DOI: 10.2478/acas-2013-0017

Agrovoc descriptors: soil microorganisms, bacteria, soil biology, anoxia, anaerobiosis, vesicular arbuscular mycorrhizae, molecular biology, biodiversity, soil

Agris category code: p34

# A decade of research in mofette areas has given us new insights into adaptation of soil microorganisms to abiotic stress

Irena MAČEK<sup>1, 2</sup>

Received June 07, 2013; accepted August 27, 2013. Delo je prispelo 07. junija 2013, sprejeto 27. avgusta 2013.

#### ABSTRACT

Natural CO<sub>2</sub> springs (mofettes) represent extreme ecosystems with severe exhalations of ambient temperature geological CO<sub>2</sub>, inducing long-term soil hypoxia. In this paper an overview of mofette research in the fields of microbial ecology and biodiversity in presented, with a focus on the studies describing the impact of the changed soil gas regime on communities of arbuscular mycorrhizal fungi, archaea and bacteria. Along with the fast development of new, high-throughput molecular techniques driving the field of molecular ecology, mofettes enable new insights into the importance of the abiotic environmental factors in regulating soil biodiversity, and the community structure of these functionally important microbial groups.

Key words: natural CO<sub>2</sub> springs, hypoxia, abiotic environmental factors, carbon capture and storage – CCS, soil ecology, archaea, bacteria, Glomeromycota

#### IZVLEČEK

#### DESETLETJE RAZISKAV NA OBMOČJIH MOFET NAM JE OMOGOČILO NOVE VPOGLEDE V ADAPTACIJO MIKROORGANIZMOV NA ABIOTSKI STRES

Naravni izviri  $CO_2$  ali mofete predstavljajo ekstremen ekosistem, kjer zaradi izhajanja geološkega plina v tleh prihaja do dologoročnega pojava hipoksije. V preglednem članku so predstavljene raziskave z območij mofet s področja mikrobne ekologije, ki opisujejo vplive sprememenjenih koncentracij talnih plinov na združbe arbuskularnih mikoriznih gliv, arhej in bakterij. Skupaj s hitrim razvojem novih molekulskih pristopov, predvsem novih generacij visokozmogljivega paralelnega sekvenciranja, ki poganjajo področje molekularne ekologije, mofete omogočajo raziskovanje vpliva abiotskih dejavnikov okolja na biodiverziteto in strukturo združb teh funkcionalno pomembnih skupin talnih mikrobov.

Ključne besede: naravni izviri CO<sub>2</sub>, hipoksija, abiotski dejavniki okolja, zajemanje in skladiščenje CO<sub>2</sub>, ekologija tal, arheje, bakterije, Glomeromycota

### **1 INTRODUCTION**

Natural CO<sub>2</sub> springs, or mofettes, are extreme ecosystems where ambient temperature geological CO<sub>2</sub> reaches the surface, resulting in a severe and relatively constant change in concentrations of soil gases. CO<sub>2</sub> vents are present in areas with tectonic activities in many locations worldwide (Pfanz et al., 2004), while in Slovenia they are in the northeastern part of the country close to Gornja Radgona. Several  $CO_2$  vents in this area represent Stavešinci mofette system where a soil gas regime has been well described, both spatially and temporally (Vodnik et al., 2006, 2009). In addition, also other soil parameters (e.g. soil chemistry, soil water content) (Vodnik et al., 2006, Vodnik et al., 2009) and plant eco-physiological responses have been well characterized in more than ten scientific

Acta agriculturae Slovenica, 101 - 2, september 2013 str. 209 - 217

<sup>&</sup>lt;sup>1</sup> University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, 1000 Ljubljana, Slovenia, e-mail: irena.macek@bf.uni-lj.si

<sup>&</sup>lt;sup>2</sup> University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, 6000 Koper, Slovenia

#### Irena MAČEK

papers (e.g. Kaligarič, 2001, Vodnik et al., 2002a, 2002b, Pfanz et al., 2004, Maček et al., 2005, Pfanz et al., 2007). An important but often neglected feature in practically all mofette sites is the  $CO_2$  induced soil hypoxia (reduced  $O_2$  concentration) that affects all the present biota in this ecosystem (Maček et al., 2005, Maček et al., 2011, Šibanc et al., under review). Hypoxia is a common but usually transient abiotic stress factor that is also present in many other terrestrial ecosystems, e.g. flooded or compacted soils (Perata et al., 2011). Mofette systems, however, enable new insights into microbial responses and adaptations to long-term changes in the soil abiotic

environment. This represents a new research direction, driven by the rapid development of the new molecular tools progressively used in research of molecular and microbial ecology.

