FOLIA BIOLOGICA ET GEOLOGICA = Ex RAZPRAVE IV. RAZREDA sAZu issn 1855-7996 · Letnik / Volume 58 · Številka / Number 1 · 2017 RazpRave / essays FO LI A B IO LO G IC A E T G EO LO G IC A 58 /1 – 2 01 7 58/1 · 2017 vseBINa / CoNteNts ISSN 1855-7996 | 25,00 € Igor Dakskobler & Branko Zupan two new scree plant communities in the triglav Mountains (Julian alps, slovenia) Dve novi rastlinski združbi melišč v triglavskem pogorju (Julijske alpe, slovenija) Igor Dakskobler, Andrej Martinčič & Daniel Rojšek New localities of Adiantum capillus-veneris in the river-basin of volarja/volarnik (the Julian alps) and phytosociological analysis of its sites Nova nahajališča vrste Adiantum capillus-veneris v porečju volarje/volarnika (Julijske alpe) in fitocenološka analiza njenih rastišč Jožica Gričar značilnosti zgradbe lesa sadik bora (Pinus sylvestris) in bukve (Fagus sylvatica) izpostavljenih trem različnim okoljskim razmeram Characteristics of wood structure of pine (Pinus sylvestris) and beech (Fagus sylvatica) seedlings exposed to different environmental regimes Vasja Mikuž, Aleš Šoster & Špela Ulaga Fosilni ribji zobje iz najdišč med trbovljami in Laškim Fossil fish teeth from sites between trbovlje and Laško, slovenia Tanja Mrak Razširjenost lišajev iz skupine Lobaria s. lat. v sloveniji Distribution of lichens from the Lobaria s. lat. group in slovenia Rebeka Šiling & Mateja Germ pomen makrofitov v jezerskem ekosistemu the importance of macrophytes in lake ecosystem Jure Škraban, Tjaša Matjašič, Franc Janžekovič, Gottfried Wilharm & Janja Trček Cultivable bacterial microbiota from choanae of free-living birds captured in slovenia Kultivabilna bakterijska mikrobiota iz sapišč prostoživečih ptic, ujetih v sloveniji Tina Unuk & Tine Grebenc silver fir (Abies alba Mill.) ectomycorrhiza across its areal – a review approach ektomikorizni simbionti bele jelke (Abies alba Mill.) na naravnem območju razširjenosti - pregled Folia biologica e t g e ol o gic a SLOVENSKA AKADEMIJA ZNANOSTI IN UMETNOSTI ACADEMIA SCIENTIARUM ET ARTIUM SLOVENICA Razred za naravoslovne vede – Classis IV: Historia naturalis LJUBLJANA 2017 Ex: Razprave razreda za naravoslovne vede Dissertationes classis IV (Historia naturalis) 58/1 2017 Naslovnica: Les sadik bora in bukve (podrobnosti na str. 50) Cover photo: Wood structure of pine and beech seedlings (details on page 50) Folia biologica et geologica iSSN 1855-7996 Uredniški odbor / Editorial Board Matjaž Gogala, Špela Goričan, Ivan Kreft, Ljudevit Ilijanič (Hrvaška), Livio Poldini (Italija), Dragica Turnšek, Branko Vreš in Mitja Zupančič Glavni in odgovorni urednik / Editor Ivan Kreft Tehnični urednik / Technical Editor Janez Kikelj Oblikovanje / Design Milojka Žalik Huzjan Prelom / Layout Medija grafično oblikovanje Sprejeto na seji razreda za naravoslovne vede SAZU dne 1. decembra 2016 in na seji predsedstva dne 21. februarja 2017. Naslov Uredništva / Editorial Office Address FOLIA BIOLOGICA ET GEOLOGICA SAZU Novi trg 3, SI-1000 Ljubljana, Slovenia Faks / Fax: +386 (0)1 4253 423, E-pošta / E-mail: sazu@sazu.si; www.sazu.si Avtorji v celoti odgovarjajo za vsebino in jezik prispevkov. The autors are responsible for the content and for the language of their contributions. Revija izhaja dvakrat do štirikrat letno / The Journal is published two to four times annually Zamenjava / Exchange Biblioteka SAZU, Novi trg 3, SI-1000 Ljubljana, Slovenia Faks / Fax: +386 (0)1 4253 462, E-pošta / E-mail: sazu-biblioteka@zrc-sazu.si © 2017, Slovenska akademija znanosti in umetnosti Vse pravice pridržane. Noben del te izdaje ne sme biti reproduciran, shranjen ali prepisan v kateri koli obliki oz. na kateri koli način, bodisi elek tronsko, mehansko, s fotokopiranjem, snemanjem ali kako drugače, brez predhodnega pisnega dovoljenja last- nikov avtorskih pravic. / All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmit- ted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Folia biologica et geologica (ex Razprave IV. razreda SAZU) je vključena v / is included into: Index to Scientific & Technical Proceedings (ISTP, Philadelphia) / Index to Social Sciences & Humanities Proceedings (ISSHP, Philadelphia) / GeoRef Serials / BIOSIS Zoological Record / Internationale Bibliographie des Zeitschriften (IBZ) / Redakcion Homo / Colorado State University Libraries / CABI (Wallingford, Oxfordshire). Folia biologica et geologica (ex Razprave IV. razreda SAZU) izhaja s finančno pomočjo / is published with the financial support Javne agencije za raziskovalno dejavnost RS / Slovenian Research Agency. Folia biologica et geologica · Volume / Letnik 58 · Number / Številka 1 · 2017 VSEBINA CONTENTS RAZPRAVE / ESSAyS Igor Dakskobler & Branko Zupan 5 Two new scree plant communities in the Triglav Mountains (Julian Alps, Slovenia) 5 Dve novi rastlinski združbi melišč v Triglavskem pogorju (Julijske Alpe, Slovenija) Igor Dakskobler, Andrej Martinčič & Daniel Rojšek 31 New localities of Adiantum capillus-veneris in the river-basin of Volarja/Volarnik (the Julian Alps) and phytosociological analysis of its sites 33 Nova nahajališča vrste Adiantum capillus-veneris v porečju Volarje/Volarnika (Julijske Alpe) in fitocenološka analiza njenih rastišč Jožica Gričar 47 Značilnosti zgradbe lesa sadik bora (Pinus sylvestris) in bukve (Fagus sylvatica) izpostavljenih trem različnim okoljskim razmeram 47 Characteristics of wood structure of pine (Pinus sylvestris) and beech (Fagus sylvatica) seedlings exposed to different environmental regimes Vasja Mikuž, Aleš Šoster & Špela Ulaga 59 Fosilni ribji zobje iz najdišč med Trbovljami in Laškim 59 Fossil fish teeth from sites between Trbovlje and Laško, Slovenia Tanja Mrak 77 Razširjenost lišajev iz skupine Lobaria s. lat. v Sloveniji 77 Distribution of lichens from the Lobaria s. lat. group in Slovenia Rebeka Šiling & Mateja Germ 93 Pomen makrofitov v jezerskem ekosistemu 93 The importance of macrophytes in lake ecosystem Jure Škraban, Tjaša Matjašič, Franc Janžekovič, Gottfried Wilharm & Janja Trček 105 Cultivable bacterial microbiota from choanae of free-living birds captured in Slovenia 105 Kultivabilna bakterijska mikrobiota iz sapišč prostoživečih ptic, ujetih v Sloveniji Tina Unuk & Tine Grebenc 115 Silver fir (Abies alba Mill.) ectomycorrhiza across its areal – a review approach 115 Ektomikorizni simbionti bele jelke (Abies alba Mill.) na naravnem območju razširjenosti - pregled folia biologica et geologica 58/1, 5–30, ljubljana 2017 TWO NEW SCREE PLANT COMMUNITIES IN THE TRIGLAV MOUNTAINS (JULIAN ALPS, SLOVENIA) DVE NOVI RASTLINSKI ZDRUŽBI MELIŠČ V TRIGLAVSKEM POGORJU (JULIJSKE ALPE, SLOVENIJA) Igor DAKSKOBLER* & Branko ZUPAN** http://dx.doi.org/10.3986/fbg0018 abStRact two new scree plant communities in the triglav Moun- tains (Julian alps, Slovenia) In the Triglav Mountains, mainly on the slopes and pla- teaus to the west of Mt. Triglav (Glava v Zaplanji, Vrh