mase leptonov in kvarkov v SM generiramo s pomoc¢jo Higgsovega mehanizma — s
spontanim zlomom simetrije, ko (kiralne) simetrije teorije njen vakuum ne spostuje. V ta na-
men se v teorijo doda skalarni Sibko-izospinski dublet. Njegova vakuumska pricakovana vrednost
zlomi umeritveno invarianco na podgrupo SU(3). x U(1)gys in inducira mase §ibkim W= in Z
umeritvenim bozonom.

Kvarkovska polja v SU(2);, bazi v splosnem niso lastna stanja mase. Zato jih obi¢ajno s
pomocjo unitarne matrike zavrtimo v masno bazo. Po konvenciji rotacijo izvedemo na poljih
spodnjih kvarkov in rotacijsko matriko imenujemo Cabibbo-Kobayashi-Maskawa (CKM). V ce-
loti jo lahko opiSemo s pomocjo treh realnih kotov in ene kompleksne faze, ki krsi simetrijo
CP.

SM se lahko pohvali z mnogimi uspesno prestanimi testi opisa osnovnih interakcij. Nje-
gove napovedi so bile izdatno preverjene v pospesSevalniskih laboratorijih in se dobro ujemajo z
izjemnem ujemanju z napovedmi SM [2], medtem ko meritve krsitev simetrije CP v sistemih z
mezoni K, D in B podpirajo CKM opis z eno univerzalno fazo [3, 4]. Zadnji osnovni gradnik,
ki trenutno Se ¢aka na svojo eksperimentalno odkritje je Higgsov bozon.

Kljub velikim uspehom SM pa iz opazovanj ze vemo, da SM ne predstavlja popolne slike na
najmanjsih prostorskih skalah. Tako na primer SM ne vsebuje gravitacije. Navkljub izrednim
naporom, ki so jih v zadnjih desetljetjih teoreti¢ni fiziki namenili tej temi, je napredek pocasen
in izsledki neprepricljivi. Predvsem tudi zaradi skoraj popolne odsotnosti eksperimentalnih
namigov na tem podroc¢ju. Po drugi strani pa SM prav tako ne pojasni nedavno izmerjenih
nevtrinskih oscilacij [5]. Te kazejo na nenicelne mase nevtrinov, v nasprotju z opisom, ki ga
ponuja SM. Hkrati vse vec astrofizikalnih opazovanj nakazuje, da vecina materije v vesolju ni
ne svetilna, ne barionske sestave [6]. Hkrati je relativho pocasna oziroma “hladna”. SM ne
ponuja kandidatov za nebarionsko hladno temno snov. Nenazadnje nase trenutno razumevanje
bariogeneze — tvorbe merjene asimetrije med barioni in anti-barioni — v zgodnjem vesolju zahteva
mnogo vecje krsitve simetrije C'P, kot so dovoljene znotraj SM [7].

Pravilna interpretacija eksperimentalnih podatkov in morebitna potrditev napovedi SM ozi-
roma odkritje signalov nove fizike zahtevajo zanesljive izracune relevantnih hadronskih procesov,

xxvil
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temelje¢ na fundamentalnem kvarkovskem opisu teorije. Neperturbativna narava QCD pri niz-
kih energijah, ki hkrati kvarke in gluone drzi ujete znotraj hadronov, nam pri tem povzroca
obilico preglavic. Razvoj po sklopitveni konstanti v tem rezimu namre¢ ni ve¢ mogoc¢. Nepo-
sredni izra¢uni opazljivk na podlagi osnovnih principov QCD so Se vedno mogoc¢i s pomocjo
simulacij QCD na mrezi, vendar so te racunsko izredno zahtevne [8]. Ena od moznosti, ki nam
preostanejo je uporaba simetrij Lagrangevega operatorja, na podlagi katerih skonstruiramo efek-
tivne teorije [9]. Neznane parametre v efektivni teoriji dolo¢imo iz eksperimentov ali, kadar je
to mogoce, s pomocjo neposredne primerjave z napovedmi polne teorije QCD. Taksne efektivne
teorije lahko potem uporabimo neposredno za napovedi nekaterih eksperimentalnih procesov ali
za oporo izracunom QCD na mrezi pri pravilnem upostevanju napak in aproksimacij.

Ena pomembnih manifestacij mo¢ne dinamike QCD pri nizkih energijah je pojav resonanc v
spektru delcev. Zaznane so bile pred mnogimi leti v procesih pionov in kaonov, kjer so bile tudi
podrobno raziskane [1]. Izkazale so se kot izredno vplivne v mnogih nizkoenergijskih procesih. Po
eni strani omejujejo veljavnost doloc¢enih efektivnih teorij, ki resonan¢énih pojavov niso sposobne
zadovoljivo opisati. Hkrati je znano, da njihova prisotnost skoraj popolnoma zabriSe prispevke
redkih procesov znotraj SM oziroma nove fizike k oscilacijam mezona D in njegovim redkim
razpadom [10]. Po drugi strani pa so fiziki dolgo predvidevali, da so zaradi relativno velikih mas
kvarkov c¢ in b prispevki resonanc tezkih mezonov v procesih teh dveh kvarkov manj pomembni.

V zadnjih nekaj letih pa so mnogi eksperimenti poroc¢ali o prvih opazanjih resonanc v spektru
¢arobnih mezonov [11, 12, 13, 14, 15, 16]. Studije osnovnih lastnosti teh novih stanj so bile
Se posebej stimulirane zaradi dejstva, da mase resnanc v nasprotju s teoreticnimi napovedi
kvarkovskih modelov [17, 18] in izrac¢unov na mrezi [19, 20] niso lezale dale¢ nad masami osnovnih
stanj. To hkrati namiguje na potencialno velik vpliv resonanc v procesih D in Dy mezonov in
nam zastavlja naslednja vprasanja: Ali lahko ocenimo pomembne vplive najnizje lezecih resonanc
tezkih mezonov v procesih osnovnih stanj tezkih mezonov? Ali lahko ohranimo nadzor nad temi
efekti, Se posebej znotraj efektivnih teorij QCD? Ali nam lahko morda pomagajo razumeti
nekatere vidike opazenih in izmerjenih procesov osnovnih stanj tezkih mezonov? In konéno,
katere zakljucke pridobljene v ¢arobnem sektorju lahko prenesemo in apliciramo v procesih
mezonov B in By, katerih resonance so trenutno Se izven dosega eksperimentalnih laboratorijev.

V tej disertaciji bomo raziskali mnogo aspektov resonanc v procesih tezkih mezonov [21, 22,
23, 24, 25, 26, 27, 28, 29]. Njihovi poglavitni prispevki bodo analizirani v relevantnem pristopu
efektivnih teorij QCD. Znotraj tega ogrodja bomo izra¢unali hadronske parametre, ki nastopajo
v mnogih nizkornergijskih procesih in preucili vpliv resonanc tezkih mezonov na opazljivke. Te
vsebujejo moc¢ne in semileptonske razpadne Sirine tezkih mezonov, kot tudi parametre mesanja
nevtralnih tezkih mezonov. Mocni razpadni kanali, kadar so dovoljeni, ponavadi prevladujejo
v izmerjenih razpadnih Sirinah, zato jih lahko uporabimo kot kriterije veljavnosti izbranega
efektivno-teoretskega pristopa ter hkrati iz njih dolo¢imo osnovne parametre efektivnih teorij.
Semileptonski razpadi, ki potekajo preko nabitih kvarkovskih in leptonskih tokov, SM opisuje
ze v drevesnem redu. V teh procesih zato potrjeno prevladujejo prispevki SM. Poglobljene
raziskave tega podrocja zato predvsem preverjajo konsistentnosti znotraj SM, kot so meritve
razlicnih matricnih elementov CKM ter testi unitarnosti matrike CKM. Po drugi strani pa
mesanje tezkih nevtralnih mezonov znotraj SM poteka v redu ene skatlaste zanke. Tako se v
teh procesih odpira okno za iskanje prispevkov nove fizike, ki so lahko, ne pa nujno, obtezeni s
faktorji zank. Znotraj naSega pristopa bomo obravnavali vse mogoc¢e hadronske amplitude, ki
nastopajo v mesanju tezkih nevtralnih mezonov znotraj SM in izven. Nazadnje bomo obravnavali
tudi zelo redke hadronske razpade dvojno-tezkega mezona B., ki potekajo, tako kot mezonsko
mesanje, znotraj SM Sele v redu Skatlaste zanke. Uporabili bomo nekaj pridobljenega znanja o
vplivu resonanc na izra¢une relevantnih hadronskih razpadnih amplitud. Tako bomo s pomocjo
obstojecih meritev postavili nekatere nove meje na mnoge predloge nove fizike in hkrati predlagali
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perspektivne nove smeri iskanja nove fizike.

2 Efektivne teorije tezkih in lahkih kvarkov

Trdovraten problem fenomenoloskih rac¢unov v hadronski fiziki predstavlja neperturbativna na-
rava mocne interakcije. Pristop efektivnih teorij se je v minulih desetletjih izkazal kot izredno
koristno orodje v tovrstnih obravnavah. Kot je obicaj v sodobni fiziki, tudi tu uporabljamo
simetrije za poenostavitev zahtevnih problemov.

Lagrangev operator QCD ima v limiti brezmasnih Ny kvarkov kiralno simetrijo SU(Nyf)g x
SU(Ny)r, za katero na podlagi mnogih eksperimentalnih in teoreti¢nih argumentov predpo-
stavimo, da je spontano zlomljena v vektorsko podgrupo SU(Ny)y. Posledica taksne spona-
tne zlomitve je pojav brezmasnih Goldstonovih bozonov, ki parametrizirajo faktorski prostor
SU(Nf)r x SU(N¢)r,/SU(Ny)v in so tudi edine prostostne stopnje v nizkoenergijskih procesih.
Za najbolj pogost primer Ny = 3 Goldstonova polja zapisemo v obliki matrike

%778"‘%71'0 at Kt
_ -0
K K ~\/2ns

medtem ko v primeru Ny = 2 upostevamo le pionska polja. Njihove efektivne interakcije ne
vsebujejo prispevkov z manj kot dvema odvodoma kar omogoca razvoj po prenosih gibalnih
kolic¢in p, kjer je npr. vsak odvod reda p. Lagrangev operator v vodilnem redu taksnega kiralnega
razvoja je [1, 30]

f2

Lo = gauzabaﬂzga + A0 | (Mg)abXba + ('mq)abEZa] ) 2)

kjer je ¥ = exp 2iII/f. Mase psevdo-Goldstonovih bozonov, ki so posledica mas kvarkov u, d in
predvsem s, pogosto parametriziramo v obliki Gell-Mannovih formul [31]

8loms 2 o 8dgms r+1 2 8doms r+2

2
= T m = m, = 3
S
me 12 ) K 2 2 n 2 3 ( )

kjer je r = my.q/ms in 8\gms/ f* = 2m3. — m2.

Nekoliko drugacna je simetrija tezkih kvarkov, ki je posledica asimptotske svobode QCD. Pri
dovolj velikih energijah, ki so povezane z masami tezkih kvarkov, je narava QCD perturbativna
in v mnogih pogledih podobna QED. Hkrati v interakcijah tezkih kvarkov njihov spin prispeva
le v obliki relativisticnih kromomagnetnih u¢inkov. V limiti neskon¢no tezkih kvarkov ti u¢inki
izginejo in dobimo efektivno SU(2) spinsko simetrijo. Nenazadnje QCD lo¢i med okusi kvarkov
le po njihovih masah. V limiti, ko mase Ng tezkih kvarkov hkrati posljemo proti neskonc¢nosti,
postanejo ti efektivno nerazlocljivi in dobimo novo SU(Ng) okusno simetrijo, stanja pa name-
sto po njihovi gibalni koli¢ini razlikujemo po hitrosti v. Efektivno teorijo, ki uposteva omenjene
simetrije tezkih kvarkov imenujemo efektivna teorija tezkih kvarkov (ang. heavy quark effective
theory — HQET) Simetrije tezkih kvarkov so izredno uporabne tudi v kombinaciji s kiralno si-
metrijo lahkih kvarkov in sicer v opisu interakcij mezonov, ki vsebujejo par tezkega in lahkega
kvarka. Spinska simetrija tezkih kvarkov tu zahteva, da so hadronska stanja neodvisna od spina
tezkega kvarka, kar tezko-lahke mezone uredi v masno degenerirane pare glede na parnost in
spin lahkih prostostnih stopenj znotraj hadrona. Osnovna taksna dubleta negativne in pozi-
tivne parnosti sta H, = (1 + ¢)/2[Py — Pyys) in Sy, = (1 4+ v) /2[5 — Pou), ter vsebujeta
osnovna psevdoskalarna (P,), vektorska (P,"), skalarna (Pp,) in aksialna (P;') stanja tezkih
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mezonov. Njihove interakcije dolocata kiralna simetrija in simetrije tezkih kvarkov. V prvem
redu obeh razvojev zapiSemo Lagrangev operator taksne efektivne teorije tezkih mezonov in
psevdo-Goldstonovih bozonov (ang. heavy meson chiral perturbation theory — HMxPT) [32, 33]

Linner = £+ + £l

1 mix’
2 2
£(112 = —Tr [Fa(iv “Dap — 5abAH)Hb} + gTr [FbHaAab’YS] ,
2
LY = Tr[Su(iv-Dap — 6uA8)Ss] + GTr [SoSaharys)
2
[’Eil)x = hTr [ﬁbSaAab’YE)] + h.c.. (4)

Z h.c. smo oznacili dodatni hermitsko konjugiran operator, Tr pa oznacuje sled ¢ez Diracove
indekse. Uvedli smo e operator ¢ = /3 s katerim definiramo operatorja kiralnega vektorskega
V, = (£0,6T +£10,£)/2 in aksialnega A, = i(£10,& — €0,£7)/2 = i€10,5¢1/2 toka. Prvi nastopa
v kovariantnem odvodu kineti¢nega ¢lena Lagrangevega operatorja DY, = 6440 — V', = drugi
pa definira interakcije med pari tezko-lahkih mezonov in lihim Stevilom psevdo-Goldstonovih
bozonov, ki jih parametrizirajo efektivne sklopitvene konstante g, h in g. Prosta masna pa-
rametra tezkih mezonov Ay in Ag bi lahko v primeru, da bi obravnavali le interakcije tezkih
mezonov ene parnosti, postavili na ni¢ s primerno redefinicijo hitrosti. V nasem primeru pa to
ni ve¢ mogoce in v izra¢unih se nam pojavi nova invariantna koli¢ina — razlika obeh ¢lenov, ki
jo oznacimo s Agg = Ag — Ap. Videli bomo, da ta koli¢ina pomembno vpliva na interpretacijo
in veljavnost izracunov znotraj HMyPT. V prvem redu razvoja v kiralni simetriji in simetriji
tezkih kvarkov zapisimo Se operator Sibkega toka

- !

(0) e Q0
J(VﬁA)HMXPT - jTr['Yu(l - VS)Hb]fga -5

Ty (1 —7)Spléh, + O (1/mq).  (5)
ki ga bomo potrebovali pri izracunu Sibkih procesov tezkih mezonov. « in o’ sta prosta parame-
tra, ki ju lahko identificiramo z razpadnima konstantama tezkih mezonov lihe in sode parnosti.

3 Hadronske amplitude — efektivni pristopi in resonance

Pri fenomenoloski obravnavi §ibkih interakcij v hadronskih sistemih pogosto uporabljamo neka-
tere standardne metode in matemati¢ne pripomocke. Tako nam npr. metode razvoja v operator-
sko vrsto omogocajo razclenitev problema v perturbativen izra¢un visokoenergijskih prispevkov
z asimptotsko prostimi kvarki na eni strani, ter na temeljnem nivoju neperturbativen izracun ha-
dronskih matri¢nih elementov operatorjev, ki pa vsebujejo le lahke prostostne stopnje QCD. Na
kratko bomo oplazili nekatere splosne lastnosti, priblizke in relacije med taksnimi hadronskimi
amplitudami.

Osnovna ideja razvoja v operatorsko vrsto je razclenitev poljubnega nelokalnega produkta
operatorjev v vsoto lokalnih operatorjev pomnozenih z efektivnimi t.i. Wilsonovimi parametri

T{A1(x1)As(w2) .. Ap(ar) —— S oct (e —my, . x = 2p) O (2), (6)
n

kjer T" oznacuje operator casovne ureditve. Moc¢ taksne razclenitve je dvojna: prvi¢ velja na

operatorski ravni, je neodvisna od zunanjih stanj, na katero jo apliciramo in nam zato sluzi

za izgradnjo efektivnih Hamiltonovih operatorjev; drugi¢ pa nam omogoca razclenitev skal v

problemih, kjer lahko izmenjavo virtualnih prostostnih stopenj pri visokih energijah zakodiramo

v Wilsonove koeficiente, fiziko nizkih energij pa opisemo z efektivnimi operatorji. Pogosto lahko
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tako vrednosti Wilsonovih koeficientov izracunamo analiti¢no oz. perturbativno. Preostane nam
izvrednotenje matri¢nih elementov efektivnih operatorjev med zunanjimi stanji ({(f| in |é)), ki
opisujejo verjetnostno amplitudo za proces M;

Myi = ZCz‘ (f1O; i) (7)

V tem izvrednotenju lezi srz vseh tezav povezanih z izracunom Sibkih prehodov med hadron-
skimi stanji. Trenutno najboljsa metoda za taksne ra¢une so simulacije QCD na mrezi. Vendar
je naloga tako tezavna, Se posebno v prehodih med tezkimi in lahkimi hadronskimi stanji, da
morajo tudi “eksaktne” simulacije na mrezi uporabljati mnoge priblizke. Eden taksnih feno-
menolosko in teoreticno motiviranih priblizkov je zelo enostaven a izjemno uporaben priblizek
vakuumskega zasi¢enja (ang. vacuum saturation approximation — VSA) oz. popolne faktori-
zacije. Formalno ga izrazimo tako, da med produkte operatorjev, ki jih lahko identificiramo s
kvazi-stabilnimi hadronskimi stanji vstavimo celoten nabor kvantnih stanj, nato pa zavrzemo vsa
razen vakuuma. Soroden je priblizek zasi¢enja z resonancami, kjer vinesna stanja modeliramo z
izmenjavo resonanc znotraj nekega efektivnega pristopa oz. modela.

Na primeru semileptonskih prehodov si oglejmo Se nekaj splosnih lastnosti hadronskih ma-
tricnih elementov, ki so nam pogosto v pomoc¢ pri analizi hadronskih procesov. Hadronski
matricni element, ki opisuje semileptonske prehode med (psevdo)skalarnimi mezoni (P; — Py)
lahko v splosnem parametriziramo s pomocjo primernih Lorentzovih kovariant na podlagi gibal-
nih koli¢in s katerima oznac¢imo zacetno in koncno stanje (p; in py), pomnozenih z oblikovnimi
funkcijami — skalarnimi funkcijami kvadrata izmenjane gibalne koli¢ine s = (p; — p f)2. Matricni
element toka Jy_ 4 ima tako le dva ¢lena

mQ, — m2
(Pr(pp)| T _ a1 Pi(pi)) = Fi(s) ((pi+pf)“— & . Pf(m—m)“)
m —
+Fy(s)——L(pi — pp)*, (8)

kjer sta I o vektorska in skalarna oblikovna funkcija. Posebnost taksne izbire parametrizacije je,
da v teznostnem sistemu zacetnega stanja natancno razlocuje prispevke stanj razliénih vrtilnih
koli¢in k amplitudi. Kot nakazuje ze samo poimenovanje, F; vsebuje le prispevke stanj z vrtilno
koli¢ino 1 — vektorske prispevke, medtem ko Fjy opisuje prispevke skalarnih stanj z vrtilno koli¢ino
0. Zahteva po koné¢ni vrednosti amplitude pri s = 0 nam da Se dodatno kinematsko omejitev

F(0) = Fo(0) . (9)

Podobno raz¢lembo lahko naredimo tudi v primeru, ko imamo v konénem stanju vektorski
mezon (P — V). Takrat lahko zapiSemo matri¢na elementa aksialnega (J4) in vektorskega (Jy/)
toka kot

2V (s) R

<V(€apv)| J\l; |P(PP)> = m5lwa’g€prapv,@,

V(e T PER)) = e (op — ) 2 (pp — pv ) Ao(s)

itmp ) [ = PP gy o

* _ m2 - m2
G LE () = P | ),

(10)
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kjer smo z € oznacili polarizacijo kon¢nega vektorskega stanja. Oblikovna funkcija V' bo sedaj
vsebovala vse prispevke vektorskih stanj, Ay in As opisujeta izmenjave aksialnih prostostnih
stopenj, Ay pa psevdoskalarne prispevke. Tudi tokrat nam dodatna omejitev zagotavlja konénost
matricnega elementa pri s =0

mp + my mp — my

Ap(0) A1(0) + A(0) =0 (11)

2my 2my

V razpadih psevdoskalarnih v vektorske mezone je pogosto uporabna parametrizacija razpadne
amplitude v obliki t.i. su¢nostnih amplitud

2mp|py (y)|

H = A (m3 V(mj
+(y) (mp +my)A1(mpy) F —— (mpy),
mp+my . o 2 2 2mp|py (y)|* 2
H = ————Im»(1l —y) —my|A1(m — As(mpy),
() 2mPWW\/@[ p(1 —y) —mylAi(mpy) v (mp )y 2(mpy)
(12)
kjer je y = s/m? in vektor gibalne koli¢ine konénega stanja je podan kot
- m2(1 — y) + m2.2
) = PPNy (13)

2
4m?p

4 Mocni razpadi tezkih mezonov

Natancno poznavanje efektivnih moc¢nih sklopitev v prvem redu HMyPT je bistveno za teo-
reti¢ne izracune Sibkih procesov tezkih mezonov znotraj HMyPT, saj te sklopitve nastopajo v
vseh zancnih kiralnih korekcijah k kateremu koli operatorju znotraj HMyPT. Trenutna najza-
neslivejsa metoda za oceno hadronskih matri¢nih elementov so numeri¢ne simulacije QCD na
mrezi. Zaradi racunskih tezav ob priblizevanju kiralni limiti, Studije na mrezi uporavljajo velike
vrednosti mas lahkih kvarkov. Fizikalne rezultate potem dobijo s pomocjo kiralne ektrapola-
cije. Ta v postopek vnese nove sistemati¢éne napake, ki jih je izredno tezko nadzorovati. Z
nizanjem mas kvarkov namre¢ pricakujemo vse bolj izrazite ucinke spontanega zloma kiralne
simetrije [34, 35, 36]. HMyPT nam omogoca vzpostaviti sistemti¢no kontrolo nad taksnimi
efekti saj napoveduje kiralno obnasanje hadronskih koli¢in v procesih tezko-lahkih kvarkovskih
sistemov. Njene napovedi lahko neposredno uporabimo kot vodilo pri kiralni ektrapolaciji rezul-
tatov na mrezi. Znotraj HMyPT lahko izracunamo kiralne logaritemske popravke (imenovane
tudi ne-analiti¢ni ¢leni). Pricakujemo, da bodo najbolj izraziti v limiti izredno majhnih energij
oz. mas mg < Aqcp. Ce je pogoj zagotovo izpolnjen za kvarke u in d, je situacija v primeru
kvarka s precej manj jasna [37, 38]. Pravtako nejasna je velikost skale kiralne zlomitve A,. Ne-
kateri avtorji uporabljajo vrednosti okrog 4w fr ~ 1 GeV [39], medtem ko jo drugi raje enotijo z
maso prve vektorske resonance m, = 0.77 GeV [40, 30]. Obcasno se uporabljajo tudi Se manjse
vrednosti. V sistemih tezko-lahkih mezonov postane situacija Se bolj zapletena. Prva orbitalno
vzbujena stanja (jI = 1/27) namre¢ lezijo nenavadno blizu najnizje lezecih stanj (j = 1/27).
Nedavna eksperimentalna odkritja mezonov Dgs in D1, postavljajo velikost masne reze le na
priblizno Ag, = mp: —mp, = 350 MeV [13, 14, 15, 41]. Malce vecja je v primeru stanj brez
¢udnosti Ag, = 430(30) MeV [11, 12]. Hkrati racuni QCD na mrezi v limiti staticnih tezkih
kvarkov [42] dajejo slutiti, da so masne reze majhne tudi v sektorju b kvarkov. Takoj opazimo, da
sta tako Ag, kot Ag, manjsi od Ay, m,, in celo mg, kar zahteva ponovni premislek o napovedih
HMyPT.
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Slika 1: Enozancéni diagrami, ki prispevajo h kiralnim popravkom efektivnega mocnega vozlisca.

| Racunska shema ‘ g [ o | g |
Drevesni red 0.61 [44] | 0.52 | —0.15
Red ene zanke brez stanj pozitivne parnosti 0.53
Red ene zanke s stanji pozitivne parnosti 0.66 0.47 | —0.06

Tabela 1: Povzetek nasih rezultatov za efektivne sklopitve, kot je razloZeno v besedilu. Vse vrednosti v
redu ene zanke so dobljene ob zanemaritvi prispevkov kontraclenov na regularizacijski skali p =1 GeV.

V nasem izra¢unu kiralnih popravkov k mo¢nim razpadom tezkih mezonov upostevamo pri-
spevke tezko-lahkih mezonov pozitivne in negativne parnosti. Uporabimo Lagrangev opera-
tor (4) in izpeljemo Feynmanova pravila za izracun Feynmanovih zanénih diagramov na sliki 1.

Zapisemo in razlo¢imo tudi vse potrebne kontraclene v redu O(mg), v katere lahko po-
spravimo neskoné¢ne prispevke zancénih izracunov. Nato iz merjenih razpadnih Sirin ¢arobnih
resonanc izluséimo gole vrednosti sklopitvenih konstant. Zaradi velikega Stevila kontraclenov
v redu ene zanke, njihovih vrednosti ne moremo doloc¢iti. V osnovni analizi, ki jo opravimo
pri fiksni skali renormalizacije 4 = 1 GeV, njihove prispevke zanemarimo [43]. V tabeli 1 med
seboj primerjamo rezultate izracunov v drevesnem redu, ter v redu ene zanke z in brez prispev-
kov tezko-lahkih mezonov pozitivnhe parnosti. Prispevke kontrélenov k izracunom v redu ene
zanke nato ocenimo posredno preko odvisnosti nasih rezultatov od skale renormalizacije, kot
tudi neposredno s pomocjo Monte-Carlo zrebanja nakjuc¢nih vrednosti kontraclenov in njihovih
prispevkov k analizi razpadnih Sirin. Dodatno preverimo tudi obc¢utljivost nasih rezultatov na
vhodne podatke mas in predvsem masnih razlik tezko-lahkih mezonov.

Nato obravnavamo prispevke dodatnih resonanc znotraj kiralnih zank h kiralni ekstrapo-
laciji, ki jo uporabljajo simulacije QCD na mrezi [45, 46]. Kaoni in mezoni 7 znotraj zank k
taksni ekstrapolaciji prakti¢éno ne prispevajo, medtem ko poglavitna nelinearnost izhaja iz pri-
spevkov pionov. Rezultati iz prejSnjega odstavka dopuscajo moznost relativno velikih popravkov
k renormalizaciji sklopitvenih konstant. Masna razlika med tezko-lahkimi mezoni obratnih par-
nosti Agy je namrec velika v primerjavi z masami pionov in povzroci, da imajo le-ti znotraj
kiralnih zank veliko gibalno koli¢ino. To postavi veljavnost taksne razsirjene racunske sheme
pod vprasaj, saj dajo navidezno najveCje popravke prav zanke v katerih nastopajo vzbujena
stanja tezko-lahkih mezonov. Oglejmo si torej tipicni zan¢ni integral v razsirjeni shemi, ki bo
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v splosnem sedaj vseboval dve dimenzijski skali (m in A). Kiralna teorija dodatno zahteva, da
morajo biti vse gibalne koli¢ine pseudo-Goldstonovih bozonov (pionov) majhne v primerjavi s
skalo kiralne zlomitve A,. Prvo skalo, ki nastopa znotraj zancnih integralov indentificiramo z
masami pseudo-Goldstonovih bozonov znotraj zank. Studije QCD na mrezi lahko to koli¢ino
spreminjajo in uporabljajo vrednosti vse do m ~ 1 GeV, Ceprav jo kiralna teorija varuje pred
velikimi popravki in ima napovedno vrednost le za m < A,. Po drugi strani pa lahko druga
koli¢ina A v razsirjeni racunski shemi vsebuje tudi masne razlike med tezko-lahkimi mezoni
obratnih parnosti. V tem primeru vrednost A ni ve¢ varovana ne s strani kiralne simetrije in ne
simetrij tezkih kvarkov in lahko zavzame vrednosti reda tipicne hadronske skale O(Agcp). Ko
torej integriramo gibalne koli¢ine pionov znotraj zank tudi preko te skale, se napovedna mo¢ in
perturbativnost sheme porusita.

Ce smo lahko fenomenoloske sklopitve iz eksperimentalno merjenih razpadnih §irin izluséili
ne ozirajo¢ se na taksne probleme (rezultati niso bili kriticno odvisni od izbrane vrednosti Agy),
pa je situacija v kiralnih ektrapolacijah popolnoma drugac¢na. Tu namreé¢ pricakujemo, da bodo
ne-analiti¢ni logaritemski prispevki prevladovali medtem ko lahko vse analiticne prispevke eno-
stavno pristejemo k relevantnim kontraclenom. V teoriji z le eno skalo (m) so tako prevladujoci
popravki vedno oblike m?logm? in imajo dobro doloéeno kiralno limito, ko gre m — 0. V nasi
razSirjeni shemi pa dobimo med drugimi tudi nove prispevke oblike A%H logm?, ki v kiralni
limiti divergirajo. Takoj razumemo, da bo situacija najslabsa prav v primeru pionov, katerih
mase moramo iz vrednosti, simuliranih na mrezi, ekstrapolirati najdlje proti kiralni limiti.

Tezavo poskusimo resiti priizvoru, zato se osredoto¢imo na kiralno limito teorije in poskusimo
narediti razvoj zan¢nih integralov po majhnem parametru. V izbrani limiti so to ravno potence
obratne vrednosti nove skale 1/A. Postopek bo legitimen ob predpostavki, da lezi relevantno
obmocje integracije stran od te skale, torej za majhne mase in gibalne koli¢ine pionov znotraj
zank in dovolj velike vrednosti A ~ A, . Tako pridelamo vsoto integralov oblike

4—D jrye’% 4—D v 1 '
K D 49 K p, 44 q-v

d = d —(1+—=+..), (14
(27T)D / q(q2 - mQ)(’U - q — A) A=large (27r)D / q(q2 — m2) A ( + + )7 ( )

kjer smo s tremi pikami ozncili visje ¢lene v razvoju po 1/A. Postopek lahko razumemo tudi
kot razvoj okrog limite, v kateri se vzbujena stanja razklopijo, njihovi prispevki k teoriji pa se
preobrazijo v vrsto lokalnih operatorjev, dusenih s potencami 1/A. Interpretiramo jih kot nove
prispevke h kontraclenom teorije brez dinamicnih vzbujenih stanj. Kakrsna koli ve¢ja odstopanja
taksnega pristopa od napovedi teorije brez vzbujenih stanj s primerno zamaknjenimi parametri,
bi signalizirala zlom razvoja. To bi pomenilo, da prispevkov dinamicnih tezko-lahkih mezonov
pozitivne parnosti v procesih osnovnih stanj ne moremo zanemariti. Pricakujemo, da bo razvoj
dobro deloval na primeru kiralne teorije s simetrijsko grupo SU(2), ki vsebuje le dinami¢ne pione
kot pseudo-Goldstonove bozone, katerih mase so mnogo manjse od fenomenoloske vrednosti
Agypr. Za ilustracijo lahko skiciramo relevantne energijske skale v efektivni teoriji

2 2
m m
Mud ~ 5= < AsH S M ~ AK’" <Ay <mg. (15)
X X

Znotraj celotne SU(3) invariantne kiralne teorije s dinami¢nimi tezko-lahkimi mezoni obeh
parnosti razvijamo po potencah {mr r ., Asm}/Ay in {mz Ky, Asa, Ay}/mg, medtem ko v
SU(2) kiralni teoriji z 1/Agy razvojem zancnih integralov razvijamo po m./{Ay,Agy} in
{mz, Asm, Ay} /mq.

Zgoraj opisan pristop uporabimo za ektrapolacijo efektivnih mocnih sklopitev g, h in g v
redu ene zanke. Najprej zapisemo vodilne logaritemske prispevke v SU(2) kiralni teoriji skupaj
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z vodilnimi 1/Agpy popravki

e = o{1r grpption s [t - 8211’1 (s3)]} (162)
e = 0 {1+ gt o & R 8Z§H (-]} (166)
;H;;)Pbﬂi = h {1 + (47r1f)2m72r log —;27 :Z(Qgg— 3¢ — 33%) 22%}{ hﬂ } , (16¢)
hf;;mo = h {1 + Wmi log Z—E :Z(—Qgﬁ— 3¢° — 33°) — 4Z§H hQ] } . (16d)
E;f;lpb,oﬁi = 5{1 + W%Fmi log TZ—E _—4572 + %fﬂ (3 + %)] } ; (16e)
T 0 = ’9“{1 + (47T1f)2m7% log TZ—EF :—552 + 8;”;}{ h2 <3 - %)] } : (16f)

kjer lo¢imo med razpadi z nevtralnim ali nabitim pionom v kon¢nem stanju. Te formule bomo
primerjali s celotnimi SU (3) kiralnimi prispevki tudi v teoriji z dinami¢nimi stanji obeh parnosti.
V sledeci analizi bomo uporabili fenomenoloske vrednosti sklopitev iz tabele 1 in primerjali:

(I) Razvoj zan¢nih integralov v limiti SU(2). Vodilne prispevke da teorija brez vzbujenih stanj,
mi pa bomo uposetavali tudi vodilne poravke clenov reda 1/ A% -

(IT) Celotna SU(3) logaritemska ekstrapolacija s prispevki tezko-lahkih multipletov obeh par-
nosti.

(III) Enako kot (II) vendar v degenerirani limiti Agy = 0,
(0) Kiralna SU(3) ektrapolacija brez 1/A%,; prispevkov v enacbah (4.17a-4.17f).

Predpostavimo eksaktno SU(2) izospinsko limito in parametriziramo mase pseudo-Goldstonovih
bozonov s pomoc¢jo Gell-Mannovih formul (3). Posledi¢no v kiralni ektrapolaciji variiramo le
razmerje r — med masama lahkih kvarkov in maso ¢udnega kvarka, ki jo drzimo na njeni fizikalni
vrednosti. Ker nas zanima le ne-analiti¢na r-odvisnost nasih amplitud, lahko odsSejemo skupno
odvisnost od skale renormalizacije skupaj z vsemi prispevki, analiticnimi v r. Nase rezultate
normaliziramo na skupno vrednost v vseh primerih pri skali 8r,,Agms/f? = A% g in jih od tu
ekstrapoliramo proti kiralni limiti. Za primer si oglejmo primer efektivne sklopitve v procesu brez
¢udnosti D*t — DYz * na sliki 2. Takoj opazimo, da vkljucitev celotnih SU(3) logaritemskih
prispevkov vzbujenih stanj v zankah vnese velika (2 30%) odstopanja od ekstrapolacije brez
teh stanj. Ce pa namesto tega uporabimo razvoj zanénih integralov, se odstopanja drasti¢no
zmanjSajo. Ekstrapolaciji znotraj SU(2) in SU(3) teorij brez vzbujenih stanj sta skoraj identi¢ni
saj v obeh glavnino prispevajo pionske zanke. Vodilne prispevke izintegriranih vzbujenih stanj
ocenimo s pomocjo sivega podro¢ja med obema krivuljama SU(2) teorije v scenariu (I). Razlika
nanese komaj 0.5%, kar kaze na dobro konvergenco razvoja.

Za popolnost izriSemo Se diagram kiralne ektrapolacije efektivne sklopitve h v procesu
D(')F — D1t (ekstrapolacija sklopitve g poteka v istem slogu kot g ob zamenjavi obeh sklo-
pitev v ektrapolacijskih formulah). Tukaj scenarij (0) nima pomena saj v zunanjih stanjih
nastopajo tezko-lahki mezoni obeh parnosti. Po drugi strani pa je razvoj zancénih integralov
v scenariju (I) Se vedno dobro definiran, ¢eprav je njegove fizikalna interpretacija sedaj manj
jasna. Namrec iz teorije ne integriramo ve¢ stanj posamezne parnosti temve¢ dejansko rezemo
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Slika 2: Renormalizacija sklopitve g v procesu D** — D%z, Primerjava kiralne ekstrapolacije v (1)
SU(2) limiti z vodilnimi ¢élent v razvoju zancénih integralov (¢rna neprekinjena ¢rta), (II) celotni logari-
temski prispevki v SU(3) teoriji s tezko-lahkimi multipleti obeh parnosti (modra értasto-pikcasta cérta),
(IT1) ngihova degenerirana limita (siva értasto-dvojno pikéasta ¢rta), in (0) SU(3) logaritemski prispevki
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stanj negativne parnosti (rdeca értasta érta), kot je razloZeno v besedilu.

Slika 3: Kiralna ekstrapolacija sklopitve h v razpadu DSJr — DYt Primerjava kiralne ekstrapolacije z
(1) razvojem zanénih integralov v SU(2) limiti (¢rna neprekinjena érta), (II) celotni SU(3) logaritemski
popravki (modra ¢rtasto-pikcasta ¢rta), in (II1) njihova degenerirana limita (rdeéa értasta ¢rta), kot je
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visokoenergijske prispevke posami¢nih zanénih integralov, ki nastanejo kot posledica kinema-
tike vmesnih in zunanjih tezko-lahkih stanj. Tudi tukaj so vplivi vodilnih popravkov taksnega
razvoja reda velikosti 0.5%.

Nasa analiza kiralne ektrapolacije sklopitve g je pokazala, da lahko prispevki vzbujenih tezko-
lahkih stanj pomembno vplivajo na naklon in krivino ektrapolacij v limiti m, — 0. Zagovarjamo
tezo, da je to posledica velikih gibalnih koli¢in pionov v zan¢nih integralih, kjer nastopajo masne
razlike med tezko-lahkimi multipleti razliénih parnosti Aggr, ki v kiralni limiti ne gredo proti
ni¢. Ce pa uporabimo fizikalno motiviranih priblizkov — taksne integrale razvijemo po potencah
1/Agy — se njihovi efekti drasticno zmanjsajo in prispevajo k ektrapolaciji le Se reda 0.5%.
Posledicno lahko sklepamo o dobri konvergenci izbranega razvoja. Torej lahko zaklju¢imo, da je
mogoce drzati kiralne popravke zank v mocnih razpadih tezkih mezonov pod nadzorom v kolikor
ekstrapolacije izvajamo pod skalo Agp, vsekakor pa ostajajo pomembni za natanéno dolocitev
efektivnih mocnih sklopitev g, h in g.

5 Semileptonski razpadi tezkih mezonov

Eden izmed trenutno najpomembnejsih programov v hadronski fiziki se ukvarja z doloc¢itvijo
parametrov CKM iz ekskluzivnih razpadov. Bistvena sestavina tega pristopa je natan¢no pozna-
vanje oblikovnih funkcij v tezko-tezkih in tezko-lahkih sibkih prehodih hadronov. Tradicionalno
so najve¢ pozornosti pozeli razpadi bezonov B ter z njimi povezano izluscenje faze CKM in ab-
solutnih vrednosti elementov CKM V,,;, in V.. Hkrati pa v sektorju carobnih mezonov absolutne
vrednoste Vs in V.4 najnatancéneje doloc¢a unitarnost CKM, medtem ko neposredne meritve v
ekspereimentih zavira slabo teoreticno poznavanje velikosti relevantnih oblikovnih funkcij. V
obeh sektorjih lahko prisotnost blizu leze¢ih resonanc vzbujenih tezko-lahkih mezonov trenutno
sliko precej spremeni.

5.1 Tezko — lahki prehodi

V tem razdelku bomo na kratko obnovili splosno parametrizacijo oblikovnih funkcij v prehodih
H — P, ki sta jo prva zasnovala Beéirevi¢ in Kaidalov [47], ter izoblikovali podobno parametriza-
cijo tudi za vse oblikovne funkcije v prehodih H — V. Taksna parametrizacija mora upostevati
znana eksperimentalna dejstva o prisotnosti resonanc v relevantnih razpadnih kanalih ter tudi
teoreticne limite teorij HQET in teorije kolinearnih prostostnih stopenj (ang. soft colinear ef-
fective theory — SCET), ko so te relevantne za dan problem. Potem bomo analizirali prispevke
nedavno odkritih ¢arobnih resonanc k oblikovnim funkcijam prehodov H — P in H — V, za
kar bomo uporabili efektivni model na podlagi HMxPT v katerega bomo dodali nova polja,
ter splosnih parametrizacij oblikovnih funkcij. V nasi diskusiji se bomo omejili na prispevke v
prvem redu kiralnega razvoja ter razvoja po obratnih vrednostih mas tezkih kvarkov 1/mg.

V limiti majhnega odboja, ko izhajajoc¢i lahki mezon P v masnem sistemu zacetnega tezkega
mezona H skorajda miruje HQET napoveduje dobro znana umeritvena pravila za vse oblikovne
funkcije H — P in H — V [48]. Hkrati v obratni limiti, ko mezon P v masnem sistemu
zacetnega tezkega mezona H izide z maksimalno energijo za oblikovne funkcije veljajo nekoliko
drugacéna umeritvena pravila [49]. Nasa naloga je, da poisemo primerno konsistentno parame-
trizacijo poteka oblikovnih funkcij, ki bo zvezno povezala obe limitni obmocji. Pri tem nam
nekoliko pomaga dejstvo, da ze poznamo prevladujoce prispevke k nekaterim oblikovnim funk-
cijam v limiti majhnega odboja. V blizini tega kinemtatskega obmocja lezijo namre¢ znane
carobne resonance negativne parnosti, ki bodo prispevale bliznje pole v konfiguracijski ravnini.
Le-te lahko v primeru vektorskih oblikovnih funkeij Fy v H — P ter V. v H — V (kot tudi psev-
doskalarne oblikovne funkcije Ap) izoliramo in dobro dolo¢imo, saj pripadajo najnizje lezecim
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Slika 4: Diagrama, ki prispevata k oblikovnim funkcijam H — P.

vektorskim (psevdoskalarnim) ¢arobnim resonancam H* (H'). Upostevajo¢ Se vse umeritvene
limite ter kinematske relacije med oblikovnimi funkcijami, lahko njihovo energijsko odvisnost
kompaktno parametriziramo kot

Fils) = (1—5;((10)—%)’

Fols) = (fo—(gic)’

Vi) = (1—;)/((1())—@/:,;)’

0) = T Sy

Arls) = 1A—1(l?’20’

Ar(s) = 2 (17)

1-Vz)(1-V'x)

kjer smo oznacili x = s/m?,. in y = s/m?%, in hkrati veljajo znane kinematske relacije med
F,(0) = Fy(0) ter V(0), Ag(0), A1(0) in A2(0).

