
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 10 (2016) 31–44

Multicoloring of cannonball graphs

Petra Šparl ∗
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Abstract

The frequency allocation problem that appeared in the design of cellular telephone net-
works can be regarded as a multicoloring problem on a weighted hexagonal graph, which
opened some still interesting mathematical problems. We generalize the multicoloring
problem into higher dimension and present the first approximation algorithms for multi-
coloring of the so called cannonball graphs.
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1 Introduction
A fundamental problem that appears in the design of cellular networks is to assign sets of
frequencies to transmitters in order to avoid the unacceptable interferences. The number
of frequencies demanded at a transmitter may vary between transmitters. The problem
appeared in the sixties and was soon related to the graph multicoloring problem (the formal
definition is given on page 33), see the early survey [5]. It received an enormous attention
in the nineties and is still of considerable interest (see [1] and the references there). Besides
the mobile telephony there are several applications of frequency assignment including radio
and television broadcasting, military applications, satellite communication and wireless
LAN [1]. A sizable part of theoretical studies is concentrated on the simplified model
when the underlying graph which has to be multicolored is a subgraph of triangular grid
(see [12, 13, 5]). This is a natural choice because it is well known that hexagonal cells
provide a coverage with the optimal ratio of the distance between centers compared to the
area covered by each cell. Such graphs are called hexagonal graphs [18, 19, 21]. Indeed, the
model is a reasonable approximation for the rural cellular networks where the underlying
graph is often nearly planar, and a popular example are the sets of benchmark problems
based on the real cellular network around Philadelphia [2] (see the FAP website [29]).

Although the multicoloring (the formal definition is given on page 33) of hexagonal
graphs seems to be a very simplified optimization problem, some interesting mathematical
questions were asked at the time that are still open. An example is the conjecture of Mc-
Diarmid and Reed saying that the multichromatic number (the formal definition is given
on page 33) of any hexagonal graph G is between ω(G) and 9ω(G)/8, where ω(G) is the
weighted clique number [12]. On the other hand, the hexagonal graph model is known to
be practically useless in urban areas, where high concrete buildings on the one hand pre-
vent propagation of the radio signals and on the other hand allow very high concentration
of users. Loosely speaking, a three dimensional model may be needed in contrast to the
hexagonal graphs that are a good model for two dimensional networks. In this paper we
discuss a generalization of the multicoloring problem on hexagonal graphs from the planar
case to three dimensions. It is well known that hexagonal cells of the same size with centers
positioned in the triangular grid provide an optimal coverage of the plane. Optimality here
means the best ratio between the diameter and the area covered by the cell. The situation is
much more interesting in three dimensions. Obviously, optimal cells would be nearly balls,
and the question is how to position the centers of the balls to achieve the optimal diameter
to volume ratio. The famous Kepler conjecture was a longstanding conjecture about the
ball packing in three-dimensional Euclidean space. It says that no arrangement of equally
sized balls filling space has greater average density than that of the cubic close packing
(face-centered cubic) and the hexagonal close packing arrangements. The density of these
arrangements is slightly greater than 74%. It may be interesting to note that the solution
of Kepler’s conjecture is included as a part of the 18th problem in the famous Hilbert’s
problem list back in 1900 [22]. Recently Thomas Hales, following an approach suggested
by Fejes Tóth, published a proof of the Kepler conjecture. For more details, see [6, 7].

Given an optimal arrangement of balls, we define a graph by taking the balls (or centers
of balls) as vertices and connect each pair of touching balls with an edge. Nonnegative
demands are assigned to each vertex and we are interested in multicoloring of the graph
induced on vertices of positive demand. Loosely speaking, we generalize the problem of
multicoloring of hexagonal graphs from two dimensions to three dimensions. The question
“What ratio χ(G)/ω(G) can be obtained by a generalization of 2-dimensional algorithm
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to 3-dimensional algorithm” has been asked at the Oberwolfach seminar Algorithmische
Graphentheorie [28] and we are not aware of any result since then.

