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Abstract

There are many major open problems in integer flow theory, such as Tutte’s 3-flow
conjecture that every 4-edge-connected graph admits a nowhere-zero 3-flow, Jaeger et al.’s
conjecture that every 5-edge-connected graph isZ3-connected and Kochol’s conjecture that
every bridgeless graph with at most three 3-edge-cuts admits a nowhere-zero 3-flow (an
equivalent version of 3-flow conjecture). Thomassen proved that every 8-edge-connected
graph is Z3-connected and therefore admits a nowhere-zero 3-flow. Furthermore, Lovász,
Thomassen, Wu and Zhang improved Thomassen’s result to 6-edge-connected graphs. In
this paper, we prove that: (1) Every 4-edge-connected graph with at most seven 5-edge-cuts
admits a nowhere-zero 3-flow. (2) Every bridgeless graph containing no 5-edge-cuts but at
most three 3-edge-cuts admits a nowhere-zero 3-flow. (3) Every 5-edge-connected graph
with at most five 5-edge-cuts is Z3-connected. Our main theorems are partial results to
Tutte’s 3-flow conjecture, Kochol’s conjecture and Jaeger et al.’s conjecture, respectively.
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1 Introduction
All graphs considered in this paper are loopless, but allowed to have multiple edges. A
graphG is called k-edge-connected, ifG−S is connected for each edge set S with |S| < k.
Let X , Y be two disjoint subsets of V (G). Let ∂G(X,Y ) be the set of edges of G with
one end in X and the other in Y . In particular, if Y = X , we simply write ∂G(X) for
∂G(X,Y ), which is the edge-cut of G associated with X . The edge set C = ∂G(X) is
called a k-edge-cut if |∂G(X)| = k. If X is nontrivial, we use G/X to denote the graph
obtained from G by replacing X by a single vertex x that is incident with all the edges in
∂G(X).

Let D be an orientation of E(G). The out-cut of D associated with X , denoted by
∂+D(X), is the set of arcs ofD whose tails lie inX . Analogously, the in-cut ofD associated
with X , denoted by ∂−D(X), is the set of arcs of D whose heads lie in X . We refer to
|∂+D(X)| and |∂−D(X)| as the out-degree and in-degree ofX , and denote these quantities by
d+D(X) and d−D(X), respectively.

Definition 1.1. (1) An orientation D of E(G) is called a modulo 3-orientation if

d+D(v)− d−D(v) ≡ 0 (mod 3)

for every vertex v ∈ V (G).
(2) A pair (D, f) is called a nowhere-zero 3-flow of G if D is an orientation of E(G)

and f is a function from E(G) to {±1,±2}, such that∑
e∈∂+

D(v)

f(e) =
∑

e∈∂−D(v)

f(e)

for every vertex v ∈ V (G).

The 3-flow conjecture, proposed by Tutte as a dual version of Grötzsch’s 3-color theo-
rem for planar graphs, may be one of the most major open problems in integer flow theory.

Conjecture 1.2 (3-Flow conjecture, Tutte [9]). Every 4-edge-connected graph admits a
nowhere-zero 3-flow.

Kochol proved that Tutte’s 3-flow conjecture is equivalent to the following two conjec-
tures.

Conjecture 1.3 (Kochol [4]). Every 5-edge-connected graph admits a nowhere-zero 3-
flow.

Conjecture 1.4 (Kochol [5]). Every bridgeless graph with at most three 3-edge-cuts admits
a nowhere-zero 3-flow.

A weakened version of Conjecture 1.2, the so-called weak 3-flow conjecture, was pro-
posed by Jaeger.

Conjecture 1.5 (Weak 3-flow conjecture, Jaeger [2]). There is a natural number h such
that every h-edge-connected graph admits a nowhere-zero 3-flow.

Lai and Zhang [6] and Alon et al. [1] gave partial results on Conjectures 1.2 and 1.5.
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Theorem 1.6 (Lai and Zhang [6]). Every 4dlog2 n0e-edge-connected graph with at most
n0 odd-degree vertices admits a nowhere-zero 3-flow.

Theorem 1.7 (Alon, Linial and Meshulam [1]). Every 2dlog2 ne-edge-connected graph
with n vertices admits a nowhere-zero 3-flow.

