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Abstract

We study the families of plane graphs determined by lower bounds δ, ρ, w,w∗ on their
vertex degrees, face sizes, edge weights and dual edge weights, respectively. Continuing
the previous research of such families comprised of polyhedral graphs, we determine the
quadruples (2, ρ, w,w∗) for which the associated family is non-empty. In addition, we
determine all quadruples which yield extremal families (in the sense that the increase of
any value of a quadruple results in an empty family).
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1 Introduction
Throughout this paper, we consider connected graphs without loops or multiple edges.
Given a graph G = (V,E), the degree d(v) of a vertex v ∈ V is the number of edges
incident with v. By k+ or k− we denote any integer not smaller or not greater than k,
respectively. Hence, a k-vertex (k+-vertex, k−-vertex) is a vertex v with d(v) = k (d(v) ≥
k, d(v) ≤ k, respectively). An edge uv is an (i, j)-edge, if d(u) = i and d(v) = j. For an
edge e = uv ∈ E, the weight w(e) of e is the sum d(u)+d(v). The minimum vertex degree
of G is the number δ(G) = min{d(v) : v ∈ V }, and the minimum edge weight of G is
w(G) = min{w(e) : e ∈ E}. The girth g(G) of G is the length of a shortest cycle of G
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and the double girth of G is defined as the minimum sum of lengths of two distinct cycles
of G which share a common edge; it will be denoted as dg(G) (note that g(G) = ∞ if G
is a tree, and dg(G) =∞ if no two cycles of G share an edge). A graph is called planar if
it can be drawn in the plane in such a way that, in this drawing, no two edges cross (such
a drawing is called a plane graph and it is determined by the triple (V,E, F ), where F is
the set of faces). The face size d(α) of a face α ∈ F is the number of edges incident with
α (incident cut-edges being counted twice). A k-face (k+-face, k−-face) is a face α with
d(α) = k (d(α) ≥ k, d(α) ≤ k, respectively). The minimum face size of G, denoted ρ(G),
is defined as min{d(α) : α ∈ F} and the minimum dual edge weight of G is the number
w∗(G) = min{d(α) + d(β) : α, β ∈ F, α 6= β, α, β have a common edge}. Note that
g(G) ≤ ρ(G) and dg(G) ≤ w∗(G).

For a general graph G, there are no special dependencies of the above mentioned graph
invariants apart from the trivial ones: w(G) ≥ 2δ(G) and dg(G) ≥ 2g(G). On the other
hand, these invariants are strongly dependent when additional graph constraints are consid-
ered. Particularly, ifG is a plane graph, then min{δ(G), ρ(G)} ≤ 5; additionally δ(G) ≥ 4
implies ρ(G) = 3 and ρ(G) ≥ 4 implies δ(G) ≤ 3. These facts follow easily from Eu-
ler’s formula for the numbers of vertices, edges and faces of a plane graph. A more subtle
analysis of consequences of Euler’s formula yields further dependencies: if δ(G) ≥ 3 then
w(G) ≤ 13, whereas δ(G) ≥ 4 gives w(G) ≤ 11, see [1]. By considering dual versions
of these results, we obtain a dependence between the minimum face size ρ(G) and the
minimum dual edge weight w∗(G): if ρ(G) ≥ 3 then w∗(G) ≤ 13 and, for ρ(G) ≥ 4,
w∗(G) ≤ 11. Furthermore, the results of the classical paper [9] give that if δ(G) ≥ 3 and
ρ(G) ≥ 4, then w(G) ≤ 8, and δ(G) ≥ 3 together with ρ(G) = 5 yield w(G) = 6. The
mutual dependence of all four values δ(G), ρ(G), w(G) and w∗(G) for polyhedral (that is,
3-connected plane) graphs was studied in [4] giving the characterization of all quadruples
(δ, ρ, w,w∗) for which the corresponding families of polyhedral graphs of minimum ver-
tex degree at least δ, minimum face size at least ρ, minimum edge weight at least w and
minimum dual edge weight at least w∗ are non-empty.

The aim of this paper is to extend the results of [4] for wider families of plane graphs
with δ = 2. The graph K2,r shows that w(G) is unbounded for ρ(G) = 4. On the
other hand, recent results by Jendrol’ and Maceková [7] and results from [2] show that if
g(G) ∈ {5, 6} then w(G) ≤ 7 and, further, if g(G) ∈ {7, 8, 9, 10}, then w(G) ≤ 5 as well
as g(G) ≥ 11 implies w(G) = 4. Denoting the set of all plane graphs of minimum degree
at least δ, girth at least ρ, minimum edge weight at least w and minimum double girth at
least w∗ as G(δ, ρ, w,w∗), the equivalent formulation of these results is that the families
G(2, 5, 8, 10),G(2, 7, 6, 14) and G(2, 11, 5, 22) are empty.

