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Abstract

The acyclic number a(G) of a graphG is the maximum order of an induced forest inG.
The purpose of this short paper is to propose a conjecture that a(G) ≥

(
1− 3

2g

)
n holds

for every planar graphG of girth g and order n, which captures three known conjectures on
the topic. In support of this conjecture, we prove a weaker result that a(G) ≥

(
1− 3

g

)
n

holds. In addition, we give a construction showing that the constant 3
2 from the conjecture

cannot be decreased.
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1 Introduction
Throughout the paper n and g, respectively, stand for the order and girth of a (finite, simple,
undirected) graph G. For other standard terminology and notation of graph theory we
simply refer to [5]. The acyclic number of G, denoted a(G), is the maximum order of an
induced forest in G. This parameter has been well investigated (see e.g. [1, 4, 9, 10]), and
its determination is NP-hard even in the case of planar graphs [7]. In [2], Albertson and
Berman proposed the following lower bound for it.
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Conjecture 1.1. If G is a planar graph, then

a(G) ≥ n

2
.

This conjecture has drawn much attention since it implies that every planar graph has a
stable set on at least a quarter of its vertices, a fact known to be true only as a consequence
of the Four Color Theorem. It holds for planar graphs of girth at least 4 as Salavatipour [10]
(see also [4]) proved that a(G) ≥ 17n+24

32 whenever G is such a graph. The best known
lower bound for a(G) over the class of all planar graphs G is the inequality a(G) ≥ 2n

5 ,
which can be readily deduced from the acyclic 5-colorability of planar graphs (proven by
Borodin in [6]). A similar problem to Conjecture 1.1 is Conjecture 1.2 below, raised by
Akiyama and Watanabe [1].

Conjecture 1.2. If G is a bipartite planar graph, then

a(G) ≥ 5n

8
.

Motivated by the last conjecture, the existence of large induced acyclic subgraphs in
sparse bipartite graphs (resp. sparse graphs) was considered by Alon et al. in [3] (resp. [4]).
Inspired by the fact that the dodecahedron attains the minimum possible ratio of order to
size among all connected planar graphs of girth at least 5, Kowalik et al. [8] conjectured
the following.

Conjecture 1.3. If G is a planar graph of girth g ≥ 5, then

a(G) ≥ 7n

10
.

The main purpose of this note is to generalize Conjectures 1.1, 1.2 and 1.3 through the
following.

Conjecture 1.4. If G is a planar graph of girth g, then

a(G) ≥
(

1− 3

2g

)
n.

In particular, our conjecture reduces to Conjecture 1.1 (resp. Conjecture 1.3) for g =
3 (resp. g = 5), and for g = 4 strengthens Conjecture 1.2 by allowing odd 5+-cycles.
Moreover, it suggests a lower bound a(G) ≥ 3n

4 if g ≥ 6, a(G) ≥ 11n
14 if g ≥ 7, etc.

Another way of stating Conjecture 1.4 is to claim that every non-acyclic planar graph G
satisfies the inequality (

1− a(G)

n

)
g ≤ 3

2
. (1.1)

Equivalently, we are looking for the smallest possible constant C, so that(
1− a(G)

n

)
g ≤ C, (1.2)

holds for every planar graph of order n and finite girth g. If true, our conjecture is best
possible in the sense that no excluding of a finite set of graphs could yield a better bound.
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Indeed, take a tree T and let K be K4, Q3 or the dodecahedron. For any graph G obtained
by blowing up every vertex of T to a copy of K, (1.1) becomes an equality.

In support to Conjecture 1.4, in the next section we prove that C = 3 is sufficient for
(1.2).

Theorem 1.5. If G is a planar graph of order n and girth g = g(G) <∞, then

a(G) >

(
1− 3

g

)
n. (1.3)

Moreover, for every integer g ≥ 3 there exists a planar graph G of girth g for which

a(G) =

⌈(
1− 3

2g

)
n

⌉
. (1.4)

Notice that the first part of Theorem 1.5 implies Conjectures 1.1, 1.2, and 1.3, respec-
tively, for girths g ≥ 6, g ≥ 8, and g ≥ 10.

2 Proof of Theorem 1.5
The proof relies on an auxiliary result. Before stating it, let us recall some terminology. We
use k-vertex and k+-vertex to refer to a vertex of degree k and a vertex of degree at least
k, respectively. Given a plane graph G = (V,E), a face f is a region of R2\(V ∪

⋃
E),

and its length deg(f) is the degree of the corresponding vertex in the geometric dual G∗

(thus every bridge incident to f is counted twice in the length); we speak of an `-face
f if deg(f) = `, and an `+-face is a face of length at least `. Recall that in case of a
bridgeless plane graph, every cut-vertex is a 4+-vertex and for every face f it holds that
deg(f) = |E(f)| (since its topological boundary ∂(f) is a union of simple curves). As
usual, we say that a face f is incident with a vertex v if v ∈ V (f). Here is our auxiliary
result.

Lemma 2.1. If G is a simple 2-edge-connected triangle-free plane graph with δ(G) ≥ 3,
then there exists a face f ∈ F (G) such that either:

(i) f is a 4-face incident with at least one 3-vertex; or

(ii) f is a 5-face incident with at least four distinct 3-vertices.

