

Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 10 (2016) 91–98

A note on nowhere-zero 3-flow and Z_3 -connectivity

Fuyuan Chen

Center for Discrete Mathematics, Fuzhou University, Fuzhou, P. R. China, Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233030, P. R. China

Bo Ning

Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, P. R. China, Center for Applied Mathematics, Tianjin University, 300072, P. R. China

Received 22 May 2014, accepted 14 July 2014, published online 8 July 2015

Abstract

There are many major open problems in integer flow theory, such as Tutte's 3-flow conjecture that every 4-edge-connected graph admits a nowhere-zero 3-flow, Jaeger et al.'s conjecture that every 5-edge-connected graph is Z_3 -connected and Kochol's conjecture that every bridgeless graph with at most three 3-edge-cuts admits a nowhere-zero 3-flow (an equivalent version of 3-flow conjecture). Thomassen proved that every 8-edge-connected graph is Z_3 -connected and therefore admits a nowhere-zero 3-flow. Furthermore, Lovász, Thomassen, Wu and Zhang improved Thomassen's result to 6-edge-connected graphs. In this paper, we prove that: (1) Every 4-edge-connected graph with at most seven 5-edge-cuts admits a nowhere-zero 3-flow. (2) Every bridgeless graph containing no 5-edge-cuts but at most three 3-edge-cuts admits a nowhere-zero 3-flow. (3) Every 5-edge-connected graph with at most five 5-edge-cuts is Z_3 -connected. Our main theorems are partial results to Tutte's 3-flow conjecture, Kochol's conjecture and Jaeger et al.'s conjecture, respectively.

Keywords: Integer flow, nowhere-zero 3-flow, Z3*-connected, modulo 3-orientation, edge-cuts. Math. Subj. Class.: 05C21, 05C40*

E-mail addresses: chenfuyuan19871010@163.com (Fuyuan Chen), ningbo-math84@mail.nwpu.edu.cn (Bo Ning)

1 Introduction

All graphs considered in this paper are loopless, but allowed to have multiple edges. A graph G is called k-*edge-connected*, if $G-S$ is connected for each edge set S with $|S| < k$. Let X, Y be two disjoint subsets of $V(G)$. Let $\partial_G(X, Y)$ be the set of edges of G with one end in X and the other in Y. In particular, if $Y = \overline{X}$, we simply write $\partial_G(X)$ for $\partial_G(X, Y)$, which is the *edge-cut* of G associated with X. The edge set $C = \partial_G(X)$ is called a k-edge-cut if $|\partial_G(X)| = k$. If X is nontrivial, we use G/X to denote the graph obtained from G by replacing X by a single vertex x that is incident with all the edges in $\partial_G(X)$.

Let D be an orientation of $E(G)$. The *out-cut* of D associated with X, denoted by $\partial_D^+(X)$, is the set of arcs of D whose tails lie in X. Analogously, the *in-cut* of D associated with X, denoted by $\partial_D^{-}(X)$, is the set of arcs of D whose heads lie in X. We refer to $|\partial_D^+(X)|$ and $|\partial_D^-(X)|$ as the out-degree and in-degree of X, and denote these quantities by $d_D^{\dagger}(X)$ and $d_D^{\dagger}(X)$, respectively.

Definition 1.1. (1) An orientation D of E(G) is called a *modulo 3-orientation* if

$$
d^+_D(v)-d^-_D(v)\equiv 0\pmod{3}
$$

for every vertex $v \in V(G)$.

(2) A pair (D, f) is called a *nowhere-zero 3-flow* of G if D is an orientation of $E(G)$ and f is a function from $E(G)$ to $\{\pm 1, \pm 2\}$, such that

$$
\sum_{e \in \partial_D^+(v)} f(e) = \sum_{e \in \partial_D^-(v)} f(e)
$$

for every vertex $v \in V(G)$.