Recently, Thomassen [8] confirmed weak 3-flow conjecture. He proved

Theorem 1.8 (Thomassen [8]). Every 8-edge-connected graph is Z3-connected and there-
fore admits a nowhere-zero 3-flow.

Thomassen’s method was further refined by Lovász, Thomassen, Wu and Zhang [7] to
obtain the following theorem.

Theorem 1.9 (Lovász, Thomassen, Wu and Zhang [7]). Every 6-edge-connected graph is
Z3-connected and therefore admits a nowhere-zero 3-flow.

For more results on Tutte’s 3-flow conjecture, we refer the reader to the introduction
part of [7] and the book written by Zhang [11].

In this paper, we will give the following conjecture which is equivalent to Tutte’s 3-flow
conjecture.

Conjecture 1.10. Every 5-edge-connected graph with minimum degree at least 6 has a
nowhere-zero 3-flow.

To prove the equivalence of Conjectures 1.2 and 1.10, the following lemma is needed.

Lemma 1.11 (Tutte [10]). Let F (G, k) be the number of nowhere-zero k-flows of G. Then
F (G, k) = F (G/e, k)− F (G \ e, k) if e is not a loop of G.

Proposition 1.12. Conjectures 1.2 and 1.10 are equivalent.

Proof. It is obvious that Conjecture 1.2 implies Conjecture 1.3, and Conjecture 1.3 implies
Conjecture 1.10. Now we prove that Conjecture 1.10 can imply Conjecture 1.3. Let G be
a 5-edge-connected graph. Let G′ be the graph obtained from G by gluing |V (G)| disjoint
copies ofK7, such that for each such copyHi, |V (Hi)∩V (G)| = 1 (i = 1, 2, · · · , |V (G)|).
Then G′ is 5-edge-connected and its minimum degree is at least 6, and thus has a nowhere-
zero 3-flow. By Lemma 1.11, G has a nowhere-zero 3-flow. Therefore Conjecture 1.10
implies Conjecture 1.3. Note that Conjecture 1.2 is equivalent to Conjecture 1.3. This
completes the proof.

Our first main result is the following theorem.

Theorem 1.13. Let G be a bridgeless graph and let P = {C = ∂G(X) : |C| = 3, X ⊂
V (G)} and Q = {C = ∂G(X) : |C| = 5, X ⊂ V (G)}. If 2|P |+ |Q| ≤ 7, then G has a
modulo 3-orientation (and therefore has a nowhere-zero 3-flow).

As corollaries of Theorem 1.13, we obtain Theorems 1.14 and 1.15.

Theorem 1.14. Every 4-edge-connected graph with at most seven 5-edge-cuts admits a
nowhere-zero 3-flow.

Theorem 1.15. Every bridgeless graph containing no 5-edge-cuts but at most three 3-
edge-cuts admits a nowhere-zero 3-flow.
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Remark.The number of 3-edge-cuts in Theorem 1.15 can not be improved from three to
four, since K4 or any graph contractable to K4 has no nowhere-zero 3-flow.

Theorems 1.14 and 1.15 partially confirm Conjectures 1.2 and 1.4, respectively.

Definition 1.16. (1) A mapping βG : V (G) 7→ Zk is called a Zk-boundary of G if∑
v∈V (G)

βG(v) ≡ 0 (mod k)

(2) A graph G is called Zk-connected, if for every Zk-boundary βG, there is an orien-
tation DβG and a function fβG : E(G) 7→ Zk − {0}, such that∑

e∈∂+
DβG

(v)

fβG(e)−
∑

e∈∂−DβG
(v)

fβG(e) ≡ βG(v) (mod k)

for every vertex v ∈ V (G).

Jaeger, Linial, Payan and Tarsi [3] conjectured that

Conjecture 1.17 (Jaeger, Linial, Payan and Tarsi [3]). Every 5-edge-connected graph is
Z3-connected.

By applying a similar argument as in the proof of Theorem 1.13, we could obtain the
second main result, which is a partial result to Conjecture 1.17.

Theorem 1.18. Every 5-edge-connected graph with at most five 5-edge-cuts is Z3-conn-
ected.

In the next section, some necessary preliminaries will be given. In Sections 3 and 4,
proofs of Theorems 1.13 and 1.18 will be given, respectively.