Proste parametre gornje parametrizacije, kamor Stejemo tudi parametre polov a, a’, b’ in b”,
dolo¢imo s pomocjo efektivnega modela, ki temelji na HMyPT. Feynmanova pravila HMyPT
veljajo v podro¢ju majhnega odboja in dajo prispevke k oblikovnim funkcijam H — P v prvem
redu razvoja na sliki 4. Opazimo, da desni diagram na sliki Ze spominja na resonanc¢ni prispevek.
Vendar pa ob primerjavi s parametrizacijo vektorske oblikovne funkcije F; opazimo, da lahko
z danimi 1/2% in 1/27 polji HMYPT identificiramo le prvega izmed obeh polov, ki prispevata
k oblikovni funkciji. Nerodnost razresimo, tako da v efektivno teorijo vnesemo nov set jf =
1/27 polj H , ki predstavljajo radialno vzbujena stanja psevdoskalarnih in vektorskih mezonov.
Potrebne spremembe Lagrangevega operatorja HMyPT so enostavne

Cnpr += L8+ L0

mix’
2

L0 = T | Holiv - Dy — A ) |
2
Efnll)x - %Tl“ {FbﬁaAab’YS] + h.C., (18)
in -
0 1« ~
Jé(\)/u—A)HMXPT—'_ = ?Trhu(l - VS)Hb]fgaa (19)

kjer smo vnesli tudi tri nove parametre: Az je masni popravek novega multipleta, h je efektivna
sklopitev med osnovnimi in radialno vzbujenimi stanji negativne parnosti, a pa je efektivna
Sibka sklopitev novih stanj, povezana z njihovo razpadno konstanto. Sedaj Stevilo polov v
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parametrizaciji oblikovnih funkcij H — P ustreza Stevilu resonanc¢nih prispevkov v HMyPT
modelu.

Podobno igro lahko poskusimo tudi v primeru prehodov H — V. Ker pa HMxPT ne vsebuje
lahkih vektorskih mezonov, moramo teorijo spet razsiriti z fenomenoloskim modelom. Posluzimo
se pogosto uporabljenega principa skrite simetrije [32], po katerem lahke vektorske mezone
vpeljemo kot umeritvena polja neke razsirjene SU(3)y simetrije in jih opiSemo z operatorjem
Pu = z’g—\/‘% pu, kjer je p, matrika lahkih vektorskih mezonov

%(wu + pﬂ) PZ K ZJF
Pu = p; T( 0 IO;L) KZO . (20)
KZﬁ KM du

Kineti¢ni in masni Lagrangev operator taksnih polj sta potem

1 . W af?
EV - —Q[Fuu(p)abFl (p)ba] - f

V ﬁg V,a_ﬁ,aa 21
202 —— y) Viba — Pupa) (21)

kjer smo definirali F),,(p) = Oupy — Ovpyu + [Pu, pv]. V prvem redu razvoja 1/mpy lahko potem
zapiSemo tudi interakcijski Lagrangev operator med lahkimi vektorskimi mezoni in tezko-lahkimi
mezoni [32, 50]

LV = —iBTe[Hyvupp, Hal + iNT[Hyo™ Fu (p)ba Hal, (22)
£t = —i(Tr[Hpvupl, Sa + h.c.
i Tr[Hyo™ Fyy (p)paSa) + hec., (23)
Lt = —izTr[Hvapba ]+hc
+ipTr[Hyo™ Fu (p)va H H,] + h.c., (24)
ter
0)p At ~ar
Jé(x)/ pyer = TV Hyph,] + asTr[y"” Hyva i) (25)

S temi dodatnimi gradniki lahko sestavimo Feynmanove diagrame, ki prispevajo k prehodom
H — V in so topolosko ekvivalentni tistim na sliki 4, z zamenjavo pionskih z lahko-vektorskimi
linijjami. Ti diagrami lepo reproducirajo strukturo polov v splosni parametrizaciji oblikovnih
funkcij s prispevki resonanc s primernimi kvantnimi Stevili. Izjema je oblikovna funkcija As,
katere parametrizacija vsebuje dva efektivna pola, medtem ko nas model napoveduje le prispevek
ene (edine) aksialne resonance iz j = 1/2% multipleta.

Nas pristop zelimo primerjati z izmerjenimi razpadnimi Sirinami in kotnimi porazdelitvami
semileptonskih razpadov ¢arobnih mezonov v lahke psevdoskalarne in vektorske mezone. Zato
moramo napovedi HMxPT modelov ektrapolirati ¢ez celotno kinematsko podroc¢je. Posluzimo
se splosnih parametrizacij oblikovnih funkeij (17) ter hkrati uporabiti ¢imve¢ obstojecih eks-
perimentalnih informacij. Efektivne parametre polov oblikovnih funkcij (a, o/, b’ in b") tako
zasi¢imo z merjenimi oz. teoreticno napovedanimi masami ¢arobnih resonanc, katerih prispevke
smo identificirali v HMyPT modelu. Preostale parametre dolo¢imo s prilagajanjem napovedi za
razpadne Sirine znotraj nasega pristopa z eksperimentalno izmerjenimi vrednostmi. Rezultati
taksnega postopka so vrednosti parametrov v tabelah 2 in 3.

Na podlagi tako dobljenih parametrov najprej primerjamo napovedi nasega pristopa z ne-
davno eksperimentalno analizo su¢nostnih amplitud, ki jo je naredila kolaboracija FOCUS [51].
Primerjava porazdelitev posamicnih su¢nostnih amplitud je na slikah 5, 6 in 7. Opazimo, da je
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Razpad | F,(0) Fy(0) | a b |

Do—7 | 060 060 |055 0.76
DY K- | 072 072 | 057 0.83
Dt —m | 060 0.62 | 055 0.76
Dt Ky | 072 071 | 057 0.83
Dy — 1 0.73  0.81 | 0.57 0.83
Dy —1f 0.87 0.66 | 0.57 0.83
Dt 0.60 0.62 | 0.55 0.76
DYt - | 060 062 | 055 0.76
D, — Ky | 060 0.62 | 055 0.76

Tabela 2: Napovedi nasega modela za vrednosti parametrov, ki nastopajo v formulah splosne parame-
trizacije oblikovnih funkcij (17) za obravnavane razpadne kanale D — Plvy. Razpadni kanal D° — 7~
oznacen s krizcem (1) smo uporabili za prilagajanje novih parametrov.

| Razpad | V(0) Ap(0) A(0) Ay(0) |a"=d ¥ |
D' —p~" 105 132 061 031 | 05 076
D' — K=" |099 112 062 031 | 057 083
Dt — " | 105 132 061 031 | 055 076

Dt — K%' | 099 112 062 031 0.57  0.83
Dt - w 1.05 132 061 0.31 0.55  0.76
Dy — ¢! 1.10  1.02 061  0.32 0.57  0.83
D, — K% | 116 119 060 0.33 0.55  0.76

Tabela 3: Napovedi nasega modela za vrednosti parametrov, ki nastopajo v formulah splosne parametri-
zacije oblikovnih funkcij (17) za obravnavane razpadne kanale D — Ply, (b = 0 za vse razpadne kanale).
Razpadne kanale oznacene s krizcem (1) smo uporabili za prilagajanje novih parametrov.

41

. — Napoved
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S = FOCUS [51]
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Slika 5: Napovedi nasega modela (dva pola v érni neprekinjeni ¢érti in en pol v rdeci prekinjeni érti)
za porazdelitev sucénostne amplitude Hi(s) v primerjavi s podatki kolaboracije FOCUS za semileptonski
razpad DT — e
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Slika 6: Napovedi nasega modela (dva pola v érni neprekinjeni ¢érti in en pol v rdeci prekinjeni érti)

za porazdelitev sucnostne amplitude H?(s) v primerjavi s podatki kolaboracije FOCUS za semileptonski
razpad DT — e
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Slika 7: Napovedi nasega modela (dva pola v érni neprekinjeni ¢érti in en pol v rdeci prekinjeni érti)

za porazdelitev suc¢nostne amplitude HZ(s) v primerjavi s podatki kolaboracije FOCUS za semileptonski
razpad DT — .

ujemanje napovedi nasega modela z eksperimentalnimi podakti dobro, ¢eprav pa so eksperimen-
talne napake Se velike. Poleg splosne parametrizacije primerjamo tudi napovedi nasega modela
z enostavnim nastavkom enega pola za vse oblikovne funkcije. 1z slik 5 in 6 je razvidno, da se
takSen pristop ne ujema dobro z eksperimentalnimi podatki.

Na koncu podamo Se napovedi za razvejtivena razmerja vseh relevantnih semileptonskih
prehodov D — P in D — V in primerjamo naSe napovedi z merjenimi vrednostmi iz PDG [52].
Rezultati so povzeti v tabelah 4 in 5. Za primerjavo smo v tabelo 4 vkljucili tudi rezultate,
dobljene z nasim pristopom a le enim polom v parametrizaciji oblikovne funkcije Fy. Nas
model ektrapoliran s sploSno parametrizacijo da v sploSnem rezultate zdruzljive s trenutnimi
eksperimentalnimi rezultati, medtem ko ekstrapolacija z enim samim polom popolnoma odpove.
V principu bi lahko nas pristop posplosili tudi na razpade mezonov B. Vendar pa so ti, zaradi
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| Razpad | B(dva pola) [%] | B(en pol) [%] | B(Eksp.) [%] |

DO T 0.36 0.36 0.36 + 0.06
DY — K- 3.8 0.43 3.43 +0.14
Dt — 70 0.46 0.51 0.31+0.15
Dt LK 9.7 1.1 6.84 0.8
DY — 2.6 0.38 2.54+0.7
D —of 0.86 0.03 0.89 + 0.33
Dt 0.11 0.006 <05
Dt —qf 0.016 0.0003 <11
D — K 0.33 0.06

Tabela 4: Razvejitvena razmerja za semilptonske razpade D — P. Primerjava napovedi modela z eksperi-
mentom. Razpadni kanal D° — 7= oznacen s krizcem () smo uporabili za prilagajanje novih parametrov.

Razpad | B[%] B (Eksp.) [%] | Tr/Tr Tp/Tr (Eksp.) | Ty/T_ T'y/T_ (Eksp.) |
DO — p T 0.20  0.194(41) [53] | 1.10 0.13

DY — K=" | 22  215(35) [52] | 1.14 0.22

Dt — %" | 025  0.25(8) [52] | 1.10 0.13

DT — K™ | 56  5.73(35) [52] | 1.3 1.13(8) [52] 0.22 0.22(6) [52]
Dy — ¢t 2.4 2.0(5) [52] 1.08 0.21

Dt - w 0.25  0.17(6) [53] 1.10 0.13

Ds — K% 0.22 1.03 0.13

Tabela 5: Razvejitvena razmerja ter razmerja delnih razpadnih $irin za semilptonske razpade D — V.
Primerjava napovedi modela z eksperimentom. Razpadne kanale oznacene s krizcem (T) smo uporabili za
prilagajanje novih parametrov.

mnogo veCjega kinematskega podro¢ja mnogo bolj ob¢utljivi na vrednosti oblikovnih funkcij pri

5.2 Tezko — tezki prehodi

Na nasi misiji k natanc¢ni dolo¢itvi matricnega elementa CKM V,;, igrajo pomembno vlogo studije
razpadov mezona B v ¢arobne resonance. Eksperimenti z namenom dolociti vrednost V., dejan-
sko izlus¢ijo produkt |V, F(1)], kjer je F(1) hadronska oblikovna funkcija prehodov B — D ali
B — D* prini¢tem odboju. Pomankanje natan¢nih informacij o obliki in velikosti teh oblikovnih
funkcij je tako Se vedno glavni vir napak. V obravnavi hadronskih lastnosti s pomoc¢jo QCD na
mrezi najvecje tezave nastanejo zaradi majhnih mas lahkih kvarkov. Studije na mrezi morajo
uporabljati ve¢je mase in rezultate naknadno ekstrapolirati k njihovim fizikalnim vrednostim. V
teh studijah je kiralno obnaasnje amplitud Se posebej pomembno. HMxPT je v tem pogledu zelo
uporabna, saj nam omogoca nekaj kontrole nad napakami, ki se pojavijo ob priblizevanju kiralni
limiti. Ogledali si bomo torej popravke kiralnih zank znotraj HMxPT v semileptonskih razpadih
B mezonov v ¢arobne mezone obeh parnosti in doloé¢ili njihov vpliv na kiralno ekstrapolacijo,
kot jo uporabljajo studije QCD na mrezi pri obravnavi relevantnih oblikovnih funkcij.
Ponovno uporabimo formalizem Lagrangevih operatorjev v efektivni kiralni teoriji tezko-
lahkih mezonov in pseudo-Goldstonovih bozonov. Sibki del Lagrangevega operatorja, ki opisuje



o. SdHENMILEEFTOUONSKI hALZFADL 1 RZLZKIA MEZONOV Xl

—x
Hy(v) He(v) He(v') Hy(v')

Slika 8: Diagram zanénega popravka Sibkega vozliséa.

prehode med tezkimi kvarki lahko zapisemo s §ibkimi tokovi tezkih mezonov v HMxPT [54, 55]

o Ib, — Cb{—gN(w)Tr [Ho(v)THy(v)]

—&(w)Tr [ga(_v')FSa(v)]
— 71/2(w)Tr [Hq(v")T'Sa(v)] +hoc.} (26)

v prvem redu kiralnega razvoja in razvoja po obratnih vrednostih mas tezkih kvarkov 1/mg.
Ob tem smo oznacili I' = 7, (1 — 75) in w = v - v'. Simetrija tezkih kvarkov zapoveduje enakost
1) = 5(1) = 1, ki je imuna na vsakrsne kiralne korekcije. Po drugi strani pa vrednosti 7 /o(w)
niso tako omejene. B

Kiralne zan¢ne popravke k funkcijam Isgur-Wise {(w), (w) in 7y /5 (w) izra¢unamo na podlagi
Feynmanovih diagramov oblike na sliki 8. Tezki mezoni v zacetnem in kon¢énem stanju si lahko
namrec izmenjajo en psevdo-Goldstonov bozon, medtem ko znotraj zanke tece Se par tezko-
lahkih mezonov pozitivne ali negativne parnosti. Prispevke vseh taksnih konfiguracij apliciramo
na kiralne ekstrapolacije, ki jih uporabljajo studije QCD na mrezi, da prestavijo mase lahkih
mezonov iz velikih vrednosti v simulacijah v blizino kiralne limite [45, 46]. Ze v prejsnjih
poglavjih smo opozorili na probleme s kiralno limito amplitud, ki vsebujejo masno rezo med
tezko-lahkimi mezoni obeh parnosti Agg. Spet uporabimo razvoj po 1/Ag, s katerim umirimo
logaritemske popravke majhnih mas pionov. Kot smo ze razlozili, takSen razvoj dobro deluje na
teoriji SU(2), v kateri kaoni in ete, katerih mase bi konkurirale Aggy, ne nastopajo v zankah.
Zato zapiSimo le izraze zanc¢no popravljenih funkcij Isgur-Wise za zunanja stanja tezko-lahkih
mezonov brez ¢udnosti v teoriji SU(2):

baalw) = s<w>{1+%m2mg%[y?2<r<w>—1)

in
2
Tl/2aa(w) - Tl/Q(M){ + 39 2f2m72r IOg—g [_ gg(2r(w) - 1) - 2(92 +§2)
2 My mz E(w) _m2 {(w)
+h A2 (w—1)— hg2A2 71/2(w)w(1 +w) + thAQ TI/Q(M)w(l + w) }

Sedaj narisemo kiralno ekstrapolacijo funkcij Isgur-Wise pod skalo Agy, na kateri funkcije tudi
normiramo (sliki 9 in 10). Trenutno ne poznamo zanesljivih ocen velikosti (1) in 7] /o(1), ki na-
stopata v formulah za kiralno ekstrapolacijo, ko upoStevamo prispevke stanj pozitivne parnosti.
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Slika 9: Kiralna ekstrapolacija naklona funkcije IW priw =1 (§'(1)). Prispevki stanj negativne parnosti
(¢rna crta) in domet moznih prispevkov stanj pozitivne parnosti, kadar razliko naklonov £(1) in &(1)
variiramo med 1 (rdeca prekinjena ¢érta) in —1 (modra pikéasto-prekinjena érta).

Slika 10: Kiralna ekstrapolacija naklona funkcije /5 in njenega naklona pri w = 1.
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Ekstrapolacija

T1/2(1) skupaj s 1/Asy prispevki (¢rna neprekinjena crta), in domet moznih prispevkov k njenemu na-

klonu — 71 (1)

prekinjena ¢rta) in —1 (modra pikcasto-prekinjena ¢rta).

~ (sivo obmocje) kadar variiramo razliko naklonov &'(1), € (1) in 71/2(1) med 1(rdeca
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Zato njune mozne prispevke ocenimo tako, da njuni vrednosti variiramo glede na vrednost £'(1)
med 1 in —1. Opazimo, da so prispevki stanj pozitivne parnosti h kiralni ekstrapolaciji funkcije
Isgur-Wise &'(1) pod skalo Agy majhni (okrog enega odstotka po nasi oceni). Podobno splosno
obnasanje lahko pripisemo funkeciji £'(1) ob zamenjavi g « g, Agy < —Agy in £'(1) « &'(1).
Tudi kiralna ekstrapolacija vrednosti 7, /5(1) (skupaj z 1/Agy popravki) deluje zelo polozno in
nakazuje, da je linearna ekstrapolacija v tem primeru lahko dober priblizek. Po drugi strani pa
so potencialni prispevki h kiralni ekstrapolaciji odvoda 7] /2(1) po trenutnih grobih ocenah lahko
precejsnji, do 30%.

Nasi rezultati so Se posebej pomembni za izluS¢enje oblikovnih funkcij s pomocjo QCD na
mrezi. Trenutne napake na parameter V., v ekskluzivnih kanalih so ze reda le nekaj odstot-
kov. To zahteva zelo natancen nadzor nad teoreti¢cnimi napakami, ki lahko vplivajo na nje-
govo dolocitev. Razumevanje kiralnih popravkov je bistveno za zagotavljanje verodostojnosti
izlu¢enja oblikovnih funkcij in ocene napak na mrezi. NaSe ocene vodilnih 1/Agy popravkov
postavljajo mejo na natancénost taksnih ekstrapolacij.

6 Mesanje tezkih nevtralnih mezonov

Oscilacije v sistemih mezonov Bg s = ES,S posredujejo nevtralni tokovi, ki spreminjajo okus.
Znotraj SM so prepovedane na drevesnem nivoju, zato nam njihove meritve omogocajo dostop
do delcev znotraj relevantnih zanc¢nih diagramov. Dandanes se natanéno merjene vrednosti
Amp, = 0.509(5)(3) ps! [56], in Amp, = 17.31(33)(7) ps~! [57] uporabljajo za omejitev oblike
unitarnostnega trikotnika CKM in tako dolocajo koli¢ino krsitev CP znotraj SM [3, 4]. Cilj nam
otezujejo teoreticne napake v izracunih vrednosti razpadnih konstant fp, , in parametrov “vrece”
(ang. bag parameters) B B,q- e kolicine lahko v principu izracunamo na mrezi. Veliko oviro
pri tem pa predstavlja majhna masa kvarka d, ki je v simulacijah ne moremo dose¢i neposredno,
temvec le preko kiralne ekstrapolacije. Oglejmo si torej vplive tezko-lahkih mezonov pozitivne
parnosti na izracun kiralnih popravkov razpadnih konstant in parametrov vrece, ki nastopajo v
studijah prispevkov SM in supersimetricnega SM k meSalnim amplitudam Bg — Eg,s'

Prispevki supersimetri¢cnega SM k meSalni amplitudi Bg i F?l se ponavadi obravnava v

tako imenovani supersimetri¢ni bazi AB = 2 operatorjev [58]:

S

O1 = byl —)d by (1—s)d
Oy = b(1—95)q" b (1—5)q
O3 = V(1—y)¢dv(1—7)d, (29)
Or = b V(1 +y5)¢
( ( )

O; = b

kjer sta ¢ in j barvna indeksa. Znotraj SM k mesalni amplitudi pomembno prispeva le operator
O1. Matri¢ni elementi gornjih operatorjev so ponavadi parametrizirani s pomo¢jo parametrov
vrece Bj_s, ki predstavljajo merilo odstopanja od priblizka VSA

(Ba|O1_5(v)|BY)

= Bisv), 30
Blosw B (30)

kjer smo z v oznacili skalo renormalizacije, pri kateri lo¢imo nizko od visokoenergijskih prispevkov
k amplitudam.
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Slika 11: Diagrama, ki prispevata nenicelne kiralne popravke k psevdoskalarni razpadni konstanti tezko-
lahkih mezonov.

Za opis nizkoenergijskega obnasanja matri¢nih elementov operatorjev (29) uporabimo HMyPT.
Preden se podamo v podrobnosti naj omenimo, da obstaja v eksaktni limiti staticnih tezkih
kvarkov (v tej limiti bomo operatorje oznacevali s tildo) zveza med operatorji (29), in sicer

<§2\63 + 0y + %61132> = 0, ki nam omogoca, da iz obravnave izlo¢imo enega izmed njih. V
isti limiti definiramo tudi razpadne konstante tezko-lahkih mezonov f namrec¢ kot

(0144 B2 (p))qcp (01184 (p))qcp

lim = lim = (0|40 BY(v))uqer = ifove,  (31)
my—00 2mp mp—00 2mp
kjer smo z A, = l_)’m’yg,q in P = bysq oznacili aksialni in psevdoskalarni tok. Nazadnje

upostevamo Se izsledke studije kiralnih popravkov v kaonski fiziki [59], po katerih se opera-
torja O4 in Oj razlikujeta le po barvnih indeksih — lokalni izmenjavi gluona, ki pa ne more
vplivati na nizkoenergijske lastnosti amplitud. Ta dva operatorja morata torej utrpeti identi¢ne
kiralne popravke. Tako nam za analizo kiralnih popravkov ostanejo le trije matriéni elementi
operatorjev: 61, O, in O4, ki jih s polji HMyPT zapisemo kot

O = Y AixTr|(§H) 7,0 —)X| T [(¢TH) 4(1—1s)x]
X

+ﬂixTr( ) (1= )X T [(£1) +#(1 — 75)X]

e [(615), 0 - 303] [ (65), 01 0x].

0, = Zﬂszr[fTH) (1) X| T [(6'H) (1= )%]

( ) (1—s5) ] [(fTS) (1— ’Ys)X]
(¢"s) (@ —m)x] T [(¢hs) (1-m)x]
Oy Zﬁuﬂ [ §TH> (1—1s) } [(EH), (1 +5)X]

+BixTe [(61H) (1= 9)X] e [(€9), (1 +15)X]
§1S) (1—)X| Tr[(€H), (1+75)X]

+Bx T [(€75) (1= 18)X| Tr[(8), (1 +75)X] | (32)

—/
+B4xTr

kjer smo oznacili X € {1,vs5,%,7%75, Oup}-

Najprej se osredotoc¢imo na kiralne popravke k (psevdoskalarnim) razpadnim konstantam
tezkih mezonov. Prispevke dobimo iz zan¢nih diagramov na sliki 11. Diagram na desni prispeva
le v teoriji s tezko-lahkimi mezoni obeh parnosti, saj lahko znotraj zanke tecejo le (psevdo)skalarni
mezoni. Izracuni popravkov na podlagi teh diagramov ponovno pokazejo, da prisotnost stanj
pozitivne parnosti ne prizadane pionskih popravkov k razpadni konstanti, se pa popravki teh
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Slika 12: Diagrami, ki nastopajo v izracunu kiralnih popravkov k operatorjem ((51,2,4)

stanj kosajo s kaonskimi in eta popravki. Relavantni kiralni logaritemski popravki tako ponovno
prihajajo iz teorije s simetrijo SU(2)r ® SU(2)r — SU(2)y in jih lahko zapisemo kot

(33)

. 1+3¢%3 2
fq:a[l—l 2]’

9, m
201 f)? oM log ,U—; + cr(p)my

kjer smo z cy oznacili relevantne kontraclene. Hkrati lahko enostavno preverimo, da so kiralni
popravki k skalarni razpadni konstanti tezko-lahkih mezonov identi¢ni, z zamenjavo sklopitev g
ing

_ ~ 2
—o/[l 1439~ 3 ] (34)

fo= - W?ﬂi log % +Cp(pymsz
Kot smo Ze pokazali v prejsnjih razdelkih, velja g% /g < 1, zato pri¢akujemo da bodo odstopanja
od linearne ekstrapolacije za f; manjsa kot za fq.

Konéno se posvetimo mesalnim amplitudam, ki dobijo kiralne popravke iz diagramov na
sliki 12. Ponovno diagrami v spodnjih dveh vrsticah prispevajo le ob upostevanju tezko-lahkih
stanj obeh parnosti. Osredoto¢imo se na obmocje m, < Agy in postopamo podobno kot dosle;j.
Zancne integrale namrec razvijemo po obratnih potencah masne reze med tezko-lahkimi mezoni
obeh parnosti 1/Agy in ponovno pokazemo, da ostanejo vodilni pionski logaritemski popravki
neprizadeti in kiralna ektrapolacija znotraj SU(2) teorije dobro definirana. Zapisemo

. 1 —3g? 2
By, = pireven {1 _ mmi log% +ep, (M)mi] , (35a)
evesni 3¢°Y F1 m2
Byug = B {1 + Wmi log M—;’ +¢B, 4 (M)mi] 7 (35b)

Kjer smo oznacili Y = (35,4/Boa), B = o, + Barus — W20,y 10 B = —Biry + Birus-

Morda je na tem mestu dobro povdariti, da je diskusija tega razdelka pomembna predvsem
tudi za fenomenoloske pristope, ki oznacujejo logaritemske popravke kaonov in et kot napovedi
in hkrati dolocijo relevantne kontraclene iz limite velikega Stevila barv ali kakSnega drugega
modela. Pokazali smo namre¢, da so prispevki blizu leze¢ih skalarnih resonanc po velikosti
konkurencni prispevkom kaonov in et, ter jih zato v taksnih diskusijah ne moremo zanemariti
ali iz njih izlo¢iti. Vendar pa je dejstvo, da bliznja skalarna stanja ne pokvarijo poglavitnih
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pionskih logaritemskih prispevkov, zelo dobrodoslo za studije QCD na mrezi, saj lahko te Se
vedno uporabljajo formule HMyPT za ektrapolacijo njihovih rezultatov. Taksni postopki pa
morajo biti omejeni na teorijo SU(2) in pod skalo Agp.

Izracunali smo torej vodilne kiralne popravke k celotni bazi supersimetri¢nih operatorjev, ki
prispevajo k mesanju tezkih nevtralnih mezonov. Pokazali smo, da bliznje skalarne resonance ne
vplivajo na vodilne pionske logaritemske prispevke, ki zato ostajajo zanesljivo vodilo pri kiralnih
ektrapolacijah rezultatov simulacij na mrezi. Hkrati smo preverili, da se vodilni kiralni popravki
k razpadnim konstantam tezko-lahkih mezonov sode in lihe parnosti ujemajo ob zamenjavi
efektivnih sklopitvenih konstant g — g.

7 Redki hadronski razpadi AS =2 in AS = —1 mezonov B,

Redki razpadi mezonov B veljajo za eno najobetavnejsih podrocij za odkritje nove fizike izven
SM [60, 61, 62]. Pricakovati je namre¢, da bodo novi virtualni delci vplivali na te procese. To Se
posebej velja za razpade, ki potekajo preko nevtralnih tokov, ki spreminjajo okus, saj ti znotraj
SM potekajo le preko zank. Ekstremni primer kasnega pristopa je iskanje razpadov, ki so znotraj
SM izredno redki, in Ze samo opazanje katerih bi pomenilo jasen signal nove fizike. Huitu, Lu,
Singer in Zhang so pred leti predlagali razpade b — ssd in b — dds (v katerih se ¢udnost
spremeni za AS = —1 oz. AS = 2) [63, 64] kot prototipne v taksnem iskanju. Njihov predlog
temelji na dejstvu, da so taksni razpadi znotraj SM izredno redki, saj potekajo preko izmenjave
gornjih kvarkov in bozonov W znotraj skatlastih zank in imajo posledi¢no razvejitvena razmerja
reda 10~ do 10713,

Prihajajoci pospesevalnik LHC bo med drugim izredno produktivna tovarna mezonov B,
Pric¢akovanja za njihovo proizvodnjo se namreé¢ gibljejo okoli 5 x 10'% dogodkov na leto ob lu-
minoznosti 103* cm=2s~! [65]. Cetudi bi bila dejanska stevilka nekaj redov velikosti manjsa, bo
omogocala studij redkih razpadov mezonov B, ki bo morda osvetlil prispevke fizike izven SM.
Posvetili se bomo torej izra¢unom redkih prehodov b — ssd in b — dds v dvo- in trodelénih
razpadnih kanalih mezona B, znotraj SM ter nekaj najpopularnejsih okvirov nove fizike. Na
podlagi znanih eksperimentalnih omejitev na prispevke obravnavanih modelov bomo podali na-
povedi za razvejitvena razmerja ter identificirali najperspektivnejse kanale za iskanje signalov
nove fizike.

Efektivni §ibki Hamiltonov operator, ki zaobjema tudi procese b — ssd in b — dds zapisemo
kot

5
Hor. = [Ca0s + Ca0; + €04 + CiO1] (36)
n=1

kjer Cf in CN’Zq oznacujeta efektivne Wilsonove sklopitve, s katerimi pomnozimo celotno bazo
operatorjev, ki prispevajo k procesom b — dds (za ¢ = s) in b — ssd (za ¢ = d). Izberemo

Of = dyy"bydpush, O3 = diy*bdpyush, O = di by dy sy,
- . (37)
01 = dthdysh 05 = dthdysh

skupaj z dodatnimi operatorji 6{7273,475, ki jih dobimo s primernimi kiralnimi transformacijami
gornjih (L < R), ter vse skupaj Se z obrnjenimi okusi kvarkov s in d.

Znotraj SM k procesu b — dds (b — ssd) prispevata le operatorja Og(d). Glavne prispevke
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k Wilsonovim sklopitvam dajo top in ¢arobni kvarki ter bozoni W znotraj skatlastih zank

G> m? m? ma, m?2
Cd,SM _ F 2 Vi VE Vv %% Vc Vv c w c 38
3 ) myy VibVis | Vid tsf m% + VedVes m%/[/g m% ’m%/v ) ( a)
G> m? m? m%, m?
CS,SM — F 2 V V* st* w ‘/CS * Cc W’ C , 38b
3 A2 My VibViq | Ve tdf m% + cd mIQ/V g m% mIQ/V ( )
kjer je
1 — 11z + 422
fz) = A 3 (39a)

4x(1 — x)? 2(1 —x)3

dr—1  8r—4x?2—1
p— 1 _1 .
9(z,y) =2 " g Ty (39Db)

Z uporabo numeri¢nih vrednosti matriénih elementov CKM iz PDG [52] lahko postavimo mejo
55| <3 1078 Gev 2 in |C3*M| < 4% 10712 Gev 2.

Obravnavamo tudi prispevke nekaterih modelov fizike izven SM: minimalni supersimetri¢ni
SM (MSSM) z in brez parnosti R (RPV) ter model z generi¢nim dodatnim vektorskim bozonom
Z'. Zmotraj MSSM prispevata, podobno kot v SM, le operatorja O, medtem ko sta pripadajoca

Wilsonova koeficienta iz izmenjave parov gluinov (g) in spodnjih skvarkov (d) [58]

25* ) ~
MM = CSS [y fifw) + 66 5()] (402)
216m>
25* ) ~
coMSSM 2571208 [24$f6(56) + 66f6($)} ; (40b)
216m?
kjer sta
6(1+3z)Inz +2° — 92% — 9z + 17
fo(x) 6z 1) , (41a)
. 6:1:(1—1—:1:)11(1:1:—363—9:1:2—1-9:134-1
- 41
fo(z) 3(x—1)° ’ (41b)

in smo definirali x = m%/m%. Z uporabo obstojecih mej na parametre MSSM (d;;, my, myg) iz
Studij oscilacij mezono K, B in B, ter drugih redkih razpadov mezonov K in B lahko spet ome-
jimo vrednosti |CEMIM| < 5 % 10712 GeV =2 in |5 MM ‘ <2 x 10712 GeV~2. V primeru,
da znotraj MSSM dopustimo interakcije tipa RPV, dobimo poglavitne prispevke ze v dreve-
snem redu preko izmenjave snevtrinov (7). K efektivnemu Hamiltonovemu operatorju potem
prispevajo predvsem operatorji Of in 6Z z Wilsonovimi sklopitvami

3 3

/ /% / /%
CSRPV _ Z An31An12 GsRPV _ Z An21An13
4 - mg ) 4 - mg )
n=1 Un n=1 Un
3 )\/ )\/* . 3 )\/ )\/*
Cd,RPV _ E n32'n21 Cd,RPV _ 2 nl2'n23
n=1 Un n=1 Un

(42)

Obstojece studije ne omejujejo vseh parametrov ()\;jk, my), ki nastopajo v teh procesih, zato

bomo omejitve podali iz napovedi za merjene ekskluzivne razpadne kanale.



Mnoge razsiritve SM vsebujejo dodatne nevtralne vektorske bozone Z’ [66, 67]. Ti lahko
prispevajo k efektivnemu Hamiltonovemu operatorju v drevesnem redu preko operatorjev (’)3173

ter tudi (5‘1173. Pripadajoce Wilsonove koeficiente lahko zapisemo kot

Op” = 1Bl By, O = —*CHiBlB.
37 = AURLB B, Gy = ACEB B, )
Cr” = —ACRLBgBa, 17 = —RLBA B
Cy? = AR B Byy, O3 = — 1L BYRBYE,

kjer je y = (g2/g1)?(p1 sin? 0+ py cos? 0) in p; = m%,[,/mf cos? Oy. Z g1, g2, mq in mo smo oznaéili
umeritvene sklopitvene konstane in mase bozonov Z in Z’, medtem ko 6 oznacuje mesalni kot.

V izracunu pogostosti razpadnih kanalov mezona B, ki potekajo preko kvarkovskih prehodov
b — dd5 in b — ssd moramo izvrednotiti matri¢ne elemente efektivnih Hamiltonovih operatorjev
med hadronskimi stanji. V prvem priblizku uporabimo popolno faktorizacijo oz. VSA, ki v ve¢ini
primerov zadovoljivo opiSe glavne lastnosti razpadnih kanalov, ki jih obravnavamo. Izjeme so
kanali, v katerih razpadne amplitude v faktorizacijskem priblizku izginejo. O taksnih razpadih
nasa metoda molci; potrebni bi bili bolj natanéni pristopi. Obravnavamo dvodel¢éne razpadne
kanale By — DK, D*"K°,D; K" in D7K", kot tudi trodeléne kanale B, — DI K~ 7+,
D:~K~n*, Dy D*~D*, D7 D7 D**, Dy D7D+, D'K'K~ in D**K’K~. Pri tem uporabimo
teoreticne uvide iz hadronskih in semileptonskih studij tezkih mezonov iz prejsnjih razdelkov,
kot tudi iz drugih virov. Predvsem se izkaze pomebna vloga vmesnih resonanc pri modeliranju
hadronskih oblikovnih funkcij, ki nastopajo v faktorizacijskem priblizku, pomagajo pa nam tudi
natancno dolocene vrednosti nekaterih sklopitvenih konstant znotraj HMyPT.

Na podlagi izracunanih amplitud za izbrane hadronske kanale, najprej omejimo proste pa-
rametre modelov RPV in Z’, tako da naSe napovedi primerjamo z obstojecimi eksperimen-
talnimi mejami na razvejtiveni razmerji razpadov BR(B~ — K K 7T) < 24 x 1070 in
BR(B~ — 7 n K*) < 4.5 x 1075, ki so jih izmerili v eksperimentu Belle [68]. V primeru
modela RPV normaliziramo mase snevtrinov na skupno masno skalo 100 GeV in dobljene meje
zapisemo kot

3 2
100 GeV
Z ( o ° ‘) (AnziAmia + Angr Amiz) | < 9.5 x 1072, (44a)
n=1 Vn
3 2
1
Z( O?n?e\/> (MaaAmar + Aar Anis)| < 9.5 x 107°. (44Db)
n=1 Vn

Lahko pa predpostavimo, da poglavitni prispevki nove fizike prihajajo v obliki dodatnih bozonov
Z'. V tem primeru dobimo meje na njihove sklopitve oblike

y? |B5 BiF + BiE Bk | < 2.7 x 1074, (45a)

y? | Bk Bk + BiE BiE| < 5.6 x 1074, (45b)
in

2 \Bgf B 4 B Bl| < 2.4 %1074, (46a)

2 ‘Bgf BY + Bir BIE| < 5.3 x 1074, (46b)
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| Razpad | SM MSSM RPV z'
B - D D Df [1x10721 5x107% 7x1077 9x10°1°
B = D;D;DT | 4x107Y 5x1071 1x107® 1x107?
B =D Ktn~ [2x10716 5x107% 4x1077 2x10°¢
B - DK~ 7t | 7x107"% 1x107 8x107" 3x1076
By »D'r K° [4x107%® 2x107%¥ 2x1078 1x107°
By 5> D'K K [4x10718 7x107% 9x10™° 6x 10710
B — D™ K° 4x 10717 2x107%  4x107% 3 x1077
B — D; Ky Ix107% 2x107 7x107% 4x1077
B, — D* K" 4x10717 2x 107 4x107% 3 x1077
B — DI K 1x107" 2x107" 6x107® 4x1077
B, — D-K*0 8x 10717 3x1071% 3x107Y 5x1077
B — D7 K, 3x107" 4x107 6x107  9x 1077
B = D*K* | 6x1071% 3x1071¢ 2x1071% 4x10°8
B — DK, 2x 107 3x107% 4x10710 5x 1078

Tabela 6: Razvejitvena razmerja razpadov AS = —1 in AS = 2 mezona B, izracunana znotraj modelov
SM, MSSM, RPV in Z'. Za dolocitev neznanih kombinacij parametrov RPV (Cetrti stolpec) in Z' (peti
stolpec) smo uporabili eksperimentalne gornje meje BR(B~ — m~m~ KT) < 1.8 x 107% in BR(B~ —
K-K—nt) <24x107°.

Meje (44a-46b) so zanimive, predvsem ker omejujejo kombinacije parametrov RPV oz. Z’, v
ortogonalni smeri od obstojec¢ih meritev oscilacij mezonov K, B, Bg, ter drugih redkih pro-
cesov. Na podlagi teh omejitev lahko kon¢no podamo tudi napovedi za razvejtivena razmerja
mnogih moznih dvo- in trodel¢nih razpadnih kanalov mezona B.. Nasi rezultati so povzeti v
tabeli 6. Napovedi SM in MSSM so zanemerljivo majhne. Na podlagi omejitev na parametre
RPV iz razpadnih kanalov B~ — 7~ 7~ K" in B~ — K~ K 7" dobimo v tem modelu najvecja
razvejtivena razmerja za trodeléne razpadne kanale B, — D~ KT™n~ in B, — DK n™", ter
dvodeléne razpadne kanale B~ — D~ K% B~ — DS_FO, B - D*"K%nB~ — D;*_FO. Poleg
teh, pa znotraj modela Z’ dobimo velika razvejitvena razmerja $e v kanalih B, — D~ K*0 in
B, — D*~ K*0. Eksperimenti namesto mezonov K9 ali KO, dejansko izmerijo stanja mezonov
Kg oz. Kj. Posledicno bo v razpadnih kanalih, ki vsebujejo nevtralne psevdoskalarne kaone,
zaradi prispevkov pingvinskih diagramov znotraj SM tezko zaznati vplive nove fizike [69]. V
tem pogledu so bolj perspektivni razpadi v nabite kaone oziroma njihova vektorska stanja.

V nasem izracunu smo se naslanjali na priblizek naivne faktorizacije, ki je kot prvi priblizek
zadostna za opis grobih lastnosti prispevkov nove fizike. Tudi v primeru, da bi morebitni nefakto-
rizabilni prispevki znatno spremenili vrednosti hadronskih amplitud, je razkorak med napovedmi
SM in nove fizike trenutno toliksen, da v vsakem primeru ohranja relevantnost obravnavanih raz-

padnih kanalov v iskanju nove fizike, in to nemudoma, ko bodo na voljo ve¢je koli¢ine mezonov
Be.

8 Zakljucki

Neperturbativna narava QCD je trdovraten problem racunov v hadronski fiziki. Ena izmed
njegovih manifestacij je pojav resonanc v hadronskem spektru. V procesih, kjer so izmenjane
gibalne koli¢ine majhne v primerjavi s skalo zlomitve kiralne simetrije ~ 1 GeV, lahko uporabimo
pristop efektivnih teorij, ki temelji na priblizni kiralni simetriji lahkih kvarkov ter priblizni
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simetriji okusov in spina tezkih kvarkov. V takSnem okviru lahko sistemati¢no analiziramo
vpliv najnizje leze¢ih resonanc v procesih tezkih mezonov.

HMxPT smo uporabili na primeru moc¢nih, semileptonskih in redkih procesih tezkih me-
zonov. V ogrodje efektivne teorije smo sistemti¢no vkljucili najnizje lezece spinske multiplete
tezkih mezonov pozitivne in negativne parnosti.

V prvem redu kiralnega razvoja smo pokazali, da lahko bliznje lezeca vzbujena stanja tezkih
mezonov pomagajo razloziti nekatere lastnosti semileptonskih oblikovnih funkcij v razpadih
tezkih v lahke mezone. Namrec, z uporabo omejene parametrizacije oblikovnih funkcij, ki temelji
na pribliznih limitah efektivnih teorij QCD, smo uspeli zasiciti prispevke celotnega stolpa vme-
snih stanj samo z najblizje leze¢imi stanji primernih kvantnih stevil. Parametrizacijo smo napeli
na izréun razpadne Sirine v kinematskem obmoc¢ju majhnih izmenjav gibalne koli¢ine znotraj
HMyPT. TakSen model je uspesno reproduciral vec¢ino oblikovnih funkcij H — P in H — V
prehodov znotraj trenutnih eksperimentalnih napak in v ujemanju z obstoje¢imi izracuni QCD
na mrezi.

V drugih procesih, ki smo jih obravnavali, prispevajo vzbujena stanja tezkih mezonov Sele
v drugem redu kiralnega razvoja — k tako imenovanim kiralnim popravkom. Obravnavali smo
mocne razpade tezkih mezonov ter izrac¢unali efektivne mocne sklopitvene konstante med pari
tezkih mezonov sode ali lihe parnosti ter lahkimi psevdoskalarnimi mezoni v drugem redu ki-
ralnega razvoja. Iz merjenih razpadnih §irin D* — Dm in D — Dz smo izluséili efektivne
sklopitvene konstante v prvem in drugem redu kiralnega razvoja. Vpliv velikega Stevila novih
neznanih parametrov, ki nastopajo v izracunih drugega reda, smo ocenili s pomoc¢jo variacij
skale kiralne zlomitve ter otipanjem prostora parametrov ob prilagajanju izracunov na ekspe-
rimentalne meritve. Nato smo Studirali ekstrapolacijo sklopitvenih konstant v limiti, ko gredo
mase lahkih psevdoskalarnih mezonov proti ni¢. Ugotovili smo, da dajo naivni izracuni kiralnih
popravkov z upostevanjem vzbujenih tezkih stanj slabo definirano kiralno limito. Namesto tega
lahko izvedemo razvoj v obratni vrednosti masnih razlik med osnovnimi in vzbujenimi stanji
tezkih mezonov in tako resimo kiralno limito izracunov. TakSen razvoj je zanesljiv za majhne
mase lahkih psevdoskalarnih mezonov, manjse od masnih razlik med osnovnimi in vzbujenimi
stanji tezkih mezonov. Potem se prispevki vzbujenih stanj tezkih mezonov formalno izrazajo kot
popravki visjih redov v kiralnem razvoju teorije brez dinamic¢nih vzbujenih stanj. Ti rezultati
so Se posebej pomembni za Studije QCD na mrezi, ki uporabljajo kiralno ektrapolacijo za do-
sego fizikalne limite simuliranih mas lahkih kvarkov. Po nasih ugotovitvah je relevantna kiralna
limita takih ektrapolacij SU(2) izpospinska limita, zanesljivo pa se lahko izvedejo le za pionske
mase manjse od masnih razlik med osnovnimi in vzbujenimi stanji tezkih mezonov. Hkrati lahko
ocenimo zanesljivost ektrapolacij taksne simetrije v redu vodilnih logaritmov z uporabo vodilnih
prispevkov vzbujenih tezkih stanj visjega reda.