The 3-flow conjecture, proposed by Tutte as a dual version of Grötzsch's 3-color theorem for planar graphs, may be one of the most major open problems in integer flow theory.

Conjecture 1.2 (3-Flow conjecture, Tutte [9]). *Every 4-edge-connected graph admits a nowhere-zero 3-flow.*

Kochol proved that Tutte's 3-flow conjecture is equivalent to the following two conjectures.

Conjecture 1.3 (Kochol [4]). *Every 5-edge-connected graph admits a nowhere-zero 3 flow.*

Conjecture 1.4 (Kochol [5]). *Every bridgeless graph with at most three 3-edge-cuts admits a nowhere-zero 3-flow.*

A weakened version of Conjecture 1.2, the so-called weak 3-flow conjecture, was proposed by Jaeger.

Conjecture 1.5 (Weak 3-flow conjecture, Jaeger [2]). *There is a natural number* h *such that every* h*-edge-connected graph admits a nowhere-zero 3-flow.*

Lai and Zhang [6] and Alon et al. [1] gave partial results on Conjectures 1.2 and 1.5.

Theorem 1.6 (Lai and Zhang [6]). *Every* $4\lceil \log_2 n_0 \rceil$ -edge-connected graph with at most n⁰ *odd-degree vertices admits a nowhere-zero 3-flow.*

Theorem 1.7 (Alon, Linial and Meshulam [1]). *Every* $2\lceil \log_2 n \rceil$ -edge-connected graph *with* n *vertices admits a nowhere-zero 3-flow.*

Recently, Thomassen [8] confirmed weak 3-flow conjecture. He proved

Theorem 1.8 (Thomassen [8]). *Every 8-edge-connected graph is* Z_3 -connected and there*fore admits a nowhere-zero 3-flow.*

Thomassen's method was further refined by Lovász, Thomassen, Wu and Zhang [7] to obtain the following theorem.

Theorem 1.9 (Lovász, Thomassen, Wu and Zhang [7]). *Every 6-edge-connected graph is* Z3*-connected and therefore admits a nowhere-zero 3-flow.*

For more results on Tutte's 3-flow conjecture, we refer the reader to the introduction part of [7] and the book written by Zhang [11].

In this paper, we will give the following conjecture which is equivalent to Tutte's 3-flow conjecture.

Conjecture 1.10. *Every 5-edge-connected graph with minimum degree at least* 6 *has a nowhere-zero 3-flow.*

To prove the equivalence of Conjectures 1.2 and 1.10, the following lemma is needed.

Lemma 1.11 (Tutte [10]). Let $F(G, k)$ be the number of nowhere-zero k-flows of G. Then $F(G, k) = F(G/e, k) - F(G \setminus e, k)$ *if* e *is not a loop of* G.

Proposition 1.12. *Conjectures 1.2 and 1.10 are equivalent.*

Proof. It is obvious that Conjecture 1.2 implies Conjecture 1.3, and Conjecture 1.3 implies Conjecture 1.10. Now we prove that Conjecture 1.10 can imply Conjecture 1.3. Let G be a 5-edge-connected graph. Let G' be the graph obtained from G by gluing $|V(G)|$ disjoint copies of K_7 , such that for each such copy $H_i, |V(H_i) \cap V(G)| = 1$ $(i = 1, 2, \cdots, |V(G)|)$. Then G' is 5-edge-connected and its minimum degree is at least 6, and thus has a nowherezero 3-flow. By Lemma 1.11, G has a nowhere-zero 3-flow. Therefore Conjecture 1.10 implies Conjecture 1.3. Note that Conjecture 1.2 is equivalent to Conjecture 1.3. This completes the proof. \Box

Our first main result is the following theorem.