In this paper we present an overview of the mofette research performed over the last decade with a focus on the studies describing the impact of the changed soil gas regime on soil microorganisms, their communities, and biodiversity. This includes several groups of organisms, focusing mainly on the arbuscular mycorrhizal fungi, bacteria and archaea.



- Figure 1: A meadow within the Stavešinci mofette area (NE Slovenia) where different groups of soil microorganisms (fungi, bacteria and archaea) have been studied. A decreased growth of vegetation can be seen in the centre of the  $CO_2$  vents (in front, left side) with the highest concentrations of geological  $CO_2$  in the soil.
- Slika 1: Travišče znotraj območja mofet v Stavešincih (SV Slovenija), kjer so potekale obstoječe raziskave različnih skupin talnih mikroorganizmov (gliv, bakterij in arhej). V središču vrelcev CO<sub>2</sub> (levo spredaj) je vidna slabša rast vegetacije na mestih, kjer je izpostavitev geološkemu CO<sub>2</sub> v tleh največja.

#### **2 WHY MOFETTE RESEARCH MATTERS?**

In the beginning of the 1990s the first reports about the possibilities of using mofettes in environmental and biological studies were published using Italian  $CO_2$  springs (e.g. Miglietta et al., 1993, Raschi et al., 1997). Following the initial use – primarily for research of the vegetation and plant above-ground responses to elevated, atmospheric  $CO_2$ concentrations in the range of those predicted by climate change models (e.g. Raschi et al., 1997) – a second feature, the importance of high soil  $CO_2$  concentrations and  $CO_2$  induced hypoxia in mofette soils and its impact on soil biota, was observed (Maček et al., 2005). Mofettes were consistently shown to be very specific ecosystems with extremely high concentrations of  $CO_2$  present in the soil air and high  $CO_2$  efflux from soil surface (Vodnik et al., 2006, 2009). This is also one of the reasons why, in the last few years, the focus of

mofette research has shifted to the use of different mofette sites as model ecosystems for studies of plant and soil microbial responses to potential CO<sub>2</sub> leakage from underground carbon capture and storage (CCS) systems (Lal, 2008, Krüger et al., 2011, Noble et al., 2012, Frerichs et al., 2013). CCS is the process of capturing CO<sub>2</sub> from large point sources and depositing it underground. It is proposed as one of the possible measures for storing waste CO<sub>2</sub>. Thus, in the 20 years of mofette research, the focus of the studies in different fields of applied sciences has moved from the initial studies of plant ecophysiological responses to elevated  $CO_2$  in the atmosphere as a long-term natural analogue to other above ground fumigation systems (e.g. FACE - Free Air Carbon dioxide Enrichment experiments), to measuring plant (Maček et al., 2005) and microbial responses (e.g. Maček et al., 2009, Videmšek et al., 2009, Krüger et al., 2011, Maček et al., 2011, Frerichs et al., 2013, Šibanc et al., under review) to high soil  $CO_2$ concentrations and CO<sub>2</sub> induced hypoxia. Only recently, the first reports on soil fauna responses to  $CO_2$  induced soil hypoxia were also published, with a description of the new Collembola species, specific for mofette sites (Russell et al., 2011).

Geological  $CO_2$  in mofette areas induces changes in several abiotic soil factors, including acidification (Jamnik, 2005), higher concentrations of nutrients due to reduced mineralization rates (Maček et al., 2009), and hypoxia. The latter has been consistently shown as a major abiotic factor affecting soil microbes (Maček et al. 2009, Maček et al., 2011, 2013, Šibanc et al., 2012, Šibanc et al., under review). Hypoxia is not only limited to mofette sites, but is a wider phenomenon and a common transient property of soils that often appears in waterlogged and flooded areas or due to soil compaction. In a special issue of New Phytologist (New Phytologist 190, 2011) on 'Plant anaerobiosis' several mechanisms involved in plant response to flooding stress, the effects floods may have on patterns of plant distribution and biodiversity, and the devastating impact on crop growth are described (Perata et al., 2011). Interestingly, no reports on the response of plant symbiotic arbuscular mycorrhizal fungi or any other rhizosphere organisms to hypoxia were considered in this issue, though rhizosphere organisms represent an important ecosystem component affecting plant performance in practically all natural environments.

