
38

ASSURING NUMERICAL STABILITV IN THE
PROCESS OF MATRIX REFACTORIZATION
WITHIN LINEAR PROGRAMMING PACKAGE
ON PC

INFORMATICA 4/89

Keywords: linear programming, HR matrix, matrix
factorization, supersparsity, microcomputers

Janez Barle and Janez Grad
Ekonomska fakulteta Borisa Kidriča, Ljubljana

ABSTRACTi One of the most challenging tasks of those who develop
linear programming software is development of quick, efficient
and reliable matrix refactorization subroutine. The paper
describes the implementation of this subroutine within the PC-LIP
programming package, which we developed for the IBM-PC personal
computers. A major design criterium for PC-LIP was to combine
storage economy with numerical 5tability. The former was achieved
using data structures which exploit super-sparsity and the latter
implementing state of the art algorithms for basis matrix
refactorization. These algorithms Mere combined with different
tools for improving numerical stability. The resulting subroutine
performs satisfactory even on a badly scaled data which are
quite common in practice.

ZAGOTAVLJANJE NUMERICNE STABILNOSTI MED REFAKTORIZACIJO BAZNE
MATRIKE V PROGRAMSKEM PAKETU ZA LINEARNO PROGRAMIRANJE NA OSEBNEM
RAČUNALNIKU: Razvoj hitrega, učinkovitega in zanesljivega
podprograma za faktorizaci jo bazne matrike spada med najbolj
zahtevne naloge pri izgradnji programske opreme za linearno
programiranje. 61anek podaja opis implementacije tega podprograma
v okviru programskega paketa PC-LIP, ki smo ga razvili za IBM
kompatibilne osebne računalnike. Pri načrtovanju programskega
paketa PC-LIP je bil glavni cilj vskladitev ekonomične izrabe
pomnilnika z numericno stabilnostjo. To je bilo doseženo predvsem
z uporabo podatkovnih struktur, ki izrabljajo hiperrazprSenost,
in najbolj učinkovitih sodobnih algoritmov za izvajanje
refaktorizacije bazne matrike. Ti algoritmi so bili kombinirani z
različnimi postopki za zagotavljanje numericne stabilnosti.
Razviti podprogram za refaktorizacijo je bil uspešen tudi na
slabo pogojenih problemih, ki so v praksi dokaj pogosti.

Introduction
A major concern of those who develop linear
programming software is how to produce
efficient, reliable and numericaly stable
computational procedures for solving large—
scale problems. Uhen microcomputer software is
considered, the problem of fitting algorithms
and data structures within the limited storage
is also very important. Contemporary literature
on computational linear programming offers a
plethora of different methods for achieving
these goals. Roughly speaking these algorithms
and technigues can be divided into following
groups:

i) Data structures which are designed for
exploiting sparsity in LP data. They can
be also tailored for utilization of
structure and distribution of nonzero
elements contained in LP rnatri«.

ii) Revised simple« algorithm with product
form factorization of basis matrix. State
of the art implementations of this method
are based on LU factorization.

iii) Subroutines for refactorization of basis
matrix. They are designed for controlling
size and accuracy of product form
factorization of basis matrix during the
LP solving process.

Each of these groups offers a great choice of

39

more or less elaborate techniques or
algorithms. Sometimes it is not practical to
U5e only the most advanced methods. For
example, it is often desirable to sacrifice
some computational speed in favour of
reliability or storage economy. But in any čase
refactorization subroutine have to do its job
correctly. Refactorization subroutine is also
very important part of PC-LIP package which we
developed for the IBM-PC personal computers.
Practical experiences on real life problems
show as that this package is capable to solve
even very badly scaled problems. Ue attribute
such a performance mainly to the careful
implementation of matrix refactorization
subroutine. Dur implementation can be described
as a successful combinatidn of several state of
the art numerical methods with tools for
controlling numerical stability. That is why
description of our refactorization subroutine
may be of interest.