Razklopitev vzbujenih resonanc in njihove poglavitne prispevke smo preverili tudi na primeru
semileptonskih oblikovnih funkcij v tezko-tezkih prehodih med mezoni sode in lihe parnosti,
kjer smo izracunali kiralne popravke k funkcijam Isgur-Wise. Za izlus¢enje matri¢nega elementa
CKM V. namre¢ poleg izredno natancne doloc¢itve razpadnih Sirin iz eksperimentov in oblikovnih
funkcij iz izra¢unov QCD na mrezi potrebujemo natanc¢no poznavanje kiralne limite. Ugotovili
smo, da so efekti vzbujenih resonanc tezkih mezonov primerljivi s trenutnimi ocenami teoreti¢nih
napak in jih bo zato v prihodnjih studijah potrebno upostevati.

Redke procese tezkih mezonov analiziramo predvsem z namenom iskanja signalov nove fi-
zike izven SM. Vendar pa lahko upamo na uspeh le ob dobrem poznavanju in nadzoru nad
hadronskimi efekti. V ta namen smo obravnavali kiralno obnasanje celotne supersimetri¢ne
baze efektivnih operatorjev AB = 2, ki so odgovorni za oscilacije nevtralnih tezkih mezonov.
Izra¢unali smo popravke kiralnih zank v drugem redu kiralnega in prvem redu razvoja po masah
tezkih kvarkov ter vkljucili vplive tezkih mezonov sode parnosti. Potrdili smo razklopitev vzbu-
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jenih stanj in podali izraze za kiralno ekstrapolacijo celotne baze efektivnih operatorjev v redu
vodilnih logaritmov. Nas rezultat bodo tako lahko uporabile prihodnje Studije teh procesov s
simulacijami QCD na mrezi. Kot pomozni rezultat smo izracunali vodilne kiralne logaritemske
popravke k razpadnim konstantam tezkih mezonov sode parnosti.

Nazadnje smo izvrednotili zelo redke prehode b — ssd in b — dds mezona B, v pristopu
efektivnih teorij. Hadronske razpadne amplitude smo ocenili s pomocjo priblizkov faktorizacije
in zasiCenja z resonancami. Prehode smo analizirali znotraj ve¢ih modelov nove fizike. Na
podlagi obstojecih eksperimentalnih mej na pogostosti razpadov B — KK7n in B — 7K
smo lahko omejili relevantne kombinacije parametrov nove fizike. Konéno smo na podlagi teh
omejitev identificirali najobetavnejse dvo- in trodeléne neleptonske razpade mezona B., v katerih
bi lahko s pomocjo prihodnjih delénih trkalnikov iskali signale teh redkih prehodov.

Tekom rac¢una smo razresili tudi nekaj tehni¢nih podrobnosti. Morali smo izlusciti celoten
nabor kontraclenov v drugem redu kiralnega razvoja, ki prispevajo k mo¢nim prehodom med
tezkimi mezoni sode in lihe parnosti, ter lahkimi psevdoskalarnimi mezoni. Vkljucitev vzbuje-
nih stanj tezkih mezonov je nato pokvarila kiralno limito izracunov v redu vodilnih logaritmov.
Problem smo razresili s pomoc¢jo odrezanega razvoja zanc¢nih integralov po obratni vrednosti
masnih razlik med osnovnimi in vzbujenimi stanji tezkih mezonov, na racun zmanjsanja inter-
vala zanesljivosti izracunov znotraj HMyPT. V primeru semileptonskih prehodov med tezkimi
in lahkimi mezoni smo morali pravilno reproducirati limiti HQET in SCET, da smo lahko do-
bili veljavno parametrizacijo oblikovnih funkcij. Hkrati smo morali med seboj pravilno napeti
bazi oblikovnih funkcij znotraj QCD in HQET, ter identificirati prispevke izracunov znotraj
HMyPT k posamic¢nim oblikovnim funkcijam. Ugotovili smo, da le takSno pravilno napenjanje
oblikovnih funkcij verno reproducira prispevke resonanc pravilnih kvantnih stevil k oblikovnim
funkcijam. Nenazadnje smo morali zaradi strukture polov v parametrizaciji oblikovnih funk-
cij v naSe HMxPT izracune vkljuciti prispevke radialno vzbujenih stanj tezkih mezonov. V
izracunih kiralnih popravkov k mesanju tezkih nevtralnih mezonov smo morali predpisati pra-
vilen postopek bozonizacije efektivnih operatorjev. Izkazalo se je, da je mogoce ogromen nabor
vseh moznih struktur znotraj HMYxPT s pomocjo spinske simetrije tezkih kvarkov in identitet
matrik 4 x 4 znantno skréiti. Podobno smo morali na primeru prehodov b — ssd in b — dds
identificirati celotno bazo kvarkovskih operatorjev, kot tudi njihov tok in mesanje v prvem redu
enacb renormalizacijske grupe. Le tako smo lahko ohranili nadzor nad vodilnimi popravki QCD
v visokoenergijskem rezimu. Nenazadnje smo za oceno mnogih hadronskih amplitud v dvo- in
trodelénih razpadih mezona B, morali izvesti vhodne HMyPT izracune ter po potrebi vkljuciti
tudi prispevke lahkih vektorskih ter skalarnih resonanc. Ob tem smo smiselne fenomenoloske
rezultate dobili le s pravilnimo predpisanimi postopki resonanc¢nega zasi¢enja amplitud.
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Chapter 1

Introduction

The Standard Model (SM) of elementary particle physics is a quantum gauge-field theoretical
description of fundamental electromagnetic, weak and strong interactions. It emerged in the
1960’s and has completely dominated the field ever since [1]. The building blocks of the SM
are fermions — leptons and quarks — which come in three families. The SM gauge group is
SU(3)e x SU(2)r, x U(1)y, where the SU(3), is the gauge group of Quantum Chromodynamics
(QCD), SU(2)r is the gauge group of weak isospin, while U(1)y is the gauge group of weak
hypercharge. Only the left-handed chiral fermions transform as weak isospin doublets under the
SU(2)r, while quarks also form the fundamental triplet representation of SU(3).. The masses of
leptons and quarks are generated via the Higgs mechanism — spontaneous symmetry breaking,
where the (chiral) symmetry of the theory is not respected by the vacuum. For this purpose an
additional scalar weak isospin doublet is introduced. Its vacuum expectation value also breaks
gauge invariance of the theory to the subgroup SU(3). x U(1)gas, inducing masses for the weak
W# and Z gauge bosons.

The quark fields in the SU(2), basis are not the mass eigenstates in general. Therefore it is
customary to rotate them to the mass eigenbasis by means of a unitary matrix. The rotation is
conventionally conveyed to the down-quark fields and the rotation matrix is called the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. It can be fully described by three real mixing angles and
a complex CP violating phase.

The successes of the SM description are abundant. Its predictions have been extensively
tested in accelerator facilities and agree well with the data measured up to energies available at
present: the electroweak precision tests are generally in impressive agreement with SM predic-
tions [2] while the CP violation experiments in K, D and B meson systems support the CKM
description with one universal phase [3, 4]. The only elementary building block presently lacking
experimental detection is the Higgs boson.

However we also know from observations, that the SM cannot be the ultimate fundamental
theory. For once, it does not include gravity. Although colossal theoretical efforts have been
spent on the subject in the last few decades, the progress has been slow and the results incon-
clusive. Mainly also due to the lack of almost any experimental hints in the area. On the other
hand, the SM also does not account for the recently measured neutrino oscillations [5]. Expla-
nation of these requires non-zero neutrino masses, contrary to the SM prescription'. Thirdly, a
growing number of astrophysical observations suggest that most of the matter in the universe
is neither luminous nor baryonic [6]. In addition, most of it must be slowly moving or “cold”.

In fact, the matter contents of the SM can easily be extended to include right-handed neutrinos and thus
allowing for Dirac neutrino masses via the Higgs mechanism. However the observed smallness of the neutrino
masses and the fact that right-handed neutrinos must be singlets under the SM gauge group seem to prefer
alternative mechanisms which lie beyond the SM.
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The SM does not provide a candidate for nonbaryonic cold dark matter. Finally, our current
understanding of baryogenessis — the generation of the measured baryon - antibaryon asymme-
try — in the early universe requires levels of CP and baryon number violation much higher than
allowed for in the SM [7].

There are also some conceptual and “aesthetic” problems with the SM. The running of the
gauge couplings suggests a unification scale at 10'* — 1016 GeV although precise unification
does not occur if one takes into account only SM fields [70]. Neither does the SM describe
the dynamics of such unification. In fact, even the electroweak symmetry breaking has no
dynamical explanation within the SM. It is imposed by construction and renders the masses
of the elementary particles as free parameters. Compared to the large unification scale the
electroweak scale 1/y/Gf ~ 250 GeV also appears to be very small. The large scale hierarchy
manifests itself in form of large quantum corrections to the mass of the Higgs boson, which
are quadratically divergent and thus sensitive to the UV completion of the theory?. Even more
appealing is the “fine-tuning” required for the vacuum energy density when compared to the
measured present critical density of the universe p, ~ 10714 eV* [6]. Its classical value, which is a
free parameter in any quantum field theory (QFT), has to cancel corrections due to spontaneous
symmetry breaking and the resulting vacuum condensates in the SM at energy scales from a few
100 MeV to a few 100 GeV. Another similar issue is related to the strong CP phase of the QCD
vacuum. Its value, a free parameter of the SM, is severely constrained by the measurements of
the electric dipole moment of the neutron [1].

All of these reasons call for physics beyond SM, and many proposals exist on what the
physical reality ought to look like above the electroweak scale. For example, supersymmetric
(SUSY) extensions of the SM attempt to resolve the Higgs hierarchy problem and provide
suitable dark matter candidates [71, 72]. The simplest and most studied of these is the Minimal
SUSY SM (MSSM) which adds a bosonic partner to each SM fermion and a fermionic counterpart
to each boson, but also doubles the Higgs sector. Possible alternative proposals come in the form
of (large) extra-dimensions in which some or all of the SM fields may propagate or extended SM
symmetries. In order for any of these extensions to address the dynamics at the electroweak scale,
new physical degrees of freedom have to appear at the TeV scale. On the other hand, many of
these “low scale” new physics scenarios can be embedded into high scale unification theories, such
as Grand Unified Theories (GUTSs) attempting to describe the unification of the SM couplings
at large scales in terms of incorporating the SM gauge group into larger symmetries [73]. Even
more ambitious are the various String theories unified under the name of M-theory, which also
attempt to address the quantization of gravity and the cosmological evolution of the very early
universe [74, 75]. In order to get a handle on this plethora of high energy phenomenologies one
must often rely on the so-called “bottom-up” approach to new physics. One constructs effective
low energy theories by systematically parameterizing possible new physics contributions to low
energy processes based on symmetry principles of the expected underlying theory. Within this
framework, the SM itself is regarded as an effective low energy description of a grander theory,
containing the SM particle content and gauge symmetry at low energies. A similar reasoning
lies behind the MSSM, which is often regarded as the low energy effective theory of a high scale
(and/or dimensional) GUT or String theory, containing a (slightly broken) SUSY SM particle
content at energies close to the electroweak scale. Alternatively, one can focus on specific low
energy aspects, common to various SM extensions. A common characteristic of various new
physics models (including MSSM) is the appearance of a doubling of the Higgs sector, which
can be put in the general form of a Two Higgs Doublet Model (THDM). On the other hand

2This has to be compared to the logarithmic divergences of fermionic fields due to chiral symmetries and gauge
boson fields due to gauge invariance.



many GUT and String theories also predict additional low energy U(1) gauge extensions to the
SM — the appearance of additional Z’ bosons. By focusing on such common aspects, one can
extract important general signatures of various new physics proposals.

The experimental challenge of finding new physics follows two main directions. In direct
searches the idea is to produce the new particles and detect them directly (often through their
decay products). This requires high enough energies at particle colliders such as the Tevatron,
the upcoming LHC or the planned ILC. A complementary idea is to measure the effects of new
particles in processes where they enter as intermediate virtual states. In this approach it is crucial
to be able to disentangle the effects of new physics from those conveyed by the SM particles. One
may then employ the “top-down” approach as prototyped by the Wilsonian Operator Product
Expansion (OPE) [76]. Namely one may represent low energy Green’s functions or scattering
amplitudes in terms of products of local operators, which are in term computed (matched to)
the full original formulation of the SM and possible additional higher energy extensions. In
this way SM and new physics contributions are clearly separated on an amplitude-by-amplitude
basis. The task is then to compute low energy scattering cross sections and decay rates and
compare them to precision measurements. This approach both tests SM predictions as well
as probes possible new physics contributions. Experimentally it requires high statistics and
precision measurements, such as those provided in the last years by the B and D meson factories
at Belle, BaBar, CLEO-c and others. Among their successes are the by now established neutral
meson oscillations in all neutral K — K [1], D — D [77, 78], B — B [56] and Bs; — B, [57, 79
meson systems, as well as ever tightening consistency constraints on the CKM unitarity and the
CP violating phase. So far, no clear indications of new physics in these phenomena have been
observed and several stringent experimental bounds on various new physics proposals have been
imposed.

In order to correctly interpret experimental results and justify the consistency with the SM
or claim new physics signals, one first has to reliably calculate the relevant hadronic processes
based on the quark picture of the OPE. Due to the nonperturbative and confining nature of
low energy QCD, this turns out to be a daunting task. Namely, the expansion in the coupling
constant is not applicable in this regime. Ab initio calculations, i.e., by starting with the
QCD Lagrangian and finishing up with predictions for physical observables are still possible,
through the use Lattice QCD techniques, but are computationally very challenging [8]. Lattice
methods also have their own limitations. To get meaningful results, computations have to
be done in Euclidean space-time, which makes calculations of processes with more than one
hadron in the final state very difficult. Also, in order to make numerical difficulties tractable,
a number of approximations have to be made, e.g., by working at relatively large pion masses.
Another option that has been commonly used in the past, is to use symmetries of the QCD
Lagrangian to construct effective theories [9]. Unknown parameters in the effective theory are
fixed from experiments or, if possible, from perturbative comparison (matching) to full QCD.
These effective theories may then be employed to either predict some experimental processes
directly, or to assist nonperturbative Lattice QCD calculations making them more tractable and
keeping control of the used approximations.

One important manifestation of the strong QCD dynamics at low energies is the appearance
of resonances in the particle spectrum. They have been detected long ago and studied extensively
in the processes of pions and kaons [1]. Their effects proved to be critical in many low energy
processes. On one hand they restrict the validity of effective theory approaches, which are not
able to fully include their effects, e.g., in (resonant) w7 scattering. Also, their dominant (long
distance) effects are known to almost completely obscure contributions due to (short distance)
SM OPE or possible new physics contributions in D meson oscillations and rare decays [10]. On
the other hand, due to the relatively large ¢ and b quark masses, heavy meson resonance effects
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Meson | J” | Mass [GeV] ‘ Width [GeV] | Br. [%] (final states) |
cd
D+ 0~ 1.869 + 0.001
D*+ 1= 2.010 £ 0.001 (9.6 +£2.2) x 107° 67.7+0.5 (D7 1),
30.7 £ 0.5 (D*70)
Dyt [12] | 0F | 2.403 £0.014 £ 0.035 | 0.283 £ 0.024 & 0.034 (D7 t)3
cu
D 0~ 1.865 £ 0.001
D*Y 1= 2.007 £ 0.001 < 0.002 61.9 +2.9 (D7)
DY 0+ 2.350 + 0.027* 0.262 + 0.051* (DFr—)3
DY 1r 2.438 + 0.030° 0.329 + 0.084° (D*t7r=)3
cs
Dy 0~ 1.968 + 0.001
Dz 1- 2.112 +0.001 <1.9x1073 5.8+ 2.5 (Dy70)
D, s(2317)" | 0F 2.317 £ 0.001 < 0.005 (D7 T)3
Dgy(2463)F | 1T 2.459 £ 0.001 < 0.006 (D:07)3

Table 1.1: FEzperimentally measured properties of the relevant charmed mesons and their dominant
hadronic decay modes. The pseudoscalar ground states are listed for completeness. Unless indicated
otherwise, the values are taken from PDG.

were long believed to be less significant in processes among hadrons involving these two quarks.

In the last couple of years however, many experiments have reported first observations of
resonances in the charm spectrum. In 2003, Belle [11] and FOCUS [12] experiments reported
the observation of broad resonances D8+ and D°, ca. 400 — 500 MeV higher above the usual
D states and with opposite parity. In the same year BaBar [13] announced a narrow meson
Dg;(2317)". This was confirmed by FOCUS [14] and CLEO [15] which also noticed another
narrow state, D;;(2463)". Both states were also confirmed by Belle [16]. The basic properties
of the relevant charmed mesons together with the dominating hadronic decay modes are listed
in table 1.1.

Studies of the basic properties of these states have been triggered particularly by the fact that
the D;;(2317)% and D;;(2463)" states’ masses are below threshold for the decay into ground
state charmed mesons and kaons, as suggested by quark model studies [17, 18] and lattice
calculations [19, 20]. Their relative closeness to the ground state charmed mesons suggests
possibly significant effects in the processes of the lowest D and D, states and poses the following
questions: Can we estimate the relevant effects of the lowest heavy meson resonances to the
processes of heavy meson ground states? Can we keep their effects under control, especially
within effective theories of QCD? Can they possibly help us to understand certain aspects
of observed and measured ground state heavy meson processes? And finally what conclusions,
drawn for the charm sector can we apply to the processes of B and Bs mesons, whose resonances
are currently still beyond the reach of experimental facilities®.

In this thesis we will explore several aspects of resonances in the heavy meson processes [21,

30bserved channel.

4 Average of Belle [11] and FOCUS [12] values from [80].

® Average of Belle [11] and CLEO [81] values from [80].

5During the final stages of preparation of this thesis DO collaboration has reported the first observation of
axial resonances in the B spectrum [82]. Their properties and interpretation are yet to be analyzed in detail.



22,23, 24, 25, 26, 27, 28, 29]. Their leading order contributions, either at tree level or at one loop,
will be analyzed in the relevant effective theory approach to QCD. Within this framework we
will calculate hadronic parameters entering various low energy processes and study the impact of
heavy meson resonances on observables. These include strong, semileptonic decay rates of heavy
mesons as well as neutral heavy meson mixing parameters. Since strong decay channels, if open,
usually dominate the measured decay widths, one may use these as benchmarks on the validity
of the chosen effective theory approach and also determine from them basic parameters of the
effective theory. Semileptonic decays, mediated by quark and charged lepton weak currents
proceed at tree level in the SM and are confirmed to be dominated by SM contributions. Their
detailed study may therefore produce important consistency checks within the SM, such as
the determination of the various CKM matrix elements and testing its unitarity, provided the
relevant hadronic effects are well understood. Heavy neutral meson mixing, on the other hand,
is mediated by box diagrams in the SM. This makes it an important arena for studying possible
new physics contributions, which may or may not be suppressed by loop factors. Within our
approach we will analyze all possible hadronic amplitudes entering heavy neutral meson mixing
within the SM or beyond. Finally, we will also analyze very rare hadronic decays of the doubly
heavy B, meson, which are, like the neutral meson mixing, mediated by box diagrams in the SM.
There we will make use of some of the knowledge on the impact of resonances in the calculation
of the relevant hadronic decay amplitudes in order to constrain various new physics proposals
based on existing experimental searches and also propose prospecting new search directions.

The outline of the thesis is as follows. In the first two chapters we introduce the prerequisites
for the phenomenological studies in the subsequent chapters. In chapter 2 we introduce the
concept of effective field theories with a focus on the effective theory approaches to QCD in the
limits of small and large quark masses. In chapter 3 we review some commonly used tools in
hadronic calculations, such as the OPE, general hadronic matrix element parameterizations, and
some of their approximations. In chapter 4 we analyze strong decays of heavy mesons within
an effective theory approach, including loop contributions of excited heavy meson resonances.
We attempt to extract the relevant effective strong meson couplings from the measured decay
rates and study the impact of the resonances on the coupling extraction from Lattice QCD
calculations. In chapter 5 we analyze the leading contributions of the heavy meson resonances
to semileptonic decays. Both heavy to light as well as heavy to heavy meson transitions are
analyzed. While in the former, heavy resonances may contribute already at tree level, in the
latter their contributions are loop suppressed. Similar, loop suppressed contributions to heavy
neutral meson mixing hadronic amplitudes are studied in chapter 6. Finally, chapter 7 contains
our analysis of the very rare hadronic decays of the B, meson within the SM and some of
its extensions. The conclusions are gathered in Chapter 6, while some further technicalities
of our calculations as well as brief descriptions of studied SM extensions are relegated to the
appendices.
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Chapter 2

Effective theories of heavy and light
quarks

2.1 What is an effective field theory?

The content of quantum theory is encoded in its Green’s functions, which in general depend
in a complicated way on the properties (e.g. particle momenta) of the initial and final states.
In particular they exhibit nonanalytic behavior such as cuts and poles in the configuration
variables, which arise when the kinematics allow for physical intermediate states. Conversely,
when the kinematics are far from being able to produce a certain propagating intermediate
state, the contribution of that state to the Green’s function of interest will be relatively simple,
well approximated by the first few terms in a Taylor expansion (e.g. of the incoming momenta
of the scattering problem). Instead of Taylor expanding each amplitude it turns out to be
much more profitable to expand the Lagrangian in local operators that only involve the light
degrees of freedom, where the expansion is in the powers of the generalized momenta of the light
fields (appearing as derivatives in the Lagrangian) divided by the scale of heavy physics. Such a
Lagrangian is called an effective field theory. Although the heavy modes do not appear explicitly
anymore, their contributions are encoded through the parameters of the effective theory'. There
are many situations in which effective field theories are of utility [83]:

e They allow one to compute low energy scattering amplitudes without having a detailed un-
derstanding of the short distance physics, or to avoid wasting effort calculating tiny effects
from known short distance physics (such is the OPE and the effective weak Hamiltonian).

e In nonperturbative theories (such as low energy QCD) one can construct a predictive
effective field theory for low energy phenomena by combining power counting of operators
with symmetry constraints of the underlying theory (such as the yPT and HMxPT).

e By regarding theories of known physics as effective field theory descriptions of more fun-
damental underlying physics, one can work bottom up, extrapolating from observed rare
processes to a more complete theory of short distance physics (this approach is taken in
many studies of BSM physics, such as MFV or grand unification).

At present, the general approach of effective field theory is followed in many contexts of the SM
and even in more speculative theories like grand unification, supergravity, extra dimensions or
superstrings.

!This aspect of effective theories is not unique to quantum phenomena. Integrating out certain regions or
scales of the phase space in order to simplify the description of certain phenomena has also been found to be of
high value in other fields such as (classical) statistical mechanics or (classical) field theories.

7
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2.2 Exploring the Chiral symmetry of QCD

One of the earliest and also one of the most successful examples of effective theories is the chiral
perturbation theory (yPT) which builds upon the approximate chiral symmetry of QCD at low
energies. We will briefly review it in this section. The QCD Lagrangian with Ny (Ny = 2,3)
massless quarks ¢ = (u,d,...)

Ny
‘C%CD = Z q(n)lpq(n) + Lgauge + ['heavy quarks
n=1
Ny
= Z [ﬁ(Ln)qu(Ln) + QgLMple)] + Lgauge + Lheavy quarks> (2'1)
n=1

where ) = 4" D,, is the QCD covariant derivative and qr 1 = (1£75)q/2, has a global symmetry

SU(Ny)r x SUNyp)L xU(1)y x U(1)a. (2.2)

chiral group G

At the effective hadronic level, the quark number symmetry U(1)y is realized as baryon num-
ber. The axial U(1)4 is anomalous and is broken by nonperturbative effects. Theoretical and
phenomenological evidence suggests that the chiral group G on the other hand is spontaneously
broken to the vector subgroup H = SU(Ny)y. The axial generators of G are realized non-linearly
and associated with them are the NJ% —1 massless pseudoscalar Goldstone bosons I1(z) = A (z)
parameterizing the G/H right coset space. Here A* are the broken generators of G' and 7;(z)
are the Goldstone fields. For the Ny = 3 case, the II can be written as

- 1 1
I = ™ Wil —Oﬁﬂo K? , (2.3)
K- K ~\/2ns

while in the Ny = 2 only the pion fields remain. To preserve all the symmetries of the funda-
mental theory in the effective Lagrangian, it is essential to construct it out of the Goldstone
field functions which transform linearly under G (see e.g. [84] for details). A customary choice
is ¥ = exp 2ill(z)/f, which transforms as ¥ — RYL', where R and L are the corresponding
generators SU(Ny)g and SU(Ny)r, respectively. f is an undetermined constant of energy di-
mension one, which can be identified with the Goldstone boson decay constant. We continue by
factoring out the broken generators of G from the quark fields ¢ = ((II)q, where {(II) transforms
under G as ((IT) — ¢(II")U(x). Here II'(z) is the transformed Goldstone matrix and we demand
that U(x) be an element of H. In general it will also be a function of II(x). Consequently, g
transforms as ¢ — U (g)qN and we have to modify its covariant derivative to account for the co-
ordinate dependence g = (P + V)q where the vector field V,, = (§8M§T + fTﬁuf)/Q and £ = V2
transforming as ¢ — LEUT = UER'. Tt can be easily checked that V,, transforms under G as
V, — UV, U+ U8,UT. There exists another operator which can be built up of II(x), has the
properties of an axial vector field A, = i(£70,& — £€0,£7)/2 = i€10,5¢1/2 and is transforming
under G as A, — UAMUT. Its role will become apparent later.

The Lagrangian of the SM is not chiral invariant. The chiral symmetry of the strong interac-
tions is broken by the electroweak interactions generating in particular non-zero quark masses.
The basic assumption of xPT is that the chiral limit constitutes a realistic starting point for
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a systematic expansion in chiral symmetry breaking interactions. Namely we extend the chi-
ral invariant QCD Lagrangian (2.1) by coupling the quarks to external hermitian matrix fields
vy =1u +ly, ap =10 =y, s, p9):
Ny
L= ﬁg?CD + Z {ﬁ(m) (Q/(m,n) + d(m,n)75)q(n) - q(m)(s(m,n) - ip(m,n)75)q(n)] : (2.4)

m,n=1

Here v, and a, will contain external photons and weak gauge bosons so that Green’s functions
for electromagnetic and semileptonic weak currents can be obtained as functional derivatives
of the generating functional Z[v,a, s, p] with respect to external photon and weak boson fields.
The scalar and pseudoscalar fields s, p on the other hand give rise to Green’s functions of
(pseudo)scalar quark currents, as well as providing a very convenient way of incorporating
explicit chiral symmetry breaking through the quark masses. To preserve the manifest chiral
symmetry of the effective Lagrangian, we promote it to a local symmetry and treat the external
fields as spurions with the transformation properties r,, — RruRT—HR@uRT, l, — Ll MLT—H'L(?MLT
and s + ip — R(s + ip)LT. Accordingly we have to introduce the covariant derivatives for pion
fields D, ¥ = 0, —ir,3 +iXl, (as well as the appropriate external field stress-energy tensors).
The physically interesting Green’s functions are then functional derivatives of the generating
functional Z[v,a, s, p| at chosen values of the spurion fields. In particular for the quark masses
we use s = my = diag(my, mgq,...). Even more generally, any effective quark operator (e.g.
from the OPE of the effective weak Hamiltonian ) can be incorporated into the effective chiral
Lagrangian by coupling it to the appropriate external chiral spurion field and then constructing
the corresponding source terms out of the Goldstone fields.

The effective chiral Lagrangian is usually organized in a derivative expansion based on the
chiral power counting rules. One prescribes chiral powers p to all the constituent field operators
and then builds the Lagrangian out of them by constructing all the terms adherent to the
symmetries up to a given chiral power. In general, this procedure counts the powers of derivatives
on the Goldstone fields as well as the number of external field insertions which at the level of
Green’s functions translates to counting the powers of pseudo-Goldstone masses and exchanged
momenta. Using the simplest choice for the quark mass chiral counting s ~ p? one arrives at the
lowest O(p?) order Lagrangian describing the low energy strong interactions of light pseudoscalar
mesons [1, 30]
f2
8
A trace is taken over the repeated light quark flavor indices. For the sake of clarity we have
omitted all external currents (I = r = p = 0) except s in the second term, which induces masses
of the pseudo-Goldstone bosons m2, = 4\o(mq + mp)/f2. While the normalization of the first
term is canonical, the second term contains an unknown constant \g, which we can fit to the
light pseudoscalar meson masses. Conversely, lattice QCD simulations often work in the exact
SU(2) flavor isospin symmetry limit. There, one can parameterize the pseudo-Goldstone masses
according to the Gell-Mann formulae as [31]

£0 = 0, Z S, + Mo [(mg)asSha + (Mg, |- (2.5)

2 8\oms 2 _ 8oms r+1 2 _ 8\gms r+2
my = FHEr, myp = SRS omy = St (2.6)

where 7 = m,, q/ms and 8\gms/f2 = Qm%( —m2.

Higher order terms in the chiral power counting can be constructed in this manner as well as
terms involving any general external fields. The higher order terms in this expansion also serve
a double role as the counterterms absorbing loop divergences from diagrams with insertions of
lower order terms in the Lagrangian, thus keeping the theory renormalizable (in the general
sense of the word).



10 oAt 2. REPPFPRECOLIVE 1TREORIES UOF OAEAV Y AND LIGH1T QUARRKDS

2.2.1 Light flavor singlet mixing and the 7’

The eight SU(3) pseudo-Goldstone bosons: 1, 7=, 7%, K+, K~ K9 KO and ng have the
same quantum numbers as the following quark-antiquark pairs: ud, di, ua — dd, us, su, ds, sd
and i + dd — 2s5. This suggests the existence of a ninth meson 7y that would correspond to
the ui + dd + s5 singlet as the pseudo-Goldstone boson of the U(1)4 axial symmetry of QCD.
However, due to the axial anomaly, the mass of 79 is not protected and can be much larger than
those of the other eight states.

Nevertheless, for practical reasons 7 still has to be incorporated into the theory. Namely,
its existence would entail mixing with the 7g state to form two distinct physical states (n and ')
and this scenario needs to be taken into account. One of the common approaches is to pretend
that there is no axial anomaly and add g to the matrix II (2.3) as an SU(3) singlet:

T5ls + 5o + 5’ m K+
- 1 1010 0
1= T V' VE T AT K (2.7)
K- K — 3+ L

The mixing of 7, and 7y to form physical states can in principle involve other states (e.g.
n(1279) or even 7.), can depend on the energy of the state or can be influenced by the axial
anomaly. Consequently the mixing scheme can be very complicated. In this thesis, we use the
approach developed by Feldman et al. [85]. There, the physical states 7 and 1’ can be written
as linear combinations of 1, and ns: 17 = 1y cos ¢ — 1, sing, N’ = 1y sin ¢ + 1, cos ¢, where 7, has
a (u@ + dd)/+/2 flavor structure and 7, is an s5 state, while ¢ is the mixing angle.

The decay constants of 7 and 7’ follow the same pattern of state mixing:

fg:quOS¢, f;;:—quinqb,
fo = fgsing,  fi = fqcos ¢, (2.8)

with the decay constants defined as

@) @vu15¢10) = ifipu, ()| 57.75510) = ifopp,
' (D) @vur5a10) = ifipps (0 )| 59758 10) = if vy (2.9)

Due to the SU(3) flavor symmetry breaking effects and the axial anomaly f,/fs # 1. In the

first order of flavor symmetry breaking, it can be deduced that f, = fr, fs = /2 fIQ( - f2.
Therefore, if the ng — ng basis is used instead, two mixing angles rather than one are needed
1 = ng cos fg — no sin By, 7' = ngsinfg + Oy cos y. The angles Hy and fg are connected with ¢, fs
and fy as 0 = ¢ — arctan(v/2fs/f,), 0o = ¢ — arctan(v/2f,/ fs).

The value of ¢ can be obtained phenomenologically from the various measured processes
involving n and n’ states. The value that fits the data best is ¢ = 39.3°.

2.3 Symmetries of heavy quarks

Since their early applications, symmetries of heavy quarks have been one of the key ingredients in
the theoretical investigations of processes involving heavy quarks. They have been successfully
applied to the heavy hadron spectroscopy, to the inclusive as well as a number of exclusive
decays (for reviews of the heavy quark effective theory and related issues see [86, 33]).

The important observation here is that for heavy enough quarks, the effective strong coupling
of QCD, due to its renormalization group running and asymptotic freedom, will be small at the
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mass scale of the heavy quark. This implies that on length scales, comparable to the compton
wavelength Ag ~ 1/mg, the strong interactions are perturbative and much like the electromag-
netic interactions. Furthermore, heavy quark spin participates in the strong interactions only
through relativistic chromomagnetic effects. Since these vanish in the limit of the infinite quark
mass, the spin of the heavy quarks decouples as well. The resulting theory therefore contains an
approximate SU(2) spin symmetry with the spin states of the heavy quark transforming in the
fundamental representation. To arrive at this result formally, we start with the QCD Lagrangian
for a single flavor @ of heavy quarks

‘C}?eavy quarks — @(’LE - mQ)Q . (210)

We separate the quark fields into their positive and negative frequency parts — i.e. into ”quark”
and ”anti-quark” fields Q@ = QM) + Q7). where Q) annihilates the @ quark while Q(-)
creates the corresponding anti-quark. For an infinitely heavy (anti)quark field travelling with
velocity v, it is useful to rescale the ground state energy of the effective theory Fock space
relative to the mass of the heavy (anti)quark in the frame of reference. This is done by factoring
out the dominant kinetic phase factor exp(£imguv - z) from the (anti)quark fields Q™). Then
we further project out the large components of the heavy (anti)quark spinors using a velocity
dependent projection operators Py = (1 +%/)/2 to obtain the effective heavy (anti)quark fields
hE(x) = Pyexp(timgu - 2)Q™)(x). They satisfy vht = +hE. We construct the HQET
Lagrangian from QCD by using the combined field h, = h£,+) + h$) while its orthogonal small
(anti)quark spinor components ht (z) = Py exp(dimgu - )Q™*)(z) can be integrated out using
their equations of motions [87] or more elegantly via direct Gaussian path integration of the
generating functional Z[p,], where external sources p, only couple to the h, fields and none to
h,. Consequently h, contribute only spin symmetry breaking corrections to the interactions
among h, fields. They are proportional to the inverse powers of the heavy quark mass, yielding
for the HQET Lagrangian

[’gQET = Ev(iv ’ D)hv + 0 (1/mQ) + 'Cgauge + ['light quarks * (2.11)

The decoupling of heavy quark spin contributions in the leading term of eq. (2.11) is now
intuitively manifest due to the absence of Dirac gamma matrices. Alternatively one can show,
that it is invariant under the the generators of the SU(2) transformations S = v5y¢ /2, where
i=1,2,3, v-e = 0 and the heavy quark fields transform in the spinor representation D(.5)
(hy — D(S)hy, D(S)™' = 4D(S)fy). Also at leading order in the expansion, there are
no quark-antiquark couplings as it would take an infinite amount of energy (twice) to pair-
produce infinitely heavy quarks. We can generalize the above arguments to Ny, flavors of heavy
quarks (¢, b, ...). Since in QCD different quark flavors are only distinguished by their Lagrangian
masses, for infinitely heavy quarks, QCD interactions become blind to the flavor of heavy quarks,
exhibiting in total a U(2Ny) spin-flavor symmetry. The HQET Lagrangian then becomes

Np
Coger = > S (i - DAY + O (1/mq) + Laauge + Light quarks - (2.12)
n=1

There are two important issues related to such HQET formulation. Firstly, the choice of the
heavy quark velocity to be factored out of the fields is arbitrary and we can formally get a
separate independent set of quark fields for each choice. The result is sometimes called velocity
superselection rule, and related to it is the heavy quark velocity reparametrization invariance.
It simply states, that any shift in the velocity of the heavy quark by v — v + ¢/mg, where
€ satisfies v - € = 0, can be accommodated by a corresponding redefinition of the heavy quark
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field h, — exp(ie - )(1 + ¢/2mq)h,. Secondly, apart from the kinetic term in eq. (2.12) whose
normalization is fixed via velocity reparametrization invariance, any effective operators involving
heavy quark fields in HQET have to be properly matched to the corresponding operators in full
QCD. Fortunately, due to the heavy mass scale, this matching can be performed perturbatively.
As an example let us consider the heavy-light left-handed current operator (the case for the
right-handed current proceeds identically)

T _ayqep = 17"'Q- (2.13)

At the tree level the HQET current can be written as

J(NV—A)HQET, Tree quyuhv +0 (1/mQ) : (214)

Radiative corrections modify this result. The effective current operators present at the tree level
are renormalized and additional operators are induced. Since in HQET the heavy quark velocity
v is not a dynamical degree of freedom, the effective current operators can explicitly depend
on it. The most general short-distance expansion of the vector current in the effective theory
contains two operators of lowest dimension (three):

‘](MV—A)HQET = Cl(y)qL’yuhv + CQ(V)GLUM}LU +0O (1/mQ) ’ (215)
where v is the regularization scale. After we have integrated out degrees of freedom when
going from QCD to HQET, the (o scale dependence reflects the non-trivial RG running of
the effective theory operators (see section 3.1 for details). At the tree level the coefficients are
Cy =1 and Cy = 0, and one recovers eq. (2.14). Explicit expressions for C;(u) at higher orders
in oy are obtained from the comparison of the loop matrix elements of the currents in the full
and in the effective theory. In addition to this, higher order power corrections in the 1/mg
expansion may be considered where operators of higher dimensions in HQET are taken into
account in the matching procedure.

2.4 Combining heavy quark and chiral symmetries

Heavy hadrons contain a heavy quark as well as light quarks and/or antiquarks and gluons
(the heavy quark — antiquark pairs being suppressed in the mg — oo limit of HQET). All the
degrees of freedom other than the heavy quark are referred to as the light degrees of freedom
¢. The total angular momentum J is a conserved operator with eigenvalues J? = j(j +1). We
have also seen that the spin of the heavy quark S¢ is conserved in the mg — oo limit (we
define its eigenvalues sg through SQQ = sq(sqg + 1)). Therefore, the spin of the light degrees
of freedom S; defined by Sy = J — S is also conserved in the heavy quark limit (eigenvalues
S? = sy(s¢ + 1)). Heavy hadrons come in doublets (unless s, = 0) containing states with the
total spin ji = sy + 1/2 obtained by combining the spin of the light degrees of freedom with
the spin of the heavy quark sg = 1/2. These doublets are degenerate in the mg — oo limit.
Mesons containing a heavy quark () are made up of a heavy quark and a light antiquark ¢
(plus gluons and ¢g pairs). The ground state mesons are composed of a heavy quark with
sg = 1/2 and light degrees of freedom with sy = 1/2 forming a multiplet of hadrons with spin
j=1/2®1/2 = 0@ 1 and negative parity, since quarks and antiquarks have opposite intrinsic
parity. These states are the D and D* mesons if @ is a charm quark, and the B and B” mesons
if @ is a b quark. The field operators which annihilate these heavy quark mesons with velocity
v are denoted by P£Q) and Pj,SQ) respectively, with P, (@ .4 = 0. Since these operators will mix
under the heavy quark spin transformations, it is convenient to collect them into a single tensor
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field operator transforming accordingly under the heavy quark spin and flavor symmetries of the
HQET Lagrangian (2.12). Lorentz contractions with ~, and 5 convert vectors and pseudoscalars

into bi-spinors so we can immediately identify the field Hf,Q) annihilating the ground state Q¢

(or better hfq) mesons as Hf = P[PiT — P 5], where Py serves to project out the large
particle components of the heavy quark @ (h;") while the factoring out of the large momentum

phase factor is implicit. The expression for the creation field Hy = 'yOH;r T’yo follows from its
bi-spinor transformation properties under C PT. An analogous procedure can be performed for
the mesons containing a heavy antiquark @ (h; ) leading to H, = P_[P'~ + P, ~s], which
creates the corresponding particles. The apparent difference in the relative sign between the
pseudoscalar and vector components is conventional and defined so that the particle creation
and anti-particle annihilation fields (and vice-versa) appear with the same relative sign between
vector and pseudoscalar operators. The only further fields needed for the remainder of the thesis
will be for the lowest lying mesons of positive parity (scalar Py and axial-vector Pl*u), which can
be represented by S = Py [P} 'y5 F Pg;] .

Due to the peculiar constructlon of the hadron fields, the normalization of states in HQET
is different from that of full QCD. Namely the standard relativistic normalization of hadronic
states of mass dimension —1 (possible spin labels are suppressed)

(H(p’)\H(p))QCD =2E,(2m)35%(p — p') (2.16)

is modified to factor out any dependence on the mass of the heavy quark, while the states are
labelled by their four-velocity

(H(W)H ) gopr = 20°(21)% 6y (2.17)

States normalized by using this HQET convention have mass dimension —3/2 and the two
normalizations differ by a factor \/mpg as well as possible power corrections

H(p))gep = vVmu |[HW))goer + O (1/mq)] - (2.18)

To take into considerations also the interactions with the pseudo-Goldstone bosons due to
the chiral dynamics of the light antiquark (u, d,...) inside the heavy meson, these are factored
out of the quark (and consequently hadron) fields. Under the chiral group G, H, and S,
therefore transform as H(S) — H(S)}U" and H(S); — UH(S); . The most general effective
Lagrangian containing positive and negative parity heavy mesons containing a heavy quark (we
will drop the super- and subscripts '+’ and v respectively and keep in mind, that an analogous
Lagrangian can be written down for the heavy mesons containing a heavy antiquark, and that
velocity reparametrization invariance connects different heavy quark velocity representations)
to order O(p) in the chiral expansion and at leading order in the heavy quark mass expansion,
that is invariant under heavy quark and chiral symmetries, and is a Lorentz scalar is [32, 33|

Linpr = L(l) +£(1) + L)

ﬁ(ﬁ = —Tr[H (“’ Doy — SapAwr) Hy) + gTr [HyHoAays)]
2
L8 = T [Saiv - Day — 6anAs) 5] + FTr [SySaars)
2
ch = hT [HySaAwys) + hec.. (2.19)

2For a general treatment of hadronic states with higher spins see e.g. [54, 88]
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h.c. denotes an additional Hermitian conjugate term, ng = JpO* — Vf;b is the chiral covariant
heavy meson derivative, while the trace Tr runs over Dirac indices. Chiral vector (V) and
axial-vector (A) pseudo-Goldstone current operators have been defined in section 2.2, while g,
h and g are three unknown effective couplings between heavy and light mesons. The Ay and
Ag are the so-called residual masses of the H and S fields respectively. In a theory with only
H or S fields, one is free to set Ay = 0 (Ag = 0) since all loop divergences are cancelled
by O(p?) (counter)terms at zero order in heavy quark expansion. However, once both fields
are added to the theory, another dimensionful quantity Agy = Ag — Ap enters calculations
and does not vanish in the chiral and heavy quark limits [89]. It is of the order O(p°) in the
standard chiral power counting and is usually it is accounted for via the appropriate pole offset
in the heavy meson propagators. Although one is free to offset both positive and negative parity
heavy meson poles, the end results of any calculation with well defines mass-shell conditions
will only depend on the difference of both quantities. Alternatively, one could also boost the
heavy mesons of different parities to different velocities so as to factor out this additional scale
e.g. H(V') = exp (tAgv-z)H(v) with v' = v — Ag/mg, and S(v") = exp (iAgv - )S(v) with

v" = v — Ag/mg. In this case however the splitting reappears in the form of a phase factor

difference in Egi)x in eq. (2.19). In terms of the momentum space Feynman rules this corresponds
to modification of the momentum conservation at the HS7 vertex inducing at leading order in
1/mpg anew Agg/f coupling between positive and negative parity mesons and pseudo-Goldstone
bosons (in addition to new 1/mpy corrections). We see immediately that if Agy is comparable
or larger than f, this leads to a strongly coupled theory. In addition it is not suppressed by
powers of pseudo-Goldstone momenta (it has chiral power counting zero) and therefore spoils
the chiral limit of the theory. However, the physical content of both theory representations
is the same, meaning that at any perturbation order in both heavy quark expansion, chiral
counting and Agpr , both Feynman rule sets yield the same results for any Green’s function.
The main difference is that in the first case we are actually able to re-sum all Agy contributions
to all orders by solving the free field theory (including the extra Ap and Ag terms) exactly and
obtaining the free heavy field propagators. This will prove to be of major importance in our
calculations, there we adopt this approach throughout this work (for the list of derived Feynman
rules used, see Appendix B).