In this paper, we prove the following additional results:

Theorem 1.1. The family G(2, 3, 7, 15) is empty.

Theorem 1.2. The family G(2, 3, 9, 11) is empty.

Theorem 1.3. The family G(2, 3, 13, 9) is empty.

Theorem 1.4. The families G(2, 5, 5, 27) and G(2, 7, 5, 23) are empty.

Theorem 1.5. The family G(2, 5, 6, 17) is empty.

Theorem 1.6. The family G(2, 5, 7, 13) is empty.
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For the non-empty families arising from admissible quadruples, we are interested in
determining the extremal ones, that is, the families G(δ, ρ, w,w∗) such that the increase of
any of the values δ, ρ, w and w∗ results in an empty family. We prove:

Theorem 1.7. The families G(2, 4, 8, 14), G(2, 4, 12, 10), G(2, 6, 5, 26), G(2, 6, 6, 16),
G(2, 6, 7, 12), G(2, 10, 5, 22) are non-empty and extremal.

2 The proofs
For the needs of the proofs we will use the following consequence of Euler’s formula with
specified parameters a and b (without giving a proof):

Lemma 2.1. Let G be a connected plane graph, a be a positive and b be a non-negative
integer. Then∑

v∈V (G)

(a · d(v)− 2(a+ b)) +
∑

α∈F (G)

(b · d(α)− 2(a+ b)) = −4(a+ b).

The common approach used in the majority of proofs in this paper is the discharging
method. Assuming the existence of a hypothetical plane counterexample G = (V,E, F )
for a particular statement of Theorems 1.1 – 1.7, we define the initial charges of vertices
and faces by the function ω : V ∪ F → Z assigning ω(v) = a · d(v)− 2(a+ b) for each
v ∈ V , and ω(α) = b · d(α)− 2(a+ b) for each α ∈ F . By Lemma 2.1,

∑
x∈V ∪F ω(x) =

−4(a + b) < 0. Next, we redistribute the initial charges of vertices and faces of G using
certain rules which specify, in particular situations, the amount of charge transferred from
one element to another; all transfers preserve the total sum of the initial charges. Finally,
by case analysis, we show that the final charge ϕ : V ∪F → Q is a non-negative function;
this is, however, a contradiction since 0 >

∑
x∈V ∪F ω(x) =

∑
x∈V ∪F ϕ(x) ≥ 0.

We note that, while checking the non-negativity of ϕ, we will usually mention just a
minimal set of discharging rules that give ϕ(x) ≥ 0 for an x ∈ V ∪ F , although there may
be additional transfers of a positive charge to x.

2.1 Proof of Theorem 1.1

Let the family G(2, 3, 7, 15) be non-empty and let G = (V,E, F ) be its representative.
Without loss of generality, we can assume that 5+-vertices are not adjacent in G (oth-

erwise we subdivide each (5+, 5+)-edge with a new 2-vertex which yields a new graph G′

being again from G(2, 3, 7, 15)). Therefore each k-face α of G, for k odd, is incident with
at most k−32 2-vertices (note that k-face α, for k even, is incident with at most k2 2-vertices).

The discharging procedure is based on Lemma 2.1 with a = 1 and b = 0 and the
following discharging rules:

R1 Each k-face α, k ≤ 7, distributes its initial charge uniformly to all incident 3+-
vertices.

R2 Each k-face α, k ≥ 8, distributes its initial charge uniformly to all incident 4+-
vertices.

It follows from the discharging rules that ϕ(α) = 0 for all α ∈ F .
In Table 1 we give the lower bounds for charges received by vertices of graph G from

k-faces of G (k ≥ 3):
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k 3 4 5 6 7 8 9 10 11 12+

d(v) = 3 − 2
3 − 2

3 − 1
2 − 1

2 − 2
5 − − − − −

d(v) = 4 − 2
3 − 2

3 − 1
2 − 1

2 − 2
5 − 1

2 − 2
5 − 2

5 − 1
3 − 1

3

d(v) ≥ 5 − 2
3 -1 − 1

2 − 2
3 − 2

5 − 1
2 − 2

5 − 2
5 − 1

3 − 1
3

Table 1: Lower bounds for charges sent to vertices of G from a k-face α.