Analysing Structure of Basis MatriK

Refactorization subroutine starts with
analytical phase, where the structure of matrix
nonzero elements is analysed. In our
implementation Hellerman and Rarick algorithm
(Hellerman, Rarick, 1971) is used for this
purpose. This is quite a famous algorithm which
is de facto standard for analytical phase
implementations. Results of this algorithms are
row and column permutations which transform
matrix into form of so called HR matrix. Every
HR matrix can be, after suitable rearangement
of rows and columns, represented in the form of
block loMer triangular matrix:

p l

HI

F 2

H 2

o

' • • _

'• F**

where F *(i = l,...,k) are sguare matrices and H*
are rectangular matrices. HR matrices are
distinguished from general block lower
triangular matrices by structure of matrices
F'. These matrices are alMays nonsingular. When
their dimension exceed 1»1 they are called
bumps or external bumps and must have structure
similar to one on a next picture, where # is
symbol for element which must be different from
zero and • syrabol for element which can be both
zero or nonzero.

»» # * ••# « » *•»#» •
» » • • » »
»»««•«-44» »»»»»»»

Columns with. at least one nonzero above the
main diagonal are called spikes. There are two
rules concerning spikes:

i) Nonspike columns within bump must have
nonzero diagonal elements.

ii) Last column within the bump is a špike
having a nonzero uppermost element.

Typical overall number of spikes is much
smaller than the number of columns within the
matrix. This is an Important fact which can be
exploited for the econoroical storing of the
factorized basis matrix. It is easy to prove
that when product form factorization is formed,
only those elementary matrices which correspond
to spikes'must be actually computed and stored.
Other matrices from the product can be replaced
by pointers to the non-splke columns (Chvatal,
1983).

It is easy to check that matrix B with
described structure can be represented as a
product of matrices having a folloning formi

ii =

where F^ and H ' are situated in the same rows
and columns as in matrix B. Ig and Ip are unit
matrices of dimension s and p respectively. It
is assumed that s and p are nurabers of columns
to the left and to the right of matrix F^,
which is of dimension r (s+r+p = m) . Therefore

B = B^B^. °^

Is

o
pi

H^

0

^P

.B* <1)

Adequate definition for this identity can be
"generalized product form of matrix B". B' can
be defined as generalized elemBntary matrices
(ordinary elementary matrices, which are
contained in product form factorization, can
differ from identity matrix only in one
column). For matrices structured in such a way
the following factorization formula is valid:

(S)

This identity explains why elementary matrices
within particular bump can be computed

Is

0
pi

H^

0

'p

Is

0

0

pi

0 'p

Is

0

O

Ir

"i ^P

40

cofnpletely independent from other parts of"
matr i x .

If 5ubmatrix F^ is a bump, then factorization
(2) is called splitting the bump (Helgason,
Kennington, 1982). Main purpose •for its usage
is to reduce nurober of nonzero elemente in the
product form factorization of B. Fill in
(creating of new nonzero elements) during the
factorization of B' is restricted to r rows
Mhich belong to external bump F', It is an
improvement if compared with the usual product
form factorization, where creation of new
nonzero elemente is possible in rows belonging
to eubmatrix H^ as well. Experiences shDw that
this approach saves computer storage in spite
of some overhead which is necessary to store
additional r elementary matrices (Hellerman,
Rarick, 1971, Helgason, Kennington, 1982).

NLuaerical Ptiase of the Algoritha

Our algorithm for the numerical phase of
refactorization which includes splitting the
bump is presented in the continuation. This
algorithm is modification of recent algorithm
(Helgason, Kennington, 1982) in which we
included additional technigues for assuring
numerical stability. It was necessary due to
the fact that in the mentioned algorithm well
scaled matrix Mas aesumed. This assumption is
in general quitB a realistic one because many
mainframe programming packages use some
procedures for automatic scaling of data prior
to applying the revised simplex algorithm. For
example, this is true when riPSX/370 is
considered (Benichou et al, 1977). Honever,
such kind of procedure is not included in the
PC-LIP. Ue avoided this for the sake of storage
economy. The use of scales for roMS and columns
reguires additional storage and, vMhat is more
important, practicaly prevents employing of
such data structures which take advantage of
supersparsity. This is a characteristics of
large scale problems which means that the
number of distinct numerical values in the
problem matrix is U5ualiy much smaller than the
number of nonzero coefficients (Greenberg,
1976). In the PC-LIP supersparsity is Bxploited
in a standard way: nonzero values within
problem matrix are represented by pointers to
the table of ali distinct nonzero' values
(Barle, Brad, 1987).

