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ABSTRACTi One of the most challenging tasks of those who develop 
linear programming software is development of quick, efficient 
and reliable matrix refactorization subroutine. The paper 
describes the implementation of this subroutine within the PC-LIP 
programming package, which we developed for the IBM-PC personal 
computers. A major design criterium for PC-LIP was to combine 
storage economy with numerical 5tability. The former was achieved 
using data structures which exploit super-sparsity and the latter 
implementing state of the art algorithms for basis matrix 
refactorization. These algorithms Mere combined with different 
tools for improving numerical stability. The resulting subroutine 
performs satisfactory even on a badly scaled data which are 
quite common in practice. 

ZAGOTAVLJANJE NUMERICNE STABILNOSTI MED REFAKTORIZACIJO BAZNE 
MATRIKE V PROGRAMSKEM PAKETU ZA LINEARNO PROGRAMIRANJE NA OSEBNEM 
RAČUNALNIKU: Razvoj hitrega, učinkovitega in zanesljivega 
podprograma za faktorizaci jo bazne matrike spada med najbolj 
zahtevne naloge pri izgradnji programske opreme za linearno 
programiranje. 61anek podaja opis implementacije tega podprograma 
v okviru programskega paketa PC-LIP, ki smo ga razvili za IBM 
kompatibilne osebne računalnike. Pri načrtovanju programskega 
paketa PC-LIP je bil glavni cilj vskladitev ekonomične izrabe 
pomnilnika z numericno stabilnostjo. To je bilo doseženo predvsem 
z uporabo podatkovnih struktur, ki izrabljajo hiperrazprSenost, 
in najbolj učinkovitih sodobnih algoritmov za izvajanje 
refaktorizacije bazne matrike. Ti algoritmi so bili kombinirani z 
različnimi postopki za zagotavljanje numericne stabilnosti. 
Razviti podprogram za refaktorizacijo je bil uspešen tudi na 
slabo pogojenih problemih, ki so v praksi dokaj pogosti. 

Introduction 
A major concern of those who develop linear 
programming software is how to produce 
efficient, reliable and numericaly stable 
computational procedures for solving large— 
scale problems. Uhen microcomputer software is 
considered, the problem of fitting algorithms 
and data structures within the limited storage 
is also very important. Contemporary literature 
on computational linear programming offers a 
plethora of different methods for achieving 
these goals. Roughly speaking these algorithms 
and technigues can be divided into following 
groups: 

i) Data structures which are designed for 
exploiting sparsity in LP data. They can 
be also tailored for utilization of 
structure and distribution of nonzero 
elements contained in LP rnatri«. 

ii) Revised simple« algorithm with product 
form factorization of basis matrix. State 
of the art implementations of this method 
are based on LU factorization. 

iii) Subroutines for refactorization of basis 
matrix. They are designed for controlling 
size and accuracy of product form 
factorization of basis matrix during the 
LP solving process. 

Each of these groups offers a great choice of 
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more or less elaborate techniques or 
algorithms. Sometimes it is not practical to 
U5e only the most advanced methods. For 
example, it is often desirable to sacrifice 
some computational speed in favour of 
reliability or storage economy. But in any čase 
refactorization subroutine have to do its job 
correctly. Refactorization subroutine is also 
very important part of PC-LIP package which we 
developed for the IBM-PC personal computers. 
Practical experiences on real life problems 
show as that this package is capable to solve 
even very badly scaled problems. Ue attribute 
such a performance mainly to the careful 
implementation of matrix refactorization 
subroutine. Dur implementation can be described 
as a successful combinatidn of several state of 
the art numerical methods with tools for 
controlling numerical stability. That is why 
description of our refactorization subroutine 
may be of interest. 