Now, let v ∈ V be a k-vertex, k ≥ 2. We consider the following cases regarding k:

k = 2: Discharging rules do not involve 2-vertices, therefore ϕ(v) = ω(v) = 0.

k = 3: The 3-vertices receive negative charge only from incident 7−-faces by R1. Since
w∗(G) ≥ 15, v is incident with at most one 7−-face. If a 3-vertex v is incident with
an l-face α, 3 ≤ l ≤ 7, then, using Table 1, ϕ(v) ≥ 1 + (− 2

3 ) =
1
3 . If v is incident

with no such face, then ϕ(v) = ω(v) = 1.

k = 4: Each 4-vertex v is incident with at most two 7−-faces (as w∗(G) ≥ 15). If v is
incident with a 4−-face, then it is incident with at least two 11+-faces, and hence
ϕ(v) ≥ 2 + (− 2

3 ) + 2 · (− 1
3 ) + (− 2

3 ) = 0 due to Table 1. Otherwise, v is incident
with four 5+-faces and ϕ(v) ≥ 2 + 4 · (− 1

2 ) = 0.

k = 5: Each 5-vertex v is incident with at most two 7−-faces (as w∗(G) ≥ 15). If v is
incident with a 3-face, then it is incident with at least two 12+-faces, and hence, using
Table 1, ϕ(v) ≥ 3+(− 2

3 )+2 ·(− 1
3 )+(−1)+(− 1

2 ) =
1
6 . If v is incident with one k-

face, 4 ≤ k ≤ 7, and four 8+-faces then ϕ(v) ≥ 3−1+4 ·(− 1
2 ) = 0. If v is incident

with two 4-faces, then it is incident with three 11+-faces, and ϕ(v) ≥ 3+2·(−1)+3·
(− 1

3 ) = 0. If v is incident with a 4-face and a 5-face, then it is incident with two 11+-
faces and a 10+-face, and hence ϕ(v) ≥ 3+(−1)+(− 1

2 )+2 ·(− 1
3 )+(− 2

5 ) =
13
30 . If

it is incident with a 4-face and a 6-face, then it is incident with two 11+-faces and a
9+-face, and hence ϕ(v) ≥ 3+(−1)+(− 2

3 )+2 ·(− 1
3 )+(− 2

5 ) =
4
15 . If v is incident

with a 4-face and a 7-face, then it is incident with two 11+-faces and an 8+-face, and
hence ϕ(v) ≥ 3+(−1)+(− 2

5 )+2 ·(− 1
3 )+(− 1

2 ) =
13
30 . Finally, if v is incident with

faces α and β, where 5 ≤ d(α), d(β) ≤ 7, then ϕ(v) ≥ 3+2 · (− 2
3 )+3 · (− 1

2 ) =
1
6 .

k ≥ 6: Each k-vertex v, k ≥ 6, is incident with at most
⌊
k
2

⌋
7−-faces. To estimate the

total reception of the vertex v we argue as follows. If v is incident with a 3-face, then
it is incident with a 12+-face and they send together a charge − 2

3 + (− 1
3 ) = −1 to

v (according to Table 1). If v is incident with a 4-face, then it is incident with an
11+-face and they send together a charge −1 + (− 1

3 ) = − 4
3 to v. If v is incident

with a 5-face, then it is incident with a 10+-face and they send together a charge
− 1

2 + (− 2
5 ) = − 9

10 to v. If v is incident with a 6-face, then it is incident with a
9+-face and they send together a charge − 2

3 + (− 2
5 ) = −

16
15 to v. And finally, if v

is incident with a 7-face, then it is incident with an 8+-face and they send together a
charge − 2

5 + (− 1
2 ) = −

9
10 to v. Thence it follows, that each face sends in average

a charge at least − 2
3 to v and therefore ϕ(v) ≥ k − 2 + k · (− 2

3 ) =
k
3 − 2 ≥ 0 for

k ≥ 6.

Hence, all elements of G have non-negative final charge, giving the desired contradiction.
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2.2 Proof of Theorem 1.2

Let the family G(2, 3, 9, 11) be non-empty and G = (V,E, F ) be its representative.
The discharging procedure is based on Lemma 2.1 with a = 1 and b = 0 and the

following discharging rules:

R1 Each k-face, k ≤ 5, divides its initial charge uniformly among all incident 3+-
vertices.

R2 Each k-face, k ≥ 6, sends a charge of size − 1
3 to each incident 4-vertex.

R3 Each k-face, k ≥ 6, distributes its residual charge (after application of R2) uniformly
to all incident 5+-vertices.

It follows from the discharging rules that ϕ(α) = 0 for all α ∈ F .
In Table 2 we give the lower bounds for charges received by vertices of graph G from

k-faces of G, k ≥ 3:

k 3 4 5 6 7 8 9+

d(v) = 3 − 2
3 − 2

3 − 1
2 − − − −

d(v) = 4 − 2
3 − 2

3 − 1
2 − 1

3 − 1
3 − 1

3 − 1
3

d(v) = 5 − 2
3 − 2

3 − 1
2 − 1

2 − 5
12 − 2

5 − 1
3

d(v) = 6 − 2
3 − 2

3 − 1
2 − 2

3 − 1
2 − 1

2 − 2
5

d(v) ≥ 7 -1 -1 − 2
3 − 2

3 − 1
2 − 1

2 − 2
5

Table 2: Lower bounds for charges sent to vertices of G from a k-face α.