This however indicates a general rule, since reports on soil hypoxia impacts on rhizosphere and soil biota are scarce, inconsistent and often neglected. Thus, since the first rhizosphere study conducted within the Stavešinci mofette field, focusing on the research of high CO<sub>2</sub> concentrations and hypoxia on root respiration (Maček et al., 2005), hypoxia was chosen as the our stress of choice for further investigations: it is present in many natural ecosystems (Perata et al., 2011) and in addition, mofettes provide an unique example of plant and soil communities subject to well characterized (Vodnik et al. 2006, 2009), localized, long-term selection pressure (Maček et al., 2011). This represents a relatively rare opportunity for research of the different aspects of soil ecology and the driving forces of soil diversity in natural ecosystems, and therefore sheds some light on an important research issue that needs immediate attention in order to better understand soil biodiversity and its ecological functions.

## **3 MOFETTE RESEARCH INTO SOIL MICROBIAL DIVERSITY**

There is a limited understanding of the importance of abiotic factors in regulating biodiversity and structure of many functionally important microbial communities in soil. Understanding the significance of the soil biota and the feedback between above- and belowground communities may be critical for designing sustainable production systems in the future, and for using the ecosystem services they can provide effectively (Gianinazzi et al., 2010, Mace et al., 2012). Soils represent a dynamic and complex system that requires intense, complex, and logistically difficult sampling strategies in order to get sufficient information that lead to solid conclusions on the biodiversity and the ecological drivers of this diversity. In the last few decades the development of the DNA- and RNA-based methods has increased our knowledge on soil microbial diversity and function with a big boost because of recent development in the high-throughput sequencing methods (e.g. massively parallel pyrosequencing) (e.g. Schloss, 2009, Lemos et al., 2011). Thus, the fast development of the new molecular methods, especially in the fields of metagenetics, metagenomicas and metatranscriptomics, now give us a much better tool to study microbial diversity and its functions in practically all environments, including soils and extreme ecosystems like mofettes (Table 1).

Table 1: A list of studies on the different aspects of microbial biology and diversity in mofette soils.
Preglednica 1: Seznam študij s področja raziskav mikrobiologije in biodiverzitete talnih mikroorganizmov na območjih mofet.

| Microbial<br>group               | Gene region and/or<br>methodology used                                                                                                | Mofette location                                    | Study                                                    |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|
| AM fungi                         | 16S rRNA gene, T-RFLP,<br>pyrosequencing (Roche 454<br>FLX), clone libraries                                                          | Stavešinci, SI,<br>Bossoleto, IT,<br>Cheb basin, CZ | Maček et al.<br>(2013), Šibanc et<br>al. (2013)          |
| AM fungi                         | Plant root colonization, soil glomalin concentration                                                                                  | Stavešinci, SI                                      | Maček et al.<br>(2012)                                   |
| AM fungi                         | 16S rRNA gene, RFLP,<br>clone libraries, plant root<br>colonization                                                                   | Stavešinci, SI                                      | Maček et al.<br>(2011)                                   |
| Soil yeasts                      | 26S rRNA D1/D2 domain,<br>sequencing, isolation and<br>culture techniques                                                             | Stavešinci, SI                                      | Šibanc et al.<br>(2012)                                  |
| AM fungi                         | Plant root colonization, soil glomalin concentration                                                                                  | Hakanoa,<br>New Zealand                             | Rillig et al.<br>(2000)                                  |
| Soil microbes                    | Cell number (qPCR) and activity measurements, <i>nirK</i> genes DGGE fingerprinting                                                   | Larcher See, DE                                     | Krüger et al. (2009, 2011)                               |
| Soil archaea<br>and bacteria     | 16S rRNA gene, DGGE, activity measurements                                                                                            | Larcher See, DE                                     | Frerichs et al. (2013)                                   |
| Soil archaea<br>and bacteria     | 16S rRNA gene, T-RLFP, clone libraries                                                                                                | Stavešinci, SI                                      | Šibanc et al.<br>(under review)                          |
| CO <sub>2</sub> -fixing bacteria | cBBl genes, RFLP                                                                                                                      | Stavešinci, SI                                      | Videmšek et al.<br>(2009)                                |
| Soil microbes                    | Substrate induced respiration (SIR)                                                                                                   | Stavešinci, SI                                      | Maček et al.<br>(2009)                                   |
| Soil microbes                    | Lipid biomarkers and <sup>13</sup> C<br>analyses, cell numbers<br>(qPCR), biomass, and<br>activity measurements                       | Latera Caldera, IT                                  | Beaubien et al.<br>(2008),<br>Oppermann et al.<br>(2010) |
| Soil microbes                    | 16S-23S spacer region, ITS<br>region, Automated<br>Ribosomal Intergenic<br>Spacer Analysis (ARISA),<br>qPCR, PLFA, enzyme<br>analyses | Mammoth<br>Mountain, U.S.A.                         | McFarland et al.<br>(2013)                               |