Zele- nic) we found new localities of three rare species of Slove- nian flora, Crepis terglouensis, Cerastium uniflorum and Geum reptans, and made a phytosociological inventory of their sites. Based on comparisons with similar communities within which they occur elsewhere in the Eastern and South- eastern Alps we described two new associations, Crepido ter- glouensis-Potentilletum nitidae (alliance Thlaspion rotundi- folii) and Saxifrago carniolicae-Cerastietum uniflorae (alli- ance Arabidion caeruleae). Key words: Alpine flora, phytosociology, synsystemat- ics, Crepis terglouensis, Cerastium uniflorum, Geum reptans, Triglav National Park, Slovenia iZVleČeK Dve novi rastlinski združbi melišč v triglavskem pogorju (Julijske alpe, Slovenija) V Triglavskem pogorju, predvsem na pobočjih in plano- tah zahodno od Triglava (Glava v Zaplanji, Vrh Zelenic) smo našli nova nahajališča treh redkih vrst v flori Sloveniji, Cre- pis terglouensis, Cerastium uniflorum in Geum reptans in fitocenološko popisali njihova rastišča. Na podlagi primer- jav s podobnimi združbami, v katerih uspevajo omenjene vrste drugod v Vzhodnih in Jugovzhodnih Alpah, smo opis- ali dve novi asociaciji Crepido terglouensis-Potentilletum ni- tidae (zveza Thlaspion rotundifolii) in Saxifrago carniolicae- -Cerastietum uniflorae (zveza Arabidion caeruleae). Ključne besede: alpska flora, fitocenologija, sinsistema- tika, Crepis terglouensis, Cerastium uniflorum, Geum rep- tans, Triglavski narodni park, Slovenija * Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Regional unit Tolmin, Brunov drevored 13, SI-5220 Tolmin and Biotechnical Faculty of the University in Ljubljana, Department of Forestry and Renewable Forest Resources, Večna pot 83, SI-1000 Ljubljana, Igor.Dakskobler@zrc-sazu.si ** Savica 6, SI-4264 Bohinjska Bistrica Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 6 folia biologica et geologica 58/1 – 2017 When mapping the flora on the slopes and plateaus west of Mt. Triglav in 2015 and 2016 we found and re- corded fascinating scree communities with three rare species of Slovenian flora – Crepis terglouensis, Cerasti- um uniflorum and Geum reptans. We compared them to similar communities that had been studied in the Triglav Mountains and in the Julian Alps by T. Wra- ber (1972) and with similar communities elsewhere in the Eastern Alps, and classified them into a syntaxo- nomic system. 1 INTRODUCTION 2 METHODS Alpine communities under Mt. Triglav were studied applying the Braun-Blanquet method (Braun- -Blanquet 1964). A total of 29 relevés (of which five had already been published by T. Wraber, 1972 and one by the authors of this paper – Dakskobler & Su- rina, 2017) were entered into the FloVegSi database (Fauna, Flora, Vegetation and Paleovegetation of Slo- venia) of the Jovan Hadži Institute of Biology at SRC SASA (T. Seliškar, Vreš et A. Seliškar 2003). They were arranged into a working table based on hierarchi- cal classification. We transformed the combined cov- er-abundance values with numerical values (1–9) ac- cording to van der Maarel (1979). Numerical com- parisons were performed with the SyN-TAX 2000 program package (Podani 2001). The relevés were compared by means of (unweighted) average linkage method – UPGMA, using Wishart’s similarity ratio. In the first step we used numerical analyses as the basis on which we formed floristically homogeneous groups of relevés that were subsequently compared, using the same methodology, with similar communi- ties in the Eastern Alps, also using hierarchical classi- fication and the same method as when we compared individual relevés. The nomenclature sources for the names of vascu- lar plants are the Mala flora Slovenije (Martinčič et al. 2007) and Flora alpina (Aeschimann et al. 2004a,b). Prof. Andrej Martinčič determined the collected mosses. For the names of syntaxa we follow Englisch et al. (1993), Theurillat (2004), Šilc & Čarni (2012), E. Pignatti & S. Pignatti (2014) and Mucina et al. (2016). In the classification of species into phytosocio- logical groups (groups of diagnostic species) we main- ly refer to the Flora alpina (Aeschimann et al. 2004a,b). The geographic coordinates of relevés are determined according to the Slovenian geographic coordinate sys- tem D 48 (5th zone) on the Bessel ellipsoid and with Gauss-Krüger projection. The relevés discussed in this article were made in the Triglav range of the Julian Alps, mostly on the pla- teuas west and southwest of Triglav. The geological bedrock in the study area is mainly calcareous, lime- stone and dolomite limestone (Buser 2009). The stud- ied communities occur on initial soils (lithosols) – Lo- vrenčak (1998), Vidic et al. (2015). The climate is cold and humid, with mean annual precipitation of 2,500 to 3,000 mm (Zupančič 1998) and mean annual air tem- perature of -2 ºC to 0 ºC 3. RESULTS AND DISCUSSION 3.1 Review of the studied syntaxa, with types of newly described communities Thlaspietea rotundifolii Br.-Bl. 1948 Thlaspietalia rotundifolii Br.-Bl. in Br.-Bl. et Jenny 1926 Thlaspion rotundifolii Jenny-Lips 1930 Papaveri julici-Thlaspietum rotundifolii T. Wraber 1970 Crepidetum terglouensis Seibert 1977 Crepido terglouensis-Potentilletum nitidae ass. nov. hoc. loco, the nomenclature type, holotypus, is rele- vé 12 in Table 1. -typicum, subass. nov., the nomenclature type is the same as the nomenclature type of the association -caricetosum firmae, the nomenclature type, holo- typus, is relevé 5 in Table 1. Saxifrago sedoidis-Geumetum reptantis nom. prov. Arabidetalia caeruleae Rübel ex Nordhagen 1937 Arabidion caeruleae Br.-Bl. In Br.-Bl. et Jenny 1926 Saxifrago carniolicae-Cerastietum uniflorae ass. nov. hoc loco, the nomenclature type, holotypus, is relevé 18 in Table 1. Asplenietea trichomanis (Br.-Bl. in Meier et Br.-Bl. 1934) Oberd. 1977 Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 7folia biologica et geologica 58/1 – 2017 Potentilletalia caulescentis Br.-Bl. in Br.