Now, let v ∈ V be a k-vertex, k ≥ 2. We consider the following cases regarding k:

k = 2: Discharging rules do not involve 2-vertices, therefore ϕ(v) = ω(v) = 0.

k = 3: Each 3-vertex v is incident with at most one 5−-face (as w∗(G) ≥ 11). Hence,
using Table 2, ϕ(v) ≥ 1 + (− 2

3 ) =
1
3 .

k = 4: Each 4-vertex v is incident with at most two 5−-faces (as w∗(G) ≥ 11). Hence,
according to Table 2, ϕ(v) ≥ 2 + 2 · (− 2

3 ) + 2 · (− 1
3 ) = 0.

k = 5: Each 5-vertex v is incident with at most two 5−-faces (as w∗(G) ≥ 11). Hence,
ϕ(v) ≥ 3 + 2 · (− 2

3 ) + 3 · (− 1
2 ) =

1
6 .

k = 6: Each 6-vertex v receives from each face charge at least − 2
3 and therefore, ϕ(v) ≥

4 + 6 · (− 2
3 ) = 0.

k = 7: If v is incident with three 3- or 4-faces, then it is incident with four 8+-faces and,
using Table 2, ϕ(v) ≥ 5 + 3 · (−1) + 4 · (− 1

2 ) = 0. If v is incident with two 3- or
4-faces, then it is incident with at least three 8+-faces and ϕ(v) ≥ 5 + 2 · (−1) + 3 ·
(− 1

2 ) + 2 · (− 2
3 ) =

1
6 . If v is incident with one 3- or 4-face, then it is incident with

at least two 8+-faces and ϕ(v) ≥ 5 + (−1) + 2 · (− 1
2 ) + 4 · (− 2

3 ) =
1
3 . Otherwise,

it is incident only with 5+-faces and ϕ(v) ≥ 5 + 7 · (− 2
3 ) =

1
3 .
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k ≥ 8: Let s be the number of 3- and 4-faces incident with k-vertex v and t be the number
of 8+-faces incident with v. As w∗(G) ≥ 11, we have t ≥ s and s ≤ bk2 c. Then
ϕ(v) ≥ k−2+s ·(−1)+ t ·(− 1

2 )+(k−s− t) ·(− 2
3 ) = k−2−s · 13 + t ·

1
6 −k ·

2
3 ≥

k
3 − s ·

1
6 − 2 ≥ k

3 −
k
12 − 2 = k

4 − 2 ≥ 0 for k ≥ 8.

Hence, all elements of G have non-negative final charge, a contradiction.

2.3 Proof of Theorem 1.3

Let the family G(2, 3, 13, 9) be non-empty and G = (V,E, F ) be its representative.
The discharging procedure is based on Lemma 2.1 with a = 1 and b = 0 and the

following discharging rules:

R1 a) Each face α sends a charge of size − 1
3 to each incident 3-vertex.

b) Each face α sends a charge of size − 1
2 to each incident 4-vertex.

R2 Each face α distributes its residual charge (after the application of R1a and R1b)
uniformly among all incident 5+-vertices.

It follows from the discharging rules that ϕ(α) = 0 for all α ∈ F (the faces are able to
distribute the charge, since there are always 5+-vertices in the graph).

In Table 3 we give the lower bounds for charges received by vertices of graph G from
k-faces of G (k ≥ 3) after the application of the rule R1:

k 3 4 5 6+

5 ≤ d(v) ≤ 8 − 2
3 − 2

3 − 1
2 − 1

2

d(v) = 9 − 3
4 − 2

3 − 1
2 − 1

2

d(v) = 10 − 5
6 − 2

3 − 5
9 − 1

2

d(v) ≥ 11 -1 -1 − 2
3 − 2

3

Table 3: Lower bounds for charges sent to vertices of G from a k-face α.

Now, let v ∈ V be a k-vertex, k ≥ 2. We consider the following cases regarding k:

k = 2: Discharging rules do not involve 2-vertices, therefore ϕ(v) = ω(v) = 0.

k = 3: Each 3-vertex v receives− 1
3 from all incident faces, hence ϕ(v) = 1+3·(− 1

3 ) = 0.

k = 4: Each 4-vertex v receives− 1
2 from all incident faces, hence ϕ(v) = 2+4·(− 1

2 ) = 0.

5 ≤ k ≤ 8: Let s and t be the numbers of 4−- and 5+-faces incident with a k-vertex v,
respectively. As w∗(G) ≥ 9, we have t ≥ s and s ≤

⌊
k
2

⌋
. Then, using Table 3,

ϕ(v) ≥ k−2+s · (− 2
3 )+ t · (−

1
2 ) ≥ k−2+

⌊
k
2

⌋
· (− 2

3 )+
⌈
k
2

⌉
· (− 1

2 ) ≥
5k
12 −2 > 0

for k ≥ 5.

k = 9: As each 9-vertex receives, according to Table 3, a charge of at least − 3
4 from each

incident face, we have that ϕ(v) ≥ 7 + 9 · (− 3
4 ) =

1
4 > 0.