Theorem 1.13. *Let* G *be a bridgeless graph and let* $P = \{C = \partial_G(X) : |C| = 3, X \subset \mathbb{R}\}$ $V(G)$ *and* $Q = \{C = \partial_G(X) : |C| = 5, X \subset V(G)\}$ *. If* $2|P| + |Q| \le 7$ *, then* G has a *modulo 3-orientation (and therefore has a nowhere-zero 3-flow).*

As corollaries of Theorem 1.13, we obtain Theorems 1.14 and 1.15.

Theorem 1.14. *Every 4-edge-connected graph with at most seven 5-edge-cuts admits a nowhere-zero 3-flow.*

Theorem 1.15. *Every bridgeless graph containing no 5-edge-cuts but at most three 3 edge-cuts admits a nowhere-zero 3-flow.*

Remark.The number of 3-edge-cuts in Theorem 1.15 can not be improved from three to four, since K_4 or any graph contractable to K_4 has no nowhere-zero 3-flow.

Theorems 1.14 and 1.15 partially confirm Conjectures 1.2 and 1.4, respectively.

Definition 1.16. (1) A mapping $\beta_G : V(G) \mapsto Z_k$ is called a Z_k *-boundary* of G if

$$
\sum_{v \in V(G)} \beta_G(v) \equiv 0 \pmod{k}
$$

(2) A graph G is called Z_k -connected, if for every Z_k -boundary β_G , there is an orientation D_{β_G} and a function $f_{\beta_G}: E(G) \mapsto Z_k - \{0\}$, such that

$$
\sum_{e \in \partial^+_{D_{\beta_G}}(v)} f_{\beta_G}(e) - \sum_{e \in \partial^-_{D_{\beta_G}}(v)} f_{\beta_G}(e) \equiv \beta_G(v) \pmod{k}
$$

for every vertex $v \in V(G)$.

Jaeger, Linial, Payan and Tarsi [3] conjectured that

Conjecture 1.17 (Jaeger, Linial, Payan and Tarsi [3]). *Every 5-edge-connected graph is* Z3*-connected.*

By applying a similar argument as in the proof of Theorem 1.13, we could obtain the second main result, which is a partial result to Conjecture 1.17.

Theorem 1.18. Every 5-edge-connected graph with at most five 5-edge-cuts is Z_3 -conn*ected.*

In the next section, some necessary preliminaries will be given. In Sections 3 and 4, proofs of Theorems 1.13 and 1.18 will be given, respectively.

2 Preliminaries

In this section, we will give additional but necessary notations and definitions, and then give some useful lemmas.

Definition 2.1. Let β_G be a Z_3 -boundary of G. An orientation D of G is called a β_G *orientation* if

$$
d^+_D(v) - d^-_D(v) \equiv \beta_G(v) \pmod{3}
$$

for every vertex $v \in V(G)$.

Let G be a graph and A be a vertex subset of G. The *degree* of A, denoted by $d_G(A)$, is the number of edges with precisely one end in A. Moreover if $A = \{x\}$, we simply write $d_G(x)$.

Let G be a graph and β_G be a Z_3 -boundary of G. Define a mapping $\tau_G : V(G) \mapsto$ $\{0, \pm 1, \pm 2, \pm 3\}$ such that, for each vertex $x \in V(G)$,

$$
\tau_G(x) \equiv \begin{cases} \beta_G(x) & (\text{mod } 3) \\ d_G(x) & (\text{mod } 2). \end{cases}
$$

Now, the mapping τ_G can be further extended to any nonempty vertex subset A as follows:

$$
\tau_G(A) \equiv \begin{cases} \beta_G(A) & (\text{mod } 3) \\ d_G(A) & (\text{mod } 2). \end{cases}
$$

where $\beta_G(A) \equiv \sum_{x \in A} \beta_G(x) \in \{0, 1, 2\} \pmod{3}$.

Proposition 2.2. *Let* G *be a graph and* A *be a vertex subset of* G*. (1)* If $d_G(A) \leq 5$, then $d_G(A) \leq 4 + |\tau_G(A)|$. *(2) If* $d_G(A) \geq 6$ *, then* $d_G(A) \geq 4 + |\tau_G(A)|$ *.*

Proposition 2.2 follows from the fact that $|\tau_G(A)| \leq 3$ and $d_G(A) - |\tau_G(A)|$ is even.