-Bl. et Jenny 1926 Physoplexido comosae-Saxifragion petraeae Muci- na et Theurillat 2015 (syn. Androsaco-Drabion to- Figure 1: Localities of recorded stands in the Triglav mountains; yellow circle – stands of the association Crepido terglouensis- Potentilletum nitidae, red circle – stands of the association Saxifrago-Cerastietum uniflorae, blue circle – stand of the associa- tion Saxifrago-Geumetum reptantis Slika 1: Nahajališča preučenih sestojev v Triglavskem pogorju: rumen krog – sestoji asociacije Crepido terglouensis-Potentille- tum nitidae, rdeč krog – sestoji asociacije Saxifrago-Cerastietum uniflorae, moder krog – sestoj asociacije Saxifrago-Geume- tum reptantis mentosae T. Wraber 1970, Phyteumato-Saxifragion petraeae Mucina in Šilc et Čarni 2012) Potentilletum nitidae Wikus 1959 Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 8 folia biologica et geologica 58/1 – 2017 Figure 2: Distribution of Crepis terglouensis in Slovenia Slika 2: Razširjenost vrste Crepis terglouensis v Sloveniji Figure 3: Dendrogram of recorded stands in the Triglav Mountains, UPGMA, 1– similarity ratio PN Potentilletum nitidae; CTPN Crepido terglouensis-Potentilletum nitidae,Ss Salicetum serpyllifoliae nom. prov., SP Saxifra- getum paniculatae nom. prov., SpCF Saxifrago paniculatae-Caricetum fuliginosae, PT Papaveri julici-Thlaspietum rotundifolii, CU Saxifrago-Cerastietum uniflorae Slika 3: Dendrogram popisov preučenih sestojev v Triglavskem pogorju, UPGMA, komplement Wishartovega koeficienta podobnosti PN C TP N C TP N C TP N C TP N C TP N C TP N C TP N C TP N C TP N C TP N C TP N C TP N C TP N C TP N C TP N Ss SP SP Sp C F PT PT PT C U C U C U C U C U C U Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 9folia biologica et geologica 58/1 – 2017 3.2 Crepis terglouensis and its communities in Slovenia According to Flora alpina (Aeschimann et al. 2004b: 668) Crepis terglouensis is an eastern-Alpine species, a character species of the alliance Thlaspion rotundifolii that comprises vegetation of subalpine-alpine calcare- ous screes. The species also gave its name to the alpine community Crepidetum terglouensis Seibert 1977 from the Eastern Alps, which was presented with a phytoso- ciological table by Eggensberger (1994: 64–66, 76– 77). Certain similarities with this community can be observed also in the relevé published by Sutter (1969: 353) that he had made together with T. Wraber under the Planika Lodge at Mt. Triglav. T. Wraber (1972, 1990) recorded Crepis terglouensis mainly in the stands of a special form of the association Papaveri julici- -Thlaspietum rotundifolii. He found it on two screes at Kredarica and on Grlo pass between Oltar and Dovški Križ. E. & S. Pignatti (2014, 2016) mention it as a rare species in the stands of two other alpine scree commu- nities, Leontodontetum montani and Papaveretum rha- etici, and in the special form (Seleginella-Homogyne) of the association Seslerio-Caricetum sempervirentis. A phytosociological inventory of its two new localities in the Slovenian Alps (on talus under Prestreljenik in the Kanin Mountains – Praprotnik, 1997, 2002, and on the scree under Mt. Stol in the Karavanke Mts. – Novak 2015) has not been made until now. Novak (ibid.) mentions companion species Sesleria caerulea and Campanula cochleariifolia for the locality under Mt. Stol. In our research we made most of the relevés with Crepis terglouensis on fine talus on Glava nad Za- planjo under Mt. Triglav and on the neighbouring slopes towards Dolič (9648/2), but we also found a new locality on a similar site on Vrata pass between Zel- narica and Zadnji Vogel (9648/4) at the elevation of 2,192 m (leg. & det. I. Dakskobler, B. Anderle and B. Zupan, 23. 8. 2016, herbarium LJS), which is a new lo- cality of this species in the new quadrant (Figures 1, 2). In the comparison of our relevés with Crepis terglouen- sis and (or) Cerastium uniflorum with similar relevés made by T. Wraber (1972), the relevés with co-domi- nating Potentilla nitida and Crepis terglouensis grouped Figure 4: Dendrogram of syntaxa Potentilletum nitidae (PN), Crepidetum terglouensis (CT) and Crepido terglouensis-Potentil- letum nitidae (CTPN), UPGMA, 1– similarity ratio Slika 4: Dendrogram sintaksonov Potentilletum nitidae (PN), Crepidetum terglouensis (CT) and Crepido terglouensis-Potentil- letum nitidae (CTPN), UPGMA, komplement Wishartovega koeficienta podobnosti Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 10 folia biologica et geologica 58/1 – 2017 separately (Figure 3). We obviously inventoried a form of alpine vegetation that is transitional between scree communities, chasmophytic communities and stony grasslands, which had already been demonstrated by Sutter’s relevé (ibid.) and mentioned also by Eggens- berger (ibid.). We therefore made a synthetic table (Appendix 1) in which we compared 15 relevés of the studied stands with 33 relevés of the association Poten- tilletum nitidae (T. Wraber 1972, Table 3) and with 25 relevés of the association Crepidetum terglouensis (Eggensberger 1994, Table 6, columns 85–111). The results (Figure 4) indicate that our relevés are more similar to the stands of the association Potentilletum nitidae. They could therefore be classified into the new subassociation Potentilletum nitidae crepidetosum ter- glouensis, but the analysis of diagnostic species (Table 2, column 1) indicates the predominance of scree spe- cies from the order Thlaspietelia rotundifolii (37.43%) over the diagnostic chasmophytic species from the order Potentilletalia caulescentis (23.8%). Most of the relevés were made on fine talus that is almost consis- tently mixed with well-decomposed humus (mull), on levelled terrain with a relatively persistent snow cover. As a rule, Potentilla nitida is the dominant species in inventoried stands and its joint occurrence with the characteristic scree species Crepis terglouensis on rela- tively small but ecologically unique areas between rocks (fine talus) can indicate a stage in development (succession) that could be partly associated with the ongoing climate change, reduced precipitation vol- umes and shorter periods of snow cover on the pla- teaus to the west of Mt. Triglav, as demonstrated by the measurements of the Triglav Glacier at a similar eleva- tion (Gabrovec et al. 2014). This stage in succession can be treated also at the rank of the new association Crepido terglouensis-Potentilletum nitidae, which is classified into the alliance Thlaspion rotundifolii. Di- agnostic species of the new association are Potentilla nitida, Crepis terglouensis, Alyssum ovirense, Eritrichi- um nanum and Minuartia cherlerioides. We distin- guish between two subassociations, typical (-typicum) and -caricetosum firmae. The differential species of the latter are Carex firma, Silene acaulis and Salix retusa, which might indicate a transition towards stony alpine grasslands from the association Gentiano terglouensis- -Caricetum firmae. Figure 5: Distribution of Cerastium uniflorum in Slovenia Slika 5: Razširjenost vrste Cerastium uniflorum v Sloveniji Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 11folia biologica et geologica 58/1 – 2017 3.3 Cerastium uniflorum and its communities in Slovenia Cerastium uniflorum is an Alpine-Carpathian species, a character species of silicate subalpine and alpine screes (alliance Androsacion alpinae ) – Aeschimann et al. (2004a: 298). Its distribution in Slovenia is shown in Figure 5. Its reported localities are only on Mt. Tri- glav and its vicinity, on Mt. Rjavina and on Mt. Man- gart. T. Wraber (1990: 130, 1972) reported its occur- rence in the stands of associations Potentilletum niti- dae and Papaveri julici-Thlaspietum rotundifolii. E. & S. Pignatti (2014, 2016) recorded this species in the stands of associations Drabetum hoppeanae, Saxifrage- tum