k = 10: Each 10-vertex is incident with at least five 5+-faces (as w∗(G) ≥ 9). Therefore
ϕ(v) ≥ 8 + 5 · (− 5

9 ) + 5 · (− 5
6 ) =

19
18 > 0.
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k = 11: Each 11-vertex is incident with at least six 5+-faces (as w∗(G) ≥ 9). Therefore
ϕ(v) ≥ 9 + 6 · (− 2

3 ) + 5 · (−1) = 0.

k ≥ 12: Let s and t be the numbers of 4−- and 5+-faces incident with a k-vertex v,
respectively. As w∗(G) ≥ 9, we have t ≥ s and s ≤

⌊
k
2

⌋
. Then ϕ(v) ≥

k − 2 + s · (−1) + t · (− 2
3 ) ≥ k − 2 +

⌊
k
2

⌋
· (−1) +

⌈
k
2

⌉
· (− 2

3 ) ≥
k
6 − 2 ≥ 0 for

k ≥ 12.

Hence, all elements of G have non-negative final charge, a contradiction.

2.4 Proof of Theorem 1.4

Let the families G(2, 5, 5, 27) and G(2, 7, 5, 23) be non-empty and G∗1 and G∗2 be their
respective representatives. Each face α of G∗1 and G∗2 is incident with at most

⌊
d(α)
2

⌋
2-

vertices (as w(G∗i ) ≥ 5 for i ∈ {1, 2}). Then, after suppressing all 2-vertices of G∗1 and
G∗2, respectively, we obtain graphs G1, G2 with δ(Gi) ≥ 3, i ∈ {1, 2}. Moreover, G1

belongs to the family G(3, 3, 6, 14) and G2 is from G(3, 4, 6, 12), which contradicts the
fact that these families were proven to be empty (see [4]).

2.5 Proof of Theorem 1.5

Let G = (V,E, F ) ∈ G(2, 5, 6, 17) be a counterexample to the theorem. Without loss
of generality, we assume that 4+-vertices are not adjacent in G (otherwise we subdivide
each (4+, 4+)-edge in G with a new 2-vertex, which yields a new counterexample G′ ∈
G(2, 5, 6, 17)). Therefore, each k-face α of G, for k odd, is incident with at most k−3

2

2-vertices (note that k-face α, for k even, is incident with at most k2 2-vertices).
The discharging procedure is based on Lemma 2.1 with a = 2, b = 1 and the following

discharging rules:

R1 Each vertex v distributes its initial charge uniformly to all incident faces.

R2 Each 11+-face α sends a charge of size 1
4 to each adjacent face (through every com-

mon edge).

By R1, ϕ(v) = 0 for all v ∈ V . Since w(G) ≥ 6, every 2-vertex of G is adjacent only
to 4+-vertices and every its 3-vertex is adjacent only to 3+-vertices.

Let α ∈ F be a k-face, k ≥ 5. We consider the following cases regarding k:

k = 5: All faces adjacent to α are 12+-faces (as w∗(G) ≥ 17) and α is incident with at
most one 2-vertex. If α is incident with exactly one 2-vertex, then it is incident with
at least two 4+-vertices and hence ϕ(α) ≥ −1 + (−1) + 2 · 12 + 5 · 14 = 1

4 . Finally,
if α is not incident with any 2-vertex, then ϕ(α) ≥ −1 + 5 · 14 = 1

4 .

k = 6: All faces adjacent to α are 11+-faces (as w∗(G) ≥ 17). If α is incident with three
2-vertices, then it is incident with three 4+-vertices. Hence ϕ(α) ≥ 0 + 3 · (−1) +
3 · 12 + 6 · 14 = 0. If α is incident with two 2-vertices, then it is incident with at least
three 4+-vertices, giving ϕ(α) ≥ 0 + 2 · (−1) + 3 · 12 + 6 · 14 = 1. If α is incident
with at most one 2-vertex, then ϕ(α) ≥ 0 + (−1) + 6 · 14 = 1

2 .

k = 7: α is incident with at most two 2-vertices. If α is incident with two 2-vertices, then
it is incident with at least three 4+-vertices. Hence ϕ(α) ≥ 1+2·(−1)+3· 12 = 1

2 by
R1. Otherwise, if α is incident with at most one 2-vertex, then ϕ(α) ≥ 1+(−1) = 0.
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k = 8: If α is incident with four 2-vertices, then it is incident with four 4+-vertices. Hence
ϕ(α) ≥ 2 + 4 · (−1) + 4 · 12 = 0 by R1. If α is incident with three 2-vertices, then
it is incident with at least four 4+-vertices, giving ϕ(α) ≥ 2 + 3 · (−1) + 4 · 12 = 1.
Finally, if α is incident with at most two 2-vertices, then ϕ(α) ≥ 2 + 2 · (−1) = 0.