In the same way as sketched in the previous paragraph we must consider bosonization of
HQET currents and more general operators that appear in electro-weak processes. Again we
chose eq. (2.15) as an example. At the effective hadronic level of HMxPT we must construct
all operators consistent with transformation properties (with respect to chiral, heavy quark and
Lorentz symmetries) of the two effective HQET current operators up to the given order in the
chiral and heavy quark expansions (formally this is done by inserting the same external spurion
currents into generating functionals of both theories). At the O(p") order in the chiral counting
and at the leading order in the heavy quark expansion the effective current containing a single
positive or negative parity heavy mesons simply reads

. .,
T e = 5 T (1= 1) Hilél, — 5Tl (L= 75)Shlél, + O (1/mg),  (220)
where a and o are unknown parameters which can be matched to the heavy meson decay
constants. Note that at this order there exists only one distinct operator for each parity because
any insertions of the heavy meson velocity v can be reduced to this form by the use of the heavy
meson velocity projection identities yH (S) = H(S) and H(S)y = —H(S). In fact any general
structure heavy-to-light current gI'Q), where I' = 1,v5,79,757u, 0 can be translated into the
effective bosonized form in the same manner [33, 55].



Chapter 3

Hadronic amplitudes — effective
approaches and resonances

In this chapter we will briefly review some standard methods used in the phenomenology of
weak interactions of hadronic systems. Here we can consider as ”weak” all possible interactions
apart from QCD, which may contribute significantly to quark dynamics at high enough energies
but are almost completely swapped by strong interactions which confine quarks into hadrons at
energies well below the electroweak scale. In addition to the prototype weak interactions of the
electroweak SM, these may include contributions from possible new physics beyond the SM. The
methods of OPE allow us to integrate out all degrees of freedom not directly associated with the
external hadronic states and split the problem into a perturbative calculation of all short distance
contributions using asymptotically free quarks on one hand, and an essentially nonperturbative
calculation of hadronic matrix elements of operators, which however now contain only light
degrees of freedom of QCD. We will also briefly touch upon some of the general properties,
approximations and relations among these hadronic amplitudes.

3.1 Operator product expansion

In this section we will briefly review the ideas behind OPE and its application to weak interac-
tions. The original idea dates back to Wilson [76], who conjectured that the singular part (as
x — y) of the product A(z)B(y) of two operators is given by a sum over other local operators
A@)B(y) — > CitP(z = y)Only), (3.1)
r—y "
where C2'P(z —y) are singular c-number functions. Dimensional analysis suggests that C:'7 (2 —
y) behaves fox x — y like the power dp, — d4 — dp of x — y, where dp is the dimensionality of
the operator O in powers of mass or momentum. Since dp increases as we add more fields or
derivatives to an operator O, the strength of the singularity of FAP decreases for operators O,,
of increasing complexity, making their contributions to the sum (3.1) less and less relevant. The
simple power counting argument is modified slightly by quantum effects in the renormalization
group treatment, where anomalous dimensions of operators come into play. Another remarkable

property of eq. (3.1) is that it is an operator relation: it holds regardless of what the states it
acts on are. The OPE in general reads

T;—T

T{Ay(21)Az(2) ... Ap(zy) —— > CM(w =21, & — 2)Op(2), (3.2)

15
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with 7" being the time ordering operator.

The application of the OPE to weak interactions comes from the observation that the dis-
tances at which weak interactions occur are set by the mass of the intermediate W and Z bosons,
ie, x —y ~ 1/my. If one is interested in the processes at energy scales p much smaller than
the weak scale (@ < my), or in other words, in the processes effectively occurring at typical
distances 1/p that are much larger than z — y ~ 1/my, we can take the limit x — y (or
equivalently mypy — oo) and use the OPE.

Formally we consider the generating functional of correlation functions and we focus on the
relevant integration over the W and Z degrees of freedom. The charged current part of the
action then contributes e.g. [90]

Ly ~ / (AW *][dw el @il (3.3)
where

Ly = —% (8. W5 =0, W) ("W — "W H) + mp WIW ™+ == (JFW T 4 JoWH)

2\f
(3.4)
with JF = (ad')y_a+ (@) v_a+ (i )v—a+ (Ve€)v—a+ (up)v-a+ (0-7)v—_a, and J; = (J).
= Y OREM q;j are the rotated weak states and gy is the weak isospin coupling constant. We use

the unitary gauge for the W field and introduce K, (z,y) = 6 (z — y)[g,, (8> + m¥,) — 9,0,].
After discarding a total derivative in the W kinetic term we have

Ty ~ /dW+ AW Te i [ dradty Wil @) KP (@)W ()+i%; [ dte (W e wer) (3.5)

Performing a Gaussian functional integration over W= (x) explicitly, we arrive at
2
Ty ~ e~ 1% Jdlad'y(Jp @A @-y)Jf W) (3.6)

where A, (z) is the W propagator in the unitary gauge. This result implies a nonlocal action
functional for the quarks which we can expand in powers of 1 /m%,[, to obtain a series of local
interaction operators of dimensions that increase with the order in 1/mf,. To lowest order
A, (x) = 6W (2)g" /m?, and the effective action in eq. (3.6) becomes

92 47— 7+
Ay T 3.7
8mw/“ , (37)

corresponding to the usual effective charged current interaction Hamiltonian of the Fermi theory

Heff - —70202, (38)

where the definition of the Fermi constant Gp/v/2 = g3/8m3, has been used and a local four-
quark operator Oy = J,J TH with a Wilson coefficient Cy = 1 has been defined. Actually, the
effective Hamiltonian (3.8) is valid only in the absence QCD interactions. Once these are taken
into account, another four-quark operator appears in the OPE Oy = J_, B J 3 07 , where summation
over the color indices «, § of current quarks is understood. Formally we are integrating out all

degrees of freedom at scales equal or larger than myy, including hard (energetic) gluons, while
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practically, due to the asymptotic freedom of QCD, the corrections can be computed perturba-
tively by considering all the relevant correlation functions with free quarks in the asymptotic
states. The effective weak Hamiltonian is then

Heg = —% (0101 + CQOQ) R (39)
where the coefficient (' is proportional to ag, while Cy ~ 1 is nonzero already at tree level in
the perturbative QCD expansion as discussed above. A similar procedure can be employed to
integrate out any possible heavy quarks in which case the current operators O; 2 in eq. (3.9)
appear in the properly reduced form containing only the light quark fields. Finally, we may
also consider neutral current weak processes including flavor changing neutral current (FCNC)
processes in which case a number of new operators appears in the OPE corresponding to tree-
level, penguin and box diagram contributions in the original theory.

In the calculation of the Wilson coefficients typically expressions of the form asln(u/myy)
appear, where p is a typical scale at which we want to study the processes. In the case of ¢ and b
quark decays, these are typically of the order of a few GeV. Thus, the ratio of scales in the argu-
ment of the logarithm can be very large, of order 100, and consequently the factor asln(u/myy)
of the order O(1). Even though the QCD coupling «; is not terribly large at the heavy quark
scales and could be used as a perturbative expansion parameter, the appearance of large loga-
rithms prevents the straightforward application of perturbation theory. All large logarithms of
the form [aIn(p/my)]™ have to be summed up using renormalization group equations. This is
done by again considering correlation functions (O;) of operators appearing in the OPE both
in the effective and in full theory. (O;) do not depend on the renormalization, whereas even
after accounting for the renormalization of the quark fields in the original theory, due to the
different UV structure of the effective theory, the OPE expressions have to be multiplicatively

renormalized. In terms of the unrenormalized Wilson coeflicients Ci(O) and operators (’)Z(O), of
which neither depend on p, the renormalization condition can be written as
0) (0 _
GO0 = Ciw) 25 (1) 2 (W Oi (), (3.10)

where the scale dependence of both the renormalized Wilson coefficients and the operators is
fully determined by the renormalization matrix Z;;(x). In a compact form we can write

ac;

dinpe i
where we have introduced the anomalous dimension matrix v, which we determine be identifying
the leftover singularities (or equivalently the logarithmic p dependence as in eq. (3.11), but for
the operators ;) in the process of matching Green’s functions in both the original and the
effective (OPE) theory. Using the evolution of the QCD coupling constant gs (in the MS
renormalization scheme) and their expansion

, dZ
Cj, =2 1m, (3.11)

dgs(p) B g%
)~ Blas) = Pyt (3.12)
Qg
Yas) = V(O)EJ“., (3.13)

where o, = g%/4m and ) = (11N, — 2Ny)/3 for Ny active flavors and N, colors, the evolution
equation (3.11) can be solved to any given order. As an example we consider the leading order
renormalization group (RG) evolution of a single Wilson coefficient

Cl) = | 2]

7% /200
o (1) ] C(mw). (3.14)
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The strong coupling constant a(u) appearing in (3.14) is at the one-loop order

B 41
Bo ln(NQ/AéCD)’

as(p) (3.15)

where Agcp is the QCD scale (the value of which depends on the number of active flavors). Using
the precisely measured value of the strong coupling constant at the Z boson mass, as(my) =

0.1172 £ 0.002 one arrives at AS};D = 216 + 25 MeV, while for p < my with four active flavors,

the matching at my = 4.25 GeV gives Ag% p = 311£33 MeV. The important observation about

eq. (3.14) is that it contains all the terms of the form [a In(p/my )] as has been announced at
the beginning of the paragraph.

3.2 Vacuum saturation and resonance dominance approxima-
tions

As discussed in the previous section, the weak interactions can be described at low energies by
means of an effective Lagrangian obtained through the OPE and the RGE. The Wilson coeffi-
cients C; contain contributions from hard gluon exchanges and can be calculated perturbatively
as described in the previous section. They are scale and at NLO also renormalization scheme
dependent. This dependence is canceled by the scale and renormalization scheme dependence
of the local four-quark operators ;. The matrix elements in the hadronic weak transitions

My = ZE S Clfl 01, (3.16)

are thus scale and scheme independent. The nonperturbative nature of these transitions is hid-
den in the matrix elements (f|O;|i) between hadronic final and initial states. Evaluation of
these elements is a very hard problem and lies at the core of all the difficulties connected with
the weak transitions between hadronic states. Currently the best way to estimate them is to
calculate them on the lattice. However the problem is so involved, especially for the heavy-to-
light hadron transitions, that even the "exact” calculations on the lattice have to resort to a
number of approximations. One of such phenomenologically and theoretically motivated approx-
imations is the very simple but extremely useful vacuum saturation (or complete factorization)
approximation (VSA). It comes in when the currents appearing in the operators O;, which are
proportional to interpolating stable or quasistable hadronic fields, are approximated by asymp-
totically free hadronic fields in the ”7in” and ”out” states. Whence the currents are assumed
to factor completely. Formally this is achieved by rewriting the time-ordered products of the
interpolating fields and OPE operators in terms of commutators, then inserting a full set of
states in-between the commutators and finally discarding all but the vacuum. Le. taking the
operator O; = J' ® Jib one obtains

(F1Oiliyoc Y D (IIE @l I 1) — D (F1J10) @ (0] 7 Ii), (3.17)

perm.{a,b} " perm.{a,b}

where the sum over perm.{a, b} denotes all the possible (distinct) ways of inserting the full set
of states (see e.g. section 3.3.2 in ref. [10] for details). Due to the rather ad-hoc nature of
this procedure, the information on the sizes of the individual factorized current contributions
is in principle lost and the effective Wilson coefficients multiplying these contributions have to
be estimated from experimental data or alternatively inferred from complementary theoretical
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approaches such as 1/N, expansion. Such breakdown of productivity of this approach is already
signalled by the lack of ;1 dependence of the factorized current matrix elements, which therefore
by themselves cannot cancel the renormalization dependence of the original Wilson coefficients.

The relevance of VSA can actually be extended beyond the association of factorized currents
with single asymptotically free hadronic fields in the final state by the use of resonance dom-
inance approximation. This approximation has considerable phenomenological vindication in
hadron physics at energies less then about 1 GeV [1] where it was first proposed in the form of
vector dominance. It states that all the main dynamical effects of hadronic long-distance (final
state) strong interactions are associated with exchange of intermediate resonances. The idea is
based on a “polology” theorem (See chapter 10.2 of [91]) stating that the poles and cuts in the
configuration manifold of any correlation function can be associated with propagation of vir-
tual intermediate composite quasi-stable single and multi-particle states coupling to asymptotic
states. The resonance dominance approximation saturates the correlation function with contri-
butions from a few of the relevant phenomenologically determined resonances. In connection
with the VSA, the asymptotic final state field configurations are coupled to intermediate reso-
nances using effective models or phenomenological Lagrangians. These resonances then saturate
the operator matrix elements as asymptotically free hadronic fields. Formally we write

(F1Oi]i) = 3" {f] Lot In) @ G @ (n] O i) | (3.18)

n

where we have denoted the propagation of intermediate resonance states with G, and L.g
contains the effective vertex coupling resonant and final states. We see that the accuracy of this
approach relies on the number of phenomenological resonances we consider before truncating
the sum in eq. (3.18) as well as on the calculation of the effective vertexes (f| Leg [n) coupling
these resonances to final states. A preferred approach here is to employ effective theories based
on symmetries of QCD such as (HM)yPT. We can then map the quantum numbers of the
resonances onto dynamical fields in the effective theory or conversely introduce the appropriate
external resonance currents into the effective theory.

3.3 Parameterization of hadronic amplitudes

In this section we will briefly review some general properties of (hadronic) matrix elements of
operators, which we encounter in the OPE as well as in other approaches describing processes
of hadrons. We will focus on the matrix elements entering the two-body leptonic, three-body
semileptonic, two- and three-body nonleptonic decays of pseudoscalar mesons as well as mixing
of neutral pseudoscalar mesons with their anti-particles. We will mostly consider pseudoscalar
mesons in the initial state as they are always the lowest lying states with a given single quark
and anti-quark flavor quantum numbers', and in case of open flavors, where the quark and the
anti-quark are of different flavor, cannot decay strongly or electromagnetically due to flavor
conservation of QCD and QED. Thus they open a window to the underlying weak dynamics.
General matrix elements of operators between initial and final particle states are generalized
functions of the particle degrees of freedom and can always be decomposed into generalized
scalar functions of Lorentz invariants multiplying available Lorentz structures. A simple exam-
ple is the matrix element of the unit operator between two pseudoscalar and a vector state. The
pseudoscalar states can be uniquely labeled by their four-momenta (and any additional internal
quantum numbers) and we denote them by P;(p;) and Pa(p2). The vector state can in term

!This is due to the opposite intrinsic parities of particles and anti-particles, complemented by parity conser-
vation of QCD.
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be labeled by its momentum and polarization V (Py,€). Due to Lorentz invariance and in pres-
ence of parity conservation the matrix element can be reduced to a scalar c-number parameter
multiplying a Lorentz invariant label

(P1(p1) P2 (p2)|V (pv,€)) = Gppyve - pr, (3.19)

where gp, p,v is an effective on-shell vertex. Note that there is an ambiguity in labeling the
momentum p; contributing to the amplitude via € - p; since both pseudoscalar states are equiv-
alent. We shall therefore impose the convention of always taking the momentum of the lighter
or the two pseudoscalars. Also since € - pyy = 0 on-shell as well as due to Lorentz momentum
conservation Py = p; + pa, actually the € - (p1 — p2) structure contributes to the decay rate.
However such different definitions of the vertex are all simply related by fixed normalization
factors due to the decomposition p; = 1/2(p1 +p2) + 1/2(p1 — p2) and the vector state transver-
sality condition. The choice only becomes relevant when considering effective approaches such
as vector resonance dominance approximation (3.18) where the vector state V(Py,€) may be
intermediate and off-shell. In such cases our choice in eq. (3.19) turns out to be beneficial.

In weak leptonic decays of pseudoscalar P(p) and vector V (p, €) mesons, the hadronic ampli-
tudes comprise of matrix elements of weak currents between the mesonic states and the vacuum
and can be parameterized in terms of these Lorentz covariants multiplying c-number parameters
— decay constants. We will define them as

O Ju[P(p)) = ifPpu, (3.20a)
<0’Jlt‘v(p7€)> - fvaeu' (320b)

First note that Lorentz invariance of the amplitudes projects out the vector, or axial current
components, depending on the parity of the initial states, and secondly that transversality
condition of the on-shell vector states (e - p = 0) together with Lorentz invariance prevents a
term proportional to p, in the second line of eq. (3.20a). This can be most easily seen in the rest
frame of the vector meson. In this frame the components of the four-vector current factorize
into its three-vector (proportional to €) and three-scalar (proportional to the time component
of p) parts (referring here to the three spatial dimensions). We see immediately that only the
three-vector part of the current can couple to the on-shell vector state, thus projecting out the
term proportional to the meson momentum.

In weak semileptonic decays, the hadronic part of the transition amplitude is described by
the weak quark current matrix element between initial and final hadronic states. Again if these
states comprise of single pseudoscalar mesons (e.g. P; and Py), the P; — Py current matrix
element can then be parameterized in terms of the appropriate Lorentz covariants made from
momenta p; and py reproducing the Lorentz structure of the current, multiplied by form factors
— scalar functions of the Lorentz invariant (Mandelstam variable) s = (p; —py)? — the exchanged
momentum squared. Parity of the external states also projects out the axial component of the
current, so only the vector part contributes and we can write [92]

(Pr(pp)l iy [Pipi)) = Fie(s)(pi + pp)* + F-(s)(pi — ps)*, (3.21)

where F(s) are the two form factors. The physical region for s is defined by m% < s <
(mp,—m pf)Q, where my is the invariant mass of the final state leptons. From the previous section
we recall that analytic structure of the matrix element can be identified with the propagation of
virtual intermediate single and multiparticle states. In our case, these states when on-shell will
contribute poles and cuts in the complex s Riemann sheet of both form factors. Let us try to
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analyze these contributions in more detail and consider the matrix element obtained from the
above by crossing the final state Py

(O J& |Pi(pi) Pr(pys)) = Fr(t)(pi — pyp)* + F-(t) (i + ps)*, (3.22)

where t = (p; +p f)2. One convenient way of classifying the various contributions to the crossec-
tion is via their spin or angular momentum properties. For this purpose we go to the center of
mass (c.m.) frame of the P;Py system. There we have p; 4+ pr = 0 and we now expand the state
into spherical harmonics

|[Pi(pi) Py (—pi)) = D YI"(/Ip|) [P Py (p, L,m)) (3.23)

Lm

where Y7"(p/|p|) and |P; Pf(p, L, m)) represent a state of P; and Py with c.m. three-momentum
p, total angular momentum L and its third component m. Since the current Jy, contains a
3-dimensional vector and a 3-dimensional scalar, the only intermediate states contributing in
the sum on the r.h.s of eq. (3.23) are necessarily states with J© =1~ or 07. Thus

(01 J47 | Pi(pi) Py () = (O] J47 [PiPy(p,0,0)) + > (0] J{: [BPr(p, 1,m)) Y{™(p/Ipl).  (3.24)

But the first term on the r.h.s. of eq. (3.24) only gets contributions from the time component of
the current and so vanishes except when p = 0 while the second term is analogously nonzero only
for u = 1, 2, 3. Thus, noting that in the c.m. frame ¢t = (p? —|—p?)2 and p?—p(} = (m%Z —m%f)/\/%
we obtain from eq. (3.22) for p =0

m2, — m2
(O] 9 |PiPy(p,0,0)) = VE | ———"LF,(t) + F_(t) | = VIFy(t), (3.25)
and by taking p =1, 2, 3 we obtain
> {013y |PPs(p, 1,m)) Y™ (p/|pl) = 2pi F (1) (3.26)

m

From egs. (3.25) and (3.26), it is clear that F'; receives pole contributions from the intermediate
on-shell J¥ = 1~ states (it is therefore called the vector form factor) and Fy receives contri-
butions from states with J© = 0% (and is thus termed the scalar form factor). Note that this
decomposition only refers to intermediate propagation of on-shell states which satisfy the usual
scalar invariance and vector transversality conditions. Nonetheless this allows us to identify and
distinguish pole and cut contributions to both of the form factors. Also note that in order for
this new matrix element decomposition

m2 — m2
(Pr(pp)l Jy_4 |Pi(pi)) = Fi(s) ((pﬁpf)“—%(pz—pf)“)
m2 — m2
+Fy(s)———2 (p; — py)*, (3.27)

be finite at s = 0, the form factors must satisfy the kinematic relation
F.(0) = Fy(0) . (3.28)

Another advantage of using form factors as defined in eq. (3.27) is that if one neglects the
charged lepton mass (reasonable approximation in case of electrons and arguably also muons),



COoArFlEi oo ODAUDURUONIO AMPLITUDRS

the scalar current component does not couple to the two chiral leptons in the final state. Thus
only F} contributes to the total decay width which may in this case be simply written as [50]

|C|2m%{ /yﬁ 2 2 3
r=-"-"H dy|F _ , 3.29
20, y|F (mpy)|" Py (y)] (3.29)

where C' is the appropriate Wilson coefficient from the effective weak Hamiltonian, y = s/ m%i,
yl = (1- mp, /m p,)? and the three-momentum of the final state meson is given by

b (1 y) b md 2

2 — —
s ()2 = i m3,. (3.30)

A similar decomposition can be done for the current matrix elements relevant to semileptonic
decays between a pseudoscalar meson state |P(pp)) with momentum p’, and a vector meson state
|V (pv,€)) with momentum pY, and polarization vector €” arriving at

2V (s)
Lp — uvaf N
(V(e,pv)| i, |P(pp)) o epPabvs,
" ,* 2my u
(Vepv)I J4|P(pp)) = —ie" - (pp —pv)——(pp —pv)"Ao(s)

~i(mp +my) [e*“ S, pv)“] Ay(s)

2 2
—mi,

" (pp—pv) {(pp Fpy)t - mp

+i T (pp — pv)“] As(s).
(3.31)

First note that € - pyy = 0 and thus only the projection € - pp contributes in the expressions
when the final state vector meson is on shell. However, when using effective approaches such
as vector meson dominance approximation, the V' (e, py) may denote an off-shell intermediate
state and keeping the full €*- (pp — py') dependence in the form factor definition turns out to be
beneficial. Then V' denotes the vector form factor and receives pole and cut contributions from
intermediate vector states, the axial A; and Ay form factors contain axial state contributions,
while Ay denotes the pseudoscalar form factor and is populated by pseudoscalar states [93]. In
order that these matrix elements are finite at s = 0, the form factors must also satisfy the well
known relation

_mp +mVA1(0) I mp—my

A
O(O) 2mv 2mv

A(0)=0. (3.32)

In P — V/{v decays it is sometimes convenient to introduce helicity amplitudes [94]%:

2m
Haw) = (mp-tmy) A (mpy) 5 2Py ),
mp A my oo 2 2 2mp|py (y)|? 9
Holy) = —2 5™ (021 — ) — m] Ay (mby) - A
o(y) pTy— \/g[mp( y) —miy A1 (mpy) e e Ny 2(mpy),
(3.33)

where as before y = s/m?% and the three-momentum of the final state vector meson is given by:

m%(1 —y) +m2]?
v () = PRI (3.34)

In refs. [22, 24] there is a typo in the last term of the second line, where an additional factor of |pv (y)] is
missing. I am grateful to Damir Bedirevié¢ for bringing it to my attention.
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In the approximation where one neglects the lepton masses, the decay rates for the polarized
final vector mesons are then simply proportional to [50]:

_[CPmy

Y
o At (335)

where a = +,—,0 and y¥, = (1 — my /mp)>.
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Chapter 4

Strong decays of heavy mesons

Discoveries of resonances in the spectrum of open charm hadrons have stimulated many studies.
The measured properties of the D§ and D] states support their interpretation as belonging to
the (0%, 1%) heavy quark spin-parity multiplet of czi and cd mesons. Conversely, the D, states
have been proposed as members of the (07, 1") spin-parity doublet of ¢5 mesons [95, 96]. The
strong and electromagnetic transitions of these new states have been studied within a variety of
approaches [95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106]. In these investigations HMxPT at
leading order was used as well in attempts to explain the observed strong and electromagnetic
decay rates [99, 100, 101].

In ref. [43] the chiral loop corrections to the D* — D7 and Dx — D~y decays were calculated
and a numerical extraction of the one-loop bare couplings was first performed. Since this calcu-
lation preceded the discovery of even-parity meson states, it did not involve loop contributions
containing the even-parity meson states. The ratios of the radiative and strong decay widths,
and the isospin violating decay D — D,m" were used to extract the relevant couplings. How-
ever, since that time, the experimental situation has improved and therefore we consider the
chiral loop contributions to the strong decays of both the even and odd parity charmed meson
states using HMyPT. In our calculation we consider the strong decay modes given in table 1.1.
The existing data on the decay widths enable us to constrain the leading order parameters: the
D* D coupling g, Dg D coupling h, and the coupling g which enters in the interaction of even
parity charmed mesons and the light pseudo-Goldstone bosons in the HMyPT Lagrangian (2.19).
Although the coupling ¢ is not yet experimentally constrained, we will see, that it moderatelly
affects the decay amplitudes which we consider.

In the work presented in [89], the next to leading terms (1/mp) were included in the study
of charm meson mass spectrum. Due to the very large number of unknown couplings the
combination of 1/mg and chiral corrections does not seem to be possible for the decay modes
we consider here. Also, recent lattice QCD studies [45, 46] of the strong couplings of heavy
mesons have noticed that 1/mpy corrections seem not to be very significant but pointed out the
importance of controlling chiral loop corrections.

The precise knowledge of the effective strong couplings in the leading order HMyPT La-
grangian (2.19) is essential for theoretical calculations of heavy meson weak processes within
HMyPT as they enter in all the chiral loop corrections to any HMYPT effective operator. Cur-
rently the most reliable method of estimating hadronic matrix elements are the numerical lattice
QCD simulations. Due to the increase of simulation time, when approaching the chiral limit,
lattice studies use large values of the light quark masses. To make their results physically rele-
vant, they need to extrapolate them to the physical (basically chiral) limit. This extrapolation
induces systematic uncertainties that are hard to control as the spontaneous chiral symmetry
breaking effects are expected to become increasingly pronounced as one lowers the light quark

25
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mass [34, 35, 36]. HMxPT allows us to gain some control over these uncertainties because it
predicts the chiral behavior of the hadronic quantities relevant to the heavy-light quark phe-
nomenology which then can be implemented to guide the extrapolation of the lattice results.
In HMxPT one computes the chiral logarithmic corrections (the so-called non-analytic terms)
which are expected to be relevant to the very low energy region, i.e., my < Aqcp. While this
condition is satisfied for u- and d-quarks, the situation with the s-quark is still unclear [37, 38].
Also ambiguous is the size of the chiral symmetry breaking scale, A,. Some authors consider
it to be around 4rfr ~ 1 GeV [39], while the others prefer identifying it with the mass of
the first vector resonance, m, = 0.77 GeV [40, 30], and sometimes even lower. In the heavy-
light quark systems the situation becomes more complicated because the first orbital excitations
(jf = 1/27) are not far away from the lowest lying states (j© = 1/27). The recent exper-
imental evidence for the scalar Dj, and axial D, mesons indicate that this splitting is only
Ag, =mp: —mp, = 350 MeV [13, 14, 15, 41}, and somewhat larger for the non-strange states
Ag, = 430(30) MeV [11, 12]. ! This and the result of the lattice QCD study in the static
heavy quark limit [42] suggest that the size of this mass difference remains as such in the b
quark sector as well. One immediately observes that both Ag, and Ag, are smaller than A,,
my, and even my, which requires revisiting the predictions based on HMPT. In this chapter
we therefore study systematically the effects of the positive parity states’ contributions on the
chiral extrapolation of strong decay amplitudes of the ground state heavy mesons.

4.1 Heavy quark and chiral expansion

In our calculation we employ the leading order HMyPT Lagrangian (2.19) containing both pos-
itive and negative parity heavy meson doublets. From it we derive the Feynman rules, which
can be found in Appendix A. Due to the divergences coming from the chiral loops one needs
to include the appropriate counterterms — interaction terms of higher order in the chiral ex-
pansion, which will only contribute tree level terms in our calculations. Therefore we construct
a full operator basis of the relevant counterterms and include it into our effective theory La-
grangian: following refs. [43, 110], we absorb the infinite and scale dependent pieces from one
loop amplitudes into the appropriate counterterms at order O(my)

LY = L+ L+ Lo,
2 2

£‘;, = \MTr [FbHa(mg)ba} + A Tr [FaHa(mg)bb] + %:TY [(FHA%)“I’(WE)"“]
+%T&” [(FHA75)aa(mg)bb] + % [FaHaAbc’)%(mg)cb} + i\—? [FcHa(mg)abAbc'YS}
+i—iTr [HoHyiv - DpeAcas] + i—iTr [HoHyiPocv - Acays) + - -

LC%Z — A Tr {Sﬁb(mg)ba] — N, Tr [Saga(mg)bb} + %Tr [(§S¢4’Y5)ab(m§)ba}
+§A_R§Tr [(gsﬂ%)aa(mg)bb] + gA—TinTr [?asa,ctbc%(mg)cb] + %Tr [?cSa(mg)abAbc%}

1) _ ) _
+—2TI‘ [SaSbiU : DbcAca’YE)] + _STr [SaSbi,pbch : Aca'YS] + .0
AX AX

!We note, in passing, that the experimentally established fact that Ags < Agq is not yet understood [80,
107, 108, 31] although a recent lattice study with the domain wall quarks indicates a qualitative agreement with
experiment [109].
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L = Z’?ﬂ[(ﬁsmub(mf) J+ Z@Sﬂ[(HSAfys)aa(ms)bb]

_|_}X€£’Tr [FaSaAbc%(’mg)c } CLXQ Tr {H Sa(m )ab’AbC%}
, !

b _ ) _
+A—2ﬂ [HoSpiv - DpeAeas) +A—3ﬂ [HoSpiPpcv - Acays] + hec. +....
X X
(4.1)

Here mq (Emg€ + ETmyl), DI AY = 0P AY, + [VH, A]4p is the covariant derivative acting on
the pseudo-Goldstone boson ﬁelds and A, ~ 4rf is the effective chiral symmetry breaking scale
and the cutoff of the effective theory. Ellipses denote terms contributing only to processes with
more then one pseudo-Goldstone boson as well as terms with (iv- D) acting on H or S, which do
not contribute at this order: since they only enter at tree level in our calculations, they can be
integrated out using their equations of motion [43]. In the chiral power counting (m, ~ p?) all the
A terms in £ are of the order O(p?) while the 6 and « terms are of the order O(p®). Parameters
A} and \] can be absorbed into the definition of heavy meson masses by a phase redefinition of H
and S, while A\; and Xl split the masses of SU(3) flavor triplets of H, and S,, inducing residual
mass terms in heavy meson propagators: A, = 2A\;m, and Ay = 2\1me respectively [43]. As
with Ag(g), only differences between these O(p ?) residual mass terms enter our expressions. We

denote them as Ay, = Ap—Ay, Ay = Ab—A and Aba = Ab—A Note that their contributions
to the non-analytic (logarithmic) pseudo—Goldstone mass dependencies of the amplitudes will be
of higher order in the chiral counting and can there be neglected. For the k1 and kg terms only
the combination k19 = K1 + kg9 will enter in an isospin conserving manner here [43] (the k1 — kg
combination contributes to isospin violating D¥ — D¢7n” decay, which we do not consider). In
the same manner we only consider contributions of kg = k] + Ky and K19 = K1 + Kg. At any
fixed value of my, the finite parts of k3, kK3 and k4 can be absorbed into the definitions of g, g
and h respectively [43]. However, one needs to keep in mind that these terms introduce a non-
trivial mass dependence on the couplings when chiral extrapolation is considered. The J, and
03 enter in a fixed linear combination, introducing momentum dependence into the definition
of g of the form g — (62 + d3)v - k/A,. For decays with comparable outgoing pseudo-Goldstone
energy, this contribution cannot be disentangled from that of g [43]. On the other hand, these
contributions have to be considered when combining processes with different outgoing pseudo-
Goldstone momenta. The same holds for contributions of d, and d3 with respect to g, as well as
0% and 0% with respect to h. At order O(mq) we are thus left with explicit analytic contributions
from ks, Ko, s, k19, Kk, Kig, 02 + 53,09 + 5' and 95 + 0.

4.2 Chiral corrections including excited states

4.2.1 Wave-function renormalization

We first calculate the wave-function renormalization Zyg of the heavy H = P, P* and Fy, Py
fields. This is done by calculating the heavy meson self-energy II(v - p), where p is the residual
heavy meson momentum, and using the prescription

10M(v - p)

Zog =1—
2 Ov- p lon mass—shell’

(4.2)
where the mass-shell condition is different for the H and S fields due to their residual mass
terms A g) as well as for the different light quark flavors due to the A, terms. In general it
evaluates to v-p — Ap(g) — Ay = 0.



COoArliiie 4. D1 NRUNG DECAYDS UOF ARAV Y MESOINS

Figure 4.1: 7Sunrise topology” diagram contributing to heavy meson wave-function renormalization. The
double line indicates the heavy-light meson and the dashed one the pseudo-Goldstone boson propagator.
The full dot is proportional to the effective strong coupling.

At the O(p?) power counting order we get non-zero contributions to the heavy meson wave-
function renormalization from the self energy (”sunrise”) topology diagrams in fig. 4.1 with
leading order couplings in the loop. In the case of the P mesons both vector P* and scalar Py
mesons can contribute in the loop yielding for the wave-function renormalization coefficient

— )‘flb)‘lija 2 1t Apq ] 2 1 Aga + Asn '
ZQPa =1- ]_67T2f2 |:3_g Cl E,mz — h*C T,ml . (43)

As in ref. [43], a trace is assumed over the inner repeated index(es) (here b) throughout the
text, while the loop functions C; and their analytic properties are defined in the Appendix B. In
the chiral power counting scheme, their non-analytic Ay, dependence is of the order O(p*log p)
or higher and can be neglected at this order. However Ay, also enter analytically and we
have to check for sensitivity of our results to these parameters. On the other hand the chiral
power counting of Agy ~ p° leads anomalous contributions to C; and will cause problems when
employing these formulae for chiral extrapolation. We shall deal with this problem in the next
sections. At leading order in heavy quark expansion, due to heavy quark spin symmetry, the
wave-function renormalization coefficient for the P* field is identical to that of P although it
gets contributions from three different sunrise diagrams with states P, P* and P; in the loops
[111].

The positive parity Py and P} obtain wave-function renormalization contributions from self
energy diagrams (fig. 4.1) with P, P and Fp, P, P* mesons in the loops respectively, which

yield identically
_ Apa A — A
352, (—bm> — K2C’ (Mmﬂ . (4.4)
m

) my;

i\
)\ab)\ba

Zopy, =1 —
2Foe 1672 f2

4.2.2 Vertex corrections

Next we calculate loop corrections for the PP*m, PyPm and PyPm vertices. At zeroth order
in 1/mg expansion these are identical to the P*P*m, PfPfm and P} P*m couplings respectively
due to heavy quark spin symmetry. Again we define vertex renormalization factors for on-shell
initial and final heavy and light meson fields. Specifically, for the vertex correction amplitude
I'(v - p;,v - ps,k2) with heavy meson residual momentum conservation condition py = p; + kx
one can write the renormalization coefficient Z g, g o schematically

L(v-p;,v-py, k2)
Fl.o.(v *Pi, V- Pf, k‘%) on mass—shell

ZlHinﬂ =1- (45)

Here I';,, is the tree level vertex amplitude, p;s) is the residual momentum of the initial (final)
state heavy meson H; ), while k; is the pseudo-Goldstone momentum. This implies that in
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Figure 4.2: ”Sunrise road” topology diagram contributing to effective strong vertex correction.

the heavy quark limit, one must evaluate the above expression at k2 = m2, v - Picr) = Aip
and consequently v - kr = Ap; = Ay — Ay, where Ay is the residual mass of the initial (final)
heavy meson fields. Such prescription ensures that in all expressions one only encounters the
physical, re-parametrization invariant quantities Agp , Agp, Agp and Aw 2. Satisfying both
conditions should systematically be possible at any order in the 1/mq expansion by properly
accounting for the effective coupling of heavy meson fields at different velocities as in B — D
meson transitions (see e.g. [33]).

At the O(p?) order, the relevant contributions to the vertices between the heavy and light
mesons come from the one-loop topology diagrams in fig. 4.2 with leading order couplings in the
loop. Contributions from two lower diagrams vanish because the heavy meson covariant deriva-
tive emitting two pseudo-Goldstone bosons either annihilates ((axial)vector) external heavy
meson states, or the two diagrams (with (pseudo)scalar states in the loop) cancel each-other.
The upper right diagram on the other hand is subtracted completely by the pseudo-Goldstone
wave-function renormalization Z,.: [111] at the given order. Thus the only one-loop topology
contributing, are the ”sunrise road” diagrams as the one on the upper left. For the case of the
PP*r vertex, only (P*, P), (P*, P*) and (P, P;") contribute pairwise in such loops. Adding the
relevant O(p?®) counterterm contributions we thus obtain

AN N A Agp
ZlP*P '3 - 1—MX gQC, < Ca,—,m‘>
a fom )\flb167'('2f2 1 mj; o Mmy J

h2q A= A A= + A
RN
g m; m;
Noo(mg)en b Apg 02 + 03
+—=— (k19 + 07K5) — ——. (4.6)
AX)\ab AX g

The same expression is obtained for the P*P*r vertex renormalization from pairs of (P, P*),
(P*, P*), (P*,P) and (Pf, P") running in the loops .

2This is different from the prescription in ref. [43], where v - k. entering loop calculations was evaluated as the
physical pion energy. However, for the processes considered there, the discrepancy between the two prescriptions
is only of the order of a few percent due to the small hyperfine splitting between the relevant initial and final
state mesons.
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Similarly for the PyP;m and Py Pfm vertices we get contributions from pairs of (P;, Fp),
(P}, Py), (P,P*) and (Py, P), (Pr,Ry), (P, Py), (P*,P*) respectively running in the loops
which yield identically

NAN [ (A Ay
S v T R L Gy g™
h? Ags— A A-—A
+Tgcl ( ca SH’ db SH ’ mj)
g m; m;
)‘fzc(mq)t?b zba 3/2 + S/3

(Fig + 0%Fs) — : (4.7)

AN A9

Finally for the PPym and P* P/ vertices the pairs of (P, P), (P*, P{") and (Py, P*¥), (P*, P}),
(P, Py) contribute in the loops respectively, yielding for the renormalization identically

PYBIDY Ace Ag
1Poq Py N, 1672 2 X {39901 <mj -y , M
mj my

Ab?i — Agpg (5& + 6§
Ay N

)‘fzc(m )Cb a
+szb(n’19 + 6%kE) — (4.8)

4.3 Extraction of phenomenological couplings from charmed me-
son decays

Using known experimental values for the decay widths of DT*, D(')F *, D3* and D/l, and the upper
bound on the width of D% one can extract the values for the bare couplings g, h and g from a
fit to the data. The decay rates are namely given by
I(P; —'P) = 955 il k.| 4.9
(P —m b)—ngMrz% (4.9a)
|heﬂ. ) |2
; Poo Pyt 2

Here k; is the three-momentum vector of the outgoing pion and FE its energy. The renormal-
ization condition for the couplings can be written as

o NN (4.10)
Ipypymi =Y 7 , = 9%prpymi :
1P, Py

with similar expressions for the h and g couplings.

Due to the large number of unknown counterterms entering our expressions (K5, K19, K5, K19,
K5, Klg, 02 + 03, 02 + 03 and &4 + 05) we cannot fix all of their values. Therefore we first perform
a fit with a renormalization scale set to p ~ 1 GeV [43] and we choose to neglect counterterm
contributions altogether. Our choice of the renormalization scale in dimensional regularization is
arbitrary and depends on the renormalization scheme. Therefore any quantitative estimate made
with such a procedure cannot be considered meaningful without also thoroughly investigating
counterterm, quark mass and scale dependencies.
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We constrain the range of the fitted bare couplings by using existing knowledge of their
dressed values and assuming the first order loop corrections to be moderate and thus also
maintaining convergence of the perturbation series:

e ¢ - following quark model predictions for the positive sign of this coupling [112] as well as
previous determinations [43, 45, 46, 97, 98, 106] we constrain its bare value to the range
g€[0,1].

e / - this coupling only enters squared in our expressions for the decay rates and was recently
found to be quite large [97, 98, 104, 106]. We constrain its bare value to the region
|h| € [0,1].

e ¢ - non-relativistic quark models predict this coupling to be smaller in absolute value than
g [113]. Similar results were also obtained using light-cone sum rules [98], while the chiral
partners HMxPT model predicts |g| = |g| [95, 96, 89]. A recent lattice QCD study [114]
found this coupling to be smaller and of opposite sign than g. We combine these different
predictions and constrain the bare g to the region g € [—1,1].

We perform a Monte-Carlo randomized least-squares fit for all the three couplings in the pre-
scribed regions using the experimental values for the decay rates from table 1.1 to compute x>
and using values from PDG [52] for the masses of final state heavy and light mesons. In the
case of excited D and D} mesons, we also assume saturation of the measured decay widths
with the strong decay channels to ground state charmed mesons and pions (D§ — Dn and
D} — D*r) [101]. We obtain the best-fitted values for the couplings g = 0.66, |h| = 0.47 and
g = —0.06 at y?/d.o.f. = 3.9/3. The major contribution to the value of y? comes from the
discrepancy between decay rates of D] and D{§ mesons. While the former favor a smaller value
for |h|, the later, due to different kinematics of the decay, prefer a larger |h| with small changes
also for the bare g and g couplings. Similarly, as noted in ref. [31], such differences are due to
the uncertainties in the measured masses of the broad excited meson resonances. We expect
these uncertainties to dominate our error estimates and have checked that they can shift our
fitted values of the bare couplings by up to 5% in the case of g and h and as much as 70% for
g depending on which experimental mass values are considered. In a similar fashion our results
are sensitive to the values of the residual mass splittings between heavy fields (which we fix to
their phenomenological values) as 30% variations in Agy , A, Ag and Ay shift our fitted
values for the bare couplings a few percent in the case of ¢ and h, while g can recieve much
larger corrections. A large uncertainty in the determination of this coupling was to be expected
since it only features in our fit indirectly via its loop contributions.