sedoidis, Leontodontetum montani, Papaveretum rhaetici, Festucetum pulchellae, Vitaliano-Eritrichetum nani, Arabidetum caeruleae, Saxifragetum bryoidis and several others. In our relevés it occurs with individual specimens within associations Saxifrago paniculatae- -Caricetum fuliginosae (Dakskobler & Surina 2017) and Crepido-Potentilletum nitidae (this article), but it is also one of the dominating species in six relevés on mainly fine talus and on sites with a persistent snow cover (Figure 1, relevés 17–21 in Table 1). These relevés grouped separately from other relevés of alpine screes and alpine swards on rock ledges (Figure 3). The most frequent species in addition to Cerastium uniflorum is Saxifrage sedoides, so we compared them with the as- sociation Saxifragetum sedoidis from the Dolomites (E. & S. Pignatti 2016: 204: Association table 9.2, 406– 407) – Appendix 2. Surina (2005) prepared a phytoso- ciological table for the Krn Mts. in which he presented a similar syntaxon Saxifragetum stellaro-sedoidis var. geogr. Ranunculus traunfellneri, but in his stands he did not record Cerastium uniflorum, which is absent also from the original description of this association (Englisch 1999). Floristic similarity of our relevés with the relevés of the stands of the association Saxi- fragetum sedoidis is only 41% (Sørensen 1948), which does not allow for its classification into this associa- tion. These stands can also be explained as a succes- sional stage, because in the extreme conditions of the alpine belt Cerastium uniflorum can grow on various sites and overgrows even areas where it may not have occurred 50 or 100 years ago. For this reason and based on the composition of diagnostic species (Table 2, col- umn 2) we classify them into the new association Saxi- frago carniolicae-Cericetum uniflorae and into the alli- ance Arabidion caeruleae. Its diagnostic species are Cerastium uniflorum, Saxifraga sedoides and Saxifraga exarata subsp. carniolica. The latter is endemic to the Southeastern Alps and a character species of alpine chasmophytic communities (Potentilletum nitidae, Po- tentillo clusianae-Campanuletum zoysii) – T. Wraber (2006: 70) and of stony grasslands from alliances Cari- cion firmae and Seslerion variae (Aeschimann et al. 2004: 2010). The first two listed species characterise an alpine community on fine talus in areas with long- lasting snow cover and the third characterises the new association mainly in terms of phytogeography and partly indicates similar development of communities on fine gravel with communities on stony alpine swards and rock crevices. Abundant Sagina saginoides in one of the stands indicates locally improved soil conditions with an abundance of fine weathered mate- rial (mull). 3.4 Geum reptans in the triglav Mountains Aeschimann et al. (2004a: 758) classify the South- European montane species Geum reptans as a charac- ter species of the alliance Androsacion alpinae. The only reported localities in the Julian Alps so far have been those on Mts. Mangart and Kanjavec (T. Wra- ber 2006, Zupan & Dakskobler 2007, Figure 6). On 8 August 2016 we found a new locality of this scree species on the western slopes of Triglav, in the cirque under Vrh Zelenic, on the elevation of 2,060 m (Dakskobler 2017, Figure 1). The site is a well-over- grown, consolidated scree with rocks of various sizes. Its species composition is shown in Column 2 of Table 3. Column 1 in the same table presents the relevé of the community on the locality at Teme between Kanjavec and Poprovec (Zupan & Dakskobler 2007), which was identified as a transition between the community of Potentilletum nitidae and the stand of the associa- tion Papaveri julici-Thlaspietum rotundifolii. The stand under Vrh Zelenic cannot be classified into either of the mentioned associations. It characterises a scree community with many species of stony Alpine swards (from the association Gentiano terglouensis-Caricetum firmae). It is provisionally classified into the associa- tion Saxifrago sedoidis-Geumetum reptantis nom. prov. and into the alliance Thlaspion rotundifolii. In addi- tion to Geum reptans the species that characterise this community are mainly those from the genus Saxifraga (S. sedoides, S. paniculata, S. aizoides, S. crustata, S. squarrosa) and two typical scree species, Festuca nitida and Poa minor. Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 12 folia biologica et geologica 58/1 – 2017 The result of floristic mapping in the western part of Mt. Triglav (Glava v Zaplanji, Vrh Zelenic) and on Vrata pass between Velika Zelnarica and Zadnji Vogal are new localities of three alpine scree and (or) chas- mophytic species that are rare in Slovenia and listed on the Red List (Anon. 2002): Cerastium uniflorum (new localities in quadrant 9648/2), Crepis terglouensis (new localities in quadrants 9648/2 and 9648/4) and Geum reptans (new locality in the existing quadrant, 9648/2, new to the flora of Triglav). We made a phytosocio- logical inventory of the communities in which they grow and determined untypical stands on fine talus with fine weathered material (mull) that are transi- tional between alpine chasmophytic, scree and snow bed communities and could be a successional stage in areas that decades ago were covered by snow for much longer periods than they are today. Based on their comparison with similar communities from the East- ern and Southeastern Alps we described two new as- sociations, Crepido terglouensis-Potentilletum nitidae and Saxifrago carniolicae-Cerastietum uniflorae. Even though their stands are located in the vicinity of quite popular mountain trails to Triglav they are not yet en- dangered by increasing numbers of tourists in the summer as there are no other interventions into this area. In addition, neither Cerastium uniflorum nor Crepis terglouensis are prominent species and are quite inconspicuous outside their flowering season. The new locality of Geum reptans, which occurs also in the non- typical scree community (Saxifrago sedoidis-Geume- tum reptantis nom. prov.), is in a remote pathless area in the cirque under Vrh Zelenic and therefore still out- side any direct influence of man. Figure 6: Distribution of Geum reptans in Slovenia Slika 6: Razširjenost vrste Geum reptans v Sloveniji 4 CONCLUSIONS Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 13folia biologica et geologica 58/1 – 2017 5.1 Uvod Pri kartiranju flore na pobočjih in planotah zahodno od Triglava smo v letih 2015 in 2016 našli in popisali zanimive meliščne združbe, v katerih uspevajo tri redke vrste slovenske flore: Crepis terglouensis, Cera- stium uniflorum in Geum reptans. Primerjali smo jih s podobnimi združbami, ki jih je v Triglavskem pogorju in v Julijskih Alpah raziskal T. Wraber (1972), in s podobnimi združbami drugod v Vzhodnih Alpah in jih uvrstili v sintaksonomski sistem. 