## 3.1 CASE STUDY 1 – ARBUSCULAR MYCORRHIZAL FUNGI

In terrestrial ecosystems, symbiotic associations between plant roots and mycorrhizal fungi are near ubiquitous, with 90 % of all plant species forming mycorrhizas (Smith and Read, 2008). The vast majority of all terrestrial plants receive inorganic nutrients indirectly from symbiotic associations with arbuscular mycorrhizal (AM) fungi (ph. Glomeromycota) (Fig. 2), via efficient exploration of the soil by fungal hyphae, and not by a direct uptake from the soil by plant roots (Smith and Read, 2008, Hodge et al., 2010). In exchange, the plants supply up to 20 % of photosynthates to the fungi as the only energy source of the fungus (ca five billion tonnes carbon per year) (Bago et al., 2000). The nutrient exchange within plant root cells mainly takes place at the fungus-plant symbiotic interface formed around the finely branched fungal arbuscules (Parniske, 2008). Yet, despite its ecological importance, astonishingly little is known about their ecological and physiological responses to hypoxia (Maček et al., 2011).

AM fungi are a functionally important microbial group with poorly understood community ecology (Helgason and Fitter, 2009). Different studies suggest that where an extreme environmental stress occurs in soils, there are a small number of AM fungal lineages that are better able to tolerate those conditions, which results in unique, adapted populations (Helgason and Fitter, 2009, Dumbrell et al., 2010, Maček et al., 2011). AM fungi form an extensive mycelial network in soil and therefore will be subject to strong selection pressures from the abiotic soil environment (e.g. Dumbrell et al., 2010, Maček et al., 2011). However, reports on molecular community analyses and diversity studies of AM fungi in extreme ecosystems are still very scarce (e.g. Appoloni et al., 2008, Maček et al., 2011). In the last 15 years several molecular techniques have been developed, typically targeting different regions of ribosomal rRNA genes that allow identification of the fungal endophytes within roots and soil (e.g. Helgason et al., 1998, Dumbrell et al., 2011). Only recently, some reports on using high-throughput sequencing techniques on the characterization of natural AM fungal communities were published (Öpik et al., 2009, Dumbrell et al., 2011). The newly developed methodology now allows us sufficient sampling intensity within different habitats to answer ecological questions numerous about this important group of soil fungi. However, to the best of our knowledge - apart from our research on mofettes (e.g. Maček et al. 2011, 2013) – there are no other studies on the direct effect of soil hypoxia on AM fungal communities (Table 1). Within the Stavešinci mofette area, studies on AM fungal root colonization (Maček et al., 2011, 2012), the concentration of glomalin-related soil protein, produced by AM fungi (Maček et al., 2012) and the structure of AM fungal communities (Maček et al., 2011, Maček et al., 2013, Šibanc et al., 2013) were conducted, investigating CO<sub>2</sub>/hypoxia related responses of this fungal group. Maček et al. (2011) report on significant levels of AM fungal community turnover (beta diversity) between soil types and the numerical dominance of specific AM fungal taxa in hypoxic soils. This work strongly suggests that direct environmental selection acting on AM fungi is a major factor regulating AM fungal communities and their phylogeographic patterns. Consequently, some AM fungi are more strongly associated with local variations in the soil environment than with their host plant's distribution (Maček et al., 2011). There are more reports to follow this initial study of AM fungi in mofette areas, including the ones involving highthroughput sequencing techniques (Roche 454 FLX) (Maček et al., 2013, Šibanc et al., 2013), thus allowing more intensive sampling and more detailed analyses of the mofette AM fungal communities.