If we do not include positive parity states’ contributions in the loops (and naturally fix
Apg = 0), we obtain a best fit for this coupling g = 0.53. We see that chiral loop corrections
including positive parity heavy meson fields tend to increase the bare g value compared to its
phenomenological (tree level) value of g;, = 0.61 [44], while in a theory without these fields,
the bare value would decrease. The fitted value of |h|, is close to its tree level phenomenological
value obtained from the decay widths of D and D) mesons (and using the tree level value for
f =130 MeV) h;, = 0.52. Our determined magnitude for g is close to the QCD sum rules
determination of its dressed value [98, 115], but somewhat smaller compared to parity doubling
model predictions [95, 96]. Its sign is also consistent with the lattice QCD result of ref. [114].
Based on this calculation we can derive a prediction for the phenomenological coupling between
the heavy axial and scalar mesons and light pseudo-Goldstone bosons G px p,r, which we defined
for the case of two pseudoscalar and a vector state in eq. (3.19) with the identification P, = ,



COoArliiie 4. D1 NRUNG DECAYDS UOF ARAV Y MESOINS

| Calculation scheme ‘ g [ nl ] 9 |
Leading order 0.61 [44] | 0.52 | —0.153
One-loop without positive parity states 0.53
One-loop with positive parity states 0.66 0.47 | —0.06

Table 4.1: Summary of our results for the effective couplings as explained in the text. The listed best-fit
values for the one-loop calculated bare couplings were obtained by neglecting counterterms’ contributions
at the reqularization scale >~ 1 GeV.

P, = Py and V = Py, and is related to the bare g coupling as (see e.g. ref. [32])
2VTP TR o (4.11)

Gprpyn = 7 9Py Py

Using our best fitted value for g = —0.06 and excited meson masses from table 1.1, we predict
the absolute value of this phenomenological coupling for the case of P = D’lo, Py = D(’)‘Jr and
T=T ’GD10D6‘+7r*‘ = 6.0 corresponding to an effective tree level coupling value of [g¢l-| = 0.15,
which is marginally consistent with other estimates of §2/¢ ~ 1/9 [98, 103, 114, 115].

We can summarize the best-fitted values for the bare couplings in table 4.1.  One should
remember that the quantitatively different results of ref. [43] appeared before the observation
of the even parity heavy meson states and in that study a combination of strong and radiative
decay modes was considered in constraining g.

4.3.1 Renormalization scale dependence, counterterm contributions and 1/my
corrections

In a full NLO HMPT analysis, the renormalization scale dependence of the non-analytic (log)
terms cancels completely against the one in the relevant counterterms for any physical quantity.
However, in our coupling extraction we neglect the contributions of the unknown counterterms,
thus spoiling such cancelation. If we probe our results to the sensitivity to the renormalization
scale p we obtain a moderate dependence (see also fig. 4.3), namely a 20% variation of scale
around 1 GeV results in roughly 10% variation in g, 6% variation in h whereas the value of g is
more volatile and can even change sign for small values of p. This behavior could be expected
since ¢ only features in logarithmic corrections which diminish at small scales comparable to
pseudo-Goldstone masses. Therefore in order to compensate for this in the absence of any
counterterm contributions, the value of g has to change drastically, while the values of the other
two couplings are held fixed close to their tree level estimates.

Since we consider decay modes with the pion in the final state, one should not expect sizable
contribution of the counterterms. Namely, the counterterms which appear in our study are
proportional to the u and d quark masses, and not to the strange quark mass [43]. Nonetheless
we study the effects of the counterterms on our couplings fit. Following the approach of ref. [43]
we take the values of ks, K, K19, K}g, d2-+03 and 05+ J5 entering our decay modes to be randomly
distributed at ;1 >~ 1 GeV in the interval [—1,1]. Near our original fitted solution, we generate
5000 values of g, |h| and § by minimizing x? at each counterterm sample. For each solution
also the average absolute value of the randomized counterterms (|x|) is computed. We plot the
individual coupling solution distributions against this counterterm size measure in fig. 4.4. We
see that the inclusion of counterterms spreads the fitted values of the three couplings. From this

3Effective tree level coupling value derived from one loop calculation for the case D;O — Ditr.
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Figure 4.4: Effect of the mq and E. counterterms of the size orderm on the solutions for the couplings
g (top left ), |h| (top right) and g (bottom) as explained in the text.

we can estimate roughly the uncertainty of the solutions due to the counterterms to be at the
one sigma level g = 0.661’8:82, |h| = 0.47f8:81 and g = —0.06f8:8§ if we assume the counterterms
do not exceed values of the order O(1). This result is in a way complementary to the study of
renormalization scale dependence of our couplings’ fit. Both are important since although it is
always possible in principle to trade the counterterms contributions for a specific choice of the
renormalization scale, the latter will be different for different amplitudes where the combination
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‘ Input (variation) ‘ og (%] ‘ o|h| [%] ‘ og [%] ‘
Asu (30%) 7 5 70
Agz (30%) 5 <1 16
mpz, mp ([11], [12], [81]) 2 5 70
wu (20%) 10 6 > 100
ct. (L1) 15 15 60

Table 4.2: Summary of probed input parameter ranges and coresponding fitted couplings’ variations as
explained in the text.

of counterterms will be different.

A full calculation of the strong decay couplings should contain, in addition to the corrections
we determine, also the relevant 1/my corrections as discussed in ref. [89]. However, the number
of unknown couplings is yet too high to be determined from the existing data. In addition, the
studies of the lattice groups [19, 20, 45] indicate that the 1/mp corrections do not contribute
significantly to their determined values of the couplings, and we therefore assume the same to
be true in our calculations of chiral corrections.

To summarize, the counterterm contributions of order O(1) can spread the best fitted values
of g, |h| by roughly 15% and g by as much as 60%. Similarly, up to 20% shifts in the renormal-
ization scale modify the fitted values for the g and |h| by less than 10% while g may even change
sign at high renormalization scales. Combined with the estimated uncertainty due to discrep-
ancies in the measured excited heavy meson masses and resulting mass splittings, we consider
these are the dominant sources of error in our determination of the couplings as summarized also
in table 4.2. One should keep in mind however that without better experimental data and/or
lattice QCD inputs, the phenomenology of strong decays of charmed mesons presented above
ultimately cannot be considered reliable at this stage.

4.4 Chiral extrapolation of lattice QCD simulations

Next we study the contributions of the additional resonances in the chiral loops to the chiral
extrapolations employed by lattice QCD studies to run the light meson masses from the large
values used in the simulations to the chiral limit [45, 46]. In the extrapolation of the lattice data
the kaon and the n-meson loops essentially do not alter the quark mass dependence, whereas
the important nonlinearity comes from the pion chiral loops. As an illustration, in fig. 4.5 we
plot the typical chiral logarithm, —m? log(m?/u?), as a function of r = mg/ms which appear in
the Gell-Mann-Oakes-Renner formulae (2.6) with 2Byms = 2m3. — m2 = 0.468 GeV2.

The results of the previous section suggest that the inclusion of heavy excited mesons in
the chiral loops introduces relatively large corrections into the renormalization of the coupling
constants. Formally, the problem was already mentioned in section 2.4 when the two equivalent
realizations of the theory involving the new Agpy scale were considered. There we encountered
a possibility of a strongly coupled mixed sector of the theory in the case the Agpy/f ratio
grew large. Within our chosen parametrization, when the Aggy contributions are re-summed
into the heavy meson propagators the problem can be explored by analyzing the dimensionally
regularized loop integrals involving the off-set propagators. The large splitting between the
ground state and excited heavy mesons in the loops causes the pseudo-Goldstone bosons in the
loops to carry large momenta. They can be highly virtual or, in the cases of PyPm, P/ P*r
and PPy couplings’ renormalization, real in a considerable portion of the phase space. Such



COoaliAL BEATRAFUOLALTION OF LALT1TIOE QUD SIMULATIOINDS 329

04

Figure 4.5: Typical chiral logarithmic contributions —m?log(m?/u?) are shown for pion, kaon and 1 as
a function of r = mg/ms, with ms fized to its physical value, and p =1 GeV.

behavior casts doubts on the validity of this extended perturbation scheme, as contributions
from higher lying excited heavy meson states seem to dominate the loop amplitudes. As an
example we consider I1"”(m, A), which can be found in the Appendix B, while all the other loop
integrals relevant for this chapter can be obtained from this one via algebraic manipulation.
The integral is characterized by two dimensionful scales (m and A). In addition xPT requires
pion momenta (also those integrated over in the loops) to be much smaller than the chiral
symmetry breaking scale A,. The first integral scale m is the mass of the pseudo-Goldstone
bosons running in the loop . In lattice studies, its value is varied and can be taken as large
as m ~ 1 GeV. Within xPT however, it is protected by chiral symmetry to be small. On the
other hand, once A contains the splitting between heavy meson states of different parity, it is
not protected by either heavy quark or chiral symmetries and can be arbitrarily large (its size
should mainly be determined by O(A,) effects up to chiral, m, and 1/mg corrections). Once
we attempt to integrate over loop momenta probing also this scale, we are effectively including
harder and harder momentum scales in the dimensionally regularized expression as this splitting
grows. Finally, as these approach A,, the perturbativity and predictability of such scheme break
down.

While the phenomenological couplings’ fit seems mainly unaffected by such problems (e.g.
the results depend only mildly on the actual value of the mass splitting in the range probed),
they play a much more profound role in the chiral extrapolation. As customary we expect the
non-analytic chiral log terms to dominate the extrapolation, while any analytic dependence on
the pseudo-Goldstone masses can be absorbed into the appropriate counterterms. As an example
we write down the dominating contributions to the chiral log extrapolation of the g coupling

1 g [ MM NN a2 e (1 A%
m7 dlogm} (4 f)? 2 m?
NN J 6A2
420 Ced % | 2 29 g 22SH )| (4.12)
A m?
ab 9 9

In the above expression we have for the sake of simplicity neglected the light flavor splittings
between the heavy mesons which are always small compared to Agyy, are of higher order in the
power counting and vanish in the chiral limit. On the other hand one can immediately see,
that the Agy contributions due to excited heavy mesons in the loops seemingly dominate the
chiral limit, where they diverge. The issue seems therefore to be especially severe in the case of
pions, which due to their small masses can also develop sizable imaginary parts in their analytic
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contributions introducing uncontrollable final state interactions. This seems to fly in the face of
one of the basic principles of QFT, namely that the description of low energy processes should
not be sensitive to the UV completion of the theory. The whole idea of effective field theories is
based upon this foundation, that for low enough energies, the contributions from heavier states
should decouple. Eq. (4.12) however suggests, that chiral corrections to strong decays of heavy
mesons are dominated by higher resonance states and we need to understand the mechanisms
that could restore the proper decoupling limit in this case.

4.4.1 Taming resonance contributions - the decoupling limit

We explore the issue by focusing on the chiral limit of the theory and attempt an expansion of the
relevant loop integral expressions (coming from opposite parity heavy mesons propagating in the
loops) in powers of the pseudo-Goldstone mass. First we notice that in the case of g and g vertex
corrections both heavy meson states propagating in the loop always belong to the same spin-
parity multiplet. Due to the identity between the loop integral functions C'(z,z,m) = C'(xz,m)
(see Appendix B) in this limit, the expressions entering the leading order chiral corrections of
heavy meson wave-function and vertex renormalization are the same and we must only evaluate
the limit of

m ax

lim [idiC (x,m)

4N? 4N?
:6A210g—2—2A2—m210g—2—3m2+..., (4.13)
u u

z=A/m

where the dots stand for higher powers in m?. We see immediately that actually the diverging
analytic and logarithmic parts cancel exactly in the chiral limit washing out any leading order
contributions to the chiral running from such loops. In other words, below A = Agy the
presence of the nearby opposite parity states does not affect the leading order pionic logarithmic
behavior of the g and g couplings at all.

In order to generalize this result also to the h coupling, we need to consider a slightly different
and more general route. Namely, we attempt on an perturbatively approximative solution. We
expand the integrand of I}"(m, A) over powers of A. We may do this, assuming the relevant
loop momentum integration region lies away from the (v-¢ — A) pole, which is true for yPT
involving soft pseudo-Goldstone bosons and for a large enough A ~ A,. We obtain a sum of
integrals of the form

4—D WV _ .

I (1,8 st = 55 / quﬁKl(l + L4, (4.14)
where the ellipses denote terms of higher order in the 1/A expansion. This greatly simplified
integral has a characteristic, that all terms with odd powers of loop momenta in the numerator
vanish exactly. Thus, the first correction to the leading O(1/A) order truncation appears only
at O(1/A3).

The above described procedure is similar to what is done in the "method of regions” (see
e.g. [116]) when one separates out the different momentum scales, appearing in problems involv-
ing collinear degrees of freedom. However, here we are only interested in the low momentum
part of the whole integral and assume the high momentum contributions are properly accounted
for in the counterterms. The leading order term in (4.14) then yields for the loop functions

2 2 3
Ci(x,m) = —% [m? —m?log (%)} +0 (%) ,

3

Colz,m) = o(m > (4.15)

3
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When compared to the special limiting case of eq. (4.13), we are here effectively throwing out
of the loop integrals all contributions involving positive powers of z(A) (those written out in
eq. (4.13)), since they originate from hard pseudo-Goldstone exchange and shifting them into
the counterterms (which now appear appropriately rescaled). It is important to stress that the
relevant ratio for the validity of this approach is A/E; > 1 as we are expanding in powers of
loop momentum, not pseudo-Goldstone masses.

This approach can alternatively be understood as the expansion around the decoupling limit
of the positive parity states with the corresponding contributions being just a series of local
operators with A dependent prefactors - effective counterterms of a theory with no positive
parity mesons. For example in counting the chiral powers in the first term of the expansion (4.14)
we see that the obtained structure corresponds to a O(p®logp) contribution coming from a
counterterm loop insertion. For the case considered in eq. (4.13), we were able to show such
decoupling explicitly because the associated loop integral effectively factorizes in that case into
soft and hard contributions. In general this is not always possible and we have to rely on the
expansion of eq. (4.14) instead. Any large deviations of this approach from the predictions of
a theory without positive parity states and with the couplings properly refitted would signal
the breaking of such expansion and the fact that the contributions from ”dynamical” positive
parity states cannot be neglected. We expect such an expansion to hold well for the SU(2)
chiral theory involving only pions as pseudo-Goldstone bosons, as their masses are much lighter
then the phenomenological value of Agy. For an illustration we can sketch the relevant energy
scales of the effective theory as follows

2 2
m m
Mud ~ 35 < D S ms ~ K A, < mg. (4.16)
X X

Within a full SU(3) chiral theory involving positive and negative parity heavy states we are ex-
panding in the powers of {mr k n, Asu}/Ay and {mr i, Asu, Ay }/mg, whereas in a SU(2) chi-
ral theory with a 1/A gy loop momentum expansion, we are instead considering m,/{Ay, Agm}
and {mz, Asu, A }/mq.

4.4.2 Chiral extrapolation of the effective meson couplings

We apply the two above described approaches to the one-loop chiral extrapolation of the effective
strong couplings g, h and g and first write down the leading chiral log contributions of the SU(2)
theory together with the leading corrections due to the opposite parity states contributions:

1 m2 [ m2 g
eff. 2 s 2 T 2 g
” = 1 log— |—4¢°* — —=—h" |3+ = , 4.17
9P Pyt 9{ + (arf)z= 8 2 Y 8AZ,; ( +g>]} A7)
1 m2 [ m2 g
1T, T T
Ipiparo = g{1 - (47Tf)2m7% log =5 —5g” — 8A§Hh2 (3 — 5)] } (4.17b)
hetl: ~nliy L om21 M —§(2 g —39° —39%) L R (4.17¢)
P;opbﬂ'i - (4.7Tf)2 108 NQ _4 99 g g 2A%H 5 .
1 m2 [3 m2
peft. = hdl+ ——m2log —= | 2(=2¢F — 3¢ — 357%) — — 12 4.17d
P Py { + (47‘1’f)27n7T 08 ;ﬂ _4( 99 g g ) 4A%H ' ( )
1 m2 [ m?2 g
~eff. ~ 2 s ~2 s 2
/ = 1+—= log —- |—4 ——h* 3+ = , 4.17
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where these leading chiral corrections only distinguish between decay modes with either a
charged or neutral pion in the final state. We shall compare these expressions with the full
SU(3) chiral log contributions including those from opposite parity states (eqs. (4.12)).

In the following quantitative analysis we take the fitted values of the couplings from the
previous section. We compare:

(I) Loop integral expansion in the SU(2) limit. The leading order contribution is given by the
chiral loop contributions in a theory with only a single heavy parity multiplet, while we
also probe the next-to-leading contributions due to the 1/A%,, terms.

(IT) Complete SU(3) leading log extrapolation with heavy multiplets of both parities contribut-
ing.

(III) The same as (II) but in the degenerate limit Agy = 0,

0) Chiral SU(3) extrapolation without the 1/AZ%,, dependent contributions in eqs. (4.17a-
SH
4.17f).

We assume exact SU(2) isospin symmetry and parameterize the pseudo-Goldstone masses ac-
cording to the formulae (2.6). Consequently in the chiral extrapolation we only vary the ratio r
— the light quark mass with respect to the strange quark mass which is kept fixed to its physical
value. Since we are only interested in the nonanalytic r-dependence of our amplitudes, the
common renormalization scale dependence can be subtracted together with counterterm contri-
butions which are analytic in 7. The leading slope of these can in principle be inferred from
lattice QCD. In ref. [114] the g and g couplings were calculated on the lattice at different r
values. However that study used large values of pion masses (r ~ 1) where the predispositions
for our extrapolation expansion in scenario (I) are not justified. Also in order to use lattice data
to infer on the validity of our approach from such a chiral extrapolation one would in addition
need lattice results for the h coupling, since it enters in the new potentially large next-to-leading
chiral logs of the other two couplings considered in eqgs. (4.17a-4.17f). Instead we normalize our
results for the g coupling renormalization in all scenarios at 8y, Aoms/f? = A%  (corresponding
in our case to r,;, = 0.34) to a common albeit arbitrary value of Zg; Py (rap) = 1 and zero slope.

In order to fit our results to lattice data, one would instead need to add the (counter) terms
constant and linear in r to the chiral extrapolation formulae, representing contributions from s
and u, d quark masses. Their values could then be inferred together with the values for the bare
couplings from the combined fit for all the three couplings to the lattice results.

As an example we again consider the strangeless process D** — DO in fig. 4.6. We can see
that including the complete chiral log contributions from excited states in the loops , introduces
large (2 30%) deviations from the extrapolation without these states due to the A%, /m2
divergence of the log terms in the chiral limit and are obviously flawed. If one instead applies
the decoupling expansion discussed above, the deviations diminish considerably. The somewhat
non-physical case of degenerate multiplets is better in this respect producing extrapolation
closer to those in the SU(2) or SU(3) theories without dynamical positive parity states. Such
corrections to the running due solely to the h? terms are less then 5%. The SU(2) and SU(3)
scenarios are almost identical, since it is always the pions which contribute mostly to the chiral
running near the chiral limit, while kaon and eta contributions are almost constant. We can
estimate the leading effects of the integrated out positive parity resonances on the chiral log
running of the g via the broadening of the gray shaded area between the black curves of scenario
(I). These represent the leading order contributions and the dominating next-to-leading order
contributions due to factored out positive parity states. Their difference amounts to the order
of 0.5%, signaling a well converging perturbative expansion. It is important to stress, that this
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Figure 4.6: The g coupling renormalization in D** — D7+, Comparison of chiral extrapolation in (I)
SU(2) limit and loop integral expansion (black, solid), (II) complete SU(3) log contribution of both parity
heavy multiplets (blue, dash-dotted), (II1) its degenerate limit (gray, dash-double-dotted), and (0) SU(3)
log contributions of negative parity states (red, dashed line) as explained in the text.

No.85 J —— Scen. 1
, .
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Figure 4.7: Chiral extrapolation of the h coupling renormalization in D§T — DOzt . Comparison of chiral
extrapolation with (I) loop integral expansion in the SU(2) limit (black, solid), (II) complete SU(3) log
contribution (blue, dash-dotted), and (III) its degenerate limit (red, dotted) as explained in the text.
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expansion is only applicable in the mass extrapolation region we are considering here namely
below Agyg and in order to obtain accurate results via such extrapolation, lattice studies must
approach below this value with their simulated pion masses. Above this value, we are unable to
disentangle the effects of positive parity resonances with hard pions from those of leading order
soft kaon and eta loops unless we discern all the counterterms as well and fix them e.g. from
the lattice.

For completeness we also plot the chiral extrapolation diagram for the Z gar Dot in fig. 4.7
(while the extrapolation for the g goes along the same lines as the one for g discussed above, only
with the couplings ¢ and ¢ interchanged — see eqs. (4.17a-4.17f)). Here scenario (0) is meaning-
less, as is the h coupling in a theory without dynamical heavy multiplets of both parities. On
the other hand, the 1/Agy expansion of loop integrals in scenario (I) still makes sense, although
its physical meaning here is more clouded. Namely we are not integrating out heavy fields of
either parity, but rather truncating a class of diagrams, where the kinematics of the intermediate
heavy states cause the exchanged pions to be hard. Therefore contributions involving a single
h coupling sandwiched between g and g vertices are not suppressed, whereas contributions of
opposite parity intermediate states in heavy meson wave-function renormalization as well as
triple-parity changing loop contributions to vertex renormalization (all involving three powers
of h) all contribute only at the next-to-leading order in our expansion. The results for the chiral
extrapolation of the h coupling renormalization are thus very similar to the g coupling case.
Here, in all approximations, the main contributions to the extrapolation come from the g2, §>
and mixed gg terms, with smaller corrections due to the Agy dependent h? terms (except for
the complete scenario II, where these terms give large deviations). Next-to-leading contributions
of 1/Agp expansion again give an effect of the order of 0.5%.

To summarize, our analysis of chiral extrapolation of the coupling g shows that the full loop
contributions of excited charmed mesons give sizable effects in modifying the slope and curvature
in the limit m,; — 0. We argue that this is due to the inclusion of hard pion momentum
scales inside chiral loop integrals containing the large mass splitting between charmed mesons of
opposite parity Agy which does not vanish in the chiral limit. If we instead impose physically
motivated approximations for these contributions — we expand them in terms of 1/Agpy — the
effects reduce dramatically, with explicit A contributions appearing at the next-to-leading order
in the expansion and contributing of the order of 0.5% to the running. Consequently one can
infer on the good convergence of the 1/Agy expansion. We conclude that chiral loop corrections
in strong charm meson decays can be kept under control provided the extrapolation is performed
below the Agpr scale, give important contributions and are relevant for the precise extraction of
the strong coupling constants g, h and g.



Chapter 5

Semileptonic decays of heavy mesons

Presently, one of the most important issues in hadronic physics is the extraction of the CKM
parameters from exclusive decays. An essential ingredient in this approach is the knowledge of
the form factors’ shapes and sizes in heavy to heavy and heavy to light weak transitions. Most
of the attention has traditionally been devoted to B decays and the determination of the CKM
phase and of the V,; and V,; CKM matrix element moduli. At the same time in the charm
sector, the most accurate determination of the size of V.4 and V.4 matrix elements is not from a
direct measurement, mainly due to theoretical uncertainties in the calculations of the relevant
form factors. In both sectors, the presence of nearby excited heavy meson resonances might
affect the present picture substantially. In this chapter we therefore explore the leading effects
due to possible excited heavy meson states on the determination of the relevant form factors in
semileptonic transitions involving heavy mesons.

5.1 Heavy to light transitions

Semileptonic decays of charmed mesons are necessary for extracting moduli of CKM elements V4
and V4 directly and thus checking the values fixed by imposing CKM unitarity. The knowledge
of the form factors which describe the weak heavy — light semileptonic transitions is very
important in such an endeavor. Namely, one needs to know an accurate value of the relevant
form factors obtained in QCD at (at least) one value of s at which both theory and experiment
can reach an accuracy comparable to the error on |Ves| (|Veq|) actually fixed from CKM unitarity.
To do so, lattice QCD will hopefully help us in the near future.

However, the actual shape of the form factors has been a subject of many discussions in
the literature and at least its qualitative understanding can possibly help us solve the hadrody-
namics in situations that are far more complicated (notably in the decays of baryons etc.). A
lack of precise information about the shapes of various form factors is still the main source of
uncertainties in many of these processes.

On the experimental side there exist a number of interesting results on D meson semileptonic
decays . The CLEO and FOCUS collaborations have studied semileptonic decays DY — 7= ¢Tv
and D° — K—¢*v [117, 118]. Their data provides relevant information on the D® — 7= ¢*v
and D' — K~ ¢Tv form factors’ shapes. Usually in D semileptonic decays a simple pole
parametrization has been used in the past. The results of refs. [117, 118] for the single pole
parameters required by the fit of their data, however, suggest pole masses, which are inconsistent
with the physical masses of the lowest lying charm meson resonances. In their analysis they also
utilized a modified pole fit as suggested in [47] and their results indeed suggest the existence of
contributions beyond the lowest lying charm meson resonances [117]. The experimental situation
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in D — Vv, at the same time has also been gaining pace [119, 120, 121, 122, 123, 124].

There exist many theoretical calculations describing semileptonic decays of heavy to light
mesons: quark models (QM) [93, 125, 126, 127, 128, 129], QCD sum rules (SR) [94, 130, 131,
132, 133, 134], lattice QCD [135, 136] and a few attempts to use combined heavy meson and
chiral Lagrangian theory (HMxT) [32, 55]. Most of the above methods have limited range of
applicability. For example, QCD sum rules are suitable only for describing the low s region
while lattice QCD and HMxT give good results only for the high s region. However, the quark
models, which do provide the full s range of the form factors , cannot easily be related to the QCD
Lagrangian and require input parameters, which may not be of fundamental significance [128]. In
addition to studies of heavy to light pseudoscalar meson weak transitions (H — P), transitions of
heavy pseudoscalar mesons to light vector mesons (H — V') such as Dy — ¢lvy an Dy — K*lyy
offer an opportunity to extract the size of the relevant CKM matrix elements or probe different
approaches to form factor calculations. The H — V transitions were also already carefully
investigated within many different frameworks such as perturbative QCD [137, 138], QCD sum
rules [130, 133, 134, 139, 140, 141], lattice QCD [142, 143, 144, 145], a few attempts to use
combined heavy meson and chiral Lagrangians (HMxT) [32, 50], quark models [93, 126, 128, 146],
large energy effective theory (LEET) [49] and soft collinear effective theory (SCET) [147, 148,
149, 150, 151, 152].

The purpose of this section is to investigate whether a theoretically and phenomenologically
consistent form factor parameterization can be conceived by saturating the dispersion relations
for the form factors by one or more effective poles in s and at the same time encompassing all the
relevant symmetry constraints. Therefore we will review the general BK parameterization of the
H — P form factors due to Beéirevi¢ and Kaidalov [47], and devise a similar parameterization
also for all the form factors relevant to H — V weak transitions which would take into account
known experimental results on heavy meson resonances as well as known theoretical limits of
HQET and LEET relevant to H — V weak transitions. Furthermore we would like to investigate
contributions of the newly discovered charm mesons discussed in the Introduction to D — P
and D — V semileptonic decays within an effective model based on HMxPT by incorporating
the newly discovered heavy meson fields into the HMyPT Lagrangian and utilizing the general
form factor parameterization. We restrain our discussion to the leading chiral and 1/my terms
in the expansion, but we hope to capture the main physical features about the impact of the
nearest poles in the ¢t-channel to the s-dependence of the form factors .

5.1.1 Semileptonic heavy to light meson form factors

We will work in the static limit of HQET where the eigenstates of QCD and HQET Lagrangians
are related via eq. (2.18). In ref. [153] it was pointed out that in the limit of a static heavy
meson one can use the following decomposition:

(Pop)|JIH ()nqer = [Pp — (v pp)o"] fo(v-pp) + 0" fu(v - pp), (5.1)

where the form factors f,, are functions of the variable v-pp = (m?% +m% — s)/2my, which in
the heavy meson rest frame is the energy of the light meson Ep. The important thing to note is
that fp, as defined in eq. (5.1) are independent of the heavy quark mass and thus do not scale
with it. The form factors F, ¢ given in (3.27) and the form factors fp,,(v - pp) are related to
each other by matching QCD to HQET at the scale p ~ mg [154, 155]. We compare compare
the time and space components of egs. (3.27) and (5.1) in the static frame of the heavy initial
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state meson (v° = 1, v = 0) to obtain:

m2. — m2
Fi(s) + % [FL(8) = Fo(8)] lsmsmae = Cri(mo)Vmy [fp(v-p) + O(1/mq)],
2 2
mi —mp

(mu + Ep)Fy(s) + (my — Ep) [F(s) — Fo(8)] [smsman

= Cy(mo)Vmy [fo(Ep) + O(1/mq)] .
(5.2)

We fix the matching constants C,, to their tree level values C,, = 1. This approach immediately
accounts for the F o behavior at syax. At the leading order in heavy quark expansion, the two
definitions are then related near zero recoil momentum (s ~ spax = (mpg —mp)? or equivalently
lpp| >~ 0) as

Fo(s)

|5z5max

fo(v-pp) (5.3a)
f,

F+(S) ’5r~\‘5111ax = p(v : pP) (53b)

1
vVImH
vImH

2

Similarly in this limit it is also more convenient to use parametrization of the H — V
transitions in which the form factors are independent of the heavy meson mass, namely we

propose

(V(e.pv)| Ty H()uger = 9o evapys, (5.4a)
(V(e,pv)| 4| H(v)nqer = —ias(e -v) [py — (v pv)v]

—iay [eff — (v - €f)v"]

—tag(v - €7,)v", (5.4b)

The form factors gy, a1, a2 and ag are functions of the variable v - py = (m% +mi — s)/2mpy.
In such decomposition, again all the form factors (g,, a1, as and ag) scale as constants with the
heavy meson mass. The relation between the two form factor decompositions is obtained by
correctly matching QCD and HQET at the scale p ~ mg [154, 155]:

Cyi(mg) = 2V(s)
iy P O]l = S

[ao(v-pv) + O(1/mp)] =

{(mH — Ev) (

N

5 2va0(8) + (mH + mv)A1 (8) — (mH — mv)AQ(S)]

9

+(mH+Ev)A2(S)— (mH+mV)A1(S)}
my +my mmpg

SRISmax

Crims (m@)v/m fai (v - pv) + O(1/mp)]

Cw\;iT(:Q) laz(v-pv) + O /mp)] =

(ma +my)A1(5)]sxsmaxs

Ay(s) + Ag(s)] - =TV

- AQ(S)
mg + my

{"”H—“”V [ [Aa(s) + Ao(s)

SSmax



COoArliiie o SEMILEFTONICO DECAYS OF ARKAVY MESOINS

In the following we set the matching constants Cr to their tree level values (C,, = 1). At leading
order in 1/m¢ we thus get

Vi

V(s)lsmomae = 5 go(v-pv); (5.6a)
1

Al (S)|3z5max = \/T—nH ay (/U : pV)7 (56b)
m

A2(8)|szsmax = \/;H ag (/U : pV)7 (56C)
m

Ao(8)smone = \;;‘Ijao(v'l?v), (5.64)

which exhibit the usual heavy meson mass scaling laws for the semileptonic form factors [48].
This parametrization is especially useful when calculating the form factors within HMyPT. The
individual contributions of different terms in the HMxPT Lagrangian to various form factors
can be easily projected out.

5.1.2 Relations in HQET and SCET and Form Factor Parameterization

Now we turn to the discussion of the form factor s distribution, where we follow the analysis
of ref. [47]. As already evident from egs. (5.3a,5.3b) and (5.6a-5.6d), due to the heavy mass
invariance of the HQET form factors, there exist the well known HQET scaling laws in the limit
of zero recoil [48]. On the other hand in the large energy limit s — 0, one obtains the following
expressions for the form factors [49]

Fio(s)lsao = &(Ep), (5.7a)
Fo(s)[s~0 = f—ljﬁ(EP% (5.7b)
V(s)lsmo = %&(Ev), (5.7¢)

2By

A1(s)lsmo = ———&u(Bv), (5.7d)

myg + my

As(s)[s~0 = %Hmv [fL(EV) - %fH(Ev)] ; (5.7¢)

m2

Ao(s)lsmo = (1 - ﬁ) §1(Bv) ~ & (Ev), (5.7)

where in the limit of large energy of the light meson (large recoils), in the rest frame of the
heavy meson

mu S mby
my my

These scaling laws were subsequently confirmed by means of SCET [147, 150]. This is important
since the LEET description breaks down beyond the tree level due to missing soft gluonic degrees
of freedom which are however systematically taken into account within SCET [149, 152]. Still
one needs to keep in mind that these scaling laws are also subject to 1/mpg power corrections
and sizable deviations might occur for finite heavy meson masses, especially in the case of
charmed mesons or conversely for large enough mpy (e.g. for final state kaons etas or light
vector mesons).

The starting point are the vector form factors V' and F,, which in the part of the phase
space that is close to zero recoil are dominated by the first known pole due to the heavy vector
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Figure 5.1: A schematic view of the s worldsheet in heavy to light (H — P) semileptonic decays, with
imaginary contributions to Fy form factor marked in red. Crossed circles indicate quasi-stable particle
(resonance) poles, while the cut along the real axis represents the t-channel HP pair emission above
threshold to. The physical kinematical region in the s-channel is marked with blue.

meson resonance at t = m%{ The important thing is that this pole lies below the H P pair

production threshold for both charm and bottom meson sectors to = (mpg + mp,v)Q. Therefore
the analytic structure of these form factors dictates the following dispersion relations [156, 1]

Ress:m2 FJr(S) 1 o S|P (t
Fi(s) = i + _/ dt\s[;().]’ (5.9)
My — 8 T Jio t—s—1€

with an analogous expression for V. The imaginary parts are consisting of all single and multi-
particle states with J* = 17, thus a multitude of poles and cuts above t( (see fig. 5.1). However
the H* contribution can be singled out and the residues at the pole at s = m%{* can be iden-
tified using the resonance dominance approximation, which is certainly valid in the vicinity of
the isolated resonance. We write the H — P current matrix element in the P crossed chan-
nel as (0| J, |H(pu)P(pp)) ~ (0| J,|H*) ® G~ @ (H*|H(pu)P(pp)), where Gy~ is the H*
propagator. We use the standard definitions for (H (pu)P(pp)|H* (pu + ppr,€)) (eq. (3.19)) and
(0] J, |[H*(pr+,€)) (eq. (3.20a)). Inserting the vector particle propagator for H* we obtain

Gupa=mm- [+ m2, — m?2
O J,. | H(pu ) P(pp)) ~ — 20t —m2.) (P —PP)p — %(m +pp)u|,  (5.10)
e e

from which we can immediately read off the form factor residual

1
Res, 2 Fi(s) = iGH*HPfH*mH* (5.11)

-
It scales as ~ m?f with the heavy meson mass [47] as can be easily inferred from the HQET
scaling of Gg«pp (4.11) and fg+'. For the heavy to light transitions this situation is expected to
be realized near the zero recoil where the HQET scaling (5.3a,5.3b,5.6a-5.6d) applies. However,
since the kinematically accessible region s € (0, spax] is large, the pole dominance can be used
only on a small fraction of the phase space, i.e. for |p; —p| = 0. Even in this region the situation
for H — V form factors is more complex than in the case of H — P transitions, where sy i8

'In the case of fz+ we have to take into account the appropriate HQET scaling of external states in (3.20a),

/2

leading to fr* ~ ml_{l* up to logarithmic corrections due to the perturbative matching to QCD.
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indeed very close to the vector pole due to low mass of the light pseudoscalar mesons. Here, due
to larger masses of the light vector mesons, spax is pushed away from the resonance pole and
V' (s) may not be completely saturated by it. For the sake of clarity we shall, however, at present
neglect such possible discrepancies and assume complete saturation of both vector form factors
(Ft in H — P and V in H — V transitions) in this region by the first physical resonance.
On the other hand, in the region of large recoils, LEET dictates the scaling (5.7a-5.7f). We see
immediately, that a simple pole ansatz for the vector form factors, which assumes that all the
states above ty which couple to the vector components of the current would eventually cancel,
would produce the wrong scaling at s = 0 of F{(0) ~ V(0) ~ m;ﬂ. Instead, we can try to
take into account possible non-vanishing contributions to the form factors from all states above
to by adding an additional effective pole term to the form factor expression

Fy(s) = cp (1 ix - 1—avx) , (5.12)
where cgy = —gg=ppfu-/mp~, v = s/m%[* ensures, that the form factor is dominated by the
physical H* pole, while a and ~y are positive constants. The form factor scaling laws in the LEET
and HQET limits give their scaling with the heavy meson mass as (1 —a) ~ (1 —v) ~ 1/mp.

Next we use the form factor relations at s = 0 and construct the scalar form factor (Fp) in
the same way, such that it also satisfies all scaling limits

1—a

Fols) = ey,

(5.13)
where b now parameterizes the effective pole due to all states coupling to the scalar component
of the current. Finally, we note that the LEET limit is even more constraining on the two form
factors, as it imposes the following relation (5.7a,5.7b): Fy(s) = 2EpF.(s)/mp, which when
translated in terms of our parameters reads (1 —a) = (1 —+)[1 + O(1/mg)]. The constraint can
be satisfied for a = 7, leading to a much simplified expression for the F form factor

1—-a
1—2)(1—ax)

Fi(s)= cH( (5.14)

In the full analogy with the discussion made above[47, 157], the vector form factor V' also
receives contributions from two poles and can be written as

, 1—d
V) = i —an)’

(5.15)

where again a/ measures the contribution of higher states which are parametrized by the second
effective pole at m2; = m?,. /a’. Note that although similar in parameterization, the a’ and c/;
are not the same as a and ¢y, since neither the s = m%{* pole residual nor the threshold region
above ty are the same. Still, the parameters ¢j; and a’ scale with the heavy meson mass as
before ¢ ~ m;{l/ ?and (1 —a’) ~ 1/my to ensure the correct form factor scaling in both small
and large recoil regions. Again using the large energy limit relation between V' and A; [49]

(mH + 77”Lv)2

[V(s)/A1(8)] [s~0 = 2Eymy

(5.16)
(valid up to terms o< 1/m?; [150]) we can impose a single pole structure on A;. We thus continue
in the same line of argument as before and write

1—d
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Here & = m?%/(mp + my)? is the proportionality factor between A; and V from (5.16),
while b’ measures the contribution of higher states with spin-parity assignment 17 which are
parametrized by the effective pole at m%l,* = m%{ JV'. Tt can be readily checked that also Aj,
when parametrized in this way, satisfies aﬁf the scaling constraints.

Next we parametrize the Ay form factor, which is completely independent of all the others
so far as it is dominated by the pseudoscalar pole and is proportional to a different universal
function in LEET. To satisfy both HQET and LEET scaling laws we parametrize it as

1 _ a//
/!

Ao(s) = cy A5 —a75) (5.18)

where y = s/ m% ensures the physical 0~ pole dominance at small recoils. Imposing ¢}, ~ m

1/2

and (a’ — 1) ~ 1/mpy preserves all scaling laws, while a” again parametrizes the contribution of
higher pseudoscalar states by an effective pole at mgﬁ = m% /a”. Note that m 7 mass appearing
in 7 is due to the intermediate 0~ heavy meson state with the flavor quantum numbers of the
quark current, and not the initial state. The resemblance to V' and F is obvious and due to
the same kind of analysis [47] although the parameters appearing in the two form factors are
again completely unrelated.

Finally for the As form factor, due to the pole behavior of the A; form factor on one hand
and different HQET scaling at spyax (5.6a-5.6d) on the other hand, we have to go beyond a
simple pole formulation. Thus we impose

c///

As(s) = i b’x)?l “z) (5.19)
where j; = [(myg +mv )&y (1—a)+2mycf (1—a’)]/(myg —my) is determined from form factor
relations at s = 0 and kinematic constraint (3.32) so that we only gain one new parameter in
this formulation, b”. This however causes the contribution of the 17 resonances to be shared
between the two effective poles in this form factor. At the end we have parametrized the two
H — P form factors and four H — V form factors in terms of three (cg, a, b) and six parameters
(cy, d, b, ad", ') respectively.

We can now shortly comment on the LEET and HQET limits of the H — V transitions in
our parameterization. As shown in ref. [150] the helicity amplitudes of eq. (3.33) can be related
to individual form factors near s = 0. Using relations (5.7a-5.7f), valid in the large energy limit,
one can write

H_(y)lymo = 2(mu +my)Ai(miy),
Hi(lymo = 0. (5.20)
Thus in this region we can probe directly for the parameter ¢ (1 — a').

On the other hand in the region of small recoil (|py| ~ 0 or ¥ & Ymax) the helicity amplitudes
are saturated by the A; form factor

H:t (y)’y”\'\‘ymax ~ (mH + m‘/)Al (m%{y)7
my
HO(y)’y%ymax ~ _2(mH + mv)m—HAl (m%{y) (521)

Consequently we can also directly probe for the value of the b/ parameter determining the
position of the first effective axial resonance pole by taking a ratio of H_ helicity amplitude
values at small and large recoils

H_ (y)‘ywo

T )y~ 2 1= =y ) miy ] (5.22)
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Figure 5.2: Diagrams contributing to H — P form factors. The square stands for the weak current
vertex.

5.1.3 HMyPT description including excited states

Going beyond the general discussion of the previous subsections, we now attempt to determine
the parameters of the general form factor parameterizations within an effective theory description
based on heavy quark and chiral symmetries and by including phenomenologically motivated
dynamical heavy meson states into the model. These states will represent the lowest lying
excited heavy meson resonances which we will then assume to saturate the pole structure of the
form factor parameterizations.