Proof. We use the discharging method. By the Euler formula, it holds that∑
v∈V (G)

(deg(v)− 4) +
∑

f∈F (G)

(deg(f)− 4) = −8, (2.1)

which leads to the following initial charge w0(x) for each x ∈ V (G) ∪ F (G):

w0(x) = deg(x)− 4. (2.2)

By (2.1), the total charge is negative. On the other hand, (2.2) tells us that only the 3-
vertices are with negative initial charge (equal to −1). Next, redistribute the initial charge
according to the following simple rule:

(R) Every 5+-face sends a charge of 1
3 to each of its incident 3-vertices.
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Let w1(x) denote the new charge of every x ∈ V (G)∪F (G) after applying (R). Assuming
that a face satisfying (i) of Lemma 2.1 does not exist, for every v ∈ V (G) it holds that
w1(v) ≥ 0 (since G is bridgeless, any 3-vertex lies on the boundary of three faces, thus
receives a combined charge of 1). The fact that the total charge remains negative implies
the existence of a face f with w1(f) < 0. Moreover, from

0 > w1(f) ≥ w0(f)− deg(f)

3
=

2

3
(deg(f)− 6),

it follows that every such f must be a 5-face incident with at least four 3-vertices. This
completes the proof of the lemma.

Proof of Theorem 1.5. We show (1.3) by contradiction. Suppose G is a minimal (under
inclusion) counter-example to (1.3) among all non-acyclic planar graphs. ThenG is clearly
connected, of finite girth g ≥ 4 and ∆(G) ≥ 3.

Claim 1: G is bridgeless. For otherwise, let e be a bridge and denote by G1, G2 the
components of G− e. The choice of G combined with the fact that both subgraphs G1, G2

are of girth at least g, implies that a(Gi) >
(

1− 3
g

)
n(Gi) for i = 1, 2. Summing up leads

to the desired contradiction (1.3).
Let G̃ be a plane embedding of the graph obtained by suppressing every 2-vertex in G.

Then G̃ is bridgeless and δ(G̃) ≥ 3. Next we show that G̃ meets all the requirements of
Lemma 2.1.

Claim 2: G̃ is simple and triangle-free. Supposing the opposite, there is a cycle C of G
passing through at most three 3+-vertices. Denote by S the set of 2-vertices in V (C) and
set s = |S|. In the graphG′ = G−V (C), letM be a maximum acyclic set. ThenM ∪S is
an acyclic set of G, hence a(G) ≥ a(G′) + s. Combined with the choice of G, this would
imply that (

1− 3

g

)
(n− s− 3) + s <

(
1− 3

g

)
n,

which is equivalent to s+ 3 < g. However, the last inequality contradicts that the length of
C is at least g, and thus settles the claim.

Our aim of contradicting the existence of G is now achievable. Select an f ∈ F (G̃)
as in Lemma 2.1, and denote ` = deg(f). For this choice of f we can certainly find
an independent (seen in G̃) (` − 3)-subset T ⊆ V (f) consisting entirely of 3-vertices.
Indeed, in case ` = 4 the last assertion is trivial; as for ` = 5, it is enough to consider four
consecutive 3-vertices v1, v2, v3, v4 on f and observe that, by planarity, v1, v3 or v2, v4
form an independent pair.

Returning back to G, every boundary edge of f becomes a path of G whose interior
consists entirely of 2-vertices. Let V2(f) be the collection of all 2-vertices lying on f , and
denote r = |V2(f)|. Take from the graph G′ = G − (V (f) ∪ V2(f)) a maximum acyclic
set M . Then M ∪ V2(F )∪ T is an acyclic set of G, giving that a(G) ≥ a(G′) + r+ `− 3.
Similarly to before, the last inequality would imply(

1− 3

g

)
(n− r − `) + r + `− 3 <

(
1− 3

g

)
n,

which is in turn equivalent to r + ` < g. The last inequality is clearly impossible and thus
validates (1.3).
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(a) k = 3, r = 0 (b) k = 3, r = 1 (c) k = 3, r = 2

Figure 1: Three cases for G (edges coming from M bolded) when k = 3.

In regard to the second assertion of Theorem 1.5, we provide a constructive proof based
on the fact that the removal of any two vertices decycles K4: thus every subdivision of K4

with order n has acyclic number a = n−2. Given an integer g ≥ 3, it is of the form 3k+r
where r equals either 0, 1 or 2. Construct the graph G as follows. Consider a copy of K4

and select a perfect matching M . If r = 0, then subdivide k − 1 times every e ∈ E(K4);
else if r = 1, then subdivide k times each e ∈M and every other edge k− 1 times; finally,
if r = 2, then subdivide k− 1 times each e ∈M and every other edge k times (see Fig. 1).
In either case the constructed subdivision G has the desired girth g. Moreover, as can be
readily checked, its order n = 6k+ 2(r− 1) and acyclic number a = 6k+ 2(r− 2) satisfy(

1− 3

2g

)
n = a− 1 +

3

g
, (2.3)

since both sides of (2.3) are equal to (6k + 2r − 3)(3k + r − 1)/(3k + r). Thus, it holds
that

a =

⌈(
1− 3

2g

)
n

⌉
. (2.4)

Additionally, observe that for g = 3, (2.3) becomes equal to a, which confirms that the
left-hand side of (1.2) is at least 3

2 . This completes the proof of the theorem.

3 Concluding remarks and further work
We are fully aware that a technically more involved argument could lower the boundC ≤ 3
in (1.2), however that was not our main objective.
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