More formally, we are interested in multicoloring of weighted graphs G = (V (G),
E(G), d), where V = V (G) is the set of vertices, E = E(G) is the set of edges, and d as-
signs a positive integer d(v) to vertex v ∈ V . d(v) is the weight of a vertex, here also called
demand. Adjacent vertices are called neighbors. The degree of a vertex, degG(v) = deg(v)
is the number of neighbors of v. A proper multicoloring ofG is a mapping f from V (G) to
subsets of integers such that |f(v)| ≥ d(v) for any vertex v ∈ V (G) and f(v) ∩ f(u) = ∅
for any pair of adjacent vertices u and v in the graph G. The minimum number of col-
ors needed for a proper multicoloring of G, χm(G), is called the multichromatic number.
Another invariant of interest in this context is the (weighted) clique number, ω(G), de-
fined as follows: The weight of a clique of G is the sum of demands on its vertices and
ω(G) is the maximal clique weight on G. Clearly, χm(G) ≥ ω(G). Hexagonal graph is
the graph induced on vertices of triangular grid of positive demand. Or, in other words,
cells of hexagonal grid are assigned non-negative integer demands, and the graph is com-
posed by taking cells with positive demand as vertices and two vertices whose hexagons
share an edge are regarded to be adjacent. In the 3-dimensional case we will consider
optimal arrangements of balls, and define a graph by taking balls (with positive demand)
as vertices, and connect touching balls by edges. We call these graphs the cannonball
graphs as Keplers motivation for studying the arrangements of balls was optimal arrange-
ment of cannonballs. McDiarmid and Reed proved in [12] that multicoloring of hexagonal
graphs is NP-complete. In the last decade there were several results on upper bounds
for the multichromatic number in terms of weighted clique number for hexagonal graphs,
some of which also provide approximation algorithms that are fully distributed and run
in constant time [8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 15, 21, 23, 24, 25, 27]. The best
known approximation ratios are χm(G) ≤ (4/3)ω(G) + O(1) in general [12, 14, 18] and
χm(G) ≤ (7/6)ω(G)+O(1) for triangle free hexagonal graphs [8, 15, 16]. The conjecture
of McDiarmid and Reed: χm(G) ≤ (9/8)ω(G) +O(1) remains an open problem [12].

Since multicoloring of cannonball graphs is an extension of multicoloring of hexagonal
graphs, it is NP-complete. No approximation algorithm and no upper bound was previ-
ously known for the multichromatic number of cannonball graphs. Here we give two upper
bounds, where the first is easily implied by known results for hexagonal graphs (because
a layer in a cannonball graph is a hexagonal graph) and the second is an improvement of
the first upper bound using some structural properties of the cannonball graphs. In both
cases, the constructions are given, thus providing polynomial-time approximation algo-
rithms. The main result of this paper that gives the first answer to a problem asked in [28]
is

Theorem 1.1. There is a polynomial-time approximation algorithm for multicoloring can-
nonball graphs which uses at most 11

6 ω(G) + 25
6 colors.

The paper is organized as follows. In the next section we formally define some basic
terminology. In Section 3, we present an overview of the algorithm, while in Section 4 we
provide a proof of Theorem 1.1. In the last Section we give some ideas for further work.

2 Hexagonal and cannonball graphs
First we formally define hexagonal and cannonball graphs. Recall the formal definition
of hexagonal graphs: the position of each vertex is an integer linear combination x~p +
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y~q of two vectors ~p = (1, 0) and ~q = ( 1
2 ,
√
3
2 ) and the vertices of the triangular grid

are identified with pairs (x, y) of integers. Put an edge connecting two vertices if the
points representing the vertices are at Euclidean distance one in the triangular grid (in other
words, when the corresponding hexagonal cells are adjacent). To construct a hexagonal
graph G, positive weights are assigned to a finite subset of points in the grid and G is
the subgraph induced on V (G), the set of grid vertices with positive weights. Cannonball
graphs are constructed in a similar way. However, we have many possibilities already when
constructing the underlying grid, which, loosely speaking, consists of tetrahedrons and will
be called tetrahedron grid T ∈ G, where G is an infinite family of such grids. We will
construct a cannonball graph starting from a fixed grid, which in turn however can be one
of many possible grids that arrise from optimal ball packings.