For the semileptonic decays the weak Lagrangian can be given by the effective current-current
Fermi interaction o

Lo = _7}; [efyu(l - VS)VK\Y;L] ) (523)

where G is the Fermi constant and J, is the effective hadronic current. In heavy to light
meson decays it can be written as J, = K,J,,, where constants K* parametrize the heavy-light
flavor mixing. In the HMxPT description,the H — P leading order weak current Jj in 1 /mg
and chiral expansion is given by eq. (2.20). In HMyPT derived Feynman rules are valid near
zero recoil (|py| ~ 0) where we get leading order contributions to the effective current matrix
elements from Feynman diagrams in fig. 5.2. We see that the left diagram structure already
mimics resonant contributions. However, when examining the pole structure of the form factor
parameterization, we see, that only a single pole of F; can be identified with the single 1~ state in
a HMxPT construction when taking into account a single 1/2~ and 1/2* heavy meson multiplet.
We attempt to cope with the problem by introducing a second 1/2~ heavy meson multiplet H
representing radially excited pseudoscalar and vector states. Experimentally, hints have been
given in the past of the existence of such relatively long lived radially excited states in the
charmed sector [158, 159], however, the initial observations have not been confirmed [160, 161].
The required modifications of the HMyPT strong and weak Lagrangians are straightforward

%— B mix’
£ = T [Ha(w Dy — SupA E)H,,} ,
2
Egi)x = Tr [Fbﬁaflab’%] + h.c., (5.24)
and -
0 1 ~
J(g(\)/qu)HMXPT—i_ = 7TT[7“(1 — y5) HplE], (5.25)

where we have introduced three new parameters: the Az residual mass term of the second 1/27~

multiplet, h coupling between the two 1/27 heavy meson multiplets and pseudo-Goldstones and
a as the effective weak coupling of the new states, which is related to their decay constants.
Together with contributions from the ground state 1/2~ and lowest lying 1/27 mesons we get
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for the weak H — P hadronic current matrix element

(R )
« a pp—vtv-pp
Pb PP JquU = —ovt+=
a~ pp—vtv-pp o vh - pp

fropp+ Ay f veoppt+Asw, (5.26)
where a,b as before denote light flavor indexes and we have introduced the mass splitting pa-
rameter between the two 1/27 multiplets Ay = Ay — Ap,, between 1/ 2% and 1/27 states
Ag, 1, = Ag, —Ap, as well as the mass splitting between the initial state and the intermediate
1/27 ground state (vector) resonance Ay, = Ay, — Ap,. While in the exact heavy quark and
chiral symmetry limits, the first two would be flavor and spin independent and the last would
vanish, we are here keeping the flavor dependence as we expect large flavor SU(3) breaking
and will work only in the exact SU(2) limit where Az, = —A,3 ~ 100 MeV are nonvanishing
for ¢ = 1,2. In this approximation A AoH, = A fym, T Ape. In the remainder of the section
we shall use these definitions while suppressing the flavor indices, which should from here on
be considered implicit, and writing just Az, Asy and A. We now apply the projectors v,
and pp, — v,v - pp on eq. (5.26) and extract the form factors F'(s), Fy(s) using egs. (5.1)
and (5.3a-5.3b)

a mg a ~ mg

F SRS = h , 5.27
() s smas QﬁHfgv-pp—FA—i—Q\/me v-pp+ AL (5.272)
@ o v-pp
Fo(s)|s~s = + h . 5.27b
0(5)| max \/me \/me v-pp + ASH ( )

If one uses directly relation (3.27) instead of this extraction of form factors at large smax [153]
one ends up with the mixed leading /m; terms and the subleading 1/y/my terms in (5.27b).
Furthermore, the scalar meson contribution appears in the F form factor. The extraction
of form factors we follow here [153] gives a correct 1/my behavior of the form factors and
the contributions of 1~ resonances enter in F,, while 0T resonances contribute to Fy as they
must [92].

One can attempt a similar procedure in the case of H — V transitions by using an effective
SU(3) model description of the light vector mesons and append it to the HMyPT Lagrangian?.
A common procedure of achieving this is the hidden symmetry approach (c.f. [32]). In this
approach, the light vector mesons are introduced in the HMyPT Lagrangian as gauge fields of
an extended SU(3)y symmetry. The 3 field belongs to its singlet representation — hence the
origin of the term hidden symmetry. Light vector meson fields are introduced as gauge fields of
SU(3)y and are described by p,, = i% Pus Where p,, is the light vector meson field matrix in the

adjoint octet representation of SU(3)y

75w + ) o Kt
Pr= Pu Zlwn—pp) K| (5.28)
_ —=x0
KZ Ku ¢;L
The kinetic and mass Lagrangian terms for the p fields are then simply
1 R . af? R A
Ly = %[Fuu(p)abF“V(p)ba] - T(V(/;b - pgb)(vlt,ba — Puba); (5.29)

2Note the important difference in the treatment so far, namely HMYPT is an effective theory based on the
approximate symmetries of QCD, spontaneous symmetry breaking and the Goldstone theorem, and its corrections
can be computed perturbatively. On the other hand the SU(3) description of vector (as well as scalar and other)
light resonances employed here (and later) can only be cast into an effective model, about whose corrections we
can only speculate.
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where the gauge field tensor is defined as F,,(p) = Oupy — Oupp + [Py, pv], while m,% = ag?, f%/2
is the degenerate mass squared of the vector octet. If we also examine the gauged vector current
Jy = iaf?e(VF — ph)ET, we obtain fo = ngVa/\/imp as the common vector decay constant
fixing the model parameter gy = 5.9 phenomenologically.

At leading order in 1/mp expansion, strong interactions between lowest lying heavy meson
fields, and light vector meson fields are described by the interaction Lagrangians [50, 32]

Eil%_ = —ifTe[Hyvuply, Hal + iINTY[Hyo™ Fpu (p)oa Hal, (5.30)
Ly = —iCTr[Hy,uph Sa) + hee.
+ipTr[Hpo™ Flu (P)oaSa) + hoc., (5.31)
gt = —izTr[Hvapba o The
+ipTr[Hyo™” Fuy(ﬁ)baHa] +h.c., (5.32)

where the first terms in each row of the above expression are even under naive parity trans-
formation (H(x) — H(Pz), {(x) — &(Px) with P(t,x) = (¢,—x)), and the second terms are
naive parity odd (all are invariant under the real parity transformations H(z) — ~oH (Px)7o
and &(x) — &7(Pz)). Similarly one can construct the corresponding weak current operator
containing light vector fields and append it to the effective weak Lagrangian

0)p ~ ~
Jé(x)/ wer T = TtV Hypy,] + a2 Te[y"y” Hyva ). (5.33)

Using these building blocks, one obtains exactly the same topology diagrams contributing to
the H — V form factors, as the ones displayed in fig. 5.2 with the replacement of the external
pseudo-Goldstone lines with light vector boson lines. For the corresponding transition matrix
element we get (we are again suppressing flavor indices)

(Vpv)|JHHW) = —iv2gy (a1€f, — agv - eyo)
_ﬁgva)\e/“’aﬁvyp‘/aevg V2gya ~Fe T vypyacy g
pv +A vopy + Apg
9\/ pu - eyt .V ~ Zv ey M

—Q -l —
TR+ A T vepy +Apg
v e (C=2mv-pyv) + (2upfy — Cut) v - ey
—’L—CM
V2 v-py + Agh

: (5.34)

where we the mass splitting A now refers to the initial and intermediate pseudoscalar heavy
meson ground states. We apply the projectors v, and v,v-pp — pp, on eq. (5.34) and extract
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the form factors V(s), Ai(s), Aa(s) and Ag(s) at smax using egs. (5.6a-5.6d):

A
V(s)]sas = —== 5.35
(8)’ max ﬁameHU pV+A ( a)
m
——Oém U e— 5.35b
Ay o, = WV €= 2V pv) (5.35¢)

\/5 mg +my v-py + Agy

Vagyay Y (5.35d)

myg + my
gy ,myg + my I

A ~ = 2= 5.35

2(8)|5~5max \/ia \/EH v - pv + ASH ( e)
Jm
A0(8)|5z5max = 297‘/5 mVH (20{1 - 20{2 (535f)
3 _ ¢

+ + ) 5.35

av'pv—i-A av~pv+AHg ( 2)

Again we see that the heavy meson resonance pole structure of the form factors in this model
setup nicely reproduces the one of the general parameterization from the previous section for
all the form factors except As, which receives only a single resonant pole contribution while the
general parameterization would require two effective poles.

5.1.4 Determination of model parameters — comparison with experiment

In order to test our approach against experimental data, we need to extrapolate the HMyPT
model calculations of the form factors from the previous subsection, which are valid near zero
recoil over the whole physical phase space region. We use the general HQET and LEET com-
patible extrapolation formulae as guidance in such an extrapolation, but want to use as much
as possible known experimentally measured phenomenological parameters.

Resonance pole saturation

In order to trim down the number of undetermined parameters we first fix the effective pole
parameters a, a’, a”, b, b and 0" in eqgs. (5.13), (5.14), (5.15), (5.18) and (5.17) by the next-to-
nearest resonances in the heavy meson spectrum as already hinted by the HMxPT results from
the previous subsection. Although in the original idea [47] the extra pole in F; parametrized all
the neglected higher resonances, we are here saturating each pole by a single nearest resonance
in all the form factors. The recent numerous discoveries of excited charmed meson states enable
as to use physical pole masses in this procedure. In our numerical analysis we therefore make
use of available experimental information in addition to theoretical predictions on charm meson
resonances. Particularly, we use the spectroscopic data in TABLE 1.1 for the first scalar, vector
and axial resonances. On the other hand for the radially excited pseudoscalar and vector states,
no reliable experimental results exist, while recent theoretical studies [162, 163] indicate that
radially excited states of D as well as D, should have masses of m . ~ 2.7 GeV and m /. ~
2.8 GeV [162]. We use these values in our analysis. ’

D — P transitions

In our calculations we use for the heavy meson weak current coupling o = fg/mpg from the
tree level matching of HQET to QCD [55, 153], which we calculate from the lattice QCD
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value of fp = 0.235(8)(14) GeV [164] and experimental D meson mass mp = 1.87 GeV [52]
yielding o = 0.32 GeV3/2. Since we expect large SU(3) light flavor symmetry corrections,
we use a different value of a3y = fp,\/mp, = 0.37 CeV?3/? from the lattice QCD value of
fp. = 0.266(10)(18) GeV [164] and experimental Dy meson mass mp, = 1.97 GeV [52]. For
light pseudoscalar mesons we use f = 130 MeV, while for the g and h couplings we use the tree
level values from the first row of table 4.1.

Egs. (5.12) and (5.27a) can be combined to obtain a theoretical estimate for the value of hé
in the limit of infinite heavy meson mass. By equating both terms in egs. (5.12) and (5.27a) at
Smax and then imposing a = y one obtains in the exact chiral and heavy quark limits

ah = —ag = —0.2 GeV3/2, (5.36)

On the other hand the 1/mp and chiral corrections might still modify this result significantly.
Such corrections were explicitly written out in ref. [110] but they include additional parameters
which cannot be fixed within our context.

Similarly, in this limit we can infer on the value of o/. By applying equalities (3.28) and (5.36)
to egs. (5.27b) and (5.13) one finds that the chiral limit is ill defined. Namely, by first taking
the exact heavy quark limit, one obtains a relation %/h = —Am%. The expression blows up
in the limit mp — 0, while when applied to the D — 7 transitions gives a large value of
o ~ 1.5 GeV32. On the other hand D — K transitions give 0/(3) ~ 0.4 GeV3/2. Recently
the decay constant of the 1/2 charmed-strange meson has been estimated on the lattice f D =
340(110) MeV [165, 46] yielding for 0/(3) ~ 0.5 which is in good agreement with our model’s
prediction. The same cannot be claimed at present for the value of o’ involved in pion transitions.
The situation is reminiscent of the discussions in the last chapter in the sense that the off-
shellness of the intermidiate scalar resonance, large compared to the pion mass, invalidates
affected HMYPT results. Importantly however, the weak current coupling of 1/2% mesons is in
no case suppressed with respect to the 1/27 ones. If one instead first imposes the chiral limit on
eq. (5.27b), the h contributions in (5.13) decouple and we instead obtain a nontrivial relation
g = Asu/Ag, , which is roughly satisfied by current experimental values and theoretical
estimates for the three quantities in the charmed sector. Again one should expect possibly large
1/my corrections to these relations.

Alternatively the values of the new model parameters can be determined by fitting the
model predictions to known experimental values of branching ratios B(D? — K~ ¢*v), B(D* —
FOW'V), B(D° — m=¢tv), B(DY — 7%*v), B(DF — nétv) and B(DF — n'ttv) [52]. In
our decay width calculations we shall neglect the lepton mass, so the decay width is given by
eq. (3.29), with the Wilson coefficient C' = G Ky p, where the constants Ky p parametrize the
flavor mixing relevant to a particular transition, and are given in table 5.1 together with the
pole mesons.

We calculate the result for ha by fitting to the most precisely measured decay rate of D —
7 lvy. We also expect chiral corrections to be smallest in this case. The calculation yields
ah = —0.04 GeV?/ 2 which is rather small in absolute terms compared to estimation given by
(5.36). This discrepancy can be attributed to the presence of 1/mp and chiral corrections which
are not included systematically into consideration here due too many new parameters [110] which
cannot be fixed within this approach. However, we estimate the influence of such corrections
on the fitted value of ag by varying the value of the input parameters ag/f in eq. (5.27a) by
20% [43] and inspecting the fit results. We obtain a range of &h € [—0.3,40.2] GeV?/23,

3An alternative method would be to fit the parameter to D° — K~ £*v,, but the variation of @h obtained in
this way is very small.
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g | p | | o[ 85 | Kpp |
DY | K= | DIt | DT | Dgy(2317)F Vs

D+ | K" | D+ | D+ | D,y (2317)* Vs

Df | n | Dyt | DSF | Dsy(2317)F Ves sin ¢
Df | of | Dit | Dit | Dey(2317)F | Vegcosé
DY | »— | D*t | D*t D'+ Ved

D+t 7T0 D*t | Dt D'+ ‘/cd/\/i
Dt | n | D | D*F D'+ Vg cos ¢/v/2
Dt | o | D | D*F D'+ Vogsin ¢/v/2
D;k KO D*t | Dt D'+ chd

Table 5.1: The pole mesons and the flavor mizing constants Kgp for the D — P semileptonic decays.
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Figure 5.3: Comparison of D° — ©~ transition F\ form factor s dependence of our model two poles
extrapolation (solid (black) line), single pole extrapolation (dashed (red) line), lattice QCD fitted to two
poles (dot-dashed (blue) line) and experimental two poles fits ((green) dotted and dash-double dotted lines).

In the same way we also estimate the value of o/ by fitting relation (3.28) for DY — 7~
transition and using the ah value from the previous paragraph in the fit. We obtain a value of
o = 1.5 GeV?? which agrees very well with the theoretical estimate in the case of pions. If we
instead apply the same procedure on D — K channels, we obtain a value of 043) = 0.6 GeV3/?
indicating indeed large SU(3) light flavor symmetry corrections.

We next draw the s dependence of the F form factors for the D — K~ and D° — 7~
transitions and compare it with results of lattice QCD two poles fit analysis [136], as well as the
experimental results of a two poles fit from CLEO [117] and FOCUS [118] with F (0) values
taken from ref. [166]. The results are depicted in fig. 5.4 and fig. 5.3. For comparison we also
plot results when single pole fit is used. Also in this case we calculate Fly (Spyax) within HMyT,
take into account both resonances (eq. (5.27a)) and fit the free parameter ah to the D — 7~
semileptonic decay rate. From the plots it becomes apparent, that our model’s predictions
for both D — K~ and DY — 7~ transition F, form factors are in good agreement with
experimental and lattice data when extrapolated with two poles, while single pole extrapolations
are not in good agreement with experimental results, especially for D — K transitions indicating
that in this extrapolation a single parameter cannot fit both pionic and kaonic decays. This



COoArliiie o SEMILEFTONICO DECAYS OF ARKAVY MESOINS

Z

L75 1 —— This work (two poles) y

=~ This work (single pole) P>
L5t =-- Latt. [136] (two poles) 7

Expt. [117] (two poles 7
1.25 | Expt. [118] (two poles).+*
‘k 1t o=
J
Q4 075 ¢
o

s

0 0.25 0.5 0.75 1 1.25 1.5 1.75
5 [GeV?]

Figure 5.4: Comparison of the D° — K~ transition F, form factor s dependence of our model two
poles extrapolation (solid (black) line), single pole extrapolation (dashed (red) line), lattice QCD fitted to
two poles (dot-dashed (blue) line) and experimental two poles fits ((green) dotted and dash-double dotted
lines).

discrepancy further increases if only the first resonance contribution is kept in the Fl(Smax)
calculation for the single pole extrapolation within HMxT as was done in previous studies [32].
In such calculations only the D* resonance contributed, and a lower value of the g strong coupling
was used. At that time only few decay rates were measured. In comparison with the present
experimental data the predicted branching ratios were too large. Note also that the experimental
fits on the single pole parametrization of the F form factor in D® — 7~ (D° — K ™) transitions
done in refs. [117, 118] yielded effective pole masses which are somewhat lower than the physical
masses of the D*(D?¥) meson resonances used in this analysis. The approach of ref. [50] was
developed to treat D meson semileptonic decay within heavy light meson symmetries in the
allowed kinematic region by using the full propagators. We find that this approach cannot
reproduce the observed s shape of the F form factors .

We also compare our predictions for the Fj scalar form factor s dependence for the DY — K~
and DY — 7~ transitions with those of a successful quark model in ref. [128] and with lattice
QCD pole fit analysis of ref. [136]. The results are depicted in fig. 5.5 and fig. 5.6.  Note
that without the scalar resonance, one only gets a contribution from the a/v/my f term from
eq. (5.27b). This gives for the s dependence of Fjy a constant value Fy(s) = 1.81(2.05) for D — 7
(D — K) transitions, which largely disagrees with lattice QCD results as well as heavily violates
relation (3.28).

D — V transitions

We next apply the strategy from the previous section to the extrapolation and parameter extrac-
tion in D — V transitions. We use the information on the contributions of different resonances
to the form factors as suggested by our model. For the vector form factor V' we thus propose
a =a= m%,* / m%* which saturates the effective second pole by the first vector radial excitation

H*. Similarly we set o’ = m? /m% with @” = @’ = a holding in the exact heavy quark limit,
and V' = m%./ m?g* ~ b saturating the poles of the Ag and A; form factors and the first pole

of the Ay form factor with the H pseudoscalar radial excitation and the S* orbital axial excita-
tion respectively. Since our model does not contain a second resonance contribution to the As
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Figure 5.5: Comparison of the D° — K~ transition Fy form factor s dependence of our model (solid
(black) line), quark model of Melikhov & Stech (dashed (red) line) and lattice QCD fitted to a pole (dot-
dashed (blue) line).
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Figure 5.6: Comparison of the D° — w~ transition Fy form factor s dependence of our model (solid
(black) line), quark model of Melikhov & Stech (dashed (red) line) and lattice QCD fitted to a pole (dot-
dashed (blue) line).

form factor , we impose b’ = 0, effectively sending the second pole mass of this form factor to
infinity. At the end we have fixed all the pole parameters appearing in the general form factor
parameterization formulas of sec. 5.1.2 using physical information and model predictions on the
resonances contributing to the various form factors . The remaining parameters (¢}, and cJ;)
are on the other hand related to the parameters of HMyT via the model matching conditions
at zero recoil.

We again restrict our present study to D decays, in order to use the available experimental
information in the charm sector, although our calculations can readily be applied to semileptonic
decays of B mesons once more experimental information becomes available on excited B meson
resonances. In our numerical analysis we use available experimental information and theoretical
predictions on charm meson resonances as in the previous section.
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| H | Vv | H H | S* | Kuv |
DY | K*= | D, Dt | Df, DF | Dys(2463)F | Vi,
D+ | & | D+, D+ | Df, DIt | D,y(2463)F | Vi,
Df | ¢ | Dyt DY | DF, D | Dyy(2463)F | Vi
DY | p= | D*t, D™t | Dt D'* 1(2420) Ved
Dt | p° | D*t, D*t | DY D'F | D;(2420) —5Ved
Dt | w | D*f, D*t | Dt D'F | D;(2420) T5Ved
Df | K* | D*t, D** | Dt D't | D;(2420) Ved

Table 5.2: The pole mesons and the flavor mizing constants Ky for the D — V' semileptonic decays.

Our HMxPT model calculations of section 5.1.3 contain several parameters. The A coupling
was usually [32, 167] determined from the value of V(0). However, this derivation employed
a single pole ansatz for the shape of V(s). One can instead use data on D* — D~ radiative
decays. Following discussion in refs. [10, 168], using the most recent data on D* radiative
and strong decays [52], and accounting for the SU(3) flavor symmetry breaking effects, we
calculate A\ = —0.526 GeV~!. The coupling 3 ~ 0.9 has been estimated in ref. [169] relying
on the assumption that the electromagnetic interactions of the light quark within heavy meson
are dominated by the exchange of p%, w, ¢ vector mesons. We fix the other free parameters
(o, 0,0/ &, (, p, ¢, ) appearing in the HMxT Lagrangian and weak currents by comparing
our model predictions to known experimental values of branching ratios B(D? — K* (*tv),
B(Ds — ¢ttv), B(DT — p%*v), B(DT — K%/(*v), as well as partial decay width ratios
I/ Tr(DY — K%¢*v) and Ty /T _ (DT — K%/¢v) [52]. In order to compare the results of
our approach with experimental values, we calculate the decay rates for polarized final light
vector mesons in eq. (3.35) again with the Wilson coefficient C = GpKpgy. The constants
Kpy parametrize the flavor mixing relevant to a particular transition, and are given in table 5.2
together with the pole mesons. The Ay form factor does not contribute to any decay rate in
this approximation and we can not fix the parameters ao and ( solely from comparison with
experiment. Although Ay actually does contribute indirectly through the relation (3.32) at
s = 0, this constraint is not automatically satisfied by our model. On the other hand, we can
still enforce it by hand” after the extrapolation to s = 0 to obtain some information on these
parameters. Due to the specific combinations in which the parameters appear in egs. (5.35a-
5.35g) we are further restrained to determining only the products ap, o/¢ and o'y using this
kind of analysis. Lastly, since the only relevant contribution of oy is to the Ay form factor , we
cannot disentangle it from the influence of o/(. Yet again we can impose the large energy limit
relation (5.16) to extract both values independently.

We calculate the result for amu, /¢, o’u and a; by a weighted average of values obtained
from all the measured decay rates and their ratios taking into account for the experimental
uncertainties. Furthermore, the values of o1 and o/ are extracted separately by minimizing the
fit function (V(0)¢ — A1(0))%/(V(0)¢ + A1(0))2. Both minimizations are performed in parallel
and the global minimum is sought on the hypercube of dimensions [—1,1]* in the hyperspace of
the fitted parameters. At the end we obtain the following values of parameters:

an = 0.090 GeV'/?
/¢ = 0.038 GeV?/?
o = —0.066 GeV'/?
o = —0.128 GeV'/? (5.37)
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Figure 5.7: Solutions of eq. (3.32) in the as X al parameter plane for the various decay channels
considered.

These values qualitatively agree with the analysis done in ref. [32] using a combination of quark
model predictions and single pole experimental fits for all the form factors .

We next use these values in relation (3.32) to extract information on the the parameters az
and ¢. From egs. (5.35a-5.35g) it is easy to see that the solutions lie on a straight line in the
ag X al plane. We draw these for the various decay channels used in our analysis in fig. 5.7.
We can see that all the decay channels considered fit approximately the same solution in the
plane. Consequently, we can use any point on the approximate solution line to obtain the same
prediction for the s dependence of the Ay form factor .

It is important to note at this point that due to a high degree of interplay of the various HMxT
parameters in the model predictions used in the fit, the values of the new model parameters
obtained in such a way are very volatile to changes in the other inputs to the fit. Furthermore
these are tree level leading order parameter values and may in addition be very sensitive to chiral
and 1/mp corrections. Therefore their stated values should be taken cum grano salis. However
more importantly, the form factor , branching ratio and polarization width ratio predictions
based on this approach are more robust since they are insensitive to particular combinations of
parameter values used, as long as they fit the experimental data. We estimate that chiral and
heavy quark symmetry breaking corrections could still modify these predictions by as much as
30%.

We are now ready to draw the s dependence of all the form factors for the D° — K~
D® — p~ and D, — ¢ transitions. The results are depicted in figs. 5.8, 5.9, and 5.10. We also
compare our model predictions with recent experimental analysis of helicity amplitudes Hy _ o
performed by the FOCUS collaboration. Because of the arbitrary normalization of the form
factors in [51], we fit our model predictions for a common overall scale in order to compare the
results. We plot the s dependence of the predicted helicity amplitudes and compare them with
the experimental results of FOCUS, scaled by an overall factor determined by the least square
fit of our model predictions, in figures 5.11, 5.12 and 5.13. The scale factor is common to all
form factors. In addition to the two pole contributions we calculate helicity amplitudes in
the case when all the form factors exhibit single pole behavior. Putting contributions of higher
charm resonances to zero, we fit the remaining model parameters to existing branching ratios
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Figure 5.8: Predictions of our model for the s dependence of the form factors V(s) (black solid line),

Ao(s) (red dashed line), Ai(s) (blue dotted line) and Aa(s) (green dash-dotted line) in D° — K~—*
transition.
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Figure 5.9: Predictions of our model for the s dependence of the form factors V(s) (black solid line),
Ao(s) (red dashed line), A1(s) (blue dotted line) and As(s) (green dash-dotted line) in D° — p~ transition.

and partial decay width ratios. We obtain the values for the following parameter combinations:

an = 0

o/¢C = —0.180 GeV?/?

o/p = —0.00273 GeV'/?

o = —0.203 GeV'/? (5.38)

As shown in figures. 5.11 and 5.12 the experimental data for Hy do not favor such a parametriza-
tion, while in the case of Hy helicity amplitude there is almost no difference since the Hy helicity
amplitude is defined via the A; » form factors , which are in our approach both effectively dom-
inated by a single pole. The agreement between the FOCUS results and our model predictions
for the s dependence of the helicity amplitudes is good, although as noted already in [51], the
uncertainties of the data points are still rather large. In figures. 5.14 and 5.15 we present helicity
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Figure 5.10: Predictions of our model for the s dependence of the form factors V(s) (black solid line),
Ao(s) (red dashed line), A1(s) (blue dotted line) and As(s) (green dash-dotted line) in Ds — ¢ transition.
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Figure 5.11: Predictions of our model (two poles in black solid line and single pole in red dashed line) for

the s dependence of the helicity amplitude Hi(s) in comparison with scaled FOCUS data on DT — o
semileptonic decay.

amplitudes for the DT — p%v and D — ¢fv decays. Both decay modes are most promissing
for the future experimental studies. We make predictions for the shapes of helicity amplitudes
for both cases: where two poles contribute to the vector form factor and a single pole to the
axial form factors, and the second case where all form factors exhibit single pole behavior.
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Figure 5.12: Predictions of our model (two poles in black solid line and single pole in red dashed line) for

the s dependence of the helicity amplitude H? (s) in comparison with scaled FOCUS data on Dt — o
semileptonic decay.
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Figure 5.13: Predictions of our model (two poles in black solid line and single pole in red dashed line) for

the s dependence of the helicity amplitude H3(s) in comparison with scaled FOCUS data on DT — o
semileptonic decay.

5.1.5 Summary

Our predictions for the shapes of the

various form factors can also be summarized using the
general formulas

Fils) = ﬂ—i;?lmf
PM$::(5¥2y

Vis) = u—gglw@’
= Ty
Ails) = 1A—1(IE)’)33’

Ao(s) = 420

1 vo)1_ba)’ (5.39)
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Figure 5.14: Predictions of our model for the s dependence of the helicity amplitudes HZ(s) for the
Dt — p0 semileptonic decay. Two poles’ predictions are rendered in thick (black) lines while single pole

predictions are rendered in thin (red) lines: Hy (solid lines), H_ (dashed lines) and Hy (dot-dashed
lines).
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Figure 5.15: Predictions of our model for the s dependence of the helicity amplitudes HZ(s) for the
Dt — ¢ semileptonic decay. Two poles’ predictions are rendered in thick (black) lines while single pole

predictions are rendered in thin (red) lines: Hy (solid lines), H_ (dashed lines) and Hy (dot-dashed
lines).

where as before z = s/m?%,. and y = s/m?,. These expressions are actually simplifications of
the form factor parameterizations (5.15), (5.18), (5.17) and (5.19) respectively. The parameters
F1(0) = Fy(0), V(0), Ap(0), A1(0), A2(0), a, ', b' and b”, which we fix by nearest resonance
saturation approximation and HMyT calculation at sy ax, are listed in tables 5.3 and 5.4 for the
various decay channels considered.

Finally, using numerical values as explained above, we calculate the branching ratios for all
the relevant D — P and D — V semileptonic decays and compare the predictions of our model
with experimental data from PDG [52]. The results are summarized in tables 5.5 and 5.6.

For comparison we also include in table 5.5 the results for the rates obtained with our
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Decay | FL.(0) F(0) ] a b |

Do—7 | 060 060 |055 0.76
DY K- | 072 072 | 057 0.83
Dt —m | 060 0.62 | 055 0.76
Dt Ky | 072 071 | 057 0.83
Dy — 1 0.73  0.81 | 0.57 0.83
Dy —1f 0.87 0.66 | 0.57 0.83
Dt 0.60 0.62 | 0.55 0.76
DYt - | 060 062 | 055 0.76
D, — Ky | 060 0.62 | 055 0.76

Table 5.3: Predictions of our model for the parameter values appearing in the general form factor
formulas (5.39) for the various D — Ply, decay channels considered. The D° — 7~ decay channel
marked with a dagger T has been used to fit the model parameters.

| Decay | V(0) Ap(0) A(0) Ay0) |a"=d ¥V |
D' —p~ " 105 132 061 031 | 05 076
D' — Kk~ 099 112 062 031 | 057 083
D — o | 105 132 061 031 | 055 0.76
Dt — K™ | 099 112 062 031 | 057 083
Dt — w 1.05 132 061 031 | 055 0.76
Dy — ¢ 1.10  1.02 061 032 | 057 083
D, — K% | 116 119 060 033 | 055 0.76

Table 5.4: Predictions of our model for the parameter values appearing in the general form factor formu-
las (5.39) for the various D — Vv, decay channels considered (0" =0 for all decay modes as explained
in the text). The decay channels marked with a dagger 1 have been used to fit the model parameters.

| Decay | B(two poles) [%] | B(single pole) [%] | B(Exp.) [%] |

DO — 1 0.36 0.36 0.36 & 0.06
DO K- 3.8 0.43 3.43 +0.14
Dt — 70 0.46 0.51 0.31+0.15
Dt - K’ 9.7 1.1 6.84 0.8
DF — 1 2.6 0.38 2.5+0.7
Df —of 0.86 0.03 0.89 + 0.33
Dt = 0.11 0.006 <05
Dt —of 0.016 0.0003 <11
DF — K° 0.33 0.06

Table 5.5: The branching ratios for the D — P semileptonic decays. Comparison of model predictions
with experiment as explained in the text. The D° — m~ decay channel marked with a dagger t has been
used to fit the model parameters.

approach for F (¢2,.) (eq. 5.27a) but using a single pole fit. It is very interesting that our
model extrapolated with two poles gives branching ratios for D — P(V)ly, in rather good
agreement with experimental results for the already measured (partial) decay rates. It is also
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Decay | B[%] B (Exp.) [%] |Tr/Ty T'p/Tr (Bxp.) | Ty/T_ T /T_ (Exp.) |
DO — o 0.20  0.194(41) [53) | 1.10 0.13

DY — k=T | 22 215035 [p2® | 1.14 0.22

D+ — O 0.25  0.25(8) [52]3 1.10 0.13

Dt - K™ | 56  573(35) 523 | 113 1.13(8) [52)3 0.22 0.22(6) [52]3
Dy — ¢ 2.4 2.0(5) [52]? 1.08 0.21

Dt - w 0.25  0.17(6) [53] 1.10 0.13

Dy — K% 0.22 1.03 0.13

Table 5.6: The branching ratios and partial decay width ratios for the D — V semileptonic decays.
Predictions of our model and experimental results as explained in the text. The decay channels marked
with a dagger T have been used to fit the model parameters.

obvious that the single pole fit gives rates largely incompatible with the experimental results.

We expect 1/mp as well as chiral corrections in the case of D — K (*)Eyg and Dy, —
n(n', ¢, w)lvy might further improve the agreement with the experimental data, but due to the
presence of a large number of new couplings it is impossible to include them into the calculation
within present framework. We expect that the errors in the predicted decays rates stemming
from the uncertainties in the input parameters we used can be 20%. In addition, the semilep-
tonic D — V decay rates in our model fit are numerically dominated by the longitudinal helicity
amplitude Hy which has a broad 1/,/s pole . This is true especially for D — V but to minor
extent also for B — V transitions. Since our model parameters are determined at sy .y, this
gives a poor handle on the dominating effects in the overall decay rate. Thus, accurate deter-
mination of the magnitude and shape of the Hy helicity amplitude near s = 0 would contribute
much to clarifying this issue.

In principle one can apply the above procedure to the B — P(V)lv, decays. However, due
to the much broader leptons invariant mass dependence in this case, our procedure is much
more sensitive to the values of the form factors at s &~ 0 and additional contributions beyond
the nearest resonances considered here.

To summarize, we have devised a general parametrization of all the H — P and H —
V' by saturating the form factor dispersion relations with effective poles and encompassing
relevant symmetry relations. We conclude that in order to satisfy all the constraints and to
be compatible with the available experimental data, one needs at least 1-2 resonant excitations
contributing and saturating the form factors’ shapes in the entire physical s-region. Our results
show, that a single pole parametrization of all the form factors cannot be considered meaningful.
Quantitatively, though, we cannot give reliable predictions about the form factors. Our model
approach of saturating the effective form factor poles with experimentally measured charmed
meson resonances is to be considered as an illustration of the general principles behind the form
factor parameterizations.

3Values used in the fit of our model parameters.
4Naive HQET scaling predicts that the H_ helicity amplitude, which scales as /mz should dominate the
decay rate.
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5.2 Heavy to heavy transitions

In our quest for the precise determination of the V., CKM matrix element the studies of B
meson decays into charm resonances have been playing a prominent role. In experiments aimed
to determine Vg, actually the product |V F(1)] is extracted, where F(1) is the B — D or
B — D* hadronic form factor at zero recoil. A lack of precise information about the shapes of
various form factors is thus still the main source of uncertainties. In theoretical studies, heavy
quark symmetry has been particularly appealling due to the reduction of six form factors in the
case of B — D(Dx)ly; transitions to only one [170, 171]. In addition, at zero recoil, when the
final state meson is at rest in the B rest frame, the normalization of the form factors is fixed by
symmetry. However, the results obtained within heavy meson effective theories obtain important
corrections coming from operators which are suppressed as 1/Mp p [172] as well as of higher
order in the chiral expansion [32, 54, 173, 174]. The knowledge of both kinds of corrections has
improved during the last few years. The B — D*ly; decay amplitude is corrected by 1/Mp p
only at the second order in this expansion making it more appropriate for the experimental
studies [32, 175]. In addition to heavy meson effective theory, other approaches have been
used in the study of the B — D(D*) form factors, such as quark models [176] and QCD sum
rules [177], while the most reliable results should be expected from lattice QCD [178]. In the
treatment of hadronic properties using lattice QCD the main problems arise due to the small
masses of the light quarks. Namely, lattice studies have to consider light quarks with larger
masses and then extrapolate results to their physical values. In these studies the chiral behavior
of the amplitudes is particularly important. HMyPT is very useful in giving us some control
over the uncertainties appearing when the chiral limit is approached. Most recently in ref. [179],
the authors have discussed B — DIy, and B — DIy, form factors in staggered xPT by including
the chiral loop corrections.

In this section we investigate chiral loop corrections within HMYPT in the semileptonic
transitions of B mesons into charm mesons of positive and negative parities to determine their
impact on the chiral extrapolation used by lattice QCD studies of the relevant form factors.

5.2.1 B — D® form factors

The weak vector current matrix element between heavy B and D mesons with velocities v =
p/mp and v' = p’/mp respectively can be parametrized in terms of two velocity dependent form
factors [33]

(DW)| & [B(p))

mpmp

= hy(w)(v+ ")+ h_(w)(v — "), (5.40)

where w = v - v/ = (m% + m?2, — s)/2mpmp and with similar formulae for the vector and axial
current matrix elements between B and the vector or scalar charmed states. The differential
decay rate in terms of these form factors is

ar — G%| Ve |*m>y

— (B — Dflev,) =

- g LW = )Y )P F(w)?, (5.41)

where r = mp/mp and we have assumed the form factor is real throughout the kinematically
allowed region 0 < w — 1 < (mp — mp)?/2mpmp. It can be related to h via

Fwp? = b w) + (157 ) (o) } (5.42)

r

Again similar formulae are valid for B — D* and B — Dy} transitions.
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Figure 5.16: Weak vertex correction diagram.

5.2.2 Framework and Calculation of Chiral Loop Corrections

We use the formalism of heavy meson chiral Lagrangians of the previous sections. The weak
part of the Lagrangian describing transitions among heavy quarks can be matched upon weak
heavy quark currents in HQET [54, 55]

EU’Fbv - cb{ 5 [

[

a(v)]
]

a(v)
a(v
Tr [Ho(v (v)] +h.c.}, (5.43)

—T1/2 w

at leading order in chiral and heavy quark expansion and where I' = v,,(1 — 75). Evaluating the
traces in the first term on the r.h.s we can identify for example

(D) Cyuby [B(v)) = E(w)(v + "), (5.44)

resulting in the HQET predictions F(w) = hy(w) = §(w) and h_(w) = 0. Note that heavy
quark symmetry dictates the values of £(1) = £(1) = 1, which should not receive any chiral
corrections. On the other hand 7y /5(w) is not constrained and we use the recently determined
value of [180] 71 /5(1) = 0.38.

We first calculate the wave function renormalization Zog of the heavy H(v) = P(v), P*(v)
and Py(v), Pf(v) fields. This has been done in the chapter 4. We get non-zero contributions
to the heavy meson wavefunction renormalization from the self energy (”sunrise” topology)
diagrams in fig. 4.1 with leading order couplings in the loop . In the case of the P(v) mesons
both vector P*(v) and scalar Py(v) mesons can contribute in the loop. The positive parity Py(v)
and P;(v) similarly obtain wavefunction renormalization contributions from self energy diagrams
(fig. 4.1) with Pj(v), P(v) and Py(v), P;(v), P*(v) mesons in the loops respectively. Then we
calculate loop corrections to the Isgur -Wise functions &(w), £ (w) and 7y jo(w). These come from
the diagram topologies as the one shown fig. (5.16). Namely the initial and final heavy states
may exchange a pseudo-Goldstone, while pairs of positive and negative parity heavy mesons
may propagate in the loop. Again not all heavy states contribute due to parity conservation in
effective strong interaction vertices. Thus, when initial and final states are pseudoscalars we get
contributions from pairs of P*(v)P*(v), Py(v')P*(v), P*(v")Py(v) and Py(v")Py(v) propagating
in the loop, while for pseudoscalar initial and scalar final state we get contributions from pairs of
P*(v")P(v), P*(v")Pf(v), Po(v")P(v) and Py(v") P (v) in the loop (due to heavy quark symmetry,
the same results are obtained for (axial)vector external states, although different intermediate
states contribute). The complete expressions for the loop corrected {(w), {(w) and 7 /5 (w) we
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obtain, are listed below. For the &(w) we get

1 1 )‘fzc)‘ib
Eap(w) = f(w){5ab + §6Z2Pa(v’) + §6Z2Pb(v) + 1672 f2

X [92 ((w +2)C1(w,m,0,0) + (w? — 1)Cs(w,m,0,0))

~ 4
—hQ% <Z Ci(w,m, As, Asp) + (w” — w + 1)Ca(w, m, Agy, ASH)>
i=1
—thﬁg/(ifj;)) (w—1) (Cr(w,m, Agm,0) + wCs(w, m, Agp,0) + Cy(w, m, Agp, 0))] },

(5.45)

where the same formulae can be applied to £(w) with the substitution g <> g and Agpy < —Agp.
For the 7y /5(w) on the other hand we obtain

1 1 )‘fzc)‘Zb
T2 (w) = 71/2@”){5@ +50%r.0) + 3% ) T 15

X [g§ ((w = 2)C1(w,m,0,0) + (w? — 1)Co(w, m,0,0))

4
_h2 (’LU Z C’L(wu m, ASH) _ASH) + (’LU2 —w + ].)CQ(’IU, m, ASH) _ASH)>

i=1
+hg(w + 1)75(2)) (C1(w,m,0,—Agpr) + wCo(w,m,0, —Agp) + C3(w,m,0,—Agg))
1/2
_hg(w + 1)7_5(?2)) (Cl(w, m, Agp,0) + wCs(w,m, Agy, 0) + Cy(w,m, Agy, 0)) ] }
1/2

(5.46)

In the above expressions dZsp = (Zap — 1) are the chiral loop corrections to the heavy meson
wavefunction renormalization for the negative and positive parity doublets is given in egs. (4.3)
and (4.4). As in ref. [43] and in previous sections, a trace is assumed over the inner repeated
index(es) (here b), while the complete expressions for the loop integral functions C; can be found
in Appendix B.

5.2.3 Chiral Extrapolation

We study the contributions of the additional resonances in the chiral loops to the chiral extrap-
olations employed by lattice QCD studies to run the light meson masses from the large values
used in the simulations to the chiral limit [45, 46]. In order to tame the chiral behavior of the
amplites containing the mass gap between the ground state and excited heavy meson states
Agpy we again use the 1/Agpy expansion of the chiral loop integrals from section 4.4.1 so that
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we obtain for the non-analytic terms

m2

UV
@mw—w*+ﬁﬁwmﬁkww4>

m? E(w m? 12 (W
—h? Az, (1 - w%) - th%Hw(w - 1)15/(27;))] }, (5.47)

and
_ )‘éb)‘ia 2 m? ~ 3,9
T1/2aa(W) = 71/2(w){1 + Ton2f2" log e 99(2r(w) =1) = 5(9" +9°)
2 2 2 py
o M o mt E(w) ~ m*  {(w)
+h 4A%H (w—1)—h oA 7_1/2(w)w(1 +w) + thA%H 7_I/Q(U))w(l +w)| ¢,
(5.48)
where
log(z + Va2 —1
r(z) = ( o ), (5.49)

so that (1) = 1 and /(1) = —1/3. The first lines of eqs. (5.47) and (5.48) contain the leading
contributions while the calculated 1/Agp corrections are contained in the second lines. Note
that the positive parity heavy mesons contribute only at the 1/ A%H order in this expansion
since all the possible 1/Agy contributions vanish in dimensional regularization and the affected
loop integral expressions have to be expanded up to the second order in 1/Ag.

As argued in section 4.4.1 the 1/Agpy expansion works well in an SU(2) theory where kaons
and etas, whose masses would compete with the Agy splitting, do not propagate in the loops.
Therefore we write down explicit expressions for the chiral loop corrected Isgur-Wise functions
specifically for the strangeless states (a = u,d) in the SU(2) theory:

2

@mw—w*+ﬁiﬁm%kww4>

m2 E(w m2 T1/2(w
—h? % (1 - w%”D — hg T w(w — 1)715/(212) )] } (5.50)

and
3 2 m2 ~ 3.9 =
T1 /200 (W) = Tl/z(w){1+melogﬁl—gg(%(w)_1)_5(9 +9°)
2 1) g S0y g S0 L
4.A2 v g2A2 T1/2(’w)w v g2A2 Tl/Q(QU)w v ’

(5.51)

We then plot the chiral behavior of the Isgur-Wise function renormalization in the chiral limit
below the Agp scale in figs. 5.17 and 5.18. We again normalize the values of the extrapolated
quantities at m,; ~ Agpy to 1 and perform the chiral extrapolation using the Gell-Mann formulae
(eq. (2.6)). Presently no reliable estimates exist for the values of (1) and ] /2(1), which feature
in chiral extrapolation involving opposite parity heavy states. Therefore we estimate their
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Figure 5.17: Chiral extrapolation of the slope of the IW function at w = 1 (£(1)). Negative parity
heavy states’ contributions (black line) and a range of possible positive parity heavy states’ contribution
effects when the difference of slopes of £(1) and £(1) is varied between 1 (red dashed line) and —1 (blue

dash-dotted line).