- Figure 2: A cluster of AM fungal spores in a sporocarp, isolated from a glasshouse pot culture initiated with AM fungal inoculum from a location exposed to high geological CO<sub>2</sub> concentration (>60 % CO<sub>2</sub>) within a Stavešinci mofette area. The isolate represents a potentially new AM fungal species. Photos taken by Olympus Provis AX70 microscope and digital camera.
- Slika 2: Grozd spor AM gliv znotraj glivnega sporokarpa. Spore so bile izolirane iz lončne kulture iz rastlinjaka, inokulirane z vzorcem tal z AM glivami, vzorčenim iz območja velike koncentracije geološkega CO<sub>2</sub> znotraj območja mofet v Stavešincih. Izolat predstavlja potencialno še neopisano vrsto AM gliv. Posneto z mikroskopom Olympus Provis AX70 in digitalno kamero.

# **3.2 CASE STUDY 2 – SOIL ARCHAEA, BACTERIA and FUNGI**

Soil is the most biologically diverse environment on Earth, with a biodiversity which can often be several orders of magnitude greater than that present aboveground (Heywood, 1995). A large portion of this diversity involves the greatly unknown diversity of different prokaryotic organisms, bacteria, and archaea. Up to now only a few studies of soil microorganisms from mofette areas were conducted (Table 1). In the Slovenian Stavešinci mofette soils Videmšek et al. (2009) examined the abundance and diversity of cbbL genes, encoding for the large subunit of RubisCO in CO<sub>2</sub>-fixing bacteria. In this same area Maček et al. (2009) reported on reduced levels of substrate induced respiration (SIR), indicating reduced microbial biomass and activity in high geological CO<sub>2</sub> exposed soil. However, apart from the Slovenian Stavešinci mofette, at least two other mofette areas in Europe and one in U.S.A. have been involved in studies of microbial responses to geological CO<sub>2</sub> exhalations.

First, a terrestrial  $CO_2$  vent located at the Laacher See, Germany was used by the group of Krüger et al. (2009, 2011) as a model ecosystem for investigating the impact of potential leakage from

214 Acta agriculturae Slovenica, 101 - 2, september 2013

carbon capture and storage systems (CCS) on the surrounding environment. They reported on lower bacterial cell numbers, higher levels of bacterial non-isoprenoidical tetraethers lipids (most likely derived from anaerobic bacteria), and higher archaeal cell numbers at the vent compared to the control site. The investigation of archaeal and bacterial communities, based on potential sulphate reduction rates, methane production, and a lipid biomarkers study, showed a shift towards anaerobic and acidophilic species in high CO<sub>2</sub> sites. Moreover, recently a study employing molecular markers (community fingerprinting technique – denaturing gradient gel electrophoresis - DGGE) was used to identify the shifts in the communities of archaea and bacteria among geological CO<sub>2</sub> impacted and control soil samples in the mofette field near Laacher See (Frerichs et al., 2013). The study of the abundance of several functional and group-specific gene markers revealed differences in the composition of the mofette soil microbial communities, for example a decrease of Geobacteraceae and an increase in sulphate-reducing taxa in the vent core, reaching moderately elevated (up to 30%) soil CO<sub>2</sub> concentrations.

Second, within the Latera Caldera mofette in the volcanic district in Central Italy, Beaubien et al. (2008) reported on decreasing trends in adenosine triphosphate (ATP) biomass, bacterial cell counts, and the higher activity of strictly anaerobic, sulphate-reducing bacteria and methanogenic archaea in the centre of the CO<sub>2</sub> vent compared to the transit zone and background, while  $H_2$ dependant methanogenesis was absent and aerobic methane oxidation was negatively correlated with increased  $CO_2$ . In addition to this study in the same mofette area, Oppermann et al. (2010) found CO<sub>2</sub>utilising methanogenic archaea, Geobacteraceae, and sulphate-reducing bacteria mainly at the CO<sub>2</sub> vent, only minor quantities were found at the reference site. Also, their results suggest a shift in the microbial community towards anaerobic and acidophilic microorganisms as a consequence of the long-term exposure of the soil environment to high geological CO<sub>2</sub> concentrations.

A very recent report comes from the Mammoth Mountain, a dormant volcano from eastern

California (U.S.A.), and an area known for geological  $CO_2$  induced tree mortality (McFarland et al., 2013). The authors of the study assessed the soil microbial community response to  $CO_2$  disturbance that resulted in localised tree kill. As a result to reduced soil carbon availability soil microbial biomass decreased, which was linked to the loss of soil fungi. In contrast, archaeal populations responded positively to the  $CO_2$  disturbance, presumably due to reduced competition of bacteria and fungi.