k = 9: α is incident with at most three 2-vertices, thus we have that ϕ(α) ≥ 3+3 ·(−1) =
0.

k = 10: If α is incident with five 2-vertices, then it is incident with five 4+-vertices. Hence
ϕ(α) ≥ 4+5 · (−1)+5 · 12 = 3

2 by R1. Otherwise, if α is incident with at most four
2-vertices, then ϕ(α) ≥ 4 + 4 · (−1) = 0.

k = 11: α is incident with at most four 2-vertices. If α is incident with four 2-vertices, then
it is incident with at least five 4+-vertices. Hence ϕ(α) ≥ 5+4·(−1)+5· 12−11·

1
4 =

3
4 by R1 and R2. If α is incident with three 2-vertices, then it is incident with at least
four 4+-vertices, giving ϕ(α) ≥ 5 + 3 · (−1) + 4 · 12 − 11 · 14 = 5

4 . Finally, if α is
incident with at most two 2-vertices, then ϕ(α) ≥ 5 + 2 · (−1)− 11 · 14 = 1

4 .

k ≥ 12: Let s and t be numbers of 2− and 4+−vertices incident with α, respectively. As
w(G) ≥ 6, we have t ≥ s and s ≤

⌊
k
2

⌋
. Then ϕ(α) ≥ k−6+s·(−1)+t· 12−

1
4 ·k ≥

3
4 · k − 6− 1

2 · s ≥
3
4 · k − 6− 1

2 ·
⌊
k
2

⌋
≥ 0 for k ≥ 12.

Hence, all elements of G have non-negative final charge, a contradiction.

2.6 Proof of Theorem 1.6

Let the family G(2, 5, 7, 13) be non-empty and G = (V,E, F ) be its representative. With-
out loss of generality, we can assume that 5+-vertices are not adjacent in G (otherwise we
subdivide each (5+, 5+)-edge in G with a new 2-vertex, which yields a new counterexam-
ple G′ ∈ G(2, 5, 7, 13)). Therefore, each k-face α of G, for k odd, is incident with at most
k−3
2 2-vertices (note that k-face α, for k even, is incident with at most k2 2-vertices).

The discharging procedure is based on Lemma 2.1 with a = 2, b = 1 and the following
discharging rules:

R1 Each vertex v divides its initial charge uniformly among all incident faces.

R2 Each 7+-face α sends a charge of size 3
25 to each adjacent face (through every com-

mon edge).

By R1, ϕ(v) = 0 for all v ∈ V . Since w(G) ≥ 7, every 2-vertex of G is adjacent only
to 5+-vertices and every its 3-vertex is adjacent only to 4+-vertices.

Let α ∈ F be a k-face, k ≥ 5. We consider the following cases regarding k:

k = 5: All faces adjacent to α are 8+-faces (as w∗(G) ≥ 13). If α is incident with a
2-vertex, then it is incident with at least two 5+-vertices and hence ϕ(α) ≥ −1 +
(−1)+2 · 45 +5 · 3

25 = 1
5 . Otherwise, if α is not incident with any 2-vertex, then it is

incident with at least three 4+-vertices, and therefore ϕ(α) ≥ −1+3· 12+5· 325 = 11
10 .

k = 6: All faces adjacent to α are 7+-faces (as w∗(G) ≥ 13). If α is incident with three
2-vertices, then it is incident with three 5+-vertices. Hence ϕ(α) ≥ 0 + 3 · (−1) +
3 · 45 + 6 · 3

25 = 3
25 . If α is incident with two 2-vertices, then it is incident with at

least three 5+-vertices, giving ϕ(α) ≥ 0 + 2 · (−1) + 3 · 45 + 6 · 3
25 = 28

25 . If α is
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incident with exactly one 2-vertex, then it is incident with at least two 5+-vertices
and thus ϕ(α) ≥ 0 + (−1) + 2 · 45 + 6 · 3

25 = 33
25 . Finally, if α is not incident with

a 2-vertex, then it receives non-negative charge from each incident vertex, therefore
ϕ(α) ≥ ω(α) = 0.

k = 7: If α is incident with two 2-vertices, then it is incident with at least three 5+-vertices,
so ϕ(α) ≥ 1+2 · (−1)+3 · 45 +7 · (− 3

25 ) =
14
25 . If α is incident with exactly one 2-

vertex, then it is incident with at least two 5+-vertices and hence ϕ(α) ≥ 1+(−1)+
2· 45+7·(− 3

25 ) =
19
25 . Finally, if α is not incident with a 2-vertex, then it receives non-

negative charge from each incident vertex and, by R2, ϕ(α) ≥ 1 + 7 · (− 3
25 ) =

4
25 .

k ≥ 8: Let s and t be numbers of 2− and 5+-vertices incident with α, respectively. As
w(G) ≥ 7, we have t ≥ s and s ≤

⌊
k
2

⌋
. Then ϕ(α) ≥ k−6+s·(−1)+t· 45−

3
25 ·k ≥

22
25k −

s
5 − 6 ≥ 22

25k −
⌊
k
2

⌋
· 15 − 6 ≥ 39·k

50 − 6 > 0 for k ≥ 8.