Lemma 2.3 (Tutte [9]). *Let* G *be a graph.*

(1) G *has a nowhere-zero 3-flow if and only if* G *has a modulo 3-orientation. (2) G has a nowhere-zero 3-flow if and only if G has a* β *_{<i>G*}-orientation with β _{*G*} = 0*.*

The following lemma is Theorem 3.1 in [7] by Lovász et al. This lemma will play the main role in our proofs.

Lemma 2.4 (Lovász, Thomassen, Wu and Zhang [7]). Let G be a graph, β_G be a Z_3 *boundary of G, and let* $z_0 \in V(G)$ and D_{z_0} be a pre-orientation of $E(z_0)$ of all edges *incident with* z_0 *. Assume that*

- *(i)* $|V(G)| \geq 3$.
- $(iii) d_G(z_0) \leq 4 + |\tau_G(z_0)|$ *and* $d_{D_{z_0}}^+(z_0) d_{D_{z_0}}^-(z_0) \equiv \beta_G(z_0) \pmod{3}$ *, and*

 (iii) $d_G(A) \geq 4 + |\tau_G(A)|$ *for each nonempty vertex subset* A *not containing* z_0 *with* $|V(G) \setminus A| > 1$.

Then the pre-orientation D_{z_0} of $E(z_0)$ can be extended to an orientation D of the entire *graph* G*, that is, for every vertex* x *of* G*,*

$$
d^+_D(x)-d^-_D(x)\equiv\beta_G(x)\pmod{3}.
$$

3 Proof of Theorem 1.13

If not, suppose that G is a counterexample, such that $|V(G)| + |E(G)|$ is as small as possible. Let $P' = \{x \in V(G) : d_G(x) = 3\}$ and $Q' = \{x \in V(G) : d_G(x) = 5\}.$

Claim 3.1. $|V(G)| \geq 3$.

Proof. If $|V(G)| = 1$, then G has a nowhere-zero 3-flow, a contradiction. If $|V(G)| = 2$, let $V(G) = \{x, y\}$, then all the edges of G are all between x and y. Since G is bridgeless, $|E(G)| \ge 2$. Let a be the integer in $\{0, 1, 2\}$ such that $a \equiv |E(G)| - a \pmod{3}$. Orient a edges from x to y and the remaining $|E(G)| - a$ edges from y to x. Clearly, the resulting orientation is a modulo 3-orientation of G, a contradiction. Therefore $|V(G)| \geq 3$. \Box

Claim 3.2. G *is 3-edge-connected, and* G *has no nontrivial 3-edge-cuts.*

Proof. If G has a vertex x of degree 2, then suppose that $xx_1, xx_2 \in E(G)$. By the minimality of G , $(G - \{xx_1, xx_2\}) \cup \{x_1x_2\}$ has a nowhere-zero 3-flow f' . However, f' can be extended to a nowhere-zero 3-flow f of G, a contradiction. If G has a nontrivial k edge-cut $(k = 2, 3)$, then contract one side and find a mod 3-orientation by the minimality of G . Merge such two mod 3-orientations and we will get one for G , a contradiction. \Box **Claim 3.3.** *For any* $U \subset V(G)$ *, if* $d_G(U) \leq 5$ *and* $|U| \geq 2$ *, then* $U \cap (P' \cup Q') \neq \emptyset$ *.*

Proof. If not, choose U to be a minimal one such that: for any $A \subset U$ with $2 < |A| < |U|$, we have $d_G(A) \geq 6$.

By the minimality of $G, G/U$ has a modulo 3-orientation D' which is a partial modulo 3-orientation of G, such that $d_{D'}^+(x) \equiv d_{D'}^-(x) \pmod{3}$ for each $x \in V(G) \setminus U$.