To our knowledge, however, there is no published data on the overall community structure or diversity of bacteria, and archaea in mofette areas based on clone libraries, and especially so in the most extreme locations (with the soil  $CO_2$  concentrations well above 60 %). In these sites, however,  $CO_2$  induced hypoxia could strongly affect microbial communities (Šibanc et al., under review).

#### **4 CONCLUSIONS**

All these studies are important not only for their use in the research of impacts of elevated atmospheric  $CO_2$  concentrations on plants and possible leakage of  $CO_2$  in CCS systems and related impacts on biota, but also from a biotechnological and ecological perspective. Extreme environments have previously served as a rich source of potentially useful organisms in different fields of applied biotechnology and agronomy (e.g. new antibiotics discovery, isolates in commercial inoculums of AM fungi). Little is known about what kind of organisms actually live in these habitats and even less about their ecological function. Moreover, as major shifts in microbial community composition have significant implications for ecosystem functioning (e.g. changes in carbon cycling driven by changes in methanogenic archaea populations), understanding their response to long-term environmental changes is of crucial ecological importance. Thus, a full phylogenetic characterisation of fungal, archaeal, and bacterial communities, their taxonomy, and an investigation into the processes regulating their diversity and community structure has yet to be reported (Maček et al., 2013, Šibanc et al., 2012, 2013, Šibanc et al., under review).

### **5 ACKNOWLEDGEMENTS**

This work was supported by the Slovenian Research Agency (ARRS) projects Z4-9295 – '*The effects of hypoxia and elevated CO*<sub>2</sub> concentrations on arbuscular mycorrhiza,' J4-2235 – 'Biodiversity and ecology of extremophilic fungi at natural CO<sub>2</sub> springs,' J4-5526 – 'Response of plant

roots and mycorrhizal fungi to soil hypoxia', and a Swiss Contribution Partnership Block Grant SI-AMF – 'Establishment of the Slovenian collection of arbuscular mycorrhizal fungi and promotion of their application in sustainable agriculture and environmental protection'.

- Appoloni S., Lekberg Y., Tercek M.T., Zabinski C.A., Redecker D. 2008. Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone national park (U.S.A.). Microbial Ecology 56: 649–659
- Bago B., Pfeffer P.E., Shachar-Hill Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology 124, 3: 949–957
- Beaubien S.E., Ciotoli G., Coombs P., Dictor M., Krüger M., Lombardi S., Pearce J., West J. 2008. The impact of a naturally occurring CO<sub>2</sub> gas vent on the shallow ecosystem and soil chemistry of a Mediterranean pasture (Latera, Italy). International Journal of Greenhouse Gas Control 2: 373–387
- Dumbrell A.J., Ashton P.D., Aziz N., Feng G., Nelson M., Dytham C., Fitter A.H., Helgason T. 2011. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist 190: 794–804
- Dumbrell A.J., Nelson M., Helgason T., Dytham C., Fitter A.H. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal 4: 337–345
- Frerichs J., Oppermann B.I., Gwosdz S., Möller I., Herrmann M., Krüger M. 2013. Microbial community changes at a terrestrial volcanic CO<sub>2</sub> vent induced by soil acidification and anaerobic microhabitats within the soil column. FEMS Microbiology Ecology 84: 60–74
- Gianinazzi S., Gollotte A., Binet M.N., van Tuinen D., Redecker D., Wipf D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 8: 519–530
- Helgason T., Daniell T.J, Husband R., Fitter A.H., Young J.P.W. 1998. Ploughing up the wood-wide web? Nature 394, 6692: 431–431
- Helgason T. and Fitter A. H. 2009. Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (phylum Glomeromycota). Journal of Experimental Botany 60: 2465–2480
- Heywood V.H. 1995. Global Biodiversity Assessment. Cambridge University Press: 1152 pg.
- Hodge A., Helgason T., Fitter A.H. 2010. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology 3, 4: 267–273
- Jamnik M. 2005. Temporal and spatial variability of soil CO<sub>2</sub> concentration on the natural CO<sub>2</sub> spring Stavešinci. Graduation thesis. University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Ljubljana: 45 pg.
- Kaligarič M. 2001. Vegetation patterns and responses to elevated CO<sub>2</sub> from natural CO<sub>2</sub> springs at Strmec (Radenci, Slovenia). Acta Biologica Slovenica 44, 1/2: 31–38
- Krüger M., Jones D., Frerichs J., Oppermann B.I., West J., Coombs P., Green K., Barlow T., Lister R., Shaw R.,
- Acta agriculturae Slovenica, 101 2, september 2013