Analysing Structure of Basis MatriK 

Refactorization subroutine starts with 
analytical phase, where the structure of matrix 
nonzero elements is analysed. In our 
implementation Hellerman and Rarick algorithm 
(Hellerman, Rarick, 1971) is used for this 
purpose. This is quite a famous algorithm which 
is de facto standard for analytical phase 
implementations. Results of this algorithms are 
row and column permutations which transform 
matrix into form of so called HR matrix. Every 
HR matrix can be, after suitable rearangement 
of rows and columns, represented in the form of 
block loMer triangular matrix: 
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where F *(i = l,...,k) are sguare matrices and H* 
are rectangular matrices. HR matrices are 
distinguished from general block lower 
triangular matrices by structure of matrices 
F'. These matrices are alMays nonsingular. When 
their dimension exceed 1»1 they are called 
bumps or external bumps and must have structure 
similar to one on a next picture, where # is 
symbol for element which must be different from 
zero and • syrabol for element which can be both 
zero or nonzero. 

»» # * ••# « » *•»#» • 
» » • • » » 
»»««•«-44» »»»»»»» 

Columns with. at least one nonzero above the 
main diagonal are called spikes. There are two 
rules concerning spikes: 

i) Nonspike columns within bump must have 
nonzero diagonal elements. 

ii) Last column within the bump is a špike 
having a nonzero uppermost element. 

Typical overall number of spikes is much 
smaller than the number of columns within the 
matrix. This is an Important fact which can be 
exploited for the econoroical storing of the 
factorized basis matrix. It is easy to prove 
that when product form factorization is formed, 
only those elementary matrices which correspond 
to spikes'must be actually computed and stored. 
Other matrices from the product can be replaced 
by pointers to the non-splke columns (Chvatal, 
1983). 

It is easy to check that matrix B with 
described structure can be represented as a 
product of matrices having a folloning formi 

ii = 

where F^ and H ' are situated in the same rows 
and columns as in matrix B. Ig and Ip are unit 
matrices of dimension s and p respectively. It 
is assumed that s and p are nurabers of columns 
to the left and to the right of matrix F^, 
which is of dimension r (s+r+p = m ) . Therefore 

B = B^B^. °^ 

Is 

o 
pi 

H^ 

0 

^P 
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Adequate definition for this identity can be 
"generalized product form of matrix B". B' can 
be defined as generalized elemBntary matrices 
(ordinary elementary matrices, which are 
contained in product form factorization, can 
differ from identity matrix only in one 
column). For matrices structured in such a way 
the following factorization formula is valid: 

(S) 

This identity explains why elementary matrices 
within particular bump can be computed 
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cofnpletely independent from other parts of" 
matr i x . 

If 5ubmatrix F^ is a bump, then factorization 
(2) is called splitting the bump (Helgason, 
Kennington, 1982). Main purpose •for its usage 
is to reduce nurober of nonzero elemente in the 
product form factorization of B. Fill in 
(creating of new nonzero elements) during the 
factorization of B' is restricted to r rows 
Mhich belong to external bump F', It is an 
improvement if compared with the usual product 
form factorization, where creation of new 
nonzero elemente is possible in rows belonging 
to eubmatrix H^ as well. Experiences shDw that 
this approach saves computer storage in spite 
of some overhead which is necessary to store 
additional r elementary matrices (Hellerman, 
Rarick, 1971, Helgason, Kennington, 1982). 

NLuaerical Ptiase of the Algoritha 

Our algorithm for the numerical phase of 
refactorization which includes splitting the 
bump is presented in the continuation. This 
algorithm is modification of recent algorithm 
(Helgason, Kennington, 1982) in which we 
included additional technigues for assuring 
numerical stability. It was necessary due to 
the fact that in the mentioned algorithm well 
scaled matrix Mas aesumed. This assumption is 
in general quitB a realistic one because many 
mainframe programming packages use some 
procedures for automatic scaling of data prior 
to applying the revised simplex algorithm. For 
example, this is true when riPSX/370 is 
considered (Benichou et al, 1977). Honever, 
such kind of procedure is not included in the 
PC-LIP. Ue avoided this for the sake of storage 
economy. The use of scales for roMS and columns 
reguires additional storage and, vMhat is more 
important, practicaly prevents employing of 
such data structures which take advantage of 
supersparsity. This is a characteristics of 
large scale problems which means that the 
number of distinct numerical values in the 
problem matrix is U5ualiy much smaller than the 
number of nonzero coefficients (Greenberg, 
1976). In the PC-LIP supersparsity is Bxploited 
in a standard way: nonzero values within 
problem matrix are represented by pointers to 
the table of ali distinct nonzero' values 
(Barle, Brad, 1987). 