Figure 5.18: Chiral extrapolation of the Ti/5 function and its slope at w = 1.
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H,(v) H.(v") Hp(v') Hg(v) H.(v)  Hy(¥)

Figure 5.19: Ezample counterterm loop contributions yielding possible 1/A, and 1/A\Asu chiral cor-
rections. The pseudo-Goldstone in the loop is emitted from a weak vertex counterterm.

possible effects by varying their relative values in respect to &'(1) between 1 and —1 in our
extrapolations. We see that the effects of positive parity states’ in the chiral loops on the chiral
extrapolation of ¢'(1) appear to be mild (around one percent in our estimate) below the Agy
scale (the gray shaded region around the leading order result in black solid line). Actually if
¢§'(1)—¢&'(1) is positive as reasoned in [54] and around 1, these leading 1/A gy corrections almost
vanish. The same general chiral behavior can be attributed to ¢'(1) with the substitutions g < g,
Agg < —Agpg and &'(1) « &(1). Also, the chiral extrapolation (including small leading 1/A gy
contributions) of the 7y 5(1) normalization appears fairly flat, indicating a linear extrapolation
as a good approximation, whereas the effects of chiral loops on the extrapolation of its slope
71/2(1) appear to be sizable, up to 30% in our crude estimate.

5.3 Discussion and Conclusion

In this chapter we have calculated chiral loop corrections to § and 7/, functions within a
HMyPT framework, which includes even and odd parity heavy meson interactions with light
pseudoscalars as pseudo-Goldstone bosons. Our analysis confirms that the form of the leading
pionic logarithmic corrections to the Isgur-Wise functions is not changed by the inclusion op-
posite parity heavy mesons; they only contribute at the m*logm? order as can be inferred by
comparing Eq. (5.47) with Eq. (8) of Ref. [174].

These results are particularly important for the lattice QCD extraction of the form factors.
The present errors on the V,, parameters in the exclusive channels are of the order few percent.
This calls for careful control over theoretical uncertainties in its extraction. The understanding of
chiral corrections is crucial in assuring validity of the form factor extraction and error estimation
coming from the lattice. Our estimates for the leading 1/Agpy corrections also constrain the
accuracy of such extrapolations. From these results one can deduce also the chiral corrections
in the By — D fv decays which are not approached by experiment. Due to the strange quark
flavor of final and intital heavy meson states, there is no leading pion logarithmic corrections
making the lattice extraction below the heavy meson parity splitting gap Agy much simpler.

In the 1/Agy expansion the opposite parity contributions yield formally next-to-leading
chiral log order corrections in a theory with dynamical heavy meson fields of only single parity.
Therefore they compete with 1/A, corrections due to counterterm operators of higher chiral
powers within chiral loops (see e.g. fig. 5.19), where A, is the chiral symmetry breaking cut-
off scale of the effective theory. In a theory containing propagating heavy meson states of
both parities, the inclusion of such terms would in addition also yield 1/A\Agg terms. Our
present approach to the estimation of the positive parity effects on the chiral extrapolation is
therefore valid with the assumption Agy < A, where these additional contributions are further
suppressed.
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Chapter 6

Heavy neutral meson mixing

The oscillations in the B, — ES,S systems are mediated by FCNCs which are forbidden at tree
level of the SM and therefore their detection gives access to the particle content in the corre-
sponding loop diagrams. First experimental measurement of a large value of Amp, indicated
that the top quark mass was very heavy [181], which was confirmed almost a decade later in
the direct measurements through the pp-collisions, M; = 172.5(1.3)(1.9) GeV [182]. Nowadays,
the accurately measured Ampg, = 0.509(5)(3) ps~! [56], and Amp, = 17.31(33)(7) ps~! [57], are
used to constrain the shape of the CKM unitarity triangle and thereby determine the amount
of the CP-violation in SM [4, 3]. This goal is somewhat hampered by the theoretical uncertain-
ties in computing the values for the two decay constants, fp, ,, and the corresponding “bag”
parameters, Bp_,. These quantities can, in principle, be computed on the lattice. I However,
a major obstacle in the current lattice studies is that the d-quark cannot be reached directly
but through an extrapolation of the results obtained by working with larger light quark masses
down to the physical d-quark mass. In this chapter we investigate the effects of including pos-
itive parity heavy mesons into chiral extrapolation calculations on the specific examples of the
decay constants fp, , and the bag parameters which enter the investigation of the SM and SUSY

effects in the BY — By and B® — B} mixing amplitudes [187, 188, 189, 190, 191].

6.1 AB = 2 operator basis and mixing

The SUSY contributions to the Bg — Eg mixing amplitude, where ¢ stands for either d- or
s-quark, are usually discussed in the so called SUSY basis of AB = 2 operators [58]:

O = byl =) by (1 —5)¢’

Oy = b(1—7)¢" b (1—7)¢,

O3 = b (1—79)d V(1 -7, (6.1)
Os = b(1—)q b (1+75),

Os = b'(1—-%)d V(1+),

where i and j are the color indices. Although the operators in the above bases are written with
both parity even and parity odd parts, only the parity even ones survive in the matrix elements.
In SM, only O; (left-left) operator is relevant in describing the Bg — Eg mixing amplitude.

'Recent reviews on the current status of the lattice QCD computations of Bg - Fg mixing amplitudes can be
found in ref. [183, 184, 185, 186].

71



COoArFlHER 6. ARAVY NEULRAL MESUOIN MIALING

The matrix elements of the above operators are conventionally parameterized in terms of bag
parameters, Bi_5, as a measure of the discrepancy with respect to the estimate obtained by
using the VSA,

—0
<Ba’01—5(y)‘32>
—0
(Bg|O1-5(v)|BY)vsa
where v is the renormalization scale of the logarithmically divergent operators, O;, at which the

separation between the long-distance (matrix elements) and short-distance (Wilson coefficients)
physics is made. Explicit calculation yields

= B1_5(V) ; (62)

— 1 —

Bliouslves = (143 ) Bl 014415, (6.30)
—0 0 _ _l Oy |2

BlOa|Bvsa = —~2(1- ) [OIPIBY)[ . (6.3b)
B.|Os| BY — (1=2) [oip1BY)[?

(BalOs|B)vsa = (13 ) [PIBY[, (6.30)
_ 1

(BolOaBYvsa = 5 (Bal4,l0) (0]4]BY) +2[0lPIB)” (6.3d)
—0 —0 2 2

(BolOs|Blvsa = (BalA,l0) (014"1BY) + 5 [(0PIBD” (6.3¢)

with A4, = l_ryu%q and P = bysq being the axial current and the pseudoscalar density, respec-
tively. Next we switch to HQET, by replacing the the field b with the static one introduced
in section 2.3 — h:r,, satisfying hlfm — hf. This equation and the fact that that the amplitude
is invariant under the Fierz transformation in Dirac indices, eliminate the operator Os from
further discussion, i.e., (ES|53 + 0y + %61|Bg> = 0, where the tilde is used to stress that the
operators are now being considered in the static limit of HQET (|v| = 0). Furthermore, in the
same limit

0 0
f {04uBYPYaco _ . OIPIBY)aco

mp—00 2mB mp—00 2mB

= (0] 40| B2(v)) et = ifavy, (6.4)

where fa is the decay constant of the static 1/27 heavy-light meson, and the HQET states are
normalized as (B9(v)|B2(v')) = 6(v — v'), so that we finally have

BUOWIBY = ) Brglo), (6.50)
BUONBY = 2 fa0)*Baglo), (6.5)
BUCIBY = £fu)Buglo), (6.5¢)
BIOSIBY = 2 falw)Bglv) (6.54)

One of the reasons why lattice QCD is the best currently available method for computing these
matrix elements is the fact that it enables a control over the v-dependence by verifying the
corresponding renormalization group equations, which is essential for the cancellation against the
v-dependence in the corresponding perturbatively computed Wilson coefficients [192, 193, 194].
From now on we will assume that the UV divergences are being taken care of and the scale v
will be implicit.
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6.2 Chiral logarithmic corrections

In this section we use HMYPT to describe the low energy behavior of the matrix elements (6.5a-
6.5d). Before entering the details, we notice that the operators O4 and O differ only in the color
indices, i.e., by a gluon exchange, which is a local effect that cannot influence the long distance
behavior described by xPT. In other words, from the point of view of xPT, the entire difference
of the chiral behavior of the bag parameters By, and Bs, is encoded in the local counterterms,
whereas their chiral logarithmic behavior is the same. Similar observation has been made for
the operators entering the SUSY analysis of the KC-KO mixing amplitude, as well as for the
electromagnetic penguin operators in K — =z decay [59]. Thus, in the static heavy quark
limit (mg — o00), we are left with the first three operators (6.5a-6.5¢) which, in their bosonized
version, can be written as [195]

Or = 3BT (€ H)aru(l = 3) X | Tr (€ H)ay(1 = 35)X | + et (6.6a)
- _

Oy = 3T (€ H)a(1 = 75) X | T [ (€T H)a(1 = 95)X| + et (6.6b)
. _

O, = Z@XTT _(§TH)a(1 - ’Ys)X} Tr[(EH)a(1+v5)X] + et (6.6¢)
- _

where X € {1,75,%,775, 0vp} 2. As before the index “a” denotes the light quark flavor, and
“c.t.” stands for the local counterterms. To relate [3;’s to the bag parameters in eq. (6.5a-6.5d)
we evaluate the traces in eq. (6.6a-6.6¢) to obtain®

-1~ 24~ 24~ 2

By = 3—]?2ﬁ1 , Bg= 5—J32ﬁ27 By = 7—J22ﬁ4’ Bs = 5—J32ﬁ4, (6.7)
where
Bt = i+ By + 4By, + Biyns) — 12810, (6.8a)
ﬁ? — ﬁ? + ﬁ2’75 + /82')/” + ﬁZ’qug’ (68b)
B = Ba—Bays + By, — Biyrs- (6.8c)

We will use the known form of the HMPT Lagrangian (2.19). To get the chiral logarithmic
corrections to Eiq—parameters, we should subtract twice the chiral corrections to the decay
constant fa from the chiral corrections to the four-quark operators (6.6a-6.6¢c). The former
is obtained from the study of the bosonized left-handed weak current (2.20) for the negative
parity heavy mesons. Here we shall also consider the next-to-leading order chiral counterterm
contributions and we write it as

T piier = T a2 T (1=35) (6 H)al(mg)eet s Tr [y(1 = 35) (€T H)b | (mg)oa
(6.9)

2Contraction of Lorentz indices and HQET parity conservation requires the same X to appear in both traces
of a summation term. Any insertions of £ can be absorbed via #H = H, while any non-factorisable contribution
with a single trace over Dirac matrices can be reduced to this form by using the 4 x 4 matrix identity

ATr(AB) = Tr(A)Tr(B) + Tr(vs A)Tr(ysB) + Tr(Av,) Tr(v* B)
+Tr(Av,ys) Tr(vsy" B) + 1/2Tr (Ao ) Tr(c” B).

30ur convention differs by a factor of two, compared to those of [195]. This is due to our use of combined
positive and negative frequency H' + H™~ fields which yield this additional factor in mixed H™H~ terms which
always appear twice.
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P SN
’

H,(v)

Figure 6.1: The diagram which gives non-vanishing chiral logarithmic corrections to the pseudoscalar
heavy-light meson decay constant.

where o is the tree level decay constant in the chiral expansion, and s o are the counterterm
coefficients. Together with the strong coupling g, these parameters are not predicted within
HMYPT. Instead, they are expected to be fixed by matching the HMxPT expressions with the
results of lattice QCD for a given quantity (see reviews in ref. [196, 197, 198]). The notation
used above is the same as in ref. [153]. The chiral logarithmic corrections to the decay constant
come from the diagrams shown in fig. 6.1

A 1 3 5. m2 1 m2% 1 m;
=a|l-— m;lo —+ —m2lo +—m lo ’
fa [ e ( &2 Tamrloe o+ g &

2.

+3e1(p)ma + s () (M, +mqa + my)

T30
N 1 m2 m2
=a|l - — [ mklog —£& + mlo—”
fs [ (47Tf)2< K g'u gﬂ2>

1
+oe1(p)ms + se2(p)(my, + mg + ms) + 5525] , (6.10)

where it should be stressed that we work in the exact isospin limit (m,, = mg) so that the index
d means either u- or d-quark. Only explicit in the above expressions is the term arising from
the tadpole diagram (in fig. 6.1), whereas Z; 5, the heavy meson field renormalization factors,
come from the self energy diagram (left in fig. 6.1) and are given in eq. (4.3). We write out the
leading order contributions of negative parity heavy states only

3¢* 3 5 m2 9 m? 1 m?
Z:=1— Zm?loo —& loc —& + ZmZ 100 —2
d (@rf)? <2m,r og 2 + mi log 02 +6m77 og 2

k1 (p)yma + ko () (0, + mg + ms),

2 9 2
<2mKlogu—+ 3" log 2 + k1 (p)ms + ko () (my, + mg + ms) .
(6.11)

In both egs. (6.10) and (6.11) the p dependence in the logarithm cancels against the one in
the local counterterms. With these ingredients in hands it is now easy to deduce that the only
diagrams which contribute to the SM bag parameter, Ela, are the two shown in fig. 6.2. They
arise from the two terms in O; = 831[(§TP;*)Q(§TP*+“)G + (€TP7)a (€1 PH),] and yield

2
“sunset” : 451 g Z 2)2m?log m—g (6.12a)
1

(6.12b)

2

ms

“tadpole” : — 451 m 2 log —
- fQZ i
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/’——_(_§~‘\
——————RR————s - ~RIRF =
H,(v) Hy(v) Hy(v) Hy(v) H,(v) H,(v)

Figure 6.2: The diagrams relevant to the chiral corrections to the SM bag parameter Bia. In the text
we refer to the left one as “sunset”, and to the right one as “tadpole”. Only the tadpole diagram gives a
non-vanishing contribution to the bag parameters Ba aq.

respectively, where A\ are the SU(3) generators and m; masses of the pseudo-Goldstone bosons.
The SM bag parameters now read

~ ~ 1-3¢% (1 m2 1 m2
_ pTr 2 2 n
Bld — Bl 1 — (47Tf)2 <§mﬂ IOg H_;r + gmn lOg ?
FOu)ma-+ B 0) g+ )|
~ 1—3g%2 m?
Bis = Biﬁee - (47rf3q2 gm% log M—g + bl(:u)ms + bll (:u)(mu +mg + ms) ) (613)

where we also wrote the counterterm contributions and, for short, we wrote ElTree = 36, /o’
The above results agree with the ones presented in refs. [199, 200], in which the pion loop
contribution was left out, and with the ones recently presented in ref. [201].

As for the bag parameters By, and By, we obtain

~ ~ 3°Y 71 (1 m2 1 m?
_ Tr 2 2 n
Paaa = Bai® |1+ gy | maloa @ +gmlon 3
+boa(p)ma + bl2,4(“)(mu +mg +myg) |,
Bog = BP |14 230V L gy, b,
24s = Doy + gwmn og 2 + baa(p)ms + by 4 (1) (Mg +mg +ms) |,

(6.14)

where Y = (05 4/B82,4), With 85 = Ba,, + B2y,45 — 452,,, and B = —fuy, + Buy,~;. The sign
difference in the second terms of eq. (6.14) is due to the different chiral structure of the Og 4
operators so that the right diagram in fig. 6.2 receives a minus sign in the case of Oy.

6.3 Impact of the 1/2"-mesons

In this section we examine the impact of the heavy-light mesons belonging to the 1/2 doublet
when propagating in the loops onto the chiral logarithmic corrections derived in the previous
section. We use the full Lagrangian of eq. (2.19) and also the weak current operators (2.20),
which we also extend for the 1/2% heavy meson chiral counterterm contributions:

T pmagprt = 21 = 35) (€ S)al(mg)ee + 3 Tr [14(1 = 35) (1) (Moo, (6.15)

where %172 are the coefficients of two new counterterms.
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_ -
.
. N

Ha(v) Hb(v)

Figure 6.3: In addition to the diagram shown in fig. 6.1, this diagram contributes the loop corrections
to the pseudoscalar meson decay constant after the 1/27 mesons are included in HMxPT.

6.3.1 Decay constants

Since we focus on the pseudoscalar meson decay constant, it should be clear that only the scalar
meson from the 1/2% doublet can propagate in the loop . The diagrams that give non-vanishing
contributions are shown in fig. 6.3 and the corresponding expressions now read

) PUS Apa
fo = « {1 + Q(Z;Tb;g [—39201 (mf 7mi) — Co(my)

A 1A / A 1A
+R2C (M,mi>+2h a C( ba SHm>]} (6.16)

m; alAgp m;

where the summation over “i” is implicit, and we omit the counterterm contributions to make
the expressions simpler. The integral functions C; can be found in Appendix B. The last term
in the decay constant (the one proportional to h) comes from the right graph in fig. 6.3 which
was absent before the inclusion of the scalar meson. Notice that due to the chiral behavior of
the C; functions in eq. (4.13), the presence of the nearby 1/2% state does not affect the pionic
logarithmic behavior of the decay constant. It does, however, affect the kaon and n-meson
loops because those states are heavier than Agy and the coefficients of their logarithms cease
to be the predictions of this approach since those logarithms are competitive in size with the
terms proportional to A%, log(4A%,,/u?). Stated equivalently, the relevant chiral logarithmic
corrections are those coming from the SU(2)r, ® SU(2)r — SU(2)y theory, and the pseudoscalar
decay constant reads

: 14393 , .
=a|l————5-m;lo 6.17
fq (6% 2(47Tf)22 g/J/ +Cf( ) 9 ( )
where cy () stands for the combination of the counterterm coefficients considered in the previous
section. * At this point we also note that we checked that the chiral logarithms in the scalar
heavy-light meson decay constant, which has recently been computed on the lattice in ref. [165,
46|, are the same as for the pseudoscalar meson, with the coupling g being replaced by g, i.e.,

~ 1+35°3

=ad |1-—"m2lo m2| . 6.18
Since, as we already checked in chapter 4 (see table 4.1) g G%/9? < 1 the deviation from the linear
behavior in m?2 is less pronounced for fq than it is for fq

—4(i: 72 [3 4 log(4A% /u®)] + ?(’Z 77 [1+log(4A%/p2)] = %kl(p)+%ki(p)+

Ko (1) 4+ kb (1) + 31 (1) + 25¢2(11), where we use the Gell-Mannankes Renner formula, m2 = 2Bom, from eq. (2.6).
We stress again that the exact isospin symmetry ( m, = mg) is assumed throughout this chapter.

*More specifically, 2Boc (1) +
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6.3.2 Bag parameters

In this subsection we show that the situation with the bag parameters is similar to the one
with decay constant, namely the pion loop chiral logarithms remain unchanged when the nearby
scalar meson is included in HMxPT. To that end, besides eq. (2.19), we should include the
contributions of 1/2"-mesons to the operators (6.6a-6.6c). Generically the operators O; 2 4 now
become

§*S)am<1—75 } [(5*5)017“ 1—75)X} . (619

where 3] y are the couplings of the operator O; to both 1 /27 and 1/2% mesons, while 3/, come
from the coupling to the 1/2% mesons only. Similarly, the operators Oz 4 now read:

Or = Y foxTr[(¢'H) (1-9)X|Tr|(¢'H) (1-)X]

+0x Tr [(fTH)a (1- ’Y5)X} Tr [(5T5>a (1- ’Y5)X}
(¢'5) (1 =m)x] T [(g's) (@-m)x], (6.20)

O = Y AuxTr|(§'H) (1=15)X]| T ((€H), (1+95)X]
X
+BixTe [(61H) (1= 9)X] Tr [(€9), (1 +15)X]
BT [(€75) (1= 5)X] Trl(¢H), (1 +75)X]
+Bx T [(€75) (1= 18)X| Tr((8), (1 +75)X] - (6.21)

After evaluating the traces in eqgs. (6.19), and keeping in mind that the external states are the
pseudoscalar mesons, we have

o = [, (@), (60), ()
(o), (e), = (em5), () [+ (657), (07), 022

where 51 ") have forms analogous to the ones written in eq. (6.8a). The corresponding additional
1-loop chiral diagrams are shown in fig. 6.4. Since the couplings of the four-quark operators to
the scalar meson(s) are proportional to ﬂg’” and of the pseudoscalar decay constant to o, the
cancellation between the chiral loop corrections in the operators @ and in the decay constant
is not automatic. For that reason, instead of writing the chiral logarithmic corrections to the



COoArFlHER 6. ARAVY NEULRAL MESUOIN MIALING

L P
:i:}:ég = = Z&?:{:“‘:
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Figure 6.4: Additional diagrams which enter in the calculation of the chiral corrections to the operators
(O1,2.4) once positive parity heavy states are taken into account.

bag-parameter, we will write them for the full operator, namely

- _ NN A
Bi.f? = 351{1— ab”ba [65]26’{ (%‘,mi>+2co(mi)

2(4n f)? i

A + A 3 A + A

—QhQC/ (M,THZ) —4h ﬁl,\ C( ba + SH,mZ'>:|
AsuB m;

m;
Aoy N 2 i (Db
_2(47Tf)2 |:—Gg Cl (Wi’m,L) + QCo(ml)

= A LA o A A
—4h ﬁlA C< ba SH,mZ-> +p2 Z C <57ba SH,mZ)] },
Asu Asub =, m;

(6.23)

To keep the above expression simpler we do not write the counterterms since their structure
remains the same as before. The similar formulae for Ba 4, fg are

- 24 ~ PUBI A
Bs, 2 _ 2= 1 — ab”*ba 2 [ Bba ; 2 i
2 fa 5 ﬁQ { 2(47Tf)2 |:6.g Cl m; , T + CO(m )
A +A 3, Az + A NN
—9Rn2c! <b‘173H’mi> —4h ﬁQA C ( ba SH’mi>:| _ “aa . |:2CO(mz)
m; ASHﬁQ my 2(47Tf)
= A LA Au A 4+ A
—4h @AC( ba SH,mi>—|—h2 2 ZC<57’M SHm>”
Agw B2 m; AsuP = m;
(6.24)
~ 24 ~ Xy AT A
B 2 . Z= 1 ab” ba 2 [ 2ba . 2 .
Ay, + A 8, Ay +A Ao N
—on2c’ <b(17SH’mi> _4h ﬁ4/\ C( ba SH’mi>:| _ Naa > |:_2CO(mz)
m; AgpBa m; 2(47f)
ar A~ + A 3 A + A
—4h ﬁ4,\0( ba SH,mZ-> —h2ﬂ74A Z sC (su,mi>]}.
ASHﬁél m; ASHﬂ4 s—t1 my
(6.25)

We now turn to the case m, < Agy and study the behavior of eq. (6.23) around m?2 — 0.
We shall proceed similarly to what has been done in section 4.4.1, namely we expand the
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integrand in E,/Agy. We see that after expanding eq. (6.23) around m2 = 0, the leading chiral
logarithms arising from the pion loops remain unchanged even when the coupling to the scalar
meson is included in the loops. On the other hand, as discussed in the previous subsection, the
logarithms arising from the kaon and the n-meson are competitive in size with those arising from
the coupling to the heavy-light scalar meson, which is the consequence of the smallness of Agy
. Therefore, like for the decay constants, the relevant chiral expansion is the one derived in the
SU((2)r ® SU(2)r — SU(2)y theory, i.e.,
Bi.f? = BI™a?|1- 3g2+2leo m—gr—i-c (p)ym?2
la 1 (47Tf)2 w108 112 O \[)My |

a
~ ~ Ty 3°3—-Y)+3+1 m?2
Boaf? = B2T74eea2 [1 — )2 m?2 log M—g +co,, (mm2| . (6.26b)

(6.26a)

or by using eq. (6.17), for the bag parameters we obtain

~ ~ 1—3¢° m?2
Tr
By, = By™ [1 - Wmfr log ,u_;r + e, (w)m?2| | (6.27a)
~ ~ 3°Y F1 m2
Bay, = ngiee [1 + 72(47#)2 m?r log ,u—; +€Byy (,u)m?r , (6.27b)

which coincide with the pion loop contributions shown in egs. (6.13) and (6.14), as they should.

6.4 Relevance to the analysis of the lattice QCD data

It should be stressed that the consequence of the discussion in the previous section is mainly im-
portant to the phenomenological approaches in which the sizable kaon and 7n-meson logarithmic
corrections are taken as predictions, whereas the counterterm coefficients are fixed by matching
to large N, expansion or some other model. We showed that the contributions of the nearby
heavy-light scalar states are competitive in size and thus they cannot be ignored nor separated
from the discussion of the kaon and/or n-meson loops. However, the fact that the nearby scalar
heavy-light mesons do not spoil the dominant pion logarithmic correction to the decay constant
and the bag-parameters is most welcome from the lattice practitioners’ point of view, because
the formulae derived in HMyPT can still (and should) be used to guide the chiral extrapolations
of the lattice results, albeit for the pion masses lighter than Agpy .

6.5 Conclusion

In this chapter we revisited the computation of the BS —ES mixing amplitudes in the framework
of HMyPT. Besides the SM bag parameter, we also provided the expressions for the chiral
logarithmic correction to the SUSY bag parameters. More importantly, we study the impact
of the near scalar mesons to the predictions derived in HMYPT in which these contributions
were previously ignored. We showed that while the corrections due to the nearness of the scalar
mesons are competitive in size with the kaon and 1 meson loop corrections, they do not alter the
pion chiral logarithms. In other words the valid (pertinent) xPT expressions for the quantities
discussed in this chapter are those involving pions only. This is of major importance for the chiral
extrapolations of the results obtained from the QCD simulations on the lattice, because precisely
the pion chiral logarithms provide the most important guideline in those extrapolations. As a
side-result we verified that the chiral logarithmic corrections to the scalar meson decay constant
are the same as to the pseudoscalar one, modulo replacement g — g (c.f. eq. (6.18)).
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Chapter 7

AS =2 and AS = —1 rare hadronic
decays of B, mesons

Rare decays of B mesons are considered to be one of the promising areas for the discovery
of new physics beyond the SM [60, 61, 62]. This is based on the expectation that virtual new
particles will affect these decays, in particular in processes induced by FCNCs; such processes are
suppressed in the SM since they proceed via loop diagrams. This venue, typified by transitions
like b — s(d)y, b — s(d)ll has been investigated intensively in recent years [60, 61, 62]. In
particular the experimental results on decay rates and the parameters describing CP-violation
in the B meson nonleptonic two-body weak decayssuch as B — 7K and B — ¢Kg have
attracted a lot of attention during the last few years (see e.g. [202] and references therein). In
the theoretical explanation of these decay rates and CP violating parameters it is usually assumed
that an interplay of the SM contributions and new physics occurs. Grossman et al. [69] have
investigated the decay mechanisms of B — K decays and found that new physics might give
important contributions to the relevant observables. In their search for the explanation of the
B — K puzzle, the authors of [203] have investigated the B — K7 decay mode within a model
with an extra flavor changing Z’ boson, making predictions for the CP violating asymmetries
in these decays . Z’ mediated penguin operators have also been considered in many other
scenarios. Contributions of SUSY models with and without R-parity violation (RPV) in the
same decay channel were also discussed in [204]. The difficulty with this decay mode is that
the SM contribution is the dominant one. The use of QCD in the treatment of the weak
hadronic B meson decays is not a straightforward procedure. Numerous theoretical studies have
been attempted to obtain the most appropriate framework to describe nonleptonic B meson
decays to two light meson states. But even the most sophisticated approaches such as QCD
factorization (BBNS and SCET) [148, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215] still
have parameters which are difficult to obtain from “first principles”. Consequently, searches for
new physics in decay modes dominated by SM contributions suffer from large uncertainties.

A related, though alternative approach is the search for rare b decays which have extremely
small rates in the SM, and their mere detection would be a sign for new physics. Several
years ago, Huitu, Lu, Singer and Zhang suggested [63, 64] the study of b — ssd and b — dds
as prototypes of the alternative method. This proposal is based [63] on the fact that these
transitions are indeed exceedingly small in the SM, where they occur via box diagrams with
up-type quarks and W’s in the box. The matrix elements of these transitions are approximately
proportional in SM to A7 and A® (X is the sine of the Cabibbo angle), resulting in branching
ratios of approximately 10~ and 1073 respectively, probably too small for detection even at
LHC. Further discussions on these (AS = 2) and (AS = —1) transitions are given in Refs.

81
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69, 216, 217, 218].

Huitu et al. have then investigated [62, 63] the b — ssd transition in several models of
physics beyond SM, namely the MSSM, the MSSM with RPV couplings and the THDM. Within
a certain range of allowed parameters, the MSSM predicts [63] a branching ratio as high as 1077
for b — ssd. On the other hand, Higgs models may lead [64] to a branching ratio at the 10~°
level. Most interestingly, in RPV the process can proceed as a tree diagram [63] and limits on
)\;j  RPV superpotential couplings that existed at the time did not constrain at all the b — ssd
transition.

In Ref. [63] the hadronic decay B~ — K~ K~ w", proceeding either directly or through a
F*O, has been selected as a convenient signal for the b — ssd transition. A rough estimate [63]
has shown that the semi-inclusive decays B~ — K~ K~ + (nonstrange) may account for about
1/4 of the b — ssd transitions. The OPAL collaboration has undertaken the search for this decay
establishing [219] the first upper limit for it, subsequently constrained by both B-factories [68,
220, 221] to BR(B~ — K~ K~ 7") < 2.4 x 107%. In an experiment planned [222] by ATLAS at
LHC, a two orders of magnitude improvement is expected.

In order to use these results for restricting the size of the b — ssd and b — ds§ tran-
sitions one needs also an estimate for the long distance contributions to such (AS = 2 and
AS = —1) processes. A calculation [223] of such contributions provided by DD and by D
intermediate states as well as those induced by virtual D and m mesons lead to a branching ratio
BRFP(B~ — K~K~7F) =6 x 107'2, only slightly larger than the short-distance result of SM
for this transition. Thus, this decay and similar ones are indeed suitable for the search of new
physics, the LD contribution not overshadowing the new physics, if it leads to rates of the order
of 10719 or larger. A survey [224] of various possible two-body (AS = 2) decays of B mesons to
VV, VP, PP states has singled out B~ — KK’ and B~ — K-K" as the most likely ones
for the detection of the presence of RPV transitions at the 10~7 level.

The b — dds transition has not been subject of such intensive theoretical studies although
experimental information on the upper bound for the B~ — 7~ 7~ K decay rate already exists.
Namely, the BaBar collaboration has reported that BR(B~ — -7~ K1) < 1.8x107¢ [221] while
the Belle collaboration found BR(B~ — 7~ 7~ K1) < 4.5x 107% [68]. The LHC-b is expected to
give even better constraints. Therefore we shall consider possible candidate nonleptonic decay
channels proceeding with the b — dds transition for the experimental searches.

At the forthcoming LHC accelerator one expects about 5 x 10! B, events/year, at a luminos-
ity of 103* em~2s7! [65]. Even if the actual number will be a couple of orders of magnitude lower,
the search for rare decays of B. exhibiting possible features of physics beyond SM will become
possible. The effect of such physics on radiative decays of B,, as caused for example by c-quark
decay via the ¢ — u+y transition has already been investigated [225, 226]. Here, we will address
the effects of new physics on rare b-decays caused by the (AS = 2 and AS = —1) transitions,
which we already mentioned to be very rare in SM [63, 64, 69]. Specifically, we will calculate
two-body decay modes B, — D:*F*O, B, — D:*FO,D;?*O and B, — D;Fo as well as
three body modes B, — Dy K~ «n*, B, — D K «*, B, — D;D: D%, B. — D;D; D*",
B — D;D; D", B, — D'K’K~ and B — DYKK~. We expect these modes to be most
likely candidates for the experimental observation.
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7.1 Inclusive b — ssd and b — dd5 transitions in SM and beyond

7.1.1 Operator basis and mixing

The effective weak Hamiltonian encompassing the b — dds process has been introduced by the

authors of [69] in the case of B — K decays. Following their notation we also include the
b — ssd transitions and write it as
5

Hot. = 3 |Co05 + G0y + CO% + COY] (7.1)
n=1

where C and @q denote effective Wilson coefficients multiplying the complete operator basis

of all the four quark operators which can contribute to the processes b — dds (for ¢ = s) and

b — ssd (for ¢ = d). We choose
Of = dyy"bydpush, O = diy*bdpyush, O = diy*bydy sy,
o o (7.2)
Of = @y e O3 = A8,

plus additional operators 6{72737475, with the chirality exchanges L < R, plus the same operators
with s and d quark flavors interchanged. In these expressions, the superscripts i,j are SU(3)
color indices. All other operators

with the correct Lorentz and color structure can be related to these by operator identities
and Fierz rearrangements. We perform our calculations of inclusive and exclusive decays at the
scale of the b quark mass (. = my), therefore we have to take into account the RGE running of
these operators from the interaction scale A. At leading log order in the strong coupling, the
operators (’)(1172 mix with the anomalous dimension matrix

( - (1’) (7.3)

The same holds for operators Of 5 ('y(OiIOg) = v(0107)) due to Fierz identities, while the
operator Of has anomalous dimension v(O3F) = a;/m. Anomalous dimension matrices for chirally

1(010) =

flipped operators (5‘1{2’37 4,5 are identical to these.

7.1.2 SM

Within the SM only the operators (’);(d) contribute to the b — dd3 (b — ssd) transitions at one
loop. The dominating contributions to the Wilson coefficients come from the up quark and W
boson box diagrams in fig. 7.1. The top and charm quark loop contributions dominate and lead

to
G2 m2 m2 m2, m2
oM —Lmiy Va Vis | VidVis f <—W> + VeVt < W ) . (7.4a)
3 4 2 t t m% %V m? mIQ/V
2 2 2 2 2
o5oM ViV Vi Vi f (20 ) gy v e g (e e ) 7.4b
3 A mW th Vg | Vit tdf < mt + 12/Vg m? mIQ/V ( )
where
1— 11z + 422 3
— — ] .
/(@) L(l—2? 20 —azp ™" (7.52)
dr — 1 — 42?2 -1
g(w,y) = - + S —du Inz —Iny. (7.5b)

4(1 — z) 4(1 — x)?
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Figure 7.1: Dominant contributions to the b — ssd (left) and b — dds (right) transitions in the SM
. Straight lines denote quarks while wavy lines represent W bosons. Filled dots stand for weak vertex
insertion.

Using numerical values of the relevant CKM matrix elements from PDG [52] and possibly in-
cluding the CKM phase in V;; one always finds ‘C;SM‘ < 3x10713 GeV~2 and ‘Cg,SM‘ <

4 x 107'2 GeV~2. Renormalization group running from the weak interaction scale to the bot-
tom quark mass scale, due to anomalous dimension of the operator Os, induces only a small
correction factor of 0.8 which can be safely neglected. The inclusive b — dds amd b — ssd decay
widths within SM can then be calculated. By accounting for the colors of final state quarks in
combination with the crossing symmetry one obtains

2
ra:SM _

inc. 48(27'()3 ) (76)

which leads to the branching ratios of the order 10~'2 (for b — ssd) to 10~ (for b — dds).

7.1.3 Beyond SM

Next we discuss contributions of several models containing physics beyond the SM : the MSSM
with and without RPV and models with an extra Z’ boson. For the THDM on the other hand,
the charged Higgs box diagram contributions were found to be negligible in the b — ssd case [64].
Due to higher CKM suppression, the argument holds also for the b — dds case. In addition,
the tree level neutral Higgs exchange amplitude for b — dds is proportional to [Egp&as|/m?;,
where g, and &y, are flavor changing Yukawa couplings and my is a common Higgs mass scale.
This ratio is constrained from the neutral meson mixing [64]. Using presently known values of
Amy and Amp [52] one can obtain an upper bound of |£g&ss|/m2; < 10713 GeV 2 rendering
this contribution negligible. Similarly for the b — ssd process the relevant effective THDM
coupling |€gp€sq|/m?; is bounded from above by the upper limit on Amp,. With the recent
two-sided bound on the Bj oscillation frequency from the DO and CDF collaborations [57, 79] it
is now possible to constrain this contribution to |£x&sq|/m?% < 10712, This value is two orders
of magnitude smaller than the one used in existing studies. Correspondingly, all the decay
rate predictions for the THDM are diminished by four orders of magnitude and thus rendered
negligible.
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Figure 7.2: Dominant contributions to the b — ssd (left) and b — dds (right) transitions in the MSSM.
Dashed lines denote squarks while curly-straight lines represent gluinos. Filled dots stand for strong vertex
insertion, while crosses denote off-diagonal squark mass insertions.

MSSM

In the MSSM, like in the SM , the main contributions come from the OF operators , while the
corresponding Wilson coefficients are here

CS,MSSM _ _042(5;1(513 |:24 f ( )+66f~‘( )} (7 7 )
5 - 2temz O R -
d,MSSM 301503 £

M

as found in analyses [58] taking into account only contributions from the left-handed squarks in
the loop (see fig. 7.2). Recently it has been also verified [218] that the chargino contribution in
MSSM to this process is indeed smaller by an order of magnitude than contributions calculated
in [63]. The functions fg(x) and fg(x) read [58]

6(1+3z)Inx + 23 — 922 — 9z + 17

fo(z) = 6(z — 1) ; (7.8a)
~ x r)lnz — 2% — 922 + 9z
Fow) — S22 3(:0—1)59 Hor 1 _—

with 2 = mg/mff We take ag(mypy) ~ 0.12 [52], while couplings 5%- parametrize the mixing

between the down-type left-handed squarks. The value of 19 is determined from the K° — e

mixing [58] and is currently bounded by mg, —mkg = 3.49x 10715 GeV [52]. We follow ref. [227]
and take x = mg /mz = 1; using results from [58] we estimate the absolute value of 412 to be
below 3 x 1072 at average squark mass mz = 350 GeV. The strongest bounds on da3 come from
the radiative b — sy decay [58, 228, 229]. These studies give at x = 1 and for mgz = 350 GeV

the stronger bound on |de3(z = 1)| < 0.4 which results in ]Cg’MSSM] < 5 x 10712 GeV 2.
This updated value for ég MESM ¢ somewhat smaller than those used in [63, 224]. Similarly,
the recent limits on 03,013 [227, 230, 231] disallow significant contributions from the mixed
and the right-handed squark mass insertion terms. Therefore, we only include the dominant

contributions given in the above expression. We follow ref. [227] and take z = mgp/mzp = 1
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Figure 7.3: Dominant contributions to the b — ssd (left) and b — dds (right) transitions in the RPV
model. Dashed lines denote sneutrinos, while filled dots stand for RPV vertex insertions.

and the corresponding values of [013(z =1)| < 0.14 and [d2;(x = 1)] < 0.042 [58]. We take
for the average mass of squarks mz = 500 GeV, and find ‘C’;’MSSM‘ < 2 x 10712 GeV~2.

Using expression (7.6) and substituting for the correct Wilson coefficient one finds the MSSM
prediction for the inclusive b — dd5 and b — ssd decay branching ratios of the order of 10!2.

RPV

If RPV interactions are included in the MSSM, the part of the superpotential which becomes
relevant here is W = X} jkLindk, where 7, j, and k are family indices, and L, @) and d are super-
fields for the lepton doublet, the quark doublet, and the down-type quark singlet, respectively.
The tree level effective Hamiltonian due to sneutrino exchanges in fig. 7.3 receives contribu-
tions from the operators Of and (’33 with the Wilson coefficients defined at the interaction scale
A~ my

3 / Ix 3 / Ix
S RPV _ An31An12 GsRPV _ An21 A3
4 - § : 2 4 - § : 2
m= mg
n=1 Un n=1 n
N A - SN N
Cd,RPV _ n32'n21 Cd,RPV _ nl2'n23
D D LRI A D
n=1 Un n=1 Un

(7.9)

The QCD corrections were found to be important for this transition [232]. For our purpose
it suffices to follow [63] retaining the leading order QCD result. Namely, the RGE running

of the operators induces a common correction factor for CZ’RPV(H) = fQCD(M)C4’RPV and
CH () = faen (™
24/23
2], A <my
foop(p) = e (12) 24/23 oy (me) 24/21 ) (7.10)
o] (R A

~

which evaluates to foop(mp) =~ 2 for a range of sneutrino masses between 100 GeV < my <
1 TeV. In addition the mixing with the operators Of and 0% induces a small contribution to
the Wilson coefficients CZV (1) = foop(u)CIY and CE*PY (1) = focp(u)CIFY:

. 2] _ ] A<
foop(p) = 3 LZS(%Z)}M/% [QS(E%)]M/m B [5:(—%}—3/23 [%]—3/21’ Asm (7.11)
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Figure 7.4: Dominant contributions to the b — ssd (left) and b — dds (right) transitions in the Z'
model. Wavy lines denote Z' propagation, while filled dots stand for effective flavor violating Z'-fermion
vertex insertions.

which is of the order ch p(myp) ~ 0.4 for the chosen sneutrino mass range. The relevant part of
the effective Hamiltonian we use in this scenario is then

HEPY = 3 {faon(u) [C2 V04 + CPY O (w)|
q=s,d

+acp(u) [CEY 04 + CFV O () | (7.12)

We neglect the fQCD suppressed contributions of OF, (5g to the amplitudes in the cases where

the operators Of, O} give non-zero contribution. The inclusive b — dds and b — ssd decay
rates induced by the RPV model become

5 2
,RPV mbeCD(mb) ,RPV ~q,RPV

The most recent upper bound on the specific combination of couplings entering Wilson
coefficients C2V and CP*PV can be obtained from Belle’s search for the and Bt — K+ K*x—
and BT — 7tnT K~ decays [68, 220] which we shall explore in the next section.

Z?

In many extensions of the SM [66] an additional neutral gauge boson appears. Heavy neutral
bosons are also present in many extensions of the SM such as grand unified, superstring theories
and theories with large extra dimensions [67]. This induces contributions in fig. 7.4 to the
effective tree level Hamiltonian from the operators (’)(11’3 as well as (5‘1{3. Following [66, 67|, the
Wilson coefficients for the corresponding operators read at the interaction scale A ~ my:

s$,Z" _ 4Gry pdr pdr ~s,Z' _ 4Gpy pdr pdr
Cy" = -5 BBy, 77 =-=—72"ByB3,
VA 4G ry pdr pdr ~s, 4 4Gy pdr Rdr
03 - V2 B12 B13 ’ 03 - V2 B12 B13 ’ 714
Cd,Z/ o _4GFdeLBdR éd,Z/ o _4GFdeRBdL ( . )
1 T Ty Parbayy Uy = —monm bot’ Dog's
d,Z'" _  4Gpy pdr pdr ~d,Z' 4G ry pdr pdr
G = == Bor By, O3 = —= 52 By Byg',

where y = (g2/91)?(p1 5in2 6 + pa cos® §) and p; = m%,[,/ml2 cos? Byy. In this expression g1, g2, M
and mo stand for the gauge couplings and masses of the Z and Z’ bosons, respectively, while
0 is their mixing angle. Again renormalization group running induces corrections and mixing
between the operators. As already mentioned, the mixing of operators Of , and their chirally
flipped counterparts is identical to that of operators 0375 since these operato}s are connected via

Fierz rearrangement. Thus the same scaling and mixing factors focp and fQC p apply. For the
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operator O3z on the other hand the renormalization can be written as Cg’ ( ) = focp(W)CY 2z
with

[%83] o A <my
/ s )
et [y o Eal s | e

In particular for a common Z’ boson scale of mz =~ 500 GeV [66] one gets numerically
focp(mp) ~ 2, focp(mp) ~ 0.4 and féCD(mb) ~ (0.8. The full contributing part of the ef-
fective Hamiltonian in this case is

Ha = > {taen(w) [CF7 0w + C17 01 ()]

q=s,d
+Facn(p) |17 04() + CF7 OY ()|
+focp(w) 057 04 (n) + 37 DY) } - (7.16)

For the inclusive b — dds and b — ssd decay rates the Of and O are numerically suppressed
due to the fgcp factor and we write

5
my

T = Toamamys [3aentm) (16177 +1C17 P ) +4f8cptm) (1037 P+ 1C87 ) | (717

In Section 7.3 we discuss bounds on Wilson coefficients CY’ 3 "and C 3 " which might be estimated
from the B~ — 7~7~ K+ and B~ — K~ K—7+ decay rates.