5.2 Metode Alpinske združbe pod Triglavom smo preučevali po ustaljeni srednjeevropski metodi (Braun-Blanquet 1964). Skupno 29 popisov (od tega jih je pet predho- dno objavil že T. Wraber, 1972, enega pa mi – Dakskobler & Surina, 2017) smo vnesli v podatkov- no bazo FloVegSi (T. Seliškar, Vreš & A. Seliškar 2003). Fitocenološke popise smo v delovno tabelo ure- dili na podlagi hierarhične klasifikacije. Kombinirane ocene zastiranja in pogostnosti smo pretvorili v šte- vilčne vrednosti (1–9) – van der Maarel 1979). Popise smo primerjali z metodo kopičenja na podlagi povezo- vanja (netehtanih) srednjih razdalj – (Unweighted) average linkage method – UPGMA. Uporabljali smo programski paket SyN-TAX 2000 (Podani 2001) in kot mero različnosti komplement koeficienta »simila- rity ratio«. V prvem koraku smo na podlagi numerič- nih analiz oblikovali floristično homogene skupine popisov, ki smo jih nato z enakim metodološkim pri- stopom primerjali s podobnimi združbami v Vzho- dnih Alpah, pri tem pa prav tako uporabili hierarhično klasifikacijo in isto metodo kot pri primerjavi posa- mičnih popisov. Nomenkalturna vira za imena prarotnic in semenk sta Mala flora Slovenije (Martinčič et al. 2007) in Flora alpina (Aeschimann et al. 2004a,b). Mahove, ki v preučenih združbah nimajo večjega zastiranja, je dolo- čil prof. Andrej Martinčič. Nomenklaturni viri za imena sintaksonov so Englisch et al. (1993), Theuril- lat (2004), Šilc & Čarni (2012), E. Pignatti & S. Pi- gnatti (2014) in Mucina et al. (2016). Pri uvrščanju vrst v fitocenološke skupine smo v glavnem upoštevali delo Flora alpina (Aeschimann et al., ibid.). Geograf- ske koordinate popisov smo določili po slovenskem ge- ografskem koordinatnem sistemu D 48 (cona 5) na Bes- selovem elipsoidu in z Gauss-Krügerjevo projekcijo. Popise smo naredili v Triglavskem pogorju v Julij- skih Alpah, večino na planotah zahodno in jugozaho- dno od vrha Triglava. Kot geološka podlaga se poja- vljata na raziskovanem območju apnenec in dolomit (Buser 2009). Preučene združbe uspevajo na kamni- ščih (Lovrenčak 1998, Vidic et al. 2015). Podnebje je hladno in vlažno, s povprečno letno višino padavin med 2500 mm in 3000 mm (Zupančič 1998) in sre- dnjo letno temperature zraka med -2 ºC in 0 ºC (Ce- gnar 1998). 5.3. Rezultati in razprava 5.3.1 Pregled preučenih sintaksonov s tipi na novo opi- sanih združb Thlaspietea rotundifolii Br.-Bl. 1948 Thlaspietalia rotundifolii Br.-Bl. in Br.-Bl. et Jenny 1926 Thlaspion rotundifolii Jenny-Lips 1930 Papaveri julici-Thlaspietum rotundifolii T. Wraber 1970 Crepidetum terglouensis Seibert 1977 Crepido terglouensis-Potentilletum nitidae ass. nov. hoc. loco, nomenklaturni tip, holotypus, je popis 12 v preglednici 1. -typicum, subass. nov., nomenklaturni tip je isti kot nomenklaturni tip asociacije -caricetosum firmae, nomenklaturni tip, holotypus, je popis 5 v preglednici 1. Saxifrago sedoidis-Geumetum reptantis nom. prov. Arabidetalia caeruleae Rübel ex Nordhagen 1937 Arabidion caeruleae Br.-Bl. In Br.-Bl. et Jenny 1926 Saxifrago carniolicae-Cerastietum uniflorae ass. nov. hoc loco, nomenklaturni tip, holotypus, je popis 18 v preglednici 1. Asplenietea trichomanis (Br.-Bl. in Meier et Br.-Bl. 1934) Oberd. 1977 Potentilletalia caulescentis Br.-Bl. in Br.-Bl. et Jenny 1926 Physoplexido comosae-Saxifragion petraeae Mucina et Theurillat 2015 (sin. Androsaco-Drabion tomen- tosae T. Wraber 1970, Phyteumato-Saxifragion pe- traeae Mucina in Šilc et Čarni 2012) Potentilletum nitidae Wikus 1959 5.3.2 Vrsta Crepis terglouensis in združbe, v katerih uspeva v Sloveniji Po delu Flora alpina (Aeschimann et al. 2004b: 668) je Crepis terglouensis vzhodnoalpska vrsta, značilnica zveze Thlaspion rotundifoliae, ki združuje rastje subal- 5 POVZETEK Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 14 folia biologica et geologica 58/1 – 2017 pinsko-alpinskih melišč na karbonatni podlagi. Po njej se imenuje vzhodnoalpska alpinska združba Crepide- tum terglouensis Seibert 1977, ki jo je s fitocenološko tabelo podrobno predstavil Eggensberger (1994: 64– 66, 76–77). Nekaj podobnosti s to združbo naj bi imel tudi popis, ki ga je objavil Sutter (1969: 353) in sta ga naredila skupaj s T. Wraberjem pod planinskim domom Planika pod Triglavom. T. Wraber (1972, 1990) triglavski dimek omenja predvsem v posebni obliki asociacije Papaveri julici-Thlaspietum rotundifo- lii. Našel ga je na dveh meliščih na Kredarici in na pre- lazu Grlo med Oltarjem in Dovškim križem. E. & S. Pignatti (2014, 2016) to vrsto kot redko navajata v sestojih dveh drugih alpinskih meliščnih združb Leon- todontetum montani in Papaveretum rhaetici in v po- sebni obliki (Seleginella-Homogyne) asociacije Seslerio- -Caricetum sempervirentis. Dve novi nahajališči te vrste v slovenskih Alpah (na grušču pod Prestreljeni- kom v Kaninskem pogorju – Praprotnik, 1997, 2002 in na melišču pod Stolom v Karavnkah – Novak 2015) fitocenološko do zdaj nista popisani. Na nahajališču pod Stolom, Novak (ibid.) omenja spremljevalni vrsti Sesleria caerulea in Campanula cochleariifolia. Pri naših raziskavah smo večino popisov triglavskega dimka naredili na drobnem grušču na Glavi nad Za- planjo pod Triglavom in na sosednjih vzpetinah v smeri proti Doliču (9648/2) – slika 1, novo nahajališče pa smo našli tudi na enakem rastišču na prelazu Vrata med Zelnarico in Zadnjim Voglom (9648/4), na nad- morski višini 2192 m (leg. & det. I. Dakskobler, B. An- derle in B. Zupan, 23. 8. 2016, herbarij LJS), kar je novo nahajališče te vrste v novem kvadrantu (slika 2). Po primerjavi naših popisov z vrstama Crepis terglouensis in/ali Cerastium uniflorum s podobnimi popisi T. Wraberja (1972), so se posebej združevali popisi, v katerih skupaj prevladujeta vrsti Potentilla nitida in Crepis terglouensis (slika 3). Očitno smo popisali pre- hodno obliko alpinskega rastja med meliščnimi združ- bami, združbami skalnih razpok in kamnitih travišč, ki jo je z enim popisom ponazoril že Sutter (ibid.) in jo omenja tudi Eggensberger (ibid.). Zato smo izdela- li sintezno tabelo (Dodatek 1), v kateri smo 15 popisov preučenih sestojev primerjali s 33 popisi asociacije Po- tentilletum nitidae (T. Wraber 1972, preglednica 3) in s 25 popisi asociacije Crepidetum terglouensis (Eggens- berger 1994, preglednica 6, stolpci 85–111). Rezultati (slika 4) kažejo na večjo podobnost naših popisov s sestoji asociacije Potentilletum nitidae. Mogoče bi jih bilo torej uvrstiti v novo subasociacijo, Potentilletum nitidae crepidetosum terglouensis, toda analiza diagno- stičnih vrst (preglednica 2, stolpec 1) kaže na prevlado meliščnih vrst iz reda Thlaspietelia rotundifolii (37,43 %) nad diagnostičnimi vrstami skalnih razpok iz reda Potentilletalia caulescentis (23,8 %). Večino popisov smo naredili na drobnem grušču, med katerim je sko- raj vedno nekaj dobro razkrojenega humusa (sprsteni- ne), na uravnavah, kjer se razmeroma dolgo zadržuje sneg. Dominantna vrsta popisanih sestojev je