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Optimal Averaging Procedures in Almost Sure
Central Limit Theory

Siegfried Ḧormann1

Abstract

Let X1,X2, . . . be i.i.d. random variables withEX1 = 0, EX2
1 = 1, Sn =

X1 + . . .+Xn and let(dk) be a positive numerical sequence. We investigate the a.s.
convergence of the averages

1

DN

N
∑

k=1

dkI{Sk/
√

k ≤ x} ,

whereDN =
∑N

k=1 dk. In the case ofdk = 1/k we have logarithmic means and
by the almost sure central limit theorem the above averages converge a.s. toΦ(x),
the standard normal distribution function. It is also knownthat the analogous con-
vergence relation fails fordk = 1 (ordinary averages). In this paper we give a fairly
complete solution of the problem for which weight sequencesthe above convergence
relation and its refinements hold.

1 Introduction

1.1 The almost sure central limit theorem

One of the most frequently investigated topics in classicalprobability theory is the fluc-
tuation of the partial sumsSk of i.i.d. random variablesX1, X2, . . .. In case ofEX1 = 0
andEX2

1 = 1 the central limit theorem (CLT) yields that

P{k−1/2Sk ≤ x} −→ Φ(x) (k → ∞).

Hence one might expect that the average time the path of the process(k−1/2Sk)k≥1 spends
belowx ∈ R is asymptoticallyΦ(x), i.e.

1

N

∑

1≤k≤N

I{k−1/2Sk ≤ x} → Φ(x) a.s. (N → ∞). (1.1)

Of course, the random variablesI{k−1/2Sk ≤ x} are not independent and have also no
other structural property which would allow the application of the law of large numbers
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(LLN). And indeed (1.1) is not true! The easiest way to see this is to observe that by
Lévy’s arc-sine law we have

1

N

∑

1≤k≤N

I{Sk ≤ 0} L−→ T, (1.2)

whereT is the arc-sine distribution with density

a(x) =
1

π

1
√

x(1 − x)
0 < x < 1.

Note thata(x) takes its minimum atx = 1/2 and becomes infinite at 0 and 1. Thus for
fixed largeN the least likely value of the fraction of time the path(k−1/2Sk)

N
k=1 spends

on the positive half axis is 1/2, and it is much more likely that the path remains most of
the time either below or above thex-axis rather than to level off to an equilibrium.

A possible way to overcome the strong dependence of the random variablesI{Sk ≤
0} has been shown by Erdős and Hunt (1953). They proved that ifX1 has a continuous
and symmetric distribution function then

lim
N→∞

1

logN

N
∑

k=1

1

k
I{Sk ≤ 0} = 1/2 a.s. (1.3)

The difference between (1.2) and (1.3) lies in the summationmethod. In the latter we used
logarithmic means instead of the common Cesàro means. Thisresult is a special case of
the so calledalmost sure central limit theorem(ASCLT) proved first by Brosamler (1988)
and Schatte (1988). (Actually, a very similar result has been already stated by Lévy in
1937 (cf. Lévy, 2003), but without a proof). In order to formulate this result, let(Ω,F , P )
be the probability space on which the sequence(Xn) is defined.

Theorem A Let X1, X2, . . . be a sequence of i.i.d. random variables withEX1 = 0,
EX2

1 = 1 and defineSk = X1 + · · · + Xk. Then there is a setN ∈ F with P (N) = 0
such that for any Borel setA ⊂ R with λ(∂A) = 0

1

logN

N
∑

k=1

1

k
I{k−1/2Sk ∈ A} → 1√

2π

∫

A

e−t2/2 dt onΩ \N . (1.4)

Brosamler and Schatte proved Theorem A assumingE|X1|2+δ < ∞ for someδ > 0;
for a proof assuming only finite second moments, see Lacey andPhilipp (1990) . In the
past 15 years, a wide literature dealt with various extensions of the ASCLT; for a survey
we refer to Berkes (1998).

The crucial new feature of the a.s. central limit theorem (1.4) is its pathwise character:
the limit of the left hand side of (1.4) can be computed for anyfixedω ∈ Ω knowing only
the values ofXn, n = 1, 2, . . . at ω. Hence the ASCLT is often calledpathwise central
limit theorem.