2 Preliminaries
In this section, we will give additional but necessary notations and definitions, and then
give some useful lemmas.

Definition 2.1. Let βG be a Z3-boundary of G. An orientation D of G is called a βG-
orientation if

d+D(v)− d−D(v) ≡ βG(v) (mod 3)

for every vertex v ∈ V (G).

Let G be a graph and A be a vertex subset ofG. The degree of A, denoted by dG(A), is
the number of edges with precisely one end in A. Moreover if A = {x}, we simply write
dG(x).

Let G be a graph and βG be a Z3-boundary of G. Define a mapping τG : V (G) 7→
{0,±1,±2,±3} such that, for each vertex x ∈ V (G),

τG(x) ≡
{
βG(x) (mod 3)
dG(x) (mod 2).
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Now, the mapping τG can be further extended to any nonempty vertex subset A as follows:

τG(A) ≡
{
βG(A) (mod 3)
dG(A) (mod 2).

where βG(A) ≡
∑
x∈A βG(x) ∈ {0, 1, 2} (mod 3).

Proposition 2.2. Let G be a graph and A be a vertex subset of G.
(1) If dG(A) ≤ 5, then dG(A) ≤ 4 + |τG(A)|.
(2) If dG(A) ≥ 6, then dG(A) ≥ 4 + |τG(A)|.

Proposition 2.2 follows from the fact that |τG(A)| ≤ 3 and dG(A)− |τG(A)| is even.

Lemma 2.3 (Tutte [9]). Let G be a graph.
(1) G has a nowhere-zero 3-flow if and only if G has a modulo 3-orientation.
(2) G has a nowhere-zero 3-flow if and only if G has a βG-orientation with βG = 0.

The following lemma is Theorem 3.1 in [7] by Lovász et al. This lemma will play the
main role in our proofs.

Lemma 2.4 (Lovász, Thomassen, Wu and Zhang [7]). Let G be a graph, βG be a Z3-
boundary of G, and let z0 ∈ V (G) and Dz0 be a pre-orientation of E(z0) of all edges
incident with z0. Assume that

(i) |V (G)| ≥ 3.
(ii) dG(z0) ≤ 4 + |τG(z0)| and d+Dz0 (z0)− d−Dz0 (z0) ≡ βG(z0) (mod 3), and
(iii) dG(A) ≥ 4 + |τG(A)| for each nonempty vertex subset A not containing z0 with

|V (G) \A| > 1.
Then the pre-orientationDz0 ofE(z0) can be extended to an orientationD of the entire

graph G, that is, for every vertex x of G,

d+D(x)− d−D(x) ≡ βG(x) (mod 3).

3 Proof of Theorem 1.13
If not, suppose that G is a counterexample, such that |V (G)| + |E(G)| is as small as
possible. Let P ′ = {x ∈ V (G) : dG(x) = 3} and Q′ = {x ∈ V (G) : dG(x) = 5}.

Claim 3.1. |V (G)| ≥ 3.

Proof. If |V (G)| = 1, then G has a nowhere-zero 3-flow, a contradiction. If |V (G)| = 2,
let V (G) = {x, y}, then all the edges of G are all between x and y. Since G is bridgeless,
|E(G)| ≥ 2. Let a be the integer in {0, 1, 2} such that a ≡ |E(G)| − a (mod 3). Orient a
edges from x to y and the remaining |E(G)| − a edges from y to x. Clearly, the resulting
orientation is a modulo 3-orientation of G, a contradiction. Therefore |V (G)| ≥ 3.

Claim 3.2. G is 3-edge-connected, and G has no nontrivial 3-edge-cuts.

Proof. If G has a vertex x of degree 2, then suppose that xx1, xx2 ∈ E(G). By the
minimality of G, (G− {xx1, xx2}) ∪ {x1x2} has a nowhere-zero 3-flow f ′. However, f ′

can be extended to a nowhere-zero 3-flow f of G, a contradiction. If G has a nontrivial k-
edge-cut (k = 2, 3), then contract one side and find a mod 3-orientation by the minimality
of G. Merge such two mod 3-orientations and we will get one for G, a contradiction.
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Claim 3.3. For any U ⊂ V (G), if dG(U) ≤ 5 and |U | ≥ 2, then U ∩ (P ′ ∪Q′) 6= ∅.