Let G' be a graph obtained from G by contracting $V(G) \setminus U$ as z_0 and let $\beta_{G'} = 0$. (i) Since $V(G') = U + z_0$, $|V(G')| = |U| + 1 \ge 3$.

(ii) Since $d_{G'}(z_0) = d_G(U) \le 5$, by Proposition 2.2 (1), $d_{G'}(z_0) \le 4 + |\tau_{G'}(z_0)|$.

(iii) By the assumption and minimality of U, we have that for any $A \subset U$, $d_G(A) \neq 5$ and $d_G(A) \neq 3$. If $d_G(A) = 4$, then $d_{G'}(A) = d_G(A) = 4$ and $\tau_{G'}(A) = \beta_{G'}(A) = 0$ $\beta_G(A) = 0$. Thus $d_{G'}(A) = 4 = 4 + |\tau_{G'}(A)|$. If $d_G(A) \ge 6$, then by Proposition 2.2 (2), $d_{G'}(A) = d_G(A) \geq 4 + |\tau_{G'}(A)|.$

By Lemma 2.4, we could see that the pre-orientation of $E'(z_0)$ of all edges incident with z_0 can be extended to a $\beta_{G'}$ -orientation of G'. Then G has a modulo 3-orientation, which is a contradiction. П

Let G'_1 be a graph obtained from G by adding a new vertex z_0 and $2|P'| + |Q'|$ edges between z_0 and $P' \cup Q'$, such that:

(i) For each vertex $v \in P'$, we add two arcs with the same direction between it and z_0 ; and

(ii) For each vertex $v \in Q'$, we add one arc between it and z_0 .

If $2|P'| + |Q'| \le 5$, then all added arcs could be from z_0 to $P' \cup Q'$. Define $\beta_{G'_1}$ as follows:

(1) $\beta_{G'_1}(x) = 0$ if $x \notin (P' \cup Q') + z_0$; (2) $\beta_{G'_1}(x) = 1$ if $x \in P'$; (3) $\beta_{G'_1}(x) = 2$ if $x \in Q'$;

(4) $\beta_{G_1'}(z_0) \equiv 2|P'| + |Q'| \pmod{3}$ and $\beta_{G_1'}(z_0) \in \{0, 1, 2\}.$

If $2|P' + |Q'| = 6$ or 7, in this case, if $|P'| \neq 0$, choose one vertex $v \in P'$, such that the two arcs with ends z_0 and v are from v to z_0 , the other arcs incident with z_0 are all directed from z_0 . If $|P'| = 0$, then two arcs are from Q' to z_0 , the others verse. Define $\beta_{G'_1}$ as follows:

(1) $\beta_{G'_1}(x) = 0$ if $x \notin (P' \cup Q') + z_0;$

(2) $\beta_{G_1'}(x) = 2$ if $x \in Q'$ and the arc (z_0, x) exists or $x \in P'$ and the two arcs with ends z_0 and x are from x to z_0 ;

(3) $\beta_{G_1'}(x) = 1$ if $x \in Q'$ and the arc (x, z_0) exists or $x \in P'$ and the two arcs with ends z_0 and x are from z_0 to x;

(4) $\beta_{G'_1}(z_0) \equiv (2|P'| + |Q'|-2) - 2 \pmod{3}$.

Now $d_{G_1'}(z_0) \leq 4 + |\tau_{G_1'}(z_0)|$ and $|V(G_1')| = |V(G)| + 1 \geq 4$. We claim that: $d_{G'_{1}}(A) \geq 4 + |\tau_{G'_{1}}(A)|$, for each nonempty vertex subset A not containing z_{0} with $|V(G_1')\setminus A|>1.$

If $A \cap (P' \cup Q') = \emptyset$, then by Claim 3.3, $d_G(A) = 4$ or $d_G(A) \geq 6$. In each case we could get that $d_{G'_1}(A) = d_G(A) \ge 4 + |\tau_{G'_1}(A)|$.