The following lemma will be the basis for a heuristic proof ofTheorem A.
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Lemma 1 Let (W(t))t≥0 be a standard Brownian motion process and letf be a continu-
ous function. Then

1

logT

∫ T

1

1

t
f
(

t−1/2
W(t)

)

dt→ Ef(W(1)) a.s. (1.5)

Proof. By parameter transformation we get

1

log T

∫ T

1

1

t
f
(

t−1/2
W(t)

)

dt =
1

log T

∫ log T

0

f (Z(t)) dt,

whereZ(t) = e−t/2
W(et) is (the stationary)Ornstein-Uhlenbeck process. Hence the

result follows from the ergodic theorem.

�

Using Lemma 1, Theorem A can be deduced now by an invariance argument. Assume
thatf is uniformly continuous. Replacing

t−1f(t−1/2
W(t)) by k−1f(k−1/2

W(k)) if t ∈ [k, k + 1)

does not harm the limiting behavior in (1.5). Now assuming slightly more than two mo-
ments forX1, by an almost sure invariance principle (cf. Csörgő and R´evész, 1981: 108)
we can redefineW andX1, X2, . . . jointly on a new probability space in such a way that

k−1/2
W(k) − k−1/2Sk = o(1) a.s.

Sincef is uniformly continuous, it follows that

f(k−1/2
W(k)) − f(k−1/2Sk) → 0 a.s. (k → ∞).

Finally, it is not hard to see that by an approximation argument the result of Lemma 1
extends to indicator functionsf = IA whereA ⊂ R is a Borel set withλ(∂A) = 0.

1.2 Linear summation methods

The argument above shows why logarithmic summation in the ASCLT is natural from an
ergodic point of view. Note that logarithmic summation is stronger than Cesàro summa-
tion, i.e. if for a numerical sequence(xk)k≥1 we have

lim
N→∞

1

N

N
∑

k=1

xk = x (say),

then

lim
N→∞

1

logN

N
∑

k=1

1

k
xk = x.

That the converse is false can be seen by defining

xk =

{

0 if k ∈ {22i, . . . , 22i+1 − 1}
1 if k ∈ {22i+1, . . . , 22(i+1) − 1} (i ≥ 0).
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In some sense, this sequence(xk) exhibits a similar behavior as(I{k−1/2Sk ≤ x}). Long
periods of0’s are followed by even longer periods of1’s and conversely. Letx = 0.
By the CLT the probability thatk−1/2Sk lies outside the interval(−ǫ, ǫ) is close to1 for
small ǫ > 0. If we assume that|Xk| ≤ 1 for all k, then it will take at leastn > ǫ

√
k

steps untilI{k−1/2Sk ≤ 0} will change from0 to 1 or the other way round. In order to
compensate this persistence in the same state we have to weigh down the random variables
I{k−1/2Sk ≤ x}. Thus, the explanation that logarithmic means are a proper tool in this
theory might also result from the point of view of summability theory. By this argument,
one should also expect to get stronger results if we use larger weights.

The elegance of the above heuristic argument for Theorem A raises the question if
there exist other, substantially different averaging methods which also work in the ASCLT.
Let us note first that log averaging is not unique: it was observed by Peligrad and Révész
(1991) that

α + 1

(logN)α+1

N
∑

k=1

(log k)α

k
I{k−1/2Sk ∈ A} → Φ(A) a.s. (1.6)

for anyα > −1. While the averaging in (1.6) is rather similar to log averages, Berkes and
Csáki (2001) showed that

1

DN

N
∑

k=1

dk I{k−1/2Sk ∈ A} → Φ(A) a.s. (1.7)

for

dk = exp((log k)α)k−1, Dk =

k
∑

j=1

dj (0 ≤ α < 1/2). (1.8)

(Also, (1.7) holds for all smaller weight sequences(dk) as well). To understand the con-
nection between these results and the standard ASCLT (1.4),we shall review some facts
on linear summation methods.