Hence, all elements of G have non-negative final charge, a contradiction.

2.7 Proof of Theorem 1.7

For each of the mentioned six families, we describe a representative and show that the
increase in any of the four parameters results in an empty family.

The family G(2, 4, 8, 14) contains, as a representative, the graph obtained from the
dodecahedron by replacing each edge uv by a 4-cycle uxvy with x, y being 2-vertices.
Furthermore, G(3, 4, 8, 14) ⊂ G(3, 4, 7, 9) = ∅ by [4], G(2, 5, 8, 14) ⊂ G(2, 5, 8, 10) = ∅
by [2] and [7], G(2, 4, 9, 14) ⊂ G(2, 3, 9, 11) = ∅ by Theorem 1.2, and G(2, 4, 8, 15) ⊂
G(2, 3, 7, 15) = ∅ by Theorem 1.1.

A representative of G(2, 4, 12, 10) is obtained from the icosahedron by replacing each
edge uv by a 4-cycle uxvy with x, y being 2-vertices. Furthermore, G(3, 4, 12, 10) ⊂
G(3, 4, 7, 9) = ∅ by [4], G(2, 5, 12, 10) ⊂ G(2, 5, 8, 10) = ∅ by [2, 7], G(2, 4, 13, 10) ⊂
G(2, 3, 13, 9) = ∅ by Theorem 1.3, and finally G(2, 4, 12, 11) ⊂ G(2, 3, 9, 11) = ∅ by
Theorem 1.2.

For G(2, 6, 5, 26), a suitable representative can be obtained, for example, by subdivid-
ing each edge of the graph of the truncated dodecahedron. Note that G(3, 6, 5, 26) = ∅
(if δ(G) ≥ 3, then ρ(G) ≤ 5). Furthermore, by Theorem 1.4, G(2, 7, 5, 26) ⊂
G(2, 7, 5, 23) = ∅, G(2, 6, 5, 27) ⊂ G(2, 5, 5, 27) = ∅ and, by Theorem 1.5,
G(2, 6, 6, 26) ⊂ G(2, 5, 6, 17) = ∅.

By subdividing each edge of the graph of icosidodecahedron, we obtain a represen-
tative of G(2, 6, 6, 16). Again, G(3, 6, 6, 16) = ∅ (if δ(G) ≥ 3, then ρ(G) ≤ 5) and
G(2, 7, 6, 16) ⊂ G(2, 7, 6, 14) = ∅ by [2, 7], G(2, 6, 7, 16) ⊂ G(2, 5, 7, 13) = ∅ by Theo-
rem 1.6, G(2, 6, 6, 17) ⊂ G(2, 5, 6, 17) = ∅ by Theorem 1.5.

A representative of G(2, 6, 7, 12) is obtained by subdividing each edge of the icosahe-
dron graph. Further, G(3, 6, 7, 12) = ∅ (if δ(G) ≥ 3, then ρ(G) ≤ 5), G(2, 7, 7, 12) = ∅ (if
ρ(G) ≥ 7, then w∗(G) ≥ 2ρ(G) = 14), G(2, 6, 8, 12) ⊂ G(2, 5, 8, 10) = ∅ by [2, 7], and
G(2, 6, 7, 13) ⊂ G(2, 5, 7, 13) = ∅ by Theorem 1.6.

A representative of G(2, 10, 5, 22) is obtained by subdividing each edge of the truncated
icosahedron. Further, G(3, 10, 5, 22) = ∅ (if δ(G) ≥ 3, then ρ(G) ≤ 5), G(2, 11, 5, 22) =
∅ by [2] and [7], G(2, 10, 6, 22) ⊂ G(2, 5, 6, 17) = ∅ by Theorem 1.5, and finally
G(2, 10, 5, 23) ⊂ G(2, 7, 5, 23) = ∅ by Theorem 1.4.
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3 Concluding remarks
A possible common way how to visualize the dependence of δ, ρ, w,w∗ for families of
plane graphs is to construct a diagram of a partially ordered set depicting the hierarchy
of all non-empty families (generated by quadruples (δ, ρ, w,w∗)) under the set inclusion
partial ordering. For δ ≥ 3, a partially ordered set of generated families of polyhedral
graphs is shown in Figure 1 (this also corrects the error in the original diagram in [4]):

(5,3,11,6)

(4,3,11,6)

(3,3,13,6)

(3,3,12,6)

(3,3,11,6)

(3,3,10,6)

(3,3,9,6)

(3,3,8,6)

(3,3,7,6)

(3,3,6,6)

(5,3,10,6)

(4,3,10,6)

(4,3,9,6)

(4,3,8,6)

(3,3,9,7)

(3,3,8,7)

(3,3,8,8)

(4,3,8,7)

(4,3,8,8)
(3,3,6,13)

(3,3,6,12)

(3,3,6,11)

(3,3,6,10)

(3,3,6,9)

(3,3,6,8)

(3,3,6,7)

(3,5,6,11)

(3,4,6,11)

(3,4,6,10)

(3,4,6,9)

(3,4,6,8)

(3,5,6,10)

(3,3,7,9)

(3,4,7,8)

(3,4,8,8)

(3,3,7,8)

(3,3,7,7)

Ć

Figure 1: The hierarchy of families of polyhedral graphs generated by (δ, rho, w,w∗).