Optimal arrangement of balls in one layer is to put the centers of the balls in the points
of triangular grid. Then, there are exactly two possibilities to put a second layer on the
top of the first layer. These two arrangements are obviously symmetric, however, when
choosing a position for the third layer, there are two possibilities that give rise to differ-
ent arrangements. We will call them layer-arrangement (a) and layer-arrangement (b),
respectively (see figure 1).

Consequently, we have an infinite number of tetrahedron grids, that all came from the
optimal ball arrangements. One of the arrangements, called the cubic close packing (see
case (a) of figure 1), can be described nicely by introducing a third vector ~r = ( 1

2 ,
√
3
6 ,
√
6
3 )

in addition to ~p = (1, 0, 0) and ~q = ( 1
2 ,
√
3
2 , 0). Now the position of each vertex is an integer

linear combination x~p+ y~q + z~r and the vertices of the tetrahedron grid may be identified
with triplets (x, y, z) of integers. Given the vertex v, we will refer to its coordinates as
x(v), y(v) and z(v), or shortly x, y, and z, when there is no confusion possible. For other
arrangements there is no such easy extension of the notation from hexagonal graphs. A
cannonball graphG is obtained by assigning integer weights to the points of the tetrahedron
grid T , taking as V (G) the vertices in the grid with positive weights, and introducing edges
between vertices at Euclidean distance one (in other words, connecting the touching balls).
The cannonball graphs based on the cubic close packing will be called regular cannonball
graphs. Clearly, from the construction it follows that any layer of an arbitrary cannonball
graph is a hexagonal graph (maybe not connected).

Formally, a cannonball graph is a graph induced on vertices of positive weight.
There is a natural basic 4-coloring of (unweighted) cannonball graph. Start with any

layer and call it the base layer. Introduce coordinates (x, y, 0) in this layer and define the
base coloring by the formula

bc(v) = x mod 2 + 2(y mod 2). (2.1)

Colors of vertices of the next layers are then determined exactly as follows. It is obvious
that whenever we store a new layer above (or under) the previous one with fixed coloring,
we know that each ball from the new layer is connected to exactly three balls from the pre-
vious layer, and all of those balls have different colors. Thus there is exactly one extension
of the four coloring to the next layer (see figures 1 and 2, where 4-coloring, using colors
0, 1, 2, 3, is presented).

It is easy to see that this rule, starting from (2.1), gives a proper coloring of the next
layers. In regular cannonball graphs this coloring can be given by closed expression in the
following way:
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position (a) position (b)

Figure 1: Two different arrangements of the third layer.

bc(v) = ((z + 1) mod 2)(x mod 2 + 2(y mod 2))+

+ (z mod 2)((x+ 1) mod 2 + 2((y + 1) mod 2)). (2.2)

From the construction of cannonball graphs it is clear that each vertex has (at most) 6
neighbors in its layer, and in addition (at most) three neighbors in each of the neighboring
layers. The degree of a vertex in cannonball graph is hence at most 12 (see figure 2).

The cliques in the cannonball graphs can have at most four vertices. The (weighted)
clique number, ω(G), is the maximal clique weight on G, where the weight of a clique is
the sum of weights on its vertices. As cliques in cannonball graphs can have at most four
vertices, the weighted clique number is the maximum weight over weights of all tetrahe-
drons, triangles, edges and weights of isolated vertices. Therefore, we can define invariants
ωi(G) which denote the maximum weight of a clique of size at most i onG. In fact, we can
regard the clique numbers as based on the complete subgraphs of the grid graph because
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Figure 2: All twelve possible neighbors of vertex v ∈ G for arrangements (a) and (b).
Circles and gray lines represent the middle layer containing v, squares and thick lines
represent the upper layer, dashed triangles and dashed lines represent the lower layer.

the vertices of weight 0 clearly do not contribute to the clique weights. For example, ω2(G)
is the maximal weight over all edges and isolated vertices. Clearly, for cannonball graphs
we have

ω1(G) ≤ ω2(G) ≤ ω3(G) ≤ ω4(G) = ω(G).