Proof. If not, choose U to be a minimal one such that: for any A ⊂ U with 2 ≤ |A| < |U |,
we have dG(A) ≥ 6.

By the minimality of G, G/U has a modulo 3-orientation D′ which is a partial modulo
3-orientation of G, such that d+D′(x) ≡ d−D′(x) (mod 3) for each x ∈ V (G) \ U .

Let G′ be a graph obtained from G by contracting V (G) \ U as z0 and let βG′ = 0.
(i) Since V (G′) = U + z0, |V (G′)| = |U |+ 1 ≥ 3.
(ii) Since dG′(z0) = dG(U) ≤ 5, by Proposition 2.2 (1), dG′(z0) ≤ 4 + |τG′(z0)|.
(iii) By the assumption and minimality of U , we have that for any A ⊂ U , dG(A) 6= 5

and dG(A) 6= 3. If dG(A) = 4, then dG′(A) = dG(A) = 4 and τG′(A) = βG′(A) =
βG(A) = 0. Thus dG′(A) = 4 = 4 + |τG′(A)|. If dG(A) ≥ 6, then by Proposition 2.2 (2),
dG′(A) = dG(A) ≥ 4 + |τG′(A)|.

By Lemma 2.4, we could see that the pre-orientation of E′(z0) of all edges incident
with z0 can be extended to a βG′ -orientation of G′. Then G has a modulo 3-orientation,
which is a contradiction.

Let G′1 be a graph obtained from G by adding a new vertex z0 and 2|P ′| + |Q′| edges
between z0 and P ′ ∪Q′, such that:

(i) For each vertex v ∈ P ′, we add two arcs with the same direction between it and z0;
and

(ii) For each vertex v ∈ Q′, we add one arc between it and z0.
If 2|P ′| + |Q′| ≤ 5, then all added arcs could be from z0 to P ′ ∪ Q′. Define βG′1 as

follows:
(1) βG′1(x) = 0 if x 6∈ (P ′ ∪Q′) + z0;
(2) βG′1(x) = 1 if x ∈ P ′;
(3) βG′1(x) = 2 if x ∈ Q′;
(4) βG′1(z0) ≡ 2|P ′|+ |Q′| (mod 3) and βG′1(z0) ∈ {0, 1, 2}.
If 2|P ′| + |Q′| = 6 or 7, in this case, if |P ′| 6= 0, choose one vertex v ∈ P ′, such that

the two arcs with ends z0 and v are from v to z0, the other arcs incident with z0 are all
directed from z0. If |P ′| = 0, then two arcs are from Q′ to z0, the others verse. Define βG′1
as follows:

(1) βG′1(x) = 0 if x 6∈ (P ′ ∪Q′) + z0;
(2) βG′1(x) = 2 if x ∈ Q′ and the arc (z0, x) exists or x ∈ P ′ and the two arcs with

ends z0 and x are from x to z0;
(3) βG′1(x) = 1 if x ∈ Q′ and the arc (x, z0) exists or x ∈ P ′ and the two arcs with

ends z0 and x are from z0 to x;
(4) βG′1(z0) ≡ (2|P ′|+ |Q′| − 2)− 2 (mod 3).
Now dG′1(z0) ≤ 4 + |τG′1(z0)| and |V (G′1)| = |V (G)| + 1 ≥ 4. We claim that:

dG′1(A) ≥ 4 + |τG′1(A)|, for each nonempty vertex subset A not containing z0 with
|V (G′1) \A| > 1.

If A ∩ (P ′ ∪Q′) = ∅, then by Claim 3.3, dG(A) = 4 or dG(A) ≥ 6. In each case we
could get that dG′1(A) = dG(A) ≥ 4 + |τG′1(A)|.