The results for δ = 2 are presented in Table 4 indexed by values of girth (rows) and edge
weight (columns) such that, the corresponding table entry shows the maximal admissible
value of dual edge weight. The value ∞ in the first column is due to the fact that, in the
graph obtained fromCn (n arbitrarily large) by replacing every edge with two disjoint paths
of length 2, the dual edge weight is unbounded. The value 8 in the last column results from
the graph K2,r for large r. The bold values correspond to extremal families.

The verification that we found all extremal classes can be done manually, or, as we did,
using a simple computer program. Iterating over all possible classes (2, ρ, w,w∗) check for
every non-extremal class that it is either covered by an extremal class (all parameters are
less or equal than for some extremal class) or by an empty class (all parameters are greater
or equal than for some empty class).

Let us note that all extremal classes must have all parameters less or equal to 26, be-
cause every class that has at least one parameter greater than 26 is empty (it is a subset of
G(2, 3, 13, 9), G(2, 5, 5, 27) or G(2, 3, 7, 15), which are all proven to be empty) or it is a
part of one of two infinite chains.
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HH
HHHρ

w
4 5 6 7 8 9 10 11 12 13+

3 ∞ ∞ ∞ 14 14 10 10 10 10 8

4 ∞ ∞ ∞ 14 14 10 10 10 10 8

5 ∞ 26 16 12 − − − − − −
6 ∞ 26 16 12 − − − − − −
7 ∞ 22 − − − − − − − −
8 ∞ 22 − − − − − − − −
9 ∞ 22 − − − − − − − −

10 ∞ 22 − − − − − − − −
11+ ∞ − − − − − − − − −

Table 4: The table of admissible values for quadruples (2, ρ, w,w∗).

The mutual dependence of the invariants δ, ρ, w,w∗ can also be studied for graphs
embedded into higher surfaces. Partial results were obtained for embedded graphs with
δ(G) = 3 and orientable genus γ(G) in [6], it was proved that w(G) ≤ 2γ(G) + 13 if
0 ≤ γ(G) ≤ 3 and w(G) ≤ 4γ(G) + 7 if γ(G) ≥ 3, whereas w(G) ≤ 4γ(G) + 5 if
γ(G) ≥ 1 and g(G) ≥ 4. For graphs with non-orientable genus γ(G), it was proved in [8]
that w(G) ≤ 2γ(G)+ 11 if 1 ≤ γ(G) ≤ 2, and w(G) ≤ 2γ(G)+ 9 in 3 ≤ γ(G) ≤ 5 with
w(G) ≤ 2γ(G) + 7 for γ(G) ≥ 6; furthermore, if g(G) ≥ 4, then w(G) ≤ 2γ(G) + 5
for γ(G) ≥ 2 and w(G) ≤ 8 for γ(G) = 1. Note, however, that for embedded graphs
with fixed genus, the invariant w∗(G) need not be well-defined, as G might have a single
face. This could be overcome by considering polyhedral embeddings (whose facial walks
are cycles and each two of them have at most a vertex or an edge in common).

There exist many graph families whose members do not involve a fixed genus em-
bedding, but they possess structural properties which are analogous to ones for plane or
embedded graphs nonetheless. A particularly interesting family in this direction is the fam-
ily of 1-planar graphs, that is, the family of graphs which can be drawn in the plane in
such a way that each edge is crossed at most once. It is known that if G is a 1-planar graph,
then δ(G) ≤ 7 and, in addition, w(G) ≤ 40 if G is 3-connected, see [3]. For a 1-planar
graph G with δ(G) ∈ {5, 6, 7} it was proved in [5] that w(G) ≤ 14. A partial dependence
between δ(G) and g(G) is also known: if δ(G) ≥ 5, then g(G) ≤ 4 and g(G) = 3 for
δ(G) ∈ {6, 7}, see [3]; however, for δ(G) ∈ {3, 4}, an upper bound for g(G) is still not
known. Also, not much is known on the dependence of dg(G) (which is a vague analogue
of w∗(G) for non-embedded graphs) on w(G), g(G) and δ(G): so far, the only result is the
one from [10] that if δ(G) ≥ 6 and w(G) ≥ 13, then dg(G) = 6.
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