If $A \cap (P' \cup Q') \neq \emptyset$, then by Claim 3.2, $d_{G_1'}(A) \geq 5$. If $d_{G_1'}(A) = 5$, then $d_G(A) = 3$ or 4 and $|A \cap (P' \cup Q')| = 1$, and it follows that $\beta_{G_1'}(A) = 1$ or 2, and $|\tau_{G_1'}(A)| = 1$. Thus $d_{G'_1}(A) \geq 4 + |\tau_{G'_1}(A)|$. If $d_{G'_1}(A) \geq 6$, by Proposition 2.2 (2), we have that $d_{G'_{1}}(A) \geq 4 + |\tau_{G'_{1}}(A)|.$

Now G'_1 satisfies all the conditions of Lemma 2.4. By Lemma 2.4, G'_1 has a $\beta_{G'_1}$ orientation extended from the pre-orientation of $E_1'(z_0)$ of all edges incident with z_0 , which implies that G has a β_G -orientation with $\beta_G = 0$. By Lemma 2.3, G has a nowhere-zero 3-flow, which is a contradiction.

4 Proof of Theorem 1.18

Assume not. Suppose that G is a counterexample, such that $|V(G)| + |E(G)|$ is as small as possible. Let $S' = \{x \in V(G) : d_G(x) = 5\}$ and $S = \{C = \partial_G(X) : |C| = 5, X \subset \partial_G(X) \}$ $V(G)$. Let β_G be a Z_3 -boundary, such that G has no β_G -orientation.

Claim 4.1. $|V(G)| \ge 3$ *and* $|S'| \le |S| \le 5$ *.*

Proof. Since G is 5-edge-connected, $|V(G)| \ge 2$. If $|V(G)| = 2$, let $V(G) = \{x, y\}$, then all the edges of G are between x and y, and $|E(G)| \geq 5$. Let D_x be an orientation of x, such that $d_{D_x}^+(x) - d_{D_x}^-(x) \equiv \beta_G(x) \pmod{3}$. Since β_G is a Z_3 -boundary, $d_{D_x}^+(y) - d_{D_x}^-(y) \equiv$ $\beta_G(y)$ (mod 3). Therefore G has a β_G -orientation, a contradiction. Hence $|V(G)| \geq 3$ and $|S'| \leq |S| \leq 5$. \Box

Claim 4.2. *Let* $U \subset V(G)$ *with* $|U| \geq 2$ *. If* $d_G(U) = 5$ *, then* $U \cap S' \neq \emptyset$ *.*

Proof. If not, choose U to be a minimal one such that: for any $A \subset U$ with $2 \le |A| < |U|$, we have $d_G(A) \neq 5$.

By the minimality of G, G/U has a β_G -orientation D' which is a partial β_G -orientation of G, such that $d_{D'}^+(x) - d_{D'}^-(x) \equiv \beta_G(x) \pmod{3}$ for each $x \in V(G) \setminus U$.

Let G' be a graph obtained from G by contracting $V(G) \setminus U$ as z_0 , and let $\beta_{G'} = \beta_G$. (i) Since $V(G') = U + z_0$, $|V(G')| = |U| + 1 \ge 3$.

(ii) Since $d_{G'}(z_0) = d_G(U) = 5$, by Proposition 2.2 (1), we have that $d_{G'}(z_0) \leq$ $4 + |\tau_{G'}(z_0)|.$

(iii) By the assumption and minimality of U, we have that for any $A \subset U$, $d_G(A) \neq 5$. Therefore $d_G(A) \ge 6$. By Proposition 2.2 (2), $d_{G'}(A) = d_G(A) \ge 4 + |\tau_{G'}(A)|$.