Uhen basis matrix is not well scaled,
automatically or by means of proper problem
formulation, preasslgned pivot can appear to be
too small and for this reason inadeguate. Two
cases, which must be treated differently are:

1. Inadeguate pivot is situated Mithin the
external bump. In such a čase its
corresponding column can be treated in a

same way as a špike. This means that such
columns are included in the process of
"špike swapping" (Helgason, Kennington,
1980). In fact this procedure is a variant
of partial pivoting which is restricted to
spikes Mithin the same bump.

2. Inadeguate pivot belongs to column Mhich is
outside the bumps (column from the triangle
part of the matrix). In this čase the only
solution is to permute this pivot to the
right bottom of the matrix. Such pivots
Mili be referred to as "unstable
pivots".

In the continuation of the paper Me descrjbe
our implementation, Mhich includes handling of
above cases.

Algorithm S CProduct form factorization for a
HR matrix including splitting the bump]

Preassigned seguence of pivots is represented
with vector C, consisting of column indices,
and vector R, consisting of row indices. It is
assumed that these seguences are the results of
Hellerman and Rarlck's algorithm. Qther
Information obtained with this algorithm can be
included into R and C using the following
method: indices of špike columns are stored in
C with opposite (negative) sign, as Mell as
components of R Mhere external bumps are
beginning. Algorithm's input is also basis
matrix B, nhich is of dimension m and parameter
TPIVR ("pivot relative tolerance"). A H pivots
yp, for Mhich the inequality jy^| < ''"PIVR«y^,^
holds, where y^^^ is the largest absolute value
of available pivots, are counted as inadeguate.
Typical values for TPIVR are 0.001 or 0.01.

SO: CDivide the pivots into stable and
unstable!

a) Set
(i) n = m for the number of stable

pivots
(ii) TPIVR = 0.001
(iii) i = 1

b) If i>m, go to SI.
C) If Rj<0, go to SO g) .
d) Set

(i) r = Rj
(i i) . 1 = Cj
<iii> Vma« = "»g" Pkll

e) If jB^il < TPIVR»y„3^, set
(i) for j = i, .•., n-1j

Rj = Rj + l ^^'^ Cj = C_j + j
(i i) Rp = r and C^ = 1
(iii) n = n-1

f) Set i = i+1 and go to SO b)
g> Set

<i> t =• number of columns in this
external bump

(i i) i = i + t
h) 6o to SO b)

41

SI:

S^t!

S5:

CIni t ialize3

a) Set

(i) i = 1 (pivot counter)

(ii> 1 = Cj (pivot column index)

(iii) r = jRj) (pivot row index)

(iv> j = 1 (counter for- elementary

matr ices)

b> Alocate storage for

(i) y ~ real vector of dimension m

(ii) ETA-file (data structure for

storing matrices Ej>-

C) Set y = B

Sb:

• 1 d« column of the

matrIK B) .

d> If Ri<0, go to S5.

S2: CObtain new lower triangular elementary

matrix3

a> Set z = y.

Vector z is the r"^ column of the

Blementary matrix E j .

b) Set j = 0+1.

S3s CTest for the last stable pivotl

a) If i=n, go to S16.

b) If i<ro, set

(i) i = i + 1

< i i) 1 = |Ci|

(iii) r = |Ri

(i v) y = B» °»1

CTest for External BumpD

If Rj>0, go to S2.

Clnitialize for BumpD

a) Set

d = j (current length of ETA file)

p = i (first column in this

external bump)

(iii) b = number of columns in this

external bump

t " i+b-l (last column in this

external bump)

(i)

(ii>

(iv)

b) Set k = p.

c) If k>t, go to S6.

d) If C^,<0, set k = k+1 and go to S5 c)'.

e) Set

(i)

(ii >

(iii)

If

Set I

CObtain nei

matri x3

a) Set

= R,:

|B.

f)

9>

max •••-" |-qu|

Bvul < TPWR»y„ax, set C^ = - C^

= k + 1 and go to S5 c) ,

lower triangular elementary

for k = z = r^
** Lo , othernise

Vector z is the r*'̂ column of the

elementary matrix E j •

b> Set j = j+1.

S7: C Test for end of bump]

a) If i=t, go to Sil.

b) Set

(i) i = i + 1

(i<s<t)

(ii)

(iii)

1 =
ril

SB; CTest for spikeJ

If Cj>0, set y = B,j and go to S6.