Strutt M., Möller I. 2011. Effects of elevated  $CO_2$  concentrations on the vegetation and microbial populations at a terrestrial  $CO_2$  vent at Laacher See, Germany. International Journal of Greenhouse Gas Control 5: 1093–1098

- Krüger M., West J., Frerichs J., Oppermann B., Dictord M., Jouliand C., Jones D., Coombs P., Green K., Pearceb J., Maya F., Möllera I. 2009. Ecosystem effects of elevated CO<sub>2</sub> concentrations on microbial populations at a terrestrial CO<sub>2</sub> vent at Laacher See, Germany. Energy Procedia 1: 1933–1939
- Lal R., 2008. Carbon sequestration. Philosophical Transactions of The Royal Society Biological Sciences 363: 815–830
- Lemos L.N., Fulthorpe R.R., Triplett E.W., Roesch L.F.W. 2011. Rethinking microbial diversity analysis in the high throughput sequencing era. Journal of Microbiological Methods 86: 42–51
- Mace G.M., Norris K., Fitter A.H. 2012. Biodiversity and ecosystem services: a multilayered relationship. Trends in Ecology and Evolution 27: 19–26
- Maček I., Dumbrell A.J., Nelson M., Fitter A.H., Vodnik D., Helgason T. 2011. Local adaptation to soil hypoxia determines the structure of an arbuscular mycorrhizal fungal community in roots from natural CO<sub>2</sub> springs. Applied and Environmental Microbiology 77: 4770–4777
- Maček I., Kastelec D., Vodnik D. 2012. Root colonization with arbuscular mycorrhizal fungi and glomalin-related soil protein (GRSP) concentration in hypoxic soils from natural CO<sub>2</sub> springs. Agricultural and Food Science 21: 62–71
- Maček I., Pfanz H., Francetič V., Batič F., Vodnik D. 2005. Root respiration response to high CO<sub>2</sub> concentrations in plants from natural CO<sub>2</sub> springs. Environmental and Experimental Botany 54: 90–99
- Maček I., Šibanc N., Dumbrell A.J., Helgason T. 2013. Impact of long-term soil hypoxia on arbuscular mycorrhizal fungal communities in mofette areas (natural CO<sub>2</sub> springs). In: 7<sup>th</sup> International conference on mycorrhiza "Mycorrhiza for all: an under-earth revolution", 6–11 January 2013, New Delhi, India. Abstracts. Adholeya A. (ed.). New Delhi, Department of Biotechnology, Ministry of Science and Technology, Government of India: 94
- Maček I., Videmšek U., Kastelec D., Stopar D., Vodnik D. 2009. Geological  $CO_2$  affects microbial respiration rates in Stavešinci mofette soil. Acta Biologica Slovenica 52: 41–48
- McFarland J.W., Waldrop M.P., Haw M. 2013. Extreme CO<sub>2</sub> disturbance and the resilience of soil microbial communities. Soil Biology & Biochemistry 65: 274–286
- Miglietta F., Raschi A., Bettarini I., Resti R., Selvi F. 1993. Natural CO<sub>2</sub> springs in Italy – A resource for examining long-term response of vegetation to rising atmospheric CO<sub>2</sub> concentrations. Plant, Cell and Environment, 16, 7: 873–878

A decade of research in mofette areas has given us new insights into adaptation of soil microorganisms to abiotic stress