Let D = (DN) be a positive non-decreasing sequence withlimN→∞DN = ∞ and set
dk = Dk −Dk−1. We say that(xk)k≥1 is D-summable tox if

lim
N→∞

1

DN

N
∑

k=1

dkxk = x. (1.9)

By a result of Hardy (see e.g. Chandrasekharan and Minakshisundaram, 1952: 35), ifD
andD

∗ are summation procedures withD∗
N = O(DN), then under minor technical as-

sumptions, the summationD∗ is stronger thanD, i.e. if a sequence(xn) isD-summable to
x, then it is alsoD∗-summable tox. Also, if (dk) grows exponentially or faster, then (1.9)
is equivalent to convergence of the sequence(xk), and hence this is the weakest summa-
tion method. By a result of Zygmund (see also Chandrasekharan and Minakshisundaram,
1952: 35) ifDα

N ≤ D∗
N ≤ Dβ

N (N ≥ N0) for someα > 0, β > 0, thenD andD
∗ are

equivalent, and ifD∗
N = O(Dε

N) for anyε > 0, thenD∗ is strictly stronger thanD. These
results show that the larger the norming sequenceDN in (1.9) is, the stronger the relation
(1.9) becomes. In view of Zygmund’s theorem, (1.6) is actually equivalent to Theorem A.
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Note also that the larger weights

dk = k−α, Dk =

k
∑

j=1

dj (α < 1)

define a summation equivalent to ordinary averaging, and hence do not work in the AS-
CLT. On the other hand, the result of Berkes and Csáki provides summation methods in
the ASCLT which are strictly weaker than logarithmic summation and thus yield a sharp-
ening of the ordinary ASCLT. The summation procedures defined by (1.8) lie strictly
between log and Cesàro averaging and are pairwise nonequivalent for differentα’s. Note
that forα = 0, resp.α = 1 (1.8) reduces to logarithmic, resp. ordinary averaging and
thus the result of Berkes and Csáki shows that the ASCLT remains valid at least until
‘halfway’ from logarithmic to ordinary averaging. In view of Hardy’s result the ‘true’
form of the ASCLT is given by relation (1.7) where theDN is maximal, i.e.DN is the
weakest summation method. This maximalDN is unknown. In the following section we
will give substantial improvements of the result in Berkes and Csáki: we will show that
the ASCLT (1.7) holds under a fairly general growth condition on(dk), similar to the con-
dition in Kolmogorov’s LIL. In particular, our results willimply that the sequence (1.8)
obeys the ASCLT for all0 ≤ α < 1, and thus the critical summation procedure in a.s.
central limit theory lies much closer, in some sense, to ordinary averaging. We will then
determine fairly sharply the critical summation methodD.

2 Results

Our first theorem is formulated in a more general setting. We will assume thatXn are
independent, but we drop the assumption that they are identically distributed or have
finite second moments.

Theorem 1 LetX1, X2, . . . be independent random variables with partial sumsSn and
assume that for some numerical sequencesan > 0 andbn we have

Sn

an

− bn
L−→ H (2.1)

with some (possibly degenerate) distribution functionH. Assume that

E

∣

∣

∣

∣

Sn

an

− bn

∣

∣

∣

∣

p

= O(1) (n→ ∞), (2.2)

and
ak/al ≤ C (k/l) β (1 ≤ k ≤ l) (2.3)

for some positive constantsp , β , C. Assume finally thatkdk ≫ 1 anddkk
α is eventually

non-increasing for some0 < α < 1 and that for someρ > 0

dk = O

(

Dk

k(logDk)ρ

)

. (2.4)
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Then iff is a bounded Lipschitz 1 function or an indicator function ofa Borel setA with
λ(∂A) = 0, we have

lim
N→∞

D−1
N

N
∑

k=1

dkf

(

Sk

ak

− bk

)

=

∫ ∞

−∞

f(x) dH(x) a.s. (2.5)

Conditions (2.1)-(2.3) are satisfied e.g. ifXk are i.i.d. with finite second moments or if
Xk are i.i.d. random variables belonging to the domain of attraction of a stable distribution
H. In this case(ak) is regularly varying with exponent1/α for some0 < α ≤ 2 and
the validity of relation (2.3) follows easily from the representation theorem for regularly
varying functions. Conditions (2.1)-(2.2) are also satisfied if Xk are independent r.v.’s
with EXk = 0,EX2

k <∞ satisfying the Lindeberg condition

lim
n→∞

s−2
n

n
∑

k=1

EX2
kI(|Xk| ≥ εsn) = 0 for all ε > 0,

wheres2
n =

∑n
k=1EX

2
k . In this case we can chooseak = sk, bk = 0 and the additional

assumption (2.3) is essential: as an example in Berkes and Dehling (1993) shows, without
(2.3) the theorem fails even ifdk = 1/k.