An induced subgraph of the cannonball graph without a 3-clique will be called a tri-
angle-free cannonball graph.

In the algorithm we will consider some subgraphs of the cannonball graph, in particular,
it may be useful to have 3-colorable subgraphs.

For 3-colorable graphs, there is a simple multicoloring algorithm that uses at most⌈
3
2ω(G)

⌉
colors.

Lemma 2.1. Every 3-colorable graph G can be multicolored using at most
⌈
3
2ω(G)

⌉
col-

ors.

We will prove Lemma 2.1 using the following procedure.

Procedure 2.2. Let G be an arbitrary 3-colorable graph with coloring c : V (G) →
{1, 2, 3}. Define K =

⌊
ω(G)
2

⌋
. Assign min{d(v),K} colors to every vertex. More pre-

cisely, a vertex of color c(v) receives colors from the set {c(v), c(v)+3, . . . , c(v)+3(K−
1)}.
a) For the case ω = 2k + 1 do the following:
If d(v) ≥ K + 1 then assign the additional color 0 to v and if d(v) ≥ K + 2 assign to v the
highest N = d(v)−K − 1 colors from one of its neighbors’ palettes. More precisely, take
b ∈ {1, 2, 3}\c(v) and use the colors {b+ 3K, b+ 3(K − 1), . . . , b+ 3(K −N + 1)}.
b) For the case ω = 2k do the following:
If d(v) ≥ K + 1 assign to v the highest N = d(v) −K colors from one of its neighbors’
palettes. More precisely, take b ∈ {1, 2, 3} \ c(v) and use colors {b + 3K, b + 3(K −
1), . . . , b+ 3(K −N + 1)}.

Proof of Lemma 2.1. Note that if d(v) > K then for any neighbor u of v we have d(u) ≤
K. Furthermore, d(u) +N = d(u) + d(v)− 1−K ≤ ω(G)− 1−K ≤ K, and there is
no conflict possible.
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a) Suppose ω = 2k+1. Then in Procedure 2.2 all together we need at most 3
⌊
ω(G)
2

⌋
+1 <⌈

3
2ω(G)

⌉
colors.

b) Suppose ω = 2k. Then in Procedure 2.2 all together we need at most 3
⌊
ω(G)
2

⌋
=⌈

3
2ω(G)

⌉
colors.

Recall that by definition all vertices of a tetrahedron grid T which are not in G must
have weight d(v) = 0. Then we need not check whether a vertex of the grid is one of the
vertices of G. Therefore:

ω3(G) = max{d(u) + d(v) + d(t) : {u, v, t} ∈ τ(T )},

where τ(T ) is the set of all triangles of the tetrahedron grid T .
For each vertex v ∈ G, define base function κ as

κ(v) = max{a(v, w, t) : {v, w, t} ∈ τ(T )},

where

a(v, w, t) =

⌈
d(v) + d(w) + d(t)

3

⌉
,

is the rounded average weight of the triangle {v, w, t} ∈ τ(T ).
Clearly, the following fact holds.

Fact 2.3. For each v ∈ G,

κ(v) ≤
⌈
ω3(G)

3

⌉
≤
⌈
ω(G)

3

⌉
.

We call a vertex v heavy if d(v) > κ(v), otherwise we call it light. If d(v) > 2κ(v),
we say that the vertex v is very heavy.