If A∩ (P ′∪Q′) 6= ∅, then by Claim 3.2, dG′1(A) ≥ 5. If dG′1(A) = 5, then dG(A) = 3
or 4 and |A ∩ (P ′ ∪ Q′)| = 1, and it follows that βG′1(A) = 1 or 2, and |τG′1(A)| = 1.
Thus dG′1(A) ≥ 4 + |τG′1(A)|. If dG′1(A) ≥ 6, by Proposition 2.2 (2), we have that
dG′1(A) ≥ 4 + |τG′1(A)|.
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Now G′1 satisfies all the conditions of Lemma 2.4. By Lemma 2.4, G′1 has a βG′1 -
orientation extended from the pre-orientation ofE′1(z0) of all edges incident with z0, which
implies that G has a βG-orientation with βG = 0. By Lemma 2.3, G has a nowhere-zero
3-flow, which is a contradiction. �

4 Proof of Theorem 1.18
Assume not. Suppose that G is a counterexample, such that |V (G)| + |E(G)| is as small
as possible. Let S′ = {x ∈ V (G) : dG(x) = 5} and S = {C = ∂G(X) : |C| = 5, X ⊂
V (G)}. Let βG be a Z3-boundary, such that G has no βG-orientation.

Claim 4.1. |V (G)| ≥ 3 and |S′| ≤ |S| ≤ 5.

Proof. Since G is 5-edge-connected, |V (G)| ≥ 2. If |V (G)| = 2, let V (G) = {x, y}, then
all the edges ofG are between x and y, and |E(G)| ≥ 5. LetDx be an orientation of x, such
that d+Dx(x)−d−Dx(x) ≡ βG(x) (mod 3). Since βG is a Z3-boundary, d+Dx(y)−d−Dx(y) ≡
βG(y) (mod 3). Therefore G has a βG-orientation, a contradiction. Hence |V (G)| ≥ 3
and |S′| ≤ |S| ≤ 5.

Claim 4.2. Let U ⊂ V (G) with |U | ≥ 2. If dG(U) = 5, then U ∩ S′ 6= ∅.

Proof. If not, choose U to be a minimal one such that: for any A ⊂ U with 2 ≤ |A| < |U |,
we have dG(A) 6= 5.

By the minimality ofG, G/U has a βG-orientationD′ which is a partial βG-orientation
of G, such that d+D′(x)− d−D′(x) ≡ βG(x) (mod 3) for each x ∈ V (G) \ U .

Let G′ be a graph obtained from G by contracting V (G) \ U as z0, and let βG′ = βG.
(i) Since V (G′) = U + z0, |V (G′)| = |U |+ 1 ≥ 3.
(ii) Since dG′(z0) = dG(U) = 5, by Proposition 2.2 (1), we have that dG′(z0) ≤

4 + |τG′(z0)|.
(iii) By the assumption and minimality of U , we have that for any A ⊂ U , dG(A) 6= 5.
Therefore dG(A) ≥ 6. By Proposition 2.2 (2), dG′(A) = dG(A) ≥ 4 + |τG′(A)|.
By Lemma 2.4, the pre-orientation of E′(z0) of all edges incident with z0 can be ex-

tended to a βG′ -orientation of G′. Therefore, G has a βG-orientation, which is a contradic-
tion.

Let G′1 be a graph obtained from G by adding a new vertex z0 and |S′| arcs from z0 to
S′, such that each vertex in S′ has degree 6 in G′1.

Define βG′1 as follows:
(1) βG′1(x) = βG(x) if x 6∈ S′ + z0;
(2) βG′1(x) ≡ βG(x)− 1 (mod 3) if x ∈ S′;
(3) βG′1(z0) ≡ |S′| (mod 3) and βG′1(z0) ∈ {0, 1, 2}.
Now dG′1(z0) ≤ 4+|τG′1(z0)| and |V (G′1)| = |V (G)|+1 ≥ 4. We claim that dG′1(A) ≥

4 + |τG′1(A)|, for each nonempty vertex subset A not containing z0 with |V (G′1) \A| > 1.
If A ∩ S′ = ∅, then by Claim 4.2, dG′1(A) = dG(A) 6= 5. Thus dG′1(A) ≥ 6. By

Proposition 2.2 (2), dG′1(A) ≥ 4 + |τG′1(A)|.
If A ∩ S′ 6= ∅, then dG′1(A) ≥ dG(A) + 1 ≥ 6. By Proposition 2.2 (2), we have that

dG′1(A) ≥ 4 + |τG′1(A)|.
Now G′1 satisfies all the conditions of Lemma 2.4. By Lemma 2.4, G′1 has a βG′1 -

orientation extended from the pre-orientation ofE′1(z0) of all edges incident with z0, which
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implies that G has a βG-orientation, a contradiction.
The proof is complete. �
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