Proposition 1 Assume that relation (2.4) of Theorem 1 is satisfied for some sequence
(DN). Then it is also satisfied for any other sequenceD∗

N = ψ(DN) providedψ :
R

+ → R
+ is differentiable,ψ′(x) = O(ψ(x)/x) for x → ∞ and logψ′(x) is uni-

formly continuous on(A,∞) for someA > 0. In particular, (2.4) is satisfied forDN =
exp((logN)α), 0 ≤ α < 1.

We assumed here implicitly thatψ(x) → ∞ since otherwiseD∗
N defines of course

no summation method. Typical examples for functionsψ permitted in the Proposition are
ψ(x) = xα or ψ(x) = (log x)α whenα > 0.

As we have mentioned above, replacing the weightsdk by smaller ones (subject to
regularity conditions) leads to a stronger averaging procedure and thus it preserves the
validity of the ASCLT (1.7). The second statement of Proposition 1 illustrates the type
of regularity condition required in this context. Proposition 1 can be deduced from a the-
orem of Hirst in summation theory (see Chandrasekharan and Minakshisundaram, 1952:
37-38), but can also be deduced directly from the proof of Theorem 1. In view of the
possibility of replacing thedk with smaller ones, the assumption thatkdk ≫ 1 is no
real restriction of generality in Theorem 1. While excluding some irregular weight se-
quences the assumptiondkk

α is non-increasing for some0 < α < 1 does also not make
any restriction on the order of magnitude of(dk). Indeed, as we have seen, the sequence
dk = k−α, α > −1, is already too large to imply the ASCLT.

Until now, on the independent sequence(Xn) we assumed only that its partial sums
Sn, properly centered and normalized, converge weakly. Underthe assumption thatXn

are i.i.d. with finite variance, the sequenceDN = exp((logN)α) obtained in Proposition 1
can be made essentially larger, and in fact a nearly optimal summation method can be
obtained. Let us note, as we observed above, that the sequenceDN = Nα, α > 0, is
too large in relation (1.7), and thus it is no restriction on the order of magnitude ofDN
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to assume thatDN is slowly varying. By the theory of regular variation,DN can then be
represented in the form

DN = cN exp

(
∫ N

A

ǫ(u)/u du

)

, (2.6)

whereA > 0, cN → c ∈ (0,+∞), ǫ(x) → 0 for x → ∞. Let W denote the set of
sequences(DN ) that can be represented as in (2.6) such thatǫ is monotone decreasing
and obeys additionally

ǫ(x)/ǫ(x2) = O(1) (x→ ∞).

Sinceǫ(x) = (log x)−2 is already leading to a boundedDN , the last assumption onǫ is
satisfied in all cases of interest.

Theorem 2 LetX1, X2, . . . be i.i.d. random variables withEX1 = 0, EX2
1 = 1 and let

Sn = X1 + · · · +Xn. LetD ∈ W. Assume that

dk = O

(

Dk

k(log log k)α

)

with α > 3, (2.7)

and
(kdk) is eventually non-decreasing.

Then for any bounded functionf which is either Lipschitz 1 or an indicator function of a
Borel setA ⊂ R with λ(∂A) = 0, we have

lim
N→∞

D−1
N

N
∑

k=1

dkf
(

k−1/2Sk

)

=

∫ ∞

−∞

f(x) dΦ(x) a.s.

Theorem 2 yields a strong law of large numbers for the sums
∑N

k=1 dkf(k−1/2Sk).
Actually, much more is valid: under conditions similar to Theorem 2, the weighted sums
of f(k−1/2Sk) satisfy also the central limit theorem and the law of the iterated logarithm.

Theorem 3 Assume that the conditions of Theorem 2 are satisfied withα > 3 in (2.7)
replaced byα > 1. Then we have for every non-constant Lipschitz 1 functionf

λ
−1/2
N

N
∑

k=1

dk

(

f

(

Sk√
k

)

− Ef

(

Sk√
k

))

L−→ N(0, 1),

where

λN := Var

(

N
∑

k=1

dkf

(

Sk√
k

)

)

. (2.8)

Theorem 4 Assume that the conditions of Theorem 2 are satisfied. Then wehave for
every non-constant Lipschitz 1 functionf

lim sup
N→∞

(2λN log log λN)−1/2
N
∑

k=1

dk

(

f

(

Sk√
k

)

− Ef

(

Sk√
k

))