Uhen basis matrix is not well scaled, 
automatically or by means of proper problem 
formulation, preasslgned pivot can appear to be 
too small and for this reason inadeguate. Two 
cases, which must be treated differently are: 

1. Inadeguate pivot is situated Mithin the 
external bump. In such a čase its 
corresponding column can be treated in a 

same way as a špike. This means that such 
columns are included in the process of 
"špike swapping" (Helgason, Kennington, 
1980). In fact this procedure is a variant 
of partial pivoting which is restricted to 
spikes Mithin the same bump. 

2. Inadeguate pivot belongs to column Mhich is 
outside the bumps (column from the triangle 
part of the matrix). In this čase the only 
solution is to permute this pivot to the 
right bottom of the matrix. Such pivots 
Mili be referred to as "unstable 
pivots". 

In the continuation of the paper Me descrjbe 
our implementation, Mhich includes handling of 
above cases. 

Algorithm S CProduct form factorization for a 
HR matrix including splitting the bump] 

Preassigned seguence of pivots is represented 
with vector C, consisting of column indices, 
and vector R, consisting of row indices. It is 
assumed that these seguences are the results of 
Hellerman and Rarlck's algorithm. Qther 
Information obtained with this algorithm can be 
included into R and C using the following 
method: indices of špike columns are stored in 
C with opposite (negative) sign, as Mell as 
components of R Mhere external bumps are 
beginning. Algorithm's input is also basis 
matrix B, nhich is of dimension m and parameter 
TPIVR ("pivot relative tolerance"). A H pivots 
yp, for Mhich the inequality jy^| < ''"PIVR«y^,^ 
holds, where y^^^ is the largest absolute value 
of available pivots, are counted as inadeguate. 
Typical values for TPIVR are 0.001 or 0.01. 

SO: CDivide the pivots into stable and 
unstable! 

a) Set 
(i) n = m for the number of stable 

pivots 
(ii) TPIVR = 0.001 
(iii) i = 1 

b) If i>m, go to SI. 
C) If Rj<0, go to SO g ) . 
d) Set 

(i) r = Rj 
( i i ) . 1 = Cj 
<iii> Vma« = "»g" Pkll 

e) If jB^il < TPIVR»y„3^, set 
(i) for j = i, .•., n-1j 

Rj = Rj + l ^^'^ Cj = C_j + j 
( i i ) Rp = r and C^ = 1 
(iii) n = n-1 

f) Set i = i+1 and go to SO b) 
g> Set 

<i> t =• number of columns in this 
external bump 

( i i ) i = i + t 
h) 6o to SO b) 
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SI: 

S^t! 

S5: 

CIni t ialize3 

a) Set 

(i) i = 1 (pivot counter) 

(ii> 1 = Cj (pivot column index) 

(iii) r = jRj) (pivot row index) 

(iv> j = 1 (counter for- elementary 

matr ices) 

b> Alocate storage for 

(i) y ~ real vector of dimension m 

(ii) ETA-file (data structure for 

storing matrices Ej>-

C) Set y = B 

Sb: 

• 1 d« column of the 

matrIK B ) . 

d> If Ri<0, go to S5. 

S2: CObtain new lower triangular elementary 

matrix3 

a> Set z = y. 

Vector z is the r"^ column of the 

Blementary matrix E j . 

b) Set j = 0+1. 

S3s CTest for the last stable pivotl 

a) If i=n, go to S16. 

b) If i<ro, set 

( i ) i = i + 1 

< i i ) 1 = |Ci| 

(iii) r = |Ri 

( i v ) y = B» °»1 

CTest for External BumpD 

If Rj>0, go to S2. 

Clnitialize for BumpD 

a) Set 

d = j (current length of ETA file) 

p = i (first column in this 

external bump) 

(iii) b = number of columns in this 

external bump 

t " i+b-l (last column in this 

external bump) 

(i) 

(ii> 

( iv) 

b) Set k = p. 

c) If k>t, go to S6. 

d) If C^,<0, set k = k+1 and go to S5 c)'. 

e) Set 

( i ) 

(ii > 

(iii) 

If 

Set I 

CObtain nei 

matri x3 

a) Set 

= R,: 

|B. 

f) 

9> 

max •••-" |-qu| 

Bvul < TPWR»y„ax, set C^ = - C^ 

= k + 1 and go to S5 c) , 

lower triangular elementary 

for k = z = r^ 
** Lo , othernise 

Vector z is the r*'̂  column of the 

elementary matrix E j • 

b> Set j = j+1. 

S7: C Test for end of bump] 

a) If i=t, go to Sil. 

b) Set 

( i ) i = i + 1 

(i<s<t) 

(ii ) 

(iii ) 

1 = 
ril 

SB; CTest for spikeJ 

If Cj>0, set y = B,j and go to S6. 

S9: CSpike update] 

Solve 5ystem of linear equations 

^d ^j-lV ~ ^*1 

SlOs CSwap spikes if |y^| < TPIVR»y^3j,: 

a) Compute V^^^ "̂  '"̂ '' |Vk| 

for k £ CR J, . . . ,R̂ .> 

b) If |yr| i TPIVR»y„3^, go to S6. 

c) Obtain new i; for Mhich 

1 = |C F̂l <i<š<t. C^<0), 

Criteria for choosing 1 is partial 

pivoting inside row r. 

d) Solve system of equation5 

^d ^j-lV ~ ^»1• 

e) Interchange C^ in C^ and go to Sta. 

Sil: CObtain new upper triangular elementary 

matr1x3 

t 
a) Set 

for k 

|Yl< . for k 

,0 , otherwise 

Vector 2 is the r**̂  column of the 

elementary matrix E;. 

b) Set 

(i) j = j+1 

<ii) i = i-1 

(iii) 1 = |C 

< iv) r Ril 

S12s CTest for beginning of bump] 

S13i 

If i=p, set y = B^j and go to Sl^t. 

CTest for špike] 

a) If C£>0, set i = l-l and go to S12. 

b) If C^<0, solve system of equations 

•Ej-lV B • 1 

S14: 

and go to Sil. 

CObtain neM lower triangular elementary 

matrix] 

a) Set 

h 
for k = 

for k = ;yk 

,0 , otherwise 

Vector 2 is the r*"̂  column of the 

elementary matrix E j . 

b) Set j = j+1 

S15: CTest for end of bump] 

a) If i=t, go to S3. 

b) If i<t, set 

(i) i = i+1 

(ii) 1 = |Cj| 

(iii) r = |Rj| 

(iv) y ~ 

(s>t) 

=•1 
c) Go to Sl<t. 

S1&: CPartial pivoting] 

a) If m=n, go to S17. 
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b) Set i = n+1 

C) Sort columns having indices from Cj to 

C^ in such a way that the number of 

their nonzero elements is incrsasing. 

d) In the submatrix containing the roMS 

from Rj to R^ and the columns from C^ 

to C^ perform Gaussian elimination 

Mith partial pivoting. 

S17: CEnd3 

Product form of B including splitting the 

bump is obtained. 

At the termination of algorithm S, matrix B is 

represented as a product of elementary matrices 

B E,E l'̂ 2- j-l (3> 

After obtaining this new factorisation of B, 

its accuracy must be tested. State of the art 

method for doing this is the so called Aird-

Lynch estimate (Rice, 1985). If this estimate 

shows that (3) is not accurate enough, 

algorithm S must be repeated with larger value 

of TPIVR. In our implementat ion of algorithm S 

within the PC-LIP, old value of TPIVR is 

multiplied by 10. 

Partial pivoting within step SIO c) can be 

performed by using subroutine BTRAN, Mhich can 

be restricted to only those elementary matrices 

which belong to the current bump (Saunders, 

1976). BTRAN (Backward TRANsformation) is a 

historical name for the subroutine Mhich solves 

systems of the form B^y = d, where B is in a 

product form. The systems of the form Bz = u, 

uhich appear within several steps of the 5 

algorithm, can be solved by using subroutine 

FTRAN <Forward TRANsformation). BTRAN and FTRAN 

are also important subroutines within the 

revised simplex algorithm. 

If row and column permutations determined by R 

and C are taken into account, ali matrices 

Ej <i=l,2,...,j-l) are either upper triangular 

or loMer triangular, but they are intermixed. 

That is why (3) is not LU factorization of B. 

For this reason the revised simplex algorithm 

nith ordinary product form of basis matrix must 

be applied after performing the refactorization 

(as it is in PC-LIP). It is not possible to use 

those algorithms which use and maintain LU 

format of the basis matrix, for example Forrest 

and Tomlin method (Forrest, Tomlin, 1972). 

If one Mishes to use LU format of the basis 

matrix, splitting the bump can be used only 

partially on an overall bump or kernel. Kernel 

is that part of HR matrix which is obtained 

after the lawer and upper triangles have been 

removed from the matrix. Recently an algorithm 

was proposed (Helgason, Kennington, 19S2) which 

performs splitting the bump while maintaining 

the LU format. Ule briefly sketch how our 

methods for handling the unstable columns can 

be incorporated in this algorithm. 

By rearangement of rows and columns, the HR 

matrix may be placed in the folloning formj 

U 

o 

0 

v 

L 

M 

Ul 

T 

N 

L and U are lOMer and upper triangular m«trix 

respectively, O are zero matrices of suitable 

dimensions. Ue use T instead of O Mhich is used 

in the mentioned algorithm (Helgason, 

Kennington, 1992). This enables transfer of 

nonstable columns to the rightmost part of 

the matrix. It is easy to check that for matrix 

B' the folloMing factorization is valid: 

I 

0 

o 

0 

L 

M 

O 

T 

N 

U 

0 

0 

V 

I 

0 

U 

0 

I 

LU factorization can be performed in usual May 

for the first matrix at the right hand side. 

The second matrix is already upper triangular. 

Due to the fact that a product of tMO upper 

triangular matrices is also an upper triangular 

matrix, LU factorization of B' is obtained. 

Conclusian« 

The matrix refactorization subroutine as 

described in the paper has been included in the 

PC-LIP linear programming softMare package. Our 

main contribution Mas that we have combined the 

already known methods for "splitting the bump" 

Mith some methods for assuring numsrical 

stability. The algorithm was tested on many 

real life problems and proved to be stable even 

on a very badly scaled data. 

Algorithm satisfies also Mith respect to the 

computational speed. Unfortunately Me have not 

yet had an Dpportunity for comparising its 

performance Mith some other algorithm 

performance. It is possible hOMever to 

measure the amount of reinversion computational 

tirne in overall run tirne. Another interesting 

test is to examine the effect of inversion 

frequBncy on the solutlon tirne. We performed 

these tMO test on a real life problem Mith 3<>S 

constraints, AS'* structural variables and SCtS 
nonzero elements. With the inversion frequBncy 

20, the optimal solution Mas obtained after 221 

iterations and 565.1 seconds of elapsed tirne. 

During the process 12 refactorization* were 
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performed in 1^9.7 seconds. This means that 

refactorizations amounts SA.**?'/. to the overall 

computational time. We used the same problem 

for the test with the inversion •frequency 50. 

The effect o-f inversion frequency on solution 

t ime: 

Inversion 
•f requency 
(i terat ions) 

Solution Iterations Time per 
time iteration 
(secs) (secs) 

20 
50 

5i5. 1 aai a. 55 
a.^3 

Results show that higher inversion frequency 

does not ^ffect much the overall solution time. 

This can be explained with relatively slow 

execution of the product form variant of 

revised simplex method. Uith the use of the 

Forrest-Totnl in method the performance could be 

slightly improved (Ashford, Daniel, 1988). 
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