navadno Potentilla nitida, njeno družno uspevanje s tipično me- liščno vrsto Crepis terglouensis na razmeroma majh- nih, a ekološko svojskih površinah med skalovjem (droben grušč) lahko označuje določeno razvojno (sukcesijsko) stopnjo, ki je morda deloma povezana tudi z zdajšnjimi podnebnimi spremembami, očitno manjšo količino snežnih padavin in krajšimi obdobji s snežno odejo na planotah zahodno od Triglava, kar dokazujejo meritve bližnjega Triglavskega ledenika na podobni nadmorski višini (Gabrovec et al. 2014). To sukcesijsko stopnjo lahko obravnavamo tudi v rangu nove asociacije Crepido terglouensis-Potentilletum niti- dae, ki jo uvrščamo v zvezo Thlaspion rotundifolii. Di- agnostične vrste nove asociacije so Potentilla nitida, Crepis terglouensis, Eritrichium nanum in Minuartia cherlerioides. Razlikujemo dve subasociaciji, tipično (-typicum) in -caricetosum firmae. Razlikovalnice sle- dnje so vrste Carex firma, Silene acaulis in Salix retusa, ki morda nakazujejo prehod proti kamnitim alpin- skim traviščem iz asociacije Gentiano terglouensis-Ca- ricetum firmae. 5.3.3 Vrsta Cerastium uniflorum in združbe, v katerih uspeva v Sloveniji Cerastium uniflorum je alpsko-karpatska vrsta, značil- nica zveze silikatnih melišč subalpinskega in alpinske- ga pasu Androsacion alpinae (Aeschimann et al. 2004a: 298). Njeno razširjenost v Sloveniji prikazuje slika 5. Znana nahajališča so le na Triglavu in v njego- va soseščini, na Rjavini in Mangartu. T. Wraber (1990: 130, 1972) navaja njeno pojavljanje v sestojih asociacij Potentilletum nitidae in Papaveri julici-Thla- spietum rotundifolii. E. & S. Pignatti (2014, 2016) sta to vrsto popisala v sestojih asociacij Drabetum hoppea- nae, Saxifragetum sedoidis, Leontodontetum montani, Papaveretum rhaetici, Festucetum pulchellae, Vitalia- no-Eritrichetum nani, Arabidetum caeruleae, Saxifra- getum bryoidis in v še nekaterih drugih. V naših popi- sih jo imamo kot posamično primes v sestojih asociacij Saxifrago paniculatae-Caricetum fuliginosae (Daksko- bler & Surina 2017) in Crepido-Potentilletum nitidae (ta članek), je pa ena od prevladujočih vrst v šestih po- pisih na večinoma drobnem grušču in na krajih, kjer se dolgo zadržuje sneg (slika 6, popisi 17–21 v preglednici 1). Ti popisi so se združevali ločeno od drugih popisov alpinskih melišč in alpskih trat na skalnatih policah (slika 2). Poleg vrste Cerastium uniflorum je na njih Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 15folia biologica et geologica 58/1 – 2017 najbolj pogosta vrsta Saxifrage sedoides, zato smo jih primerjali s popisi asociacije Saxifragetum sedoidis iz Dolomitov (E. & S. Pignatti 2016: 204: asociacijska preglednica 9.2, 406–407) – Dodatek 2. V Krnskem pogorju je Surina (2005) s fitocenološko tabelo pred- stavil nekoliko podoben sintakson Saxifragetum stella- ro-sedoidis var. geogr. Ranunculus traunfellneri, vendar v njegovih sestojih ni popisal enocvetne smiljke in tudi v izvornem opisu te asociacije (Englisch 1999) je ni. Floristična podobnost naših popisov s popisi sestojev asociacije Saxifragetum sedoidis je precej manj kot po- lovična, le 41-odstotna (Sørensen 1948), kar ne dopu- šča uvrstitve v to asociacijo. Tudi te sestoje lahko razlo- žimo kot razvojno (sukcesijsko) stopnjo, saj vrsta Cera- stium uniflorum v skrajnih razmerah alpinskega pasu lahko uspeva na različnih rastiščih in porašča tudi površine, ki jih morda pred 50 ali 100 leti še ni pora- ščala. Zato in na podlagi sestave diagnostičnih vrst (ta- bela 2, stolpec 2) jih uvrščamo v novo asociacijo Saxi- frago carniolicae-Cericetum uniflorae in v zvezo Arabi- dion caeruleae. Njene diagnostične vrste so Cerastium uniflorum, Saxifraga sedoides in Saxifraga exarata subsp. carniolica. Slednja je endemit Jugovzhodnih Alp in značilnica alpinskih združb skalnih razpok (Poten- tilletum nitidae, Potentillo clusianae-Campanuletum zoysii) – T. Wraber (2006: 70) in kamnitih travišč iz zvez Caricion firmae in Seslerion variae (Aeschimann et al. 2004: 2010). Prvi dve našteti vrsti označujeta al- pinsko združbo drobnega grušča v območjih z dolgo- trajno snežno odejo, tretja pa novo asociacijo označuje predvsem fitogeografsko in deloma kaže na razvojno povezanost združb drobnega grušča z združbami ka- mnitih alpskih trat in skalnih razpok. V enem sestoju je v veliki količini prisotna vrsta Sagina saginoides, ki kaže na krajevno boljše talne razmere, z obilico drobne preperine (sprstenine). 5.3.4 Vrsta Geum reptans v Triglavskem pogorju Tudi južnoevropsko montansko vrsto Geum reptans Aeschimann et al. (2004a: 758) uvrščajo med značil- nice zveze Androsacion alpinae. V Julijskih Alpah so bila do zdaj znana le nahajališča na Mangartu in Ka- njavcu (T. Wraber 2006, Zupan & Dakskobler 2007, slika 7). 8. 8. 2016 smo našli novo nahajališče te melišč- ne vrste na zahodnih pobočjih Triglava, v krnici pod Vrhom Zelenic, na nadmorski višini 2060 m (Daksko- bler 2017). Rastišče je ustaljeno melišče z različno ve- likimi kosi kamenja in precej poraslo. Njegova vrstna sestava je v stolpcu 2, v preglednici 3. V stolpcu 1 te tabele je popis združbe na nahajališču na Temenu med Kanjavcem in Poprovcem (Zupan & Dakskobler 2007), ki smo ga označili kot prehod med združbo tri- glavske rože (Potentilletum nitidae) in sestojem asocia- cije Papaveri julici-Thlaspietum rotundifolii. Sestoja pod Vrhom Zelenic ne moremo uvrstiti v nobeno od obeh navedenih asociacij. Označuje združbo melišč s precej vrstami kamnitih alpskih trat (iz asociacije Gen- tiano terglouensis-Caricetum firmae). Začasno jo uvr- ščamo v provizorno asociacijo Saxifrago sedoidis-Geu- metum reptantis in v zvezo Thlaspion rotundifolii. Združbo poleg prevladujoče vrste Geum reptans ozna- čujejo predvsem vrste iz rodu Saxifraga (S. sedoides, S. paniculata, S. aizoides, S. crustata, S. squarrosa) ter dve tipični meliščni vrsti: Festuca nitida in Poa minor. 5.4 Sklepne misli Razultat florističnega kartiranja v zahodnem delu Tri- glava (Glava v Zaplanji, Vrh Zelenic) in na prevalu Vrata med Veliko Zelnarico in Zadnjim Voglom so nova nahajališča treh v Sloveniji redkih vrst alpinskih melišč in/ali skalnih razpok, ki so uvrščene na rdeči seznam (Anon. 2002): Cerastium uniflorum (nova na- hajališča v kvadrantu 9648/2), Crepis terglouensis (nova nahajališča v kvadrantih 9648/2 in 9648/4) ter Geum reptans (novo nahajališče v že znanem kvadran- tu, 9648/2, novost v flori Triglava). Fitocenološko smo popisali združbe, v katerih uspevajo navedene vrste in ugotovili njihove netipične sestoje na drobnem grušču z drobno preperino (sprstenino), ki so prehodni med alpinskimi združbami skalnih razpok, melišč in sne- žnih dolinic ter so lahko sukcesijska stopnja na površi- nah, ki so bile pred desetletji precej dlje pokrita s sne- gom. Na podlagi primerjave s podobnimi združbami iz Vzhodnih in Jugovzhodnih Alp smo opisali dve novi asociaciji Crepido terglouensis-Potentilletum nitidae in Saxifrago carniolicae-Cerastietum uniflorae. Čeprav so njuni sestoji v bližini precej obiskanih planinskih poti, ki vodijo proti Triglavu, jih vsako leto večji poletni tu- ristični obisk za zdaj ne ogroža, saj drugih posegov v ta prostor tu ni in sta vrsti Cerastium uniflorum in Crepis terglouensis precej neopazni, še posebej v času, ko ne cvetita. Novo nahajališče vrste Geum reptans, ki tudi raste v netipični meliščni združbi (Saxifrago sedoidis- -Geumetum reptantis nom. prov.), je v odmaknjenem brezpotju v krnici pod Vrhom Zelenic in nanj za zdaj človek nima nobenega neposrednega vpliva. Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 16 folia biologica et geologica 58/1 – 2017 We are extremely grateful to Prof. Dr. Andrej Martinčič for his determination of mosses. Iztok Sajko prepared Figure 1 for print. Academician Dr. Mitja Zupančič and Prof. Nanika Holz helped us with valuable im- provements and corrections. The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0236). English translation by Andreja Šalamon Verbič. ACKNOWLEDGEMENTS REFERENCES – LITERATURA Aeschimann, D., K. Lauber, D. M. Moser & J.-P. Theurillat, 2004a: Flora alpina. Bd. 1: Lycopodiaceae-Apia- ceae. Haupt Verlag, Bern, Stuttgart, Wien. Aeschimann, D., K. Lauber, D. M. Moser & J.-P.Theurillat, 2004b: Flora alpina. Bd. 2: Gentianaceae−Orchi- daceae. Haupt Verlag, Bern, Stuttgart, Wien. Aeschimann, D., K. Lauber, D. M. Moser & J.-P.Theurillat, 2004c: Flora alpina. Bd. 3: Register. Haupt Verlag, Bern, Stuttgart, Wien. Anonymous, 2002: Pravilnik o uvrstitvi ogroženih rastlinskih in živalskih vrst v rdeči seznam. Uradni list RS 82/2002. Braun-Blanquet, J., 1964: Pflanzensoziologie. Grundzüge der Vegetationskunde. 3. Auflage. Springer, Wien – New york. Buser, S., 2009: Geološka karta Slovenije 1: 250.000. Geological map of Slovenia 1: 250,000. Geološki zavod Slo- venije, Ljubljana. Cegnar, T., 1998: Temperatura zraka. In: J. Fridl, D. Kladnik, M. Orožen Adamič & D. Perko (eds.): Geografski atlas Slovenije. Država v prostoru in času. Državna založba Slovenije, Ljubljana, pp. 100–101. Dakskobler, I., 2017: Dve botanični opombi pod črto: plazeča sretena (Geum reptans) pod Triglavom in venerini laski (Adiantum capillus-veneris) v grapi Volarje pri Seliščih. Proteus (Ljubljana) 79 (5): 216–223. Dakskobler, I. & B. Surina, 2017: Phytosociological analysis of alpine swards and heathlands (pioneer patches) on ridges and peaks in the Julian Alps (NW Slovenia). Hacquetia (Ljubljana) 16 (1): 49–171. https://doi.org/10.1515/ hacq-2016-0022 Eggensberger, P., 1994: Die Pflanzengesellschaften der subalpinen umd alpinen Stufe der Ammergauer Alpen und ihre Stellung in den Ostalpen. Ber. Bayer. Bot. Ges., Beihefte 8: 3–239. Englisch, T., 1999: Multivariate Analysen zur Synsystematik und Standortsökologie der Schneebodenvegetation (Arabidetalia caerulae) in den Nördlichen Kalkalpen. Stapfia (Linz) 59: 1– 211 + Tables. Englisch, T., M. Valachovič, L. Mucina, G. Grabherr, G.& T. Ellamuer, 1993: Thlaspietea rotundifolii. In: G. Grabherr & L. Mucina (eds.): Die Pflanzengesellschaften Österreichs. Teil II: Natürliche waldfreie Vegetation, Gustav Fischer Verlag, Jena - Stuttgart - New york, pp. 276–342. Gabrovec, M., M. Hrvatin, B. Komac, J. Ortar, M. Pavšek, M. Topole, M. Triglav Čekada & M. Zorn, 2014: Triglavski ledenik. Založba ZRC, Ljubljana. Lovrenčak, F., 1998: Prsti. In: J. Fridl, D. Kladnik, M. Orožen Adamič & D. Perko (eds.): Geografski atlas Sloveni- je. Država v prostoru in času. Državna založba Slovenije, Ljubljana, pp. 114–115. Maarel van der, E., 1979: Transformation of cover-abundance values in phytosociology and its effects on communi- ty similarity. Vegetatio 39 (2): 97–114. https://doi.org/10.1007/BF00052021 Martinčič, A., T. Wraber, N. Jogan, A. Podobnik, B. Turk, B. Vreš, V. Ravnik, B. Frajman, S. Strgulc Krajšek, B. Trčak, T. Bačič, M. A. Fischer, K. Eler & B. Surina, 2007: Mala flora Slovenije. Ključ za dolo- čanje praprotnic in semenk. Četrta, dopolnjena in spremenjena izdaja. Tehniška založba Slovenije, Ljubljana. Mucina, L., H. Bültmann, K. Dierssen, J-P. Theurillat, T. Raus, A. Čarni, K. Šumberová, W. Willner, J. Dengler, R. Gavilán García, M. Chytrý, M. Hájek, R. Di Pietro, D. Iakushenko, J. Pallas, F. J. A. Daniëls, E., Bergmeier, A. Santos Guerra, N. Ermakov, M. Valachovič, J. H. J. Schaminée, T. Lysen- ko, y. P. Didukh, S. Pignatti, J. S. Rodwell, J. Capelo, H. E. Weber, A. Solomeshch, P. Dimopoulos, C. Aguiar, S. M. Hennekens & L. Tichý, 2016: Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19, Suplement 1: 3–264. http://dx.doi.org/10.1111/avsc.12257 Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 17folia biologica et geologica 58/1 – 2017 Novak, Š., 2015: Crepis terglouensis (Hacquet) Kerner. Notulae ad floram Sloveniae. Hladnikia (Ljubljana) 36: 47–50. Pignatti, E. & S. Pignatti, 2014: Plant Life of the Dolomites. Vegetation Structure and Ecology. Publication of the Museum of Nature South Tyrol Nr. 8, Naturmuseum Südtirol, Bozen, Springer Verlag, Heidelberg. https://doi. org/10.1007/978-3-642-31043-0 Pignatti, E. & S. Pignatti, 2016: Plant Life of the Dolomites.Vegetation Tables. Publication of the Museum of Na- ture South Tyrol Nr. 11, Bozen, Springer Verlag, Heidelberg. https://doi.org/10.1007/978-3-662-48032-8 Podani, J., 2001: SyN-TAX 2000. Computer Programs for Data Analysis in Ecology and Systematics. User’s Manual, Budapest. Praprotnik, N., 1997: Crepis terglouensis (Hacq.) A. Kerner. In: Jogan N.: Nova nahajališča. Hladnikia (Ljubljana) 8/9: 59. Praprotnik, N., 2002: Triglavski dimek. Gea (Ljubljana) 12 (5): 65–66. Seliškar, T., B. Vreš & A. Seliškar, 2003: FloVegSi 2.0. Fauna, Flora, Vegetation and Paleovegetation of Slovenia. Computer programme for arranging and analysis of biological data. Biološki inštitut ZRC SAZU, Ljubljana. Sørensen, Th., 1948: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Det Kongelige Danske Videnskaberns Selskab, Biologiske Skrifter (København) 5 (4): 1–34. Surina, B., 2005: Subalpinska in alpinska vegetacija Krnskega pogorja v Julijskih Alpah. Scopolia (Ljubljana) 57: 1–122. Sutter, R., 1969: Ein Beitrag zur Kenntnis der soziologischen Bindung süd-südostalpiner Reliktendemismen. Acta Bot. Croatica (Zagreb) 28: 349–365. Šilc, U. & A. Čarni, 2012: Conspectus of vegetation syntaxa in Slovenia. Hacquetia (Ljubljana) 11 (1): 113–164. https://doi.org/10.2478/v10028-012-0006-1 Theurillat, J.-P., 2004: Pflanzensoziologisches System. In: Aeschimann, D., K. Lauber, D. M. Moser & J.