= 1 a.s.

whereλN is defined by (2.8).
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The basic new element in Theorems 2-4 is condition (2.7), which is weaker than the
coefficient condition (2.4) in Theorem 1 and is very similar to Kolmogorov’s classical
condition for the LIL. Condition (2.7) permits a faster growing sequenceDN (and thus it
yields a stronger result) than the sequenceDN = exp((logN)α), 0 < α < 1 in Proposi-
tion 1. In fact, (2.7) is satisfied if

DN = exp(logN/(log logN)α) (α > 3). (2.9)

As a matter of fact, condition (2.7) is essentially sharp: for DN as in (2.9) the conclusion
of Theorem 4 fails with0 < α < 1. Thus the ‘dividing line’ sequence in a.s. central
limit theory is (2.9) and the change of behaviour happens in the interval1 < α < 3. The
critical value ofα remains open.

3 Proofs

In what follows, we will only sketch the proofs of our results; for the detailed proof we
refer to Hörmann (2005a) and (2005b). We use two different approaches to get Theorem 1
and Theorems 2-4.

3.1 First approach

To simplify the notation we set

ξk = f

(

Sk

ak

− bk

)

− Ef

(

Sk

ak

− bk

)

.

Without loss of generality we may assume|f | ≤ 1 and lettingX
′

k = Xk − (akbk −
ak−1bk−1) (k = 1, 2, . . .), we can also assumebk = 0, k ≥ 1. From (2.1) it follows that
the conclusion of Theorem 1 is equivalent to

P

{
∣

∣

∣

∣

∣

N
∑

k=1

dkξk

∣

∣

∣

∣

∣

> εDN i.o.

}

= 0 a.s. for allε > 0.

The next lemma provides information on the covariances of the random variablesξk.

Lemma 2 Let X1, X2, . . . be independent random variables with partial sumsSn and
assume that for some numerical sequencesan > 0 andbn = 0 relations (2.2) and (2.3)
are satisfied. Then there exist constantsc, α > 0 such that for every bounded Lipschitz 1
functionf we have

|Eξkξl| ≤ c (k/l)α (1 ≤ k ≤ l). (3.1)

Using the last lemma, the Markov inequality and (2.4) we can show for anyη < ρ

P

{
∣

∣

∣

∣

∣

N
∑

k=1

dkξk

∣

∣

∣

∣

∣

> εDN

}

≪ 1

ε2
(logDN)−η. (3.2)
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(Herean ≪ bn meanslim supn |an/bn| <∞.) Choose a sequenceN1, N2, . . . such that
∑

i≥1

(logDNi
)−η <∞. (3.3)

Then the Borel-Cantelli Lemma implies that (2.5) holds along the subsequenceN1, N2, . . .
In order to prove Theorem 1 it remains to estimate the oscillation of

∑N
k=1 dkξk between

theNi’s. It is clear that if the gaps betweenNi andNi+1 are too large, the oscillation will
get out of control. On the other hand, we are forced to choose arapidly growing sequence
(Ni) in order to get (3.3). At this point the reason for assuming the conditionα < 1/2
for the weights of Berkes and Csáki (1.8) becomes clear. Simple analysis shows that for
thesedk we have

dk = O

(

Dk

k(logDk)(1−α)/α

)

.

If α < 1/2, then we can chooseη > 1 in (3.2)-(3.3) and thus for someδ > 0 we have
η(1 − δ) > 1. This assures that for a subexponential sequenceDNi

∼ ei1−δ

the series
in (3.3) converges. The fact that the sequence(DNi

) is subexponential provides that the
oscillation of

∑N
k=1 dkξk between theNi’s is sufficiently small. The crucial tool for an

improvement of the ASCLT is contained in the following moment inequality, which is
similar to the well knownRosenthal inequality. (Cf. Petrov, 1995: p. 59).

Lemma 3 LetX1, X2, . . . be independent random variables with partial sumsSn. As-
sume that (2.2) and (2.3) are satisfied for some sequencesan > 0 andbn = 0. Further let
f be a bounded Lipschitz 1 function. Then for everyp ∈ N we have

E

∣

∣

∣

∣

∣

N
∑

k=1

dk

(

f

(

Sk

ak

)

− Ef

(

Sk

ak

))

∣

∣

∣

∣

∣

p

≤ Cp

(

∑

1≤k≤l≤N

dkdl

(

k

l

)α
) p/2

,

whereCp = C(p,X1, α) (α is the constant in (3.1)) does not depend onN .