S9: CSpike update]

Solve 5ystem of linear equations

^d ^j-lV ~ ^*1

SlOs CSwap spikes if |y^| < TPIVR»y^3j,:

a) Compute V^^^ "̂ '"̂ '' |Vk|

for k £ CR J, . . . ,R̂ .>

b) If |yr| i TPIVR»y„3^, go to S6.

c) Obtain new i; for Mhich

1 = |C F̂l <i<š<t. C^<0),

Criteria for choosing 1 is partial

pivoting inside row r.

d) Solve system of equation5

^d ^j-lV ~ ^»1•

e) Interchange C^ in C^ and go to Sta.

Sil: CObtain new upper triangular elementary

matr1x3

t
a) Set

for k

|Yl< . for k

,0 , otherwise

Vector 2 is the r**̂ column of the

elementary matrix E;.

b) Set

(i) j = j+1

<ii) i = i-1

(iii) 1 = |C

< iv) r Ril

S12s CTest for beginning of bump]

S13i

If i=p, set y = B^j and go to Sl^t.

CTest for špike]

a) If C£>0, set i = l-l and go to S12.

b) If C^<0, solve system of equations

•Ej-lV B • 1

S14:

and go to Sil.

CObtain neM lower triangular elementary

matrix]

a) Set

h
for k =

for k = ;yk

,0 , otherwise

Vector 2 is the r*"̂ column of the

elementary matrix E j .

b) Set j = j+1

S15: CTest for end of bump]

a) If i=t, go to S3.

b) If i<t, set

(i) i = i+1

(ii) 1 = |Cj|

(iii) r = |Rj|

(iv) y ~

(s>t)

=•1
c) Go to Sl<t.

S1&: CPartial pivoting]

a) If m=n, go to S17.

42

b) Set i = n+1

C) Sort columns having indices from Cj to

C^ in such a way that the number of

their nonzero elements is incrsasing.

d) In the submatrix containing the roMS

from Rj to R^ and the columns from C^

to C^ perform Gaussian elimination

Mith partial pivoting.

S17: CEnd3

Product form of B including splitting the

bump is obtained.

At the termination of algorithm S, matrix B is

represented as a product of elementary matrices

B E,E l'̂ 2- j-l (3>

After obtaining this new factorisation of B,

its accuracy must be tested. State of the art

method for doing this is the so called Aird-

Lynch estimate (Rice, 1985). If this estimate

shows that (3) is not accurate enough,

algorithm S must be repeated with larger value

of TPIVR. In our implementat ion of algorithm S

within the PC-LIP, old value of TPIVR is

multiplied by 10.

Partial pivoting within step SIO c) can be

performed by using subroutine BTRAN, Mhich can

be restricted to only those elementary matrices

which belong to the current bump (Saunders,

1976). BTRAN (Backward TRANsformation) is a

historical name for the subroutine Mhich solves

systems of the form B^y = d, where B is in a

product form. The systems of the form Bz = u,

uhich appear within several steps of the 5

algorithm, can be solved by using subroutine

FTRAN <Forward TRANsformation). BTRAN and FTRAN

are also important subroutines within the

revised simplex algorithm.

If row and column permutations determined by R

and C are taken into account, ali matrices

Ej <i=l,2,...,j-l) are either upper triangular

or loMer triangular, but they are intermixed.

That is why (3) is not LU factorization of B.

For this reason the revised simplex algorithm

nith ordinary product form of basis matrix must

be applied after performing the refactorization

(as it is in PC-LIP). It is not possible to use

those algorithms which use and maintain LU

format of the basis matrix, for example Forrest

and Tomlin method (Forrest, Tomlin, 1972).

If one Mishes to use LU format of the basis

matrix, splitting the bump can be used only

partially on an overall bump or kernel. Kernel

is that part of HR matrix which is obtained

after the lawer and upper triangles have been

removed from the matrix. Recently an algorithm

was proposed (Helgason, Kennington, 19S2) which

performs splitting the bump while maintaining

the LU format. Ule briefly sketch how our

methods for handling the unstable columns can

be incorporated in this algorithm.