7.2 Two- and three-body non-leptonic decays of B. mesons

In calculating decay rates of various B, meson decay modes based on the b — dds and b — ssd
quark transition, one has to calculate matrix elements of the effective Hamiltonian operators
between meson states. As a first approximation, the calculation will be performed in the factor-
ization approximation. In the B meson decays this works in a good number of cases, while in
other cases a more sophisticated approach is needed (for a recent review see [233]). In this first
calculation we consider that factorization approximation is sufficient for obtaining the correct
features of the decays of the various channels considered. An exception is the case in which
matrix elements vanish as a result of factorization, which in a better approximation can be
improved.

7.2.1 Preliminaries

In out naive factorization of two- and three-body amplitudes, we express the resulting one- and
two-point transition amplitudes between mesons in terms of the standard weak transition decay
constants and form factors (3.20a - 3.21), as dictated by the Lorentz covariance. Some general
formulae can be devised to assist our calculation.

Factorization and Kinematics

For the decays of a pseudoscalar meson B containing a b quark to two mesons M; and M,
two diagram topologies are possible in the factorization approximation (in fig. 7.5). The right
“anhilation” diagram does not contribute in spectator processes, where the light quark flavor of
the B meson (u in B~ and ¢ in B, ) does not feature in the effective Hamiltonian. All processes
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M (p1) Mi(p1)
= ( = ®
B(pg) B(ps)
Ms(po) Ms(p2)

Figure 7.5: Diagrams contributing to the factorized matrtiz elements of two body nonleptonic decays
of B mesons. Double lines represent meson propagation, while crossed circles represent factorized weak
current insertions.

that we shall consider are of this type. We first derive a general expression for the factorized
matrix element of the O operators , relevant in the framework of SM (MSSM). In case the final
state mesons are pseudoscalars (we deonte them by P1 and P2) we get for the Of

(Pi(p1)|dvu58]0) (Pa(p2)|dy*b| B(ps)) = i(m%h — mp,) fp, Fy 27 (m¥,) (7.18)

Taking care of sign difference due to different chirality structure, the same expression also applies
for operators O, O and OY.

Similarly, when one of the final state mesons is a vector (we denote it as V'), we have two
possibilities: either (I) the vector state is paired with the vacuum or (II) with the initial B
meson. The two possibilities give

(D) (V(e,pv)ldyus |0) (P(pp)| dy*b|B(pp)) = 2my fy FL P (mi )e - ps (7.19a)
(1) (P(pp)|dvuv5s0) (V (e, pv)| dv'vsb |B(pp)) = —2my fpAy P (mb)e - pp (7.19b)

Because only vector currents contribute in the expression (I), it also applies for operators
(5%, Of and (531, while in the case (II) the expression is valid for these operators up to a sign
difference.

In two-body decays with a vector meson V' and a pseudoscalar meson P in the final state
we also sum over the polarizations of V. The sum in our case reduces to

Am%, m?,,m?
Z v (pv) - pal* = ( B4 5 P), (7.20)
€y my

where ey is the polarization vector of V and A is defined as A(w,y,2) = (v +y + 2)? — 4(zy +
yz + zx).

For decay to two vector mesons in the final state we use the helicity amplitudes formalism
as described in ref. [234]. Non-polarized decay rate is expressed as an incoherent sum of helicity
amplitudes
1

F =
87r'm23

(1HP + | Hia + | H-aP) (7.21)

where p1 is momentum of the vector meson in B meson rest frame and helicity amplitudes are
expressed as

2 2

A(m%, m3, m3) 2_ .2 9 N2 m2. m2
Hey=a+ o, Hy= -, AMpmnmy), g )
2mimes 2mimo dmims
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M, (p1) M (p1) ./ M (p1)
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e Ms(p2) e Ms(p2) Ms(p2)

Figure 7.6: Diagrams contributing to the factorized matriz elements of three body nonleptonic decays of
B mesons. Dashed lines represent intermediate (resonant) state propagation while filled circles represent
effective strong vertex insertions.

Vector meson masses are denoted by mq o, while definition of the constants a, b and c is given
by general Lorentz decomposition of the polarized amplitude

ic

b
Hy = N0 (a0 + Ll +

e“”“ﬁplapm) : (7.23)
mo mimsa

where €1 2 and py 2 are the vector mesons polarizations and momenta.

Situation is more complicated in the case of three body nonleptonic decays. Beside the
simple factorized topology in the center of figure 7.6, we also need to consider possible dominant
contributions comming from (resonant) intermediate states, such as those pictured in the left
and right diagrams in fig. 7.6. Here again the left diagram does not contribute in our chosen
“spectator” channels. For the decays of B to three pseudoscalar mesons P, P and P, the
factorized matrix element of O3 due to the topology in center fig. 7.6 reads

(Pa(p2) Pr(p1)|dyus|0) (P(p)|dy"b| B(pp)) = (t — u)F*" (s)F{5(s)

(m}p, —mp,)(mp —mp

S

L[PPP () FER(s) — FRP ()P (9)].
(7.24)

Because only vector currents contribute in the above expression, it also applies for operators 63,
O? and 0. The Mandelstam kinematical variables are as before s = (pg—p)2, t = (pp—p1)? and
u = (p—p2)?. We assume these contributions to be the dominant ones, where present. Possible
contributions from the right diagram of fig. 7.6 are to be considered where eq. (7.24) does not
contribute. We employ resonance dominance approximation and saturate the intermediate state
with the lowest lying resonances coupling to the weak current and the pair of final state mesons.
The lowest resonance coupling to a pair of pseudoscalar mesons in a parity conserving way is of
vector type (we denote it as V*) and only contributes via the (pseudo)scalar part of the current.
Therefore we may write such contribution as

(P(p)P1(p1)P2(p3)| 57uv5d57"v5b | B(pB)) =
(P(p)] 57u75d 0) (P1(p1) P2 (p3)| V" (pv, €)) ® iGy=(pv) @ (V*(pv. €)| 570 |B(ps)), (7.25)
where Gv+(q) = (—guw + quqv/m¥)/(¢*> — mi. +iT(V*)my~) is the V* meson propagator of

Breit-Wigner form, while (Pi(p1)P2(p2)|V*) = Gp, p,v+€- p1 is the strong transition matrix
element defined in eq. (3.19) and needs to be calculated in a suitable QCD effective theory
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description or model. Contraction of propagator Lorentz indices with vector state polarizations
is understood. The amplitude thus becomes

(P(p)Pi(p1)P2(p3)| 57,v5d57" 50 | B(pB)) =
mi (u — m%;l —m%) + %(s — m%;g + m%;l)(s —m3 +m%)
s mi (s +iL(V)my —mi)

= me%DAOBV (m2P)GP17P27V*

(7.26)

Other possible three-body decay channels with vector mesons in final states will not be considered
as they are very difficult to reconstruct experimentaly.

In the context of RPV, the contributions of the operators Of and 6Z to hadronic amplitudes
are dominant. One can use the Dirac equation to express scalar (pseudoscalar) density operators
in terms of derivatives of vector (axial-vector) currents

Gigy = 2D g, WA (@1 a;) (7.27)
Mg; — My, My; + Mg,
Using these relations we can derive expressions for the factorized matrix element of the OF and
62 operators in all two- and threebody channels considered above. For the two-body B — P P»
case we obtain

i(m} —mp, )mp,

(Pr(p1)|dyss]0) (Pa(p2)|db| B(pp)) = frFy P (m3,). (7.28)

(mp — mgq)(ms + mq)

In B — PV channels, only case (II) (eq. (7.19b)) contributes in the factorization approximation
due to the vector polarization transverzality condition ey - py = 0 in case (I). This gives

2mvm%)
(mb + md)(ms + md)

(P(pp)|dyss|0) (V(e,pv)|dvsb| B(pp)) = — frAY P (mp)e - pp. (7.29)

Vector transversality condition also kills any Of and (’32 contributions in B — V; V5 channels.

For the three-body B — P; P> P3 channel topology in fig. 7.6 on the other hand one obtains
m2, —m3, )(m% —m?

(mp, —mp,)(mp P)F§2P1(5)F{’B(s), (7.30)
(mp — ma)(ms — ma)

(Py(p2) Pi(p1)|ds|0) (P(p)|db| B(pg)) =

and for the resonance contribution (fig. 7.6)
(P(p)Pr(p1)Pa(ps)| 575d575b | B(pp)) =
_ fpmpAFY (mB)Gp, v mi(u—mp —mp) + 5(s —mp, +mp)(s — mp +mp)
(my + mg)(mg + ms) s mi (s +iL(V)my —mi) '

(7.31)

Finally, the color non-singlet operators O and Of can be Fierz rearranged to O and O
and then same expressions apply as well. Remaining operators are all of the V + A form and
their forms are therefore given above.

Modeling Form Factors

In our calculations we need the B, — Dg*) transition form factors Fli, V and Ag ;2. Since
HQET and the whole discussion of chapter 5 is not directly applicable to the decays of the B,
meson, we assume pole dominance for these form factors [93, 235]:

F(0)

F(s) = ——2— (7.32)

(1 —s/mgole)
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Decays | Fi(0) F_(0) V(0) Ao(0) Ai1(0) A3(0)
B.— D® | 032 —034 020 37 —0062 0.10
B.— DY | 045 —043 024 47 —0.077 0.13

Table 7.1: Numerical values of B, — D(:)

(s) transition form factors at s =0 by Kiselev.

Decays | Fy[GeV] F_[GeV] V[GeV] Ag[GeV] A;[GeV] As[GeV]
B, — D™ 5.0 5.0 6.2 00 6.2 6.2
B, — DY 5.0 5.0 6.2 00 6.2 6.2

Table 7.2: Pole masses used in B, — Dg:)) transition form factors by Kiselev.

and take numerical values for F'(0) and mpele from from QCD sum rules calculations [235] (see
tables 7.1 and 7.2).

For the B~ — 7~ and B~ — K~ transitions used to constrain new physics model parameters
we use the form factors calculated in the relativistic constituent quark model with numerical
input from lattice QCD at high s [128§]

FTo(0)

FrB(s) = F™B3(0) = 0.29 = (.48 7.33

() (1—s/mZ)[1 —o1s/m%.]  * ©) 7 ’ (7.332)
Fﬂ'B(O)

E™B(s) = 0 F™B(0) = 0.29 = 0.76 = (.28 7.33b

0 (s) 1—013/m23*+0282/m%*’ o (0) » 01 y 02 ) ( )
FKB(O)

FEB(g) = L FEB(0) =0.29 = (.48 7.33
1) (1-s/m% )1 —o1s/m%,]  * ©) 7 ' (7.33¢)
KB FKB(O) KB

FEB(s) = 0 . FFP(0)=029, 0,=0.76, 09=0.28, (7.33d)

1 Uls/mQB; + 0282/m‘}3;

In the three body decay modes involving pairs of D and D, mesons, we also need the form
factors for the D, — D transitions. These are not available in the literature and we calculate
them by utilizing HMPT, including the light scalar meson interactions with heavy mesons as
it has been done recently [95], and presuming the main contributions from exchange of light
scalar meson resonance K*°(1430). Interactions of heavy mesons are described by the HMyPT
Lagrangian 2.19, to which we add interactions of scalar mesons, which we put into an SU(3)
nonet (1 @ 8) representation

LiPrpr+ = =200 [HGH] + .. (7.34)

Here the light scalar mesons are introduced through the ¢ = /2/36 field, where & is the light
scalar meson matrix

75(0(600) + £°(980)) fr K™
& = f~ %(0(600)—f0(980)) K*9(1430) | . (7.35)
K'- K (1430) a°(980)

The ellipses indicate further terms involving only light meson fields, chiral and 1/mp corrections.
At the leading order in heavy quark mass and chiral expansion F f D , is found to vanish, so
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the only contributions come from the FOD P form factor . We then use resonance dominance
appoximation to obtain

FODSD(S) _ S (gﬂ/4)fK(1430)‘\/mDst ' (7.36)
mp, —mp s — m%{(1430) + i/ (1430)

From our analyses in Chapter 5 this result comes as no suprise since our choice of form factor pa-
rameterization dictates which resonances may contribute. Taking account of only (pseudo)scalar
resonance exchange thus singles out the Fy form factor . In the numerical calculation we use
gr =22 3.73 [95]. The rest of parameters are taken from PDG [52].

A similar method has been used to obtain the light to light K~ — 7~ meson transition form
factors in ref. [236]

29V K*gK~
PRy 7.37
() s — m%(* + /s g ’ ( K
[ K (1430) 95K (1430)
FrK(s) = FTE (s (1— > >+ i - : 7.3Tb
0 (5) (s) mi. mi —m s — mi((1430) + vk a30) ( |

In our numerical calculations we use the following values: fx(1430) =~ 0.05 GeV, gr+ = fr=mp+ =
0.196 GeV?, gy i+ = 4.59 and gg (1430) = 3.67 + 0.3 GeV taken from [236].

7.2.2 Amplitudes
B —rnn Ktand B- - K K «t

Experimentally, these are the only constrained processes proceeding through the b — dds and
b — ssd transitions. Therefore we may constrain new physics model parameters and use these
constraints to predict other viable decay channels .

Hadronic matrix element entering in the amplitudes for B~ — 77~ K+ (B~ — 7 7 KT)
in SM (MSSM) is readily given by eq. (7.24) after identifying P = 7= (K~), P, = KT (K™),
Py = 7~ (r") and using appropriate form factors . Eq. (7.30) is used instead for RPV, while
the Z’ amplitude incorporates both eqs. (7.24) and (7.30). There are two contributions in each
model to this mode, with an additional term with the u < s (f <> s) replacement in eqs. (7.24)
and (7.30), representing an interchange of the two pions (kaons) in the final state. After phase
space integration, the decay rates can be written very compactly with only Wilson coefficients
left in symbolic form in table 7.3. Assuming as in [64, 224] that interference between the two
chiral contributions in RPV and Z’ models is small, the decay rates in these models become
approximately

PEEY = (163 P 4107 P) % 78 x 107 GeV?, (7.38)
IZ = (ICf’Z/I2 + ICN’f’Z'F) % 9.0 x 1073 GeV® + (|C§’Z/|2 n |(7§’Z/|2) % 2.1 x 1073 GeV?®
(7.38D)
and
TREY — (\C;}RPV\? + \dfﬂpv\?) % 10.6 x 1073 GeV?, (7.39)

I e = (|C{1’Z'|2 + |C’f’z'|2) x 15.6 x 107 GeV® + (|C§1’Z'|2 + |(7§17Z’|2) x 3.1 x 107% GeV®.
(7.39D)
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| Model | Trrg [1073 GeV?] Tirr [1073 GeV?] \
2 2
Cés,(MS)SM‘ 31 % ‘Cg,(MS)SM‘

(MS)SM | 2.1 x ‘

2 2

RPV | 7.8 x o7 4 G| 11 x [PV 4 Gary
’ ~ 712 , . 12
2| 9.0 x|} + 7| 16 [c 4 G|

2.1 x|cy” + G5 i +3.1x|Cp7 + 6’5’”(2
483 x R [(Cf’z' + (?’f’Z’) F13 xR [(cf’z' + C*fvz’)
(cng’ + C‘;Z')*] (CS’Z' + C‘g’z/)*]

Table 7.3: B~ — m~n K" and B~ — 7 7~ K™ decay rates in various models and in terms of the
relevant Wilson coefficients.

| Model | Tppp, [107° GeV?] T'p.p.p [107° GeV?] \
MS)SM ‘ 2 ‘ C-(MS)SM ‘ 2
3

(MS)SM | 1.9 x 10~2 ‘Cg’( 3.1% 1073

RPV | 11 x [C"7 4 éjRPV‘Q 18 x |CERFY GZ,RPV‘Q
| 15x |op? + 5f’Z'(2 33 % [Cf 4 6{1’2/(2
+19x 107 o3 + 5;?”‘2 +3.1x 107837 + égvz’f
0.1 x R (CP7+E37) w02 xR[(Cf + O

(cng’ + @f’z'ﬂ (c;va’ + @Cf’z/)*]

Table 7.4: B, — D~ D™D} and B, — D;D; D% decay rates in various models and in terms of the
relevant Wilson coefficients.

B — DD~ D} and B, — D;D; D%

In calculation of the B, — D™D~ DY (B — D;D; D") decay rates again we use eqs. (7.24)
and (7.30) now with substitutions Ps = D~ (D), P, = DI (D") and P, = D~ (D). Numerical
results are presented in table 7.4. These decay rates are suppressed due to the small phase space
in comparison to the rates of the B~ — 77~ K™ and B~ — K~ K 7" decays. In numerical

analysis we will again and in all following cases neglect all the interference terms appearing in
RPV and Z’ models.

B = D 7 K" and B, — D; K ™
Here we identify P; = D~ (D; ), P, =7 (K~) and P, = KT (n") and obtain results in table 7.5.

By — K°Dn~ and By — K DK~

This transition only proceeds through the resonance contribution and eq. (7.26) applies with
the identification Py = 7= (K~), P, = D', P = KO(FO) and V* = D*~(D!~). We use HMxPT
eq. (4.11) for the evaluation of the D*~D%r~ (D:~DYK ™) vertices Gp«— por- = 2g\/mp-mp/ f
(Gps-po— = 29/mp;mp/f). The decay rates are then given in table 7.6. Note that the
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| Model [ Tprx [1073 GeV?]

FDSKﬂ' [10_3 G6V5]

+33><‘C’SZ +csz(
+13 xR [ (7 + )

(MS)SM | 3.3 x \c WSSM\ 6.4 x Cd<MSSM\
RPV 65><‘CjRPV+CjRPV‘ 13><(02RPV+C§RPV(
A 14><‘CSZ+CSZ‘ 29><(Cdz+cdz(

6.4 (Cdz +0dz(
+27 xR [ (0 + 1)

(cng’ + C‘;Z'ﬂ (CS’Z' + 6372/)*}

Table 7.5: B, — D n~K* and B, — D; K~
relevant Wilson coefficients.

7wt decay rates in various models and in terms of the

‘ Model ‘ N [ 10~° GeV5]
‘C (MS)SM‘

I'kpr [ 10~° GGV5] ‘
0.04 x ‘C (M) SM(

14 x ‘CdRPV+CdRPV‘

1.3 x ‘C” +cd2'(

(MS)SM | 0.06 x

RPV | 23 x (CS RPV. 4 G RPV‘

2
7 2.1><‘sz + o7

+0.06 x |57 + 6‘57”(2
+0.7x R [ (€17 + E77)
(@7 +a) |

10.04 x (C“ 4 G|’
405 x R [(c{lvz + cfvz’)
()’

Table 7.6: B, — K°D°r~ and B, — K DK~ decay rates in various models and in terms of the

relevant Wilson coefficients.

analogous decay channels B, — KD~ 7% and B, — K'D-K" will not be analyzed, since they
contain two neutral light mesons in the final state which are notoriously difficult to detect.

B - D K° and B — D; K"

The operators Of 3 and (’) i 3 that are present in SM (MSSM) and Z "' model obtain contributions
in the form given by eq. (7.18) with identification P, = K°(K ) and P» = D~ (D;). Opera-
tors O and Oy, relevant for the RPV and Z’ models result in expressions of the form (7.28).
However, in the latter two models, the two chirally flipped contributions to the amplitude have
opposite signs, resulting in a slightly different combination of Wilson coefficients (in table 7.7)
in comparison with the B~ — 7~ 7~ Kt (B~ — K~ K~ 7") decay rates .

By — D* K" and By — D" K"

Scenario (IT) (eq. (7.19b)) applies here with the identification P = K°(K ) and V = D*~(D}™).
We sum over polarizations of the D* meson using eq. (7.20), and the unpolarized decay rates
are given in table 7.8.
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| Model [ Tpg [1073 GeV”]
2
(MS)SM | 0.7 x ‘c;(MS’SM\

I'p.x [1073 GeV?] \
2
1.3 x ‘C§’<MS>SM‘

RPV | 0.6 x ‘CjRPV _ CeRrY

:
:

12 [PV GpRev

:
:

Z |18 x |op” - e 34 x |Cf7 —
7Z/ ~ 7Z/

+0.7 x ((Jg —C3

+22x R[(C}7 -7

(@7 -a7) ]

i 118 x|os? - ]
142 xR [(Ci@z’ - C’fvz’)

fer” - 27)]

Table 7.7: B, — D~K° and B, — D;FO decay rates in various models and in terms of the relevant
Wilson coefficients.

| Model [ Tpeg [107% GeV”]
2
(MS)SM c;*MS’SM‘

Ip:x [1073 GeV?] \
2
1.2 % ‘Cgl’(MS’SM‘

0.7 x ‘
~ 2 ~

RPV | 0.6 x ‘CjRPV n CjRPV( 1.0 x ‘CE’RPV + CORPV

‘2

:
:

7| 18 x ‘Cf’Z' + 37 3.2 ‘Cf,z' + 7

’ ~ /12
+Q7x(c§2-+c§2‘
+22x R[ (€17 + )

(Cs,Z’ _’_és,Z’)*-‘
3 3

+L2x‘C§Z5+E§Zw2
(a9 R [ (007 1+ C7)
@7 1))

Table 7.8: B, — D*~K° and B, — D:’fo decay rates in various models and in terms of the relevant
Wilson coefficients.

B — D~K* and B — D; K

Factorized matrix element is here of type (7.19a) (I) with the identification V = K*9 (F*O) and
P = D7(D7). The density operators OF and (52 do not contribute and consequently in the
RPV model this mode is dominated by the operators Of and 6§ which are, as mentioned in
Section 7.1.3, suppressed by the renormalization group running. Using Fierz rearrangements,
we write them down as O, O, and yield an additional 1/2 suppression factor. Results are
presented in table 7.9.

B — D*~K* and B — D" K"

Like in the previous case, this mode only receives contributions from the RGE suppressed RPV
terms. We calculate unpolarized hadronic amplitudes of the operators Of 5 and Of 3 by utilizing
the helicity amplitudes formalism. Using form factor decomposition (3.20b, 3.31), we write down
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| Model | Tpg- [107% GeV”] Tp.x+ [1073 GeV?] |
(MS)SM | 1.2 x |5 M) SM‘ 53 ‘Cg’(MS)SM‘Q
RPV | 4.7 x 1072 (csRPV+c§RPV‘ 01 % 102 x ‘CdRPv+CZRPV‘
A 48><‘CSZ+CSZ( 91><‘Cdz+cdz'(
L2 x |op? + 67 | 23 x o 4 07|
+48x R [(Cr7 + 7)) +9.1x R [(CF7 + )
(@7 +a7) | (e + &) ]

Table 7.9: B, — D~ K*% and B, — D;F*O decay rates in various models and in terms of the relevant
Wilson coefficients.

the expression for the polarized amplitude (7.23) and identify constants a, b and c:

¢ DigBe o %
a= _Z(ch + ’szfs))gK*/h (mg-)(C = O), (7.40a)
b i MEMDy, AD(s)B‘( )(C — C) (7.40b)
= e :
Qch"’_'szfs)gK K
;o MK =M p* ~
c=—s O G YPOP 2 ) (O + O). (7.40c)

C and C are combinations of the Wilson coefficients present in a considered model. We have C' =
oMM G — ) in the SM (MSSM), C = —fQCD(mb)cj REV 9. C = —foen(my)Cy RPV/Q
in the case of the RPV model and C = fQCD(mb)C’ +fQCD(mb)C' . C= fQCD(mb)C +

fQC D(mb)C{;’Z in the Z/ model. Decay rates are then given in table 7.10. In numerical analysis
we shall neglect mixing terms between the chirally flipped Wilson coefficients in the RPV and
the Z' models and also omit the last two terms in the Z’ model decay rate.

7.3 Constraining new physics

The usefulness of AS = 2 decays of B mesons in the search for new physics has been discussed
in several publications [63, 64, 69, 216, 217, 218, 223, 224]. From the models considered so far
it appears that these decays are particularly relevant in the search for SUSY, with and without
‘R-parity violation.

The results obtained in the MSSM framework depend on the values of the 5%- parameters of
the mass-insertion approximation which we use. The constraints on these parameters have been
improved in recent years [229, 237] vs. the values which were used in the first calculation [63]
of the b — ssd. For the RPV MSSM and the Z’ model may obtain the stringest limits on
the effective couplings using the experimental upper limits on the Bt — KTK™n~ and Bt —
7trT K~ decay rates from Belle [68]. For this purpose we use the explicit calculation of these
decay rates in Table 7.3. Normalizing the masses of sneutrinos to a common mass scale of
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| Model | Tp+g= [10~" GeV?] Lpegce [1071 GeV?] \
2
(MS) SM‘ 1.6 x ‘Cg,(MS)SM‘

(MS)SM | 0.9 x |5
RPV | 3.3 x 1072 (chPV - éjRPV‘Q 6.0 x 102 x ‘ CRPY CNﬁl,RPV‘Q
4.4 % 1073 x (CSRPVJFCERPV‘ 6.0 x 103 x (CdRPVJerRPV(
7| 33 x|cp” - Cf’Z/‘ 60 x 37 - Cd,Z/‘
04><‘CSZ+CSZ( 06><‘Cdz+cdz/(
+0.8 x |cp - &5 ’
+0.1 x ‘CS’Z/ 55,2/‘ 10.2 % ‘Cd,z’ éd,zfr
+3.3 xR [( ) 16.0 x R [( Nd,Z’)
(C - 5;2/)*} (c3 - & z/) ]
)
¢”)

+15 x |c? - Ep (
2

+0.4x R [ (€77 Cf +0.6 x R [ (C dZ+CdZ)

(" +&7) ] (67 &) |

Table 7.10: B, — D*"K*° and B, — D;‘*F*O decay rates in various models and in terms of the
relevant Wilson coefficients.

100 GeV we derive bounds on the RPV terms given in eq. (7.9)

3 2
100 GeV
Z ( m~e > (Angi Ao + Ao Anis) | < 9.5 x107°, (7.41a)
n=1 Vn
3
100 GeV
Z( m~e > (AnzaAmar + A1 Anis) | < 9.5 x 1075, (7.41Db)
n=1 Vn

Assuming that new physics arises due to an extra Z' gauge boson we derive bounds on the
parameters given in Eq. (7.14). We neglect interference between Wilson coefficients, namely
the last lines in Table 7.3. Experimental bound of this simplified expression now confines
(\Cf’zl +CoZ| 0P 5§’Z/\> to lie within an ellipse with semiminor and semimajor axes

as upper limits

y? |B5 B + BiE Bk | < 2.7 x 1074, (7.42a)
y? | Bk Bk + BiE BiE| < 5.6 x 1074, (7.42D)
and
2 \Bgf Bl 4 B Bl| < 2.4 x 1074, (7.43a)
\Bgf BY + Bdr BIE| < 5.3 x 1074, (7.43D)

The bounds (7.41a-7.43b) are interesting since they offer an independent way of constraining the
-0

particular combination of the parameters, which are not constrained by the B9 — Eg, BY - B,

K° — K" oscillations or b — sy decay rates (see e.g. [202]).
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Decay | SM MSSM RPV z'
B - D D Df [1x10721 5x107% 7x1077 9x10°1°
B = D;D;DT | 4x107Y 5x1071 1x107® 1x107?
B =D Ktn~ [2x10716 5x107% 4x1077 2x10°¢
B - DK~ 7t | 7x107"% 1x107 8x107" 3x1076
By »D'r K° [4x107%® 2x107%¥ 2x1078 1x107°
By 5> D'K K [4x10718 7x107% 9x10™° 6x 10710
B — D™ K° 4x 10717 2x107%  4x107% 3 x1077
B — D; Ky Ix107% 2x107 7x107% 4x1077
B, — D* K" 4x10717 2x 107 4x107% 3 x1077
B — DI K 1x107" 2x107" 6x107® 4x1077
B, — D-K*0 8x 10717 3x1071% 3x107Y 5x1077
B — D7 K, 3x107" 4x107 6x107  9x 1077
B = D*K* | 6x1071% 3x1071¢ 2x1071% 4x10°8
B — DK, 2x 107 3x107% 4x10710 5x 1078

Table 7.11: The branching ratios for the AS = —1 and AS = 2 decays of the B, meson calculated
within SM, MSSM, RPV and Z' models. The experimental upper bounds for the BR(B~ — n~n~ K™T)
<1.8%x107°% and BR(B~ — K- K~ n") < 2.4 x 107° have been used as an input parameters to fir the
unknown combinations of the RPV terms (IV column) and the model with an additional Z' boson (V
column).

Using these inputs we predict the branching ratios for the various possible two- and three-
body decay modes of the B.. The results are summarized in Table 7.11. The SM and MSSM
give negligible contributions. Using constraints for the particular combination of the RPV
parameters present in the B~ — 77~ K™ and B~ — K~ K 7" decays we obtain the largest
possible branching ratios for the three-body decays B, — D™ KTn~ and B, — D; K 7", and
two-body decays of B, — D~K° B, — D;FO, B — D* K% and B, — D;‘*FO, while for
the B, — D~ K* and B, — D*~K*" the RPV contribution is suppressed by renormalization
group running. Their order of magnitude is 1072 and thus still experimentally unreachable.
However, these two decay channels are besides the ones already mentioned, most likely to be
observed in the model with an additional Z’ boson, if we assume that interference terms are
negligible.

Since in the experimental measurements only Kg or K, are detected and not K9 or KO, it
might be difficult to observe new physics in decay modes containing neutral final state kaons due
to pollution of SM penguin dominated decays [69]. Therefore, the decay modes with charged

kaons as well as K*0 or K in the final state seem to be better candidates for the experimental
searches of new physics in the b — dds and b — ssd transitions.

In our calculation we have relied on the naive factorization approximation, which is as a
first approximation sufficient to obtain correct gross features of new physics effects. One might
think that the nonfactorisable contributions might induce large additional uncertainties, but we
do not expect them to change the order of magnitude of our predictions. However, since in SM
the basic decays b — ssd and b — dds have branching ratios of the order 1072 — 107! and
one expects that the rates for exclusive decays should be even smaller, the gap between this and
the predictions of beyond SM is so large, that it makes the search for these modes a useful tool.
Additional uncertainties might originate in the poor knowledge of the input parameters such as
form factors. However, we do not expect these to invalidate our order of magnitude estimates.
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All these decays should be looked for, when sizable samples of B.’s will be available.



Chapter 8

Concluding Remarks

The nonperturbative nature of QCD is a persisting problem of calculations in hadronic physics.
One of its manifestations is the appearance of resonances in the hadronic spectrum. In processes
where the exchanged momenta are small compared to the chiral symmetry breaking scale ~
1 GeV, one may employ the effective theory approach based on the approximate chiral symmetry
of light quarks and the approximate spin-flavor symmetry of heavy quarks (both compared to
the chiral scale). In such framework, the impacts of the nearest resonances in the processes of
heavy mesons can be systematically studied.

The HMYPT has been applied to strong, semileptonic and rare processes of heavy mesons.
The lowest lying positive and negative parity heavy meson multiplets were included systemati-
cally into the framework at leading order in heavy quark and at the next to leading order in the
chiral expansion.

At LO it was found that the nearby heavy meson excited states may help explain certain
features of the heavy-to-light semileptonic form factors . Namely, using a constrained form
factor parameterization based on approximate effective theory limits, it was possible to satu-
rate the whole tower of intermediate states beyond t-channel production threshold with just
the nearest resonances of suitable quantum numbers. The parametrization was matched onto
HMyPT calculation at small momentum exchanges, were predictions were most reliable. Such
model reproduced most H — P and H — V form factor shapes successfully within current
experimental errors and compatible with existing lattice QCD calculations.

In other processes considered, the excited heavy meson resonances contribute only at the
NLO in HMyPT through chiral loop corrections. Considering strong decays of heavy measons,
the effective strong couplings between pairs of heavy positive or negative parity mesons and
light pseudoscalar mesons were calculated at NLO in chiral expansion. From the measured
D* — Dr and D{) — Dm decay rates the LO effective couplings were extracted. The effects of
the large number of unknown counterterms entering NLO calculation were estimated by varying
the renormalization scale and by scanning the parameter space with the experimental fit. Then
the chiral extrapolation of the couplings was studied in limit where the light pseudoscalar masses
tend to zero. It was found that in the naive calculation of chiral loop corrections involving excited
heavy states, the chiral limit is ill-defined. One can instead perform an expansion in the inverse
mass splitting between the ground and excited heavy meson states to recover a well behaved
chiral limit. Such expansion is reliable for light pseudoscalar masses, smaller then the heavy
meson parity splitting scale. Then the effects of excited heavy mesons are formally expressed
as higher order chiral corrections to a theory without dynamical excited states. The result is
especially important for lattice QCD studies where chiral extrapolation is used in order to reach
the physical limit of light quark masses used in simulations. It means that the relevant chiral
symmetry limit for such expansions is the SU(2) isospin limit and that chiral expansions may
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only be reliable for pion masses smaller then the heavy meson parity mass splitting. At the
same time the reliability of the leading log order extrapolations in this limit can be estimated
using the leading higher order contributions due to excited states.

The decoupling of excited resonances and their leading order effects was probed also in
the case of heavy-to-heavy semileptonic form factors were the chiral corrections to Isgur-Wise
functions in weak transitions among heavy mesons of both parities were calculated. The very
accurate determination of the decay rates from experiments and the form factors from lattice
QCD requires detailed knowledge of the chiral limit in order to extract CKM matrix element
Vie It was found that the effects of the excited heavy meson resonances may be comparable in
size to current theoretical error estimates and therefore should be taken into account in future
studies.

The prime interest in the rare heavy meson processes is the search for new physics signatures
beyond the SM. But in order to be successful, hadronic effects have to be well understood and
under control. For this purpose the chiral behavior was studied for the full SUSY basis of
effective AB = 2 operators, which mitigate oscillations of heavy neutral mesons. Chiral loop
corrections were calculated in the NLO in the chiral and LO in heavy quark expansion including
effects of positive parity heavy mesons. The decoupling of the excited states was confirmed and
the leading log order chiral extrapolation formulae for the whole basis were given, to be used
by future lattice QCD studies of these transitions. As an auxiliary result also the leading chiral
log corrections to the positive parity heavy meson decay constants were calculated.

Finally the very rare b — ssd and b — dd5 transitions of the B, meson were evaluated in the
effective theory approach. The hadronic decay amplitudes were estimated using factorization
and resonance saturation approximations. The transitions were analyzed in several new physics
models. Based on existing experimental limits on B — K K7 and B — wwK decay rates the
relevant new physics parameter combinations could be constrained. Finally, based on these limits
the most promising two- and three-body nonleptonic decays of the B, meson were identified,
were signals of the rare transitions could be searched for in future colliders.

To obtain our results, several technical details had to be resolved as well. The complete set of
NLO counterterms contributing to strong transitions among heavy positive and negative parity
heavy mesons, and light pseudoscalar mesons had to be identified. The inclusion of excited
heavy meson states also spoiled the chiral limit of the leading log order calculations. The issue
was resolved using a truncated loop integral expansion in the inverse powers of the heavy meson
parity mass splitting, which however reduced the scale of validity of HMyPT calculations. In
H — P,V transitions the HQET and SCET limits had to be correctly reproduced in order to
obtain a valid form factor parameterization. Also, the bases of QCD and HQET form factors
had to be matched correctly and identified with the results of the HMxPT calculation. It
was found that only such correct matching faithfully reproduces resonances contributions of
correct quantum numbers the the form factors. Also, in order to reproduce the pole structure
of the form factor parameterizations, heavy meson radial excitations had to be introduced into
HMYPT. In the calculation of chiral corrections to the heavy meson mixing operators a correct
operator bosonization prescription had to be identified. It turns out that the large general basis
of HMxPT operators contributing to the matching can be greatly reduced using heavy quark
spin symmetry and 4 x 4 matrix identities. Similarly in b — ssd and b — dd5 transitions, a
complete basis of quark operators and their LO RGE running and mixing had to identified in
order to have control over leading order QCD corrections in the UV. Finally, several hadronic
amplitudes entering two- and three body nonleptonic decays of the B. meson required HMyPT
input calculations including light vector and scalar meson contributions and correct ressonace
saturation prescriptions in order to yield sensible phenomenological results.



Appendix A

HMyPT Feynman rules

In deriving the Feynman rules from the leading order HMxPT Lagrangian (2.19) we set the over-
all heavy quark mass scale to a common scale for all processes and states under study inducing
a mass gap Ag (Apg) terms in the propagators of the positive (negative) parity doublet states
due to the relevant residual mass counterterms in the Lagrangian (4.1). The same approach
could be taken with regards to the chiral symmetry breaking contributions, which also induce
mass gaps A, in the heavy meson propagators due to relevant O(m,) counterterm contributions
in Lagrangian (4.1). However, their non-analyitic contributions to the chiral corrections are of
higher order in the chiral power counting and we can safely neglect them in our calculations.
Likewise, we neglect hyper-fine splittings within individual spin-parity heavy meson doublets.
These are degenerate at zeroth order in the 1/mpy expansion at which we are working due to
heavy quark spin symmetry.

Following is a list of derived Feynman rules used in the calculations in the text. The standard
+i0 — prescriptions are implicitly understood in the propagators.

Pa(v) ,
Pa propagator: ; - m
*
\ Felv) —i(g" —vv¥)
Pa propagator: ; - m
POa (U) )
Py, propagator: = = m
Py, (v) e
Pl*a propagator: ; - m
(q) A
m* propagator: —-———#———— = kz_zmz
7r’i(q)li
| 4

P, P;m' coupling: ——e—p=— = 27914:”)\21)
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m(q) s
. a\U 1 (U . .
PP coupling: e — — m%e“”aﬁkavg)\;b
Wi(q)ll
Iy*
| Rul) P
Poo Py coupling: = TQk”)\;b
Wi(q)ll
| PLe) ) |
P}, P}y coupling: = %e“”aﬂko‘vﬁ)\;b
m(q)
r
) Pa(v) 'P()b(v) .
P, Py coupling: ——t—=— = ’T%(k SV,
m(q),

P;P7 coupling: ——t—p=— = %(k “v)gMv L,



Appendix B

One loop scalar and tensor functions,
special cases

Following is a list of loop integral expressions used in the text. Our notation follows roughly
that of Ref. [97]. We employ dimensional regularization in the renormalization scheme where
the subtracted divergences 2/ — v+ log 4w + 1 are absorbed into the appropriate counterterms.
All expressions below already have these infinite parts of the integrals subtracted.

dP 1 i m2
_ ,,(4-D) q _ 9 m”
Io(m) = p / n)D @ =) 5 log <M2 ) , (B.1)
dr ra¥ i
v _ ,,(4-D) q q97q _ w
1n) =17 [ ) = T o (B2
dr ma¥
T A) — (4D)/ q q'q
2 (mv ) H (27T)D (q2 _ m2)(v g — A)
= 1(; . [Cl (é’m> g + Cy <é’m> quu] ’ (B.3)
T m m
It (m, A) = p4=D) / d%q ¢ L
e 2m)P (g2 —m2)(v-q— A) 1672 m A :
-~ qu quqy
T m,A ,A _ (4 D)/
5 ( 1,A2) H (2m)P (g2 —m2)(v-q— A1) (v-q— Ay)
1 y 5
= o a, BT0m A = I (m, ) (B.5)
where .
1 (m, A A) = 1 (m, ), B
dP KoV
B (v, - ,@-D) q q°q

)
1672
+C3(w, m, A1, Ag)v"" " + Cy(w, m, A, Ag)v“vy]. (B.7)

[Cl(w, m, A1, Ag)g" + Co(w, m, Ay, Ag) (vF0'” 4+ v"v'")
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In the text we then make use of the following expressions

1 m?
Co(m) = —Zm4 log (F) ,

3 2 1
C(z,m) :'rg [ 1823 + (182° — 9z) log (ZL >+36x3F 5)],

3 2
Ci(x,m) = % [—125[3 + 1023 + (92 — 62°) log <%> —12z(z — 1)F <l>} ,

X

Cy(x,m) = C(xz,m) — C1(z,m),

with "
01,2 (z,y,m) = Ex——y[cm(y’m) — C12(z, m)],
Clo(x,m) =Cl 5 (x,2,m) = iiC’ (x,m).
1,2\ — V1,2 5Ly m dx 1,2

The function F'(z) was calculated in Ref. [43]

F<1> { —Vﬁi‘llog(ﬂchvx?—l), | > 1,

—@[%—tarfl( = )}7 lz| < 1.

X

xT

V1—22

CASES

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

We also make use of the C;(v,v',m, Ay, Ay) loop integral functions which have been defined
in [172]. The 1/A expansion for C;(x,m) has been given in sec. 4.4.1, while for C;(v,v’,m, Ay, Ag)

it follows as

Ci(v,v",m, A, 0) = C1(v',v,m,0,A) — ——Cl(m 0) —

A A?
Co(v,v",m, A, 0) = Co(v',v,m,0,A) — A2 Co( )+ 0(1/A3)
Cs(v,v',m, A, 0) = Cy(v,v',m,0,A) — —ch(m,()) + A2
Cy(v,v',m, A, 0), Cs3(v,0',m,0,A) — O(l/A?’)
Ci(v,v',m, A, A) = —Cy(v,0',m, A, —A) — A2(70( m) + O(1/A3),
Cy(v,v',m, A, A), Co(v,v',m, A, —A) — O(1/A3%),
C3(v,v',m, A, A), Cs(v,v',m, A, —A) — O(1/A%),
Cy(v,v',m, A, A), Cy(v,0',m, A, —A) — O(1/A%).

L Cotm)w + 0(1/a%),

2 Colmyw + 0(1/4%),

(B.15)



List of abbreviations

xPT
BBNS
BSM
CKM
CPT
FCNC
GUT
HMxPT
HQET
ILC
18%Y
LEET
LD
LHC
LO
MFV
MSSM
NLO
NRQCD
OPE
PDG
RG
RGE
RPV
QCD
QFT
SCET
SM
THDM
VSA

Chiral Perturbation Theory
Beneke-Buchalla-Neubert-Sachrajda
Beyond the Standard Model
Cabibbo-Kobayashi-Maskawa
Charge-Parity-Time conjugation

Flavor Changing Neutral Currents

Great Unified Theory

Heavy Meson Chiral Perturbation Theory
Heavy Quark Effective Theory
International Linear Collider

Isgur-Wise

Large Energy Effective Theory

Long distance

Large Hadron Collider

Leading order

Minimal Flavor Violation

Minimal Supersymmetric Standard Model
Next-to-leading order

Non-relativistic Quantum Chromodynamics
Operator Product Expansion

Particle Data Group

Renormalization Group

Renormalization Group Equations
R-parity violation

Quantum Chromodynamics

Quantum Field Theory

Soft Collinear Effective Theory

Standard Model

Two Higgs Doublets Model

Vacuum Saturation Approximation
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