With Lemma 3 and the Markov inequality we can improve (3.2). We setη = ρ/2 and get

P

{
∣

∣

∣

∣

∣

N
∑

k=1

dkξk

∣

∣

∣

∣

∣

> εDN

}

≤ c(m)

ε2m
(logDN )−mη (m ≥ 1).

ChoosingNj such thatDNj
∼ exp(

√
j) andm > 2/ρ gives in conjunction with the

Borel-Cantelli lemma

lim
j→∞

1

DNj

Nj
∑

k=1

dkξk = 0 a.s.

A simple calculation shows that ifNj ≤ N < Nj+1

1

DN

∣

∣

∣

∣

∣

N
∑

k=1

dkξk

∣

∣

∣

∣

∣

≤ 1

DNj

∣

∣

∣

∣

∣

∣

Nj
∑

k=1

dkξk

∣

∣

∣

∣

∣

∣

+
DNj+1

DNj

− 1 a.s.

SinceDNj+1
/DNj

→ 1 the convergence of the subsequence implies that the whole se-
quence converges a.s.

�
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3.2 Second approach

The approach to Theorems 2-4 is based on a blocking technique. The proof and the
corresponding lemmas are very technical and therefore we will just illustrate the main
idea, which is simple.

Lemma 4 Let X1, X2, . . . be i.i.d. r.v.’s withEX1 = 0 andEX2
1 = 1 and letSn =

X1 + · · · +Xn. Further letdk = L(k)/k, whereL is slowly varying at infinity and letf
be a bounded Lipschitz 1 function. Then

Var

(

N
∑

k=1

dkf

(

Sk√
k

)

)

≫
N
∑

k=1

kd 2
k . (3.4)

Lemma 4 shows that Theorem 2 is a consequence of Theorem 4, since (2.7) and (3.4)
imply that

DN/(λN log log λN)1/2 → ∞.

The idea of the proof of Theorems 3 and 4 is this: We partitionN into disjoint blocks:
N = A1 ∪ B1 ∪A2 ∪ B2 . . ., where

Bj = {2pj + 1, . . . , 2qj} and Aj = {2p′j + 1, . . . , 2q′j}.

The exponentspj, qj , p
′
j andq′j are defined such that the number of elements inBj and in

theAj is increasing very fast and that|Bj| is much larger than|Aj|. Next we define the
random variables

Zj :=
∑

k∈Bj

dkξk and Rj :=
∑

k∈Aj

dkξk (j ≥ 1).

Then clearly
n
∑

j=1

(Zj +Rj) =
2qn
∑

k=1

dk

(

f

(

Sk√
k

)

− Ef

(

Sk√
k

))

.

The idea is to approximate the random process{Zj, j ≥ 1} by an independentprocess
{Z∗

j , j ≥ 1}. We define

Z∗
j =

∑

k∈Bj

dkξ
j
k (j ≥ 1),

with

ξj
k = f

(

Sk − Slj√
k

)

− Ef

(

Sk − Slj√
k

)

for k ∈ Bj ,

wherelj is the largest integer contained inBj−1. Then clearly by its definition the random
variablesZ∗

j are independent. Note that the faster the number of elementsin the blocksAj

andBj grow the smaller will be the error which we make by replacingξk by ξj
k. However,

too large blocks will cause a higher oscillation of theZj ’s andRj ’s, which leads to a
worse reminder term. Therefore an optimal choice of|Aj| and|Bj| is very important, in
order to get optimal results.
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Now we derive in a first step a CLT and an LIL for the sequences{Z∗
j , j ≥ 1} via

Lyapunov’s theorem and Kolmogorov’s classical LIL (cf. Petrov, 1995: Theorem 4.9 and
Theorem 7.1).

In the second step we estimate the difference betweenZ∗
j andZj. It turns out that it

does not disturb the limiting behavior, i.e. the approximation is close enough. Further we
show that the contribution of

∑n
j=1Rj to

2qn
∑

k=1

dk

(

f

(

Sk√
k

)

−Ef

(

Sk√
k

))

is negligible for our purposes. This proves the theorems along the subsequence(2qn)n≥1.
Finally it remains to show that the fluctuation of the partialsums between2qn and2qn+1

is small enough.
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