-P. Theuri- llat: Flora alpina 3: Register. Haupt Verlag, Bern, Stuttgart, Wien, pp. 301–313. Vidic, N. J., T. Prus, H. Grčman, M. Zupan, A. Lisec, T. Kralj, B, Vrščaj, J. Rupreht, M. Šporar, M. Suha- dolc, R. Mihelič, R. & F. Lobnik, 2015: Tla Slovenije s pedološko karto v merilu 1: 250 000. Soils of Slovenia with soil map 1: 250 000. European Union & University of Ljubljana, Luxemburg, Ljubljana. Wraber, T., 1972: Contributo alla conoscenza della vegetazione pioniere (Asplenietea rupestria e Thlaspeetea rotun- difolii) delle Alpi Giulie. Tesi di laurea. Università degli Studi di Trieste, Facoltà di Scienze, Trieste (Doktorska naloga, 81 pp.) Wraber, T., 1990: Sto znamenitih rastlin na Slovenskem. Prešernova družba, Ljubljana. Wraber, T., 2006: 2 x Sto alpskih rastlin na Slovenskem. Prešernova družba, Ljubljana. Zupan, B. & I. Dakskobler, 2007: Geum reptans L. Notulae ad floram Sloveniae 83. Hladnikia (Ljubljana) 20: 36–38. Zupančič, B., 1998: Padavine. In: J. Fridl, D., Kladnik, M. Orožen Adamič & D. Perko (eds.): Geografski atlas Slo- venije. Država v prostoru in času. Državna založba Slovenije, Ljubljana, pp. 98–99. Figures 7–14: Photo/Foto: I. Dakskobler Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 18 folia biologica et geologica 58/1 – 2017 Figure 7: Crepis terglouensis Slika 7: Triglavski dimek (Crepis terglouensis) Figure 8: Stand of the association Crepido terglouensis-Potentilletum nitidae Slika 8: Sestoj asociacije Crepido terglouensis-Potentilletum nitidae Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 19folia biologica et geologica 58/1 – 2017 Figure 9: Glava nad Zaplanjo under Mt. Triglav, the area where we have recorded stands of the association Crepido terglouen- sis-Potentilletum nitidae Figure 9: Glava nad Zaplanjo, območje, kjer smo popisovali sestoje asociacije Crepido terglouensis-Potentilletum nitidae Figure 10: Cerastium uniflorum Slika 10: Enocvetna smiljka (Cerastium uniflorum) Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 20 folia biologica et geologica 58/1 – 2017 Figure 11: Stand of the association Saxifrago carniolicae-Cerastietum uniflorae Slika 11: Sestoj asociacije Saxifrago carniolicae-Cerastietum uniflorae Figure 12: Plateau west from Mt. Triglav, area, where we have recorded stands of the association Saxifrago carniolicae- Cerastietum uniflorae Slika 12: Planota zahodno od Triglava, kjer smo popisovali sestoje asociacije Saxifrago carniolicae-Cerastietum uniflo- rae Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 21folia biologica et geologica 58/1 – 2017 Figure 14: Stand of the association Saxifrago sedoidis-Geumetum raptantis Slika 14: Sestoj asociacije Saxifrago sedoidis-Geumetum raptantis Figure 13: Geum reptans under Mt. Triglav Slika 13: Plazeča sretena (Geum reptans) pod Triglavom Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 22 folia biologica et geologica 58/1 – 2017 table 1 : Crepido terglouensis-Potentilletum nitidae and Saxifrago carniolicae-Cerastietum uniflorae Preglednica 1: Crepido terglouensis-Potentilletum nitidae in Saxifrago carniolicae-Cerastietum uniflorae Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Database number of relevé (Delovna številka popisa) 20 01 47 25 80 65 25 76 26 26 32 98 26 34 03 26 34 04 25 76 13 25 76 23 26 25 76 26 34 06 25 76 64 26 34 08 26 34 09 25 76 14 25 76 17 25 80 67 26 25 77 25 80 68 25 80 73 25 80 71 26 25 78 Author of the relevé (Avtor popisa) T W ID ID BZ ID ID ID ID BZ ID BZ ID ID ID BZ ID ID ID BZ ID BZ ID ID ID ID ID ID Elevation in m (Nadmorska višina v m) 25 20 25 35 23 20 21 92 25 40 25 41 24 24 25 09 24 60 25 40 23 20 25 40 25 45 24 50 25 30 25 10 25 20 25 00 25 15 25 05 25 20 Aspect (Lega) SE N W N E SW N W SW SW S E W SS W N E SE SE S SS E SE N W N N W W SE N W Slope in degree (Nagib v stopinjah) 10 3 5 0-3 10 5 5 2 30 5 3 10 5 15 15 1 20 25 35 5 20 Parent material (Matična podlaga) Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Gr Soil (Tla) Li Li Li Li Li Li Li Li Li Li Li Li Li Li Li Re Li Li Li Li Li Stoniness in % (Kamnitost v %) 70 80 70 90 100 100 100 60 20 100 70 100 100 70 70 5 20 70 70 20 90 Cover of herb layer in % (Zastiranje zeliščne plasti v %) E1 30 30 30 30 40 40 30 40 80 30 30 30 40 30 30 90 90 30 30 80 30 Cover of moss layer in % (Zastiranje mahovne plasti v %) E0 . . . . . . . . . . . . . . . 10 60 . . . . Number of species (Število vrst) 18 14 10 12 19 15 7 3 5 6 3 12 18 15 11 13 6 7 7 12 6 Relevé area (Velikost popisne ploskve) m 2 10 10 4 5 10 10 3 4 2 10 3 10 10 10 5 2 10 2 2 10 10 Date of taking relevé (Datum popisa) 7/ 23 /1 96 3 9/ 1/ 20 15 7/ 31 /2 01 5 8/ 23 /2 01 6 8/ 24 /2 01 6 8/ 24 /2 01 6 8/ 1/ 20 15 8/ 1/ 20 15 8/ 24 /2 01 6 8/ 24 /2 01 6 7/ 31 /2 01 5 8/ 24 /2 01 6 8/ 24 /2 01 6 8/ 1/ 20 15 8/ 1/ 20 15 9/ 1/ 20 15 8/ 24 /2 01 6 9/ 1/ 20 15 9/ 1/ 20 15 9/ 1/ 20 15 8/ 24 /2 01 6 Locality (Nahajališče) K re da ri ca G la va v Z ap la nj i St an ič ev d om V ra ta -Z el na ri ca G la va v Z ap la nj i G la va v Z ap la nj i G la va v Z ap la nj i K re da ri ca G la va v Z ap la nj i G la va v Z ap la nj i D ov šk a vr at ca G la va v Z ap la nj i G la va v Z ap la nj i G la va v Z ap la nj i G la va v Z ap la nj i Z ap la nj a- M or be gn a G la va v Z ap la nj i Z ap la nj a- M or be gn a Z ap la nj a- Pl em en ic e Z ap la nj a- Pl am en ic e G la va v Z ap la nj i Quadrant (Kvadrant) 96 49 /1 96 48 /2 96 49 /1 96 48 /4 96 48 /2 96 48 /2 96 48 /2 96 49 /1 96 48 /2 96 48 /2 96 49 /1 96 48 /2 96 48 /2 96 48 /2 96 48 /2 96 49 /1 96 48 /2 96 49 /1 96 49 /1 96 49 /1 96 48 /2 Coordinate GK y (D-48) m 41 18 86 41 00 68 41 27 23 40 75 39 41 00 65 41 00 57 41 00 88 41 18 65 41 00 15 41 00 82 41 32 36 41 01 73 41 01 78 41 00 48 41 02 13 41 04 48 41 01 03 41 03 69 41 06 02 41 04 48 41 01 19 Coordinate GK X (D-48) m 51 37 96 4 51 37 60 4 51 38 74 8 51 33 84 9 51 37 60 4 51 37 59 7 51 37 33 4 51 37 88 7 51 37 49 9 51 37 59 7 51 38 75 7 51 37 64 4 51 37 72 6 51 37 45 4 51 37 62 8 51 37 75 5 51 37 66 7 51 37 84 2 51 38 03 3 51 37 75 4 51 37 67 6 Diagnostic species of the syntaxa (Diagnostične vrste sintaksonov) Pr . 1 -1 5 Fr - 1 -1 5 Pr . 1 6- 21 Fr . 1 6- 21 PS Potentilla nitida E1 2 2 1 1 1 2 3 3 4 3 2 3 3 2 2 . . . . . . 15 100 0 0 TR1 Crepis terglouensis E1 1 1 2 3 1 + 2 1 1 + 1 2 1 1 1 . . . . . . 15 100 0 0 PC Eritrichium nanum E1 1 + . . + + + . . + . + 1 . . . . . . . . 8 53 0 0 TR1 Alyssum ovirense E1 1 + . . + + . . . 1 . + + . . . . . . . . 7 47 0 0 PC Minuartia cherlerioides E1 . 1 . . 1 1 . . . + . + + . . . . . . . . 6 40 0 0 AA Cerastium uniflorum E1 + . . . + . . . . . . . . . . 1 2 3 2 4 1 2 13 6 100 TR1 Saxifraga sedoides E1 . . . . . . . . . . . . . . . 1 + + + + 2 0 0 6 100 Cfir Saxifraga exarata subsp. carniolica E1 . . . . . . . . . . . . . . . + . + + 1 . 0 0 4 67 TR1 Thlaspion rotundifolii Papaver julicum E1 + . . . . . . . . . . + + . . . . 1 + . 1 3 20 3 50 Thlaspi cepeaefolium (T. rotun- difolium, Noccaea rotundifolia) E1 . . . + . . . . . . . . . . + . . . . . . 2 13 0 0 TR2 Thlaspieetalia rotundifolii Poa minor E1 . . . . . . . . + . . + + 1 + . . . . . . 5 33 0 0 Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 23folia biologica et geologica 58/1 – 2017 Achillea atrata E1 + . . . . . . . . . . . . 1 + + . . . . . 3 20 1 17 Cerastium carinthiacum subsp. carinthiacum E1 . . + 