By Lemma 2.4, the pre-orientation of $E'(z_0)$ of all edges incident with z_0 can be extended to a $\beta_{G'}$ -orientation of G' . Therefore, G has a β_G -orientation, which is a contradiction. \Box

Let G'_1 be a graph obtained from G by adding a new vertex z_0 and $|S'|$ arcs from z_0 to S' , such that each vertex in S' has degree 6 in G'_1 .

Define $\beta_{G_1'}$ as follows:

(1) $\beta_{G'_1}(x) = \beta_G(x)$ if $x \notin S' + z_0$;

(2) $\beta_{G_1'}(x) \equiv \beta_G(x) - 1 \pmod{3}$ if $x \in S'$;

(3) $\beta_{G'_1}(z_0) \equiv |S'| \pmod{3}$ and $\beta_{G'_1}(z_0) \in \{0, 1, 2\}.$

Now $d_{G'_1}(z_0) \leq 4 + |\tau_{G'_1}(z_0)|$ and $|V(G'_1)| = |V(G)| + 1 \geq 4$. We claim that $d_{G'_1}(A) \geq$ $4 + |\tau_{G_1'}(A)|$, for each nonempty vertex subset A not containing z_0 with $|V(G_1') \setminus A| > 1$.

If $\hat{A} \cap S' = \emptyset$, then by Claim 4.2, $d_{G'_1}(A) = d_G(A) \neq 5$. Thus $d_{G'_1}(A) \geq 6$. By Proposition 2.2 (2), $d_{G'_1}(A) \geq 4 + |\tau_{G'_1}(A)|$.

If $A \cap S' \neq \emptyset$, then $d_{G_1'}(A) \geq d_G(A) + 1 \geq 6$. By Proposition 2.2 (2), we have that $d_{G'_1}(A) \geq 4 + |\tau_{G'_1}(A)|.$

Now G'_1 satisfies all the conditions of Lemma 2.4. By Lemma 2.4, G'_1 has a $\beta_{G'_1}$ orientation extended from the pre-orientation of $E_1'(z_0)$ of all edges incident with z_0 , which implies that G has a β_G -orientation, a contradiction.

The proof is complete. \Box

Acknowledgement

The second author is supported by NSFC (No. 11271300) and the Doctorate Foundation of Northwestern Polytechnical University (cx201326).

References

- [1] N. Alon, N. Linial and R. Meshulam, Additive bases of vector spaces over prime fields, *J. Combin. Theory Ser. A* 57 (1991) 203–210.
- [2] F. Jaeger, Flows and generalized coloring theorems in graphs, *J. Combin. Theory Ser. B* 26 (1979) 205–216.
- [3] F. Jaeger, N. Linial, C. Payan and M. Tarsi, Group connectivity of graphs–a nonhomogeneous analogue of nowhere-zero flow properties, *J. Combin. Theory Ser. B* 56 (1992) 165–182.
- [4] M. Kochol, An equivalent version of the 3-flow conjecture, *J. Combin. Theory Ser. B* 83 (2001) 258–261.
- [5] M. Kochol, Superposition and constructions of graphs without nowhere-zero k-flows, *Europ. J. Combin.* 23 (2002) 281–306.
- [6] H.-J. Lai and C.-Q. Zhang, Nowhere-zero 3-flows of highly connected graphs, *Discrete Math.* 110 (1992) 179–183.
- [7] L. M. Lovász, C. Thomassen, Y.-Z Wu and C.-Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations, *J. Combin. Theory Ser. B* 103 (2013) 587–598.
- [8] C. Thomassen, The weak 3-flow conjecture, *J. Combin. Theory Ser. B* 102 (2012) 521–529.
- [9] W. T. Tutte, On the imbedding of linear graphs in surfaces, *Proc. London Math. Soc.* 51 (1949) 474–483.
- [10] W. T. Tutte, A contribution on the theory of chromatic polynomial, *Canad. J. Math.* 6 (1954) 80–91.
- [11] C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs, *Marcel Dekker Inc.*, New York, (1997).