- New Phytologist, Special Issue: Plant anaerobiosis, April 2011, 190, 2, Wiley: 269-508
- Noble R.R.P., Stalker L., Wakelin S.A., Pejcic B., Leybourne M.I., Hortle A.L., Michael K. 2012. Biological monitoring for carbon capture and storage – A review and potential future developments. International Journal of Greenhouse Gas Control 10: 520–535
- Oppermann B.I., Michaelis W., Blumenberg M., Frerichs J., Schulz H.M., Schippers A., Beaubien S.E., Krüger M. 2010. Soil microbial community changes as a result of long-term exposure to a natural CO<sub>2</sub> vent. Geochimica et Cosmochimica Acta 74: 2697–2716
- Öpik M., Metsis M., Daniell T.J., Zobel M., Moora M. 2009. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist 184: 434–437
- Parniske, M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nature Reviews Microbiology 6, 10: 763–775
- Perata P., Armstrong W., Voesenek L.A.C.J. 2011. Plants and flooding stress. New Phytologist 19, 2: 269–273
- Pfanz H., Vodnik D., Wittmann C., Aschan G., Raschi A. 2004. Plants and geothermal CO<sub>2</sub> exhalations – survival in and adaptation to a high CO<sub>2</sub> environment. Progress in Botany 65: 499–538
- Pfanz H., Vodnik D., Wittmann C., Aschan G., Batič F., Turk B., Maček I., 2007. Photosynthetic performance (CO<sub>2</sub>compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (*Phleum pratense* L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. Environmental and Experimental Botany 61: 41–48
- Raschi A., Miglietta F., Tognetti R., Van Gardingen P.R. 1997. Plant responses to elevated CO<sub>2</sub>. Cambridge University Press, Cambridge: 286 p.
- Rillig M.C., Hernandez G.Y., Newton C.D. 2000. Arbuscular mycorrhizae respond to elevated atmospheric CO<sub>2</sub> after long-term exposure: evidence from a CO<sub>2</sub> spring in New Zealand supports the resource balance model. Ecology Letters 3: 475–478
- Russell D.J., Schulz H., Hohberg H., Pfanz H. 2011. Occurrence of collembolan fauna in mofette fields (natural carbondioxide springs) of the Czech Republic. Soil Organisms 83, 3: 489–505

- Schloss P.D. 2009. A high-throughput DNA sequence aligner for microbial ecology studies. PLoS ONE 4, 12: e8230
- Smith S.E. and Read D.J. 2008. Mycorrhizal symbiosis, Third Edition, London, Academic Press: 787 p.
- Šibanc N., Dumbrell A.J., Mandić-Mulec I., Maček I. (under review). Impacts of naturally elevated soil CO<sub>2</sub> concentrations on communities of soil archaea and bacteria. Soil Biology & Biochemistry
- Šibanc N., Helgason T., Dumbrell A.J, Vodnik D., Pfanz H., Raschi A., Maček I. 2013. Biogeography of arbuscular mycorrhizal fungal communities in hypoxic soil – evidence from the Slovenian, Italian, and Czech mofette fields (natural CO<sub>2</sub> springs). In: 7<sup>th</sup> International conference on mycorrhiza "Mycorrhiza for all: an underearth revolution", 6–11 January 2013, New Delhi, India. Abstracts. Adholeya A. (ed.). New Delhi, Department of Biotechnology, Ministry of Science and Technology, Government of India: 189
- Šibanc N., Helgason T., Dumbrell A.J, Mandić-Mulec I., Zalar P., Schroers H, Maček I. 2012. Elevated CO<sub>2</sub> is changing soil microbial communities at natural CO<sub>2</sub> springs (mofettes). In: 14<sup>th</sup> International symposium on microbial ecology, 19–24 August 2012 Copenhagen, Denmark. Abstract book: ISME14: 71
- Videmšek U., Hagn A., Suhadolc M., Radl V., Knicker H., Schloter M., Vodnik D. 2009. Abundance and diversity of CO<sub>2</sub>-fixing bacteria in grassland soils close to natural carbon dioxide springs. Microbial Ecology 58: 1–9
- Vodnik D., Kastelec D., Pfanz H., Maček I., Turk B. 2006. Small-scale spatial variation in soil CO<sub>2</sub> concentration in a natural carbon dioxide spring and some related plant responses. Geoderma 133: 309–319
- Vodnik D., Pfanz H., Maček I., Lojen S., Batič F. 2002a. Photosynthesis of cockspur [*Echinochloa crus-galli* (L.) Beauv.] at sites of natural elevated CO<sub>2</sub> concentrations. Photosynthetica 40: 575–579
- Vodnik D., Pfanz H., Wittmann C., Maček I., Kastelec D., Turk B., Batič F. 2002b. Photosynthetic acclimation in plants growing near a carbon dioxide spring. Phyton 42: 239–244
- Vodnik D., Videmšek U., Pintar M., Maček I., Pfanz H. 2009. The characteristics of soil CO<sub>2</sub> fluxes at a site with natural CO<sub>2</sub> enrichment. Geoderma 150: 32–37