By rearangement of rows and columns, the HR

matrix may be placed in the folloning formj

U

o

0

v

L

M

Ul

T

N

L and U are lOMer and upper triangular m«trix

respectively, O are zero matrices of suitable

dimensions. Ue use T instead of O Mhich is used

in the mentioned algorithm (Helgason,

Kennington, 1992). This enables transfer of

nonstable columns to the rightmost part of

the matrix. It is easy to check that for matrix

B' the folloMing factorization is valid:

I

0

o

0

L

M

O

T

N

U

0

0

V

I

0

U

0

I

LU factorization can be performed in usual May

for the first matrix at the right hand side.

The second matrix is already upper triangular.

Due to the fact that a product of tMO upper

triangular matrices is also an upper triangular

matrix, LU factorization of B' is obtained.

Conclusian«

The matrix refactorization subroutine as

described in the paper has been included in the

PC-LIP linear programming softMare package. Our

main contribution Mas that we have combined the

already known methods for "splitting the bump"

Mith some methods for assuring numsrical

stability. The algorithm was tested on many

real life problems and proved to be stable even

on a very badly scaled data.

Algorithm satisfies also Mith respect to the

computational speed. Unfortunately Me have not

yet had an Dpportunity for comparising its

performance Mith some other algorithm

performance. It is possible hOMever to

measure the amount of reinversion computational

tirne in overall run tirne. Another interesting

test is to examine the effect of inversion

frequBncy on the solutlon tirne. We performed

these tMO test on a real life problem Mith 3<>S

constraints, AS'* structural variables and SCtS
nonzero elements. With the inversion frequBncy

20, the optimal solution Mas obtained after 221

iterations and 565.1 seconds of elapsed tirne.

During the process 12 refactorization* were

43

performed in 1^9.7 seconds. This means that

refactorizations amounts SA.**?'/. to the overall

computational time. We used the same problem

for the test with the inversion •frequency 50.

The effect o-f inversion frequency on solution

t ime:

Inversion
•f requency
(i terat ions)

Solution Iterations Time per
time iteration
(secs) (secs)

20
50

5i5. 1 aai a. 55
a.^3

Results show that higher inversion frequency

does not ^ffect much the overall solution time.

This can be explained with relatively slow

execution of the product form variant of

revised simplex method. Uith the use of the

Forrest-Totnl in method the performance could be

slightly improved (Ashford, Daniel, 1988).

References

1. Ashford R.U., R.C. Daniel; " A note on

evaluating LP software for personal

computers", European Journal of Operations

Research,' 35(1988), pp. \<iQ-li.'t.

a. Benichou M., J.M. Gauthier, G. Hentges, G.

Ribiere: "The efficient solution of

large-scale linear programming problems

- some algorithmic techniques and

computational results", Mathematical

Programming, 13(1977), pp. 280-322.

3. Chvatal V.: Linear Programming, New York —

San Francisco, U.H. Freeman and Company

1983.

U. Forrest J.J.H., Tomlin J.A.: "Updated

triangular factors of the basis to maintain

sparsity in the product form siniplex

method", Mathematical Programming, 2(1972),

pp. 263-278.

5. Greenberg H.J.s "A Tutorial on Matricial

Packing", Design and Implementation of

Optimization software, Urbino (Italy>, (Ed.

Greenberg H.J.), Alphen aan den Rijn

(Netherlands), Sijthoff and Nordhoff 1978,

pp. 109-1«(2.

6. Helgason R.V., Kennington J.L.: "Špike

SMapping in basis reinversion", Naval

Research Logistics Quarterly, 27(1980),

pp. 697-701.

7. Helgason R.V., Kennington J.L.: "A note on

splitting the bump in an elimination

factorization", Naval Research Logistics

QuartBrly, 29(1982), pp. 169-178.

8. Hellerman E., Rarick D. s "Reinversion with

the preassigned pivot procedure",

Mathematical Programming, 1(1971), pp.

19S-ai6.

9. Rice J.R.: Numerical Methods, Software, and

Analysi5, Nevg Vork, McGraw-Hill 1985.

10. Saunders M.A.: "A fast, stable

implementation of the simplex method using

Bartels-Golub updating", Sparse Matrix

Computations, (Eds. Bunch J.R., Rose O.J.),

New Vork, Academic Press 1976, pp. 213-226.

11. Tomlin J.A.! "On scaling linear programming

problems", Mathematical Programming Study,

^•(1975), pp. 1^6-166.

12. Barle J., Grad J.; "PC-LIP: A Microcomputer

Linear Programming Package", (program

description), Ljubljana, 1987.