To color vertices of G we use colors from an appropriate palette. For a given color c,
its palette is defined as the set of pairs {(c, i)}i∈N. A palette is called a base color palette
if c ∈ {0, 1, 2, 3} is one of the base colors, and it is called an additional color palette if
c /∈ {0, 1, 2, 3}.

If a vertex v does not have a neighbor of color i in G, we call such color a free color of
v.

3 Algorithms for multicoloring cannonball graphs
Recall that a tetrahedron grid consists of several horizontal layers which are triangular
grids. No matter how we store one layer onto another, for every hexagonal graph in a
particular horizontal layer one of the well known algorithms [12, 18, 26] may be used. The
best known approximation ratio is 4

3ω(G′), where G′ is a hexagonal graph in a single layer
(obviously ω(G′) ≤ ω(G)). Therefore, for each layer we need at most 4

3ω(G) colors.
We can use one palette of colors for odd layers and the second palette of colors for even
layers, in order to prevent any conflict. Altogether we get an algorithm that uses at most
2 · 43ω(G) = 8

3ω(G). Since this bound is obviously not the best possible, the algorithm that
improves this bound is presented in what follows.

In many papers, e.g. [12, 18, 23, 25], a strategy of borrowing was used. The same
idea can be used for cannonball graphs. Our algorithm consists of two main phases. In the
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first phase (Steps 1 and 2 of the algorithm) vertices take κ(v) colors from their base color
palette, so use no more than 4

3ω(G) colors. After this phase, all light vertices in G are fully
colored, i.e., every light vertex v ∈ V (G) already received all needed d(v) colors. The
vertices that are heavy, but not very heavy, induce a triangle-free cannonball graph with the
weighted clique number not exceeding dω(G)/3e. Very heavy vertices in G are isolated in
the remaining graph and therefore they can easily be fully colored (Step 2 and Step 4). In
the second phase (Steps 3 and 4 of the algorithm) we first color all vertices of degree 4 and
thereby obtain a 3-colorable graph, for which Procedure 2.2 can be used for satisfying the
remaining demands by using new colors.

More precisely, our algorithm consists of the following steps:

Algorithm

Input: A weighted cannonball graph G = (V,E, d). Coordinates (x(v), y(v), z(v)), for
v ∈ V .

Output: A proper multicoloring of G, using at most 11
6 · ω (G) + 19

6 colors.

Step 0 For each vertex v ∈ V compute its base color bc(v)

and its base function value

κ(v) = max

{⌈
d(u) + d(v) + d(t)

3

⌉
: {v, u, t} ∈ τ(T )

}
,

where τ(T ) is the set of all triangles in the tetrahedron grid T .

Step 1 For each vertex v ∈ V assign min{κ(v), d(v)} colors from its base color palette
to v. Construct a new weighted triangle-free cannonball graph G1 = (V1, E1, d1)
where d1(v) = max{d(v) − κ(v), 0}, V1 ⊆ V is the set of vertices with d1(v) > 0
(heavy vertices in G) and E1 ⊆ E is the set of all edges in G with both endpoints in
V1 (G1 is induced by V1).

Step 2 For each vertex v ∈ V1 with d1(v) > κ(v) (very heavy vertices in G) assign the
first unused κ(v) colors of the base color palettes of its neighbors in the tetrahedron
grid T . Construct a new graph G2 = (V2, E2, d2) where d2 (v) is the difference
between d1(v) and the number of colors assigned in this step. Note that V1 = V2,
and E1 = E2, as only very heavy vertices are partially colored in this step.

Step 3 For each vertex v ∈ V2 with degG2
(v) = 4 assign unused colors from its free base

color palette. Construct a new 3-colorable graph G3 = (V3, E3, d3) where d3 (v) is
the difference between d2(v) and the number of colors assigned in this step, V3 ⊆ V2
is the set of vertices with d3(v) > 0 and E3 ⊆ E2 is the set of all edges in G2 with
both endpoints in V3 (G3 is induced by V3).

Step 4 Find a 3-coloring of G3 and apply Procedure 2.2 for the graph G3 by using colors
from new additional color palettes.

4 Correctness proof
Recall that each vertex knows its position on the tetrahedron grid T . Note that whenever
we mention “very heavy/heavy/light vertex”, we refer to the property of this vertex in the
graph G, i.e., there is no reclassification in graphs Gi, i ∈ 1, 2, 3.
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In Step 0 we have to prove that each vertex can obtain its base color. Recall that we
can assume that one of the horizontal layers is the base layer. We can compute the base
coloring in each vertex v = (x, y) of this layer by the formula: bc(v) = x mod 2 + 2(y
mod 2). In the neighboring layers (the above and the bottom one) the colors are deter-
mined by 4-coloring of the base layer. Thus, we can obtain a proper 4-coloring for the
whole cannonball graph. If, in addition we know that G is regular cannonball graph, we
can compute the base color directly from expression (2.2).

In Step 1 each heavy vertex v in G is assigned κ(v) colors from its base color palette,
while each light vertex u is assigned d(u) colors from its base color palette. Hence the
remaining weight of each vertex v ∈ G1 is

d1(v) = d(v)− κ(v).

Note that G1 consists only of heavy vertices in G. Therefore,

Lemma 4.1. G1 is a triangle-free cannonball graph.

Proof. Assume that there exists a triangle {v, u, t} ∈ τ(G1), which means that d1(v),
d1(u), d1(t) > 0. Then we have:

d(v) + d(u) + d(t) = d1(v) + κ(v) + d1(u) + κ(u) + d1(t) + κ(t) ≥
≥ d1(v) + d1(u) + d1(t) + 3a(u, v, t) ≥
≥ d1(v) + d1(u) + d1(t) + d(v) + d(u) + d(t)

> d(v) + d(u) + d(t)

a contradiction. Therefore, the graph G1 does not contain a 3-clique, so it is a triangle-free
cannonball graph.

In Step 2 only very heavy vertices in G (d1(v) > κ(v)) are colored. It is not difficult
to see that each very heavy vertex v ∈ G is isolated in G1 (all its neighbors are light in G).
Otherwise, for some {u, v, t} ∈ τ(T ), we would have

d(v) + d(u) > 2κ(v) + κ(u) ≥ 3a(u, v, t) ≥ d(u) + d(v),

a contradiction. Let us denote

D1(v) = min{κ(v)− d(u) : {u, v} ∈ E(T ), bc(u) = 1},
D2(v) = min{κ(v)− d(u) : {u, v} ∈ E(T ), bc(u) = 2},
D3(v) = min{κ(v)− d(u) : {u, v} ∈ E(T ), bc(u) = 3}.

Note that D1(v), D2(v), D3(v) > 0. Otherwise, we would have let say D1(v) ≤ 0 and
thus d(u) ≥ κ(v) for some u such that {u, v, t} ∈ τ(T ). Therefore,

d(v) + d(u) > 2κ(v) + κ(v) = 3κ(v) ≥ 3a(u, v, t) ≥ d(u) + d(v),

a contradiction.
Since in Step 1 each light vertex t uses exactly d(t) colors from its base color palette, very
heavy vertex v have at least Di(v) free colors from every base color palette i. Besides, for
heavy neighbors {u, v} ∈ E, we can prove:
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Lemma 4.2. In G1 for every edge {v, u} ∈ E1 we have:

d1(v) + d1(u) ≤ κ(v), d1(u) + d1(v) ≤ κ(u).

Proof. Assume that v and u are heavy vertices in G and d1(v) + d1(u) > κ(v). Then for
some {v, u, t} ∈ τ(T ) we have:

d(v)+d(u) = d1(v)+κ(v)+d1(u)+κ(u) > 2κ(v)+κ(u) ≥ 3a(u, v, t) ≥ d(u)+d(v),

a contradiction.

Another useful observation is

Claim 4.3.

ω(G2) ≤
⌈
ω(G)

3

⌉
.

Proof. Recall that in a cannonball graph the only cliques are tetrahedrons, triangles, edges
and isolated vertices. Since G1 is a triangle-free cannonball graph, G2 contains no tetrahe-
dron, neither triangle, so we have only edges and isolated vertices to check.

For each edge vu ∈ E2, using Lemma 4.2 and Fact 2.3, we have:

d2(v) + d2(u) ≤ d1(v) + d1(u) ≤ κ(v) ≤ dω(G)/3e.

For each isolated vertex v ∈ G2 we should have d2(v) ≤ dω(G)/3e. If v is very heavy,
then d2(v) = d(v)−2κ(v) because the vertex has received κ(v) colors in Step 1 and in Step
2. We claim that d2(v) ≤ κ(v). Indeed, if d2(v) > κ(v), then d(v) = d2(v) + 2κ(v) >
3κ(v) contradicting the definition of κ(v). Hence, d2(v) ≤ κ(v) ≤ dω(G)/3e as needed.
If v is not very heavy in G then κ(v) < d(v) ≤ 2κ(v) and d2(v) = d(v)− κ(v) ≤ κ(v) ≤
dω(G)/3e.

Let ∆(G) be the maximal vertex degree in the graph G. Considering correctness of
Step 3, we have to first prove that:

Lemma 4.4. ∆(G2) ≤ 4 and every vertex v with degG2
(v) = 4 has at least one free color.

Proof. Let v be an arbitrary vertex in the graph G2. Without loss of generality, assume that
bc(v) = 0. Recall that by Lemma 4.1 graph G2 is triangle-free. Therefore, vertex v can
have at most 3 neighbors in its layer, and the angle between any two of them is 2π/3. In
this case vertex v cannot have any additional neighbor in the lower or in the upper layer,
therefore degG2(v) = 3. If the vertex v has only 2 neighbors in its layer, then we have two
different possibilities for the angle between the neighbors: 2π/3 and π. Both possibilities
on the layer-arrangement (a) are depicted on Figure 3 and the (b) case is depicted in Figure
4. It is easy to see that vertex v could have at most two additional neighbors in lower and
upper layer - otherwise we obtain a triangle. Suppose that degG2(v) = 4, then all possible
cases of its neighbourhood are shown in Figures 3 and 4. It is easy to see that in both
cases (1) vertex v can borrow color 1, and in both cases (2) vertex v can borrow color 2
or 3. If the vertex v has only one neighbor in its layer it can have at most three neighbors
altogether. Namely, in this case v can have at most one neighbor in the lower layer and at
most one neighbor in the upper layer, since otherwise we obtain a triangle.
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Figure 3: Two different possibilities for neighbourhood of vertex v with degG2(v) = 4 in a
triangle-free cannonball graph, obtained from the layer-arrangement (a). Circles represent
vertices of the middle layer, squares of the upper layer and triangles of the lower layer, and
white vertices are part of the grid, but are not in the graph.
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Figure 4: Two different possibilities for vertex v neighbourhood with degG2(v) = 4 in a
triangle-free cannonball graph, obtained from the layer-arrangement (b). Notation has the
same meaning as in Figure 3.

By Lemma 4.4 we know that borrowing is possible for all vertices of degree 4.
In Step 3 we take the colors from the free base color palettes.
Without loss of generality, assume that bc(v) = 0 and one of its free colors is 1. Recall

that in this case we haveD1(v) free colors from the first base color palette, which is enough
to fully color the vertex v (current demand d2(v)). Namely,

Lemma 4.5.
d2(v) ≤ D1(v).

Proof. Let v be a vertex in G2 with bc(v) = 0. If vertex v ∈ G2 has four neighbors in
G2, it always has free colors such that all neighbors on its layer of this base colors are not
in V (G2) (see Figures 3 and 4). Without loss of generality assume that one of these free
colors is 1. Let t be a vertex, which is an existing neighbor of v inG2, and u is the neighbor
of v with bc(u) = 1 so that {u, v, t} ∈ τ(T ) is a triangle. Then we have

κ(v) + d2(v) + a(u, v, t) + d(u)
?
≤ d(v) + d(t) + d(u) ≤ 3a(u, v, t) ≤ a(u, v, t) + 2κ(v)
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and the inequality ? occurs because d2(v) = d(v) − κ(v) and d(t) > κ(t) ≥ a(u, v, t).
Therefore,

d2(v) ≤ κ(v)− d(u) ≤ D1(v).

Finally, to show correctness of Step 4 we have to prove that for G3 we can apply
Procedure 2.2. We know that ∆(G3) ≤ 3 since ∆(G2) ≤ 4 and in Step 3 we had fully
colored all vertices with degree equal to 4. According to Brooks’ Theorem [4] we know
that G3 is 3-colorable. It is well-known that the 3-coloring can be found in polynomial
time [11]. In fact a linear time algorithm exists [3].

Therefore, we can apply Procedure 2.2 and multicolor G3 by using
⌈
3
2ω(G3)

⌉
− 1 new

colors.

Ratio and time complexity

We claim that during the first three steps our algorithm uses at most 4
3ω(G) + 8

3 colors.
To see this, notice that in Step 1 each vertex v uses at most κ(v) colors from its base color
palette and, by Fact 2.3 and using that there are four base colors, we know that no more
than 4 dω(G)/3e ≤ 4

3ω(G) + 8
3 colors are needed. Note also that in Step 2 and Step 3

we use only those colors from the base color palettes which were not used in Step 1, so
altogether no more than 4

3ω(G) + 8
3 colors from the base color palettes are used in total

until Step 4.
In Step 4 we introduce new palettes that contain no more than

⌈
3
2ω(G3)

⌉
colors (by Lemma

2.1) .
LetA(G) denote the number of colors used by our algorithm for the graphG. By Claim

4.3 it holds ω(G3) ≤ ω(G2) ≤ dω(G)/3e ≤ ω(G)/3 + 2
3 and thus⌈

3

2
ω(G3)

⌉
≤
⌈

3

2

(
ω(G)

3
+

2

3

)⌉
=

⌈
ω(G)

2
+ 1

⌉
≤ 1

2
ω(G) +

3

2
.

Therefore, the total number of colors used by our algorithm is at most

A(G) ≤ 4

3
ω(G) +

8

3
+

⌈
3

2
ω(G3)

⌉
≤ 4

3
ω(G) +

8

3
+

1

2
ω(G) +

3

2
=

11

6
ω(G) +

25

6
.

Hence we arrived at the statement of Theorem 1.1.
Finally, we wish to remark that our algorithm can be implemented in linear time.

Namely, in Steps 1, 2 and 3 we need constant time for each vertex. In Step 0 we need
linear time to compute the value of κ. Step 4 is also linear since we have linear 3-coloring
algorithm [3] and Procedure 2.2 is constant.

5 Conclusion
In this paper we provide an algorithm for a proper multicoloring of a cannonball graph
that uses at most 11

6 ω(G) + 19
6 colors. As this is the first result for the multicoloring

problem of cannonball graphs, we believe that further improvements can be done. Among
the interesting problems that remain open are: improving of the competitive ratio 11/6,
finding some distributed algorithms for multicoloring cannonball graphs, or finding some
k-local algorithms for some k, similarly as in 2-dimensional case for hexagonal graphs (for
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definition of k-local algorithms see [10]). We already mentioned that in the 2-dimensional
case, better bounds were obtained for triangle-free hexagonal graphs. It is very likely that
also for cannonball graphs there exist some “forbidden” subgraphsH , maybe tetrahedrons,
such that better bounds can be obtained for H-free cannonball graphs.

Acknowledgement. The authors wish to thank to the anonymous referee for very careful
reading and for constructive remarks which helped to considerably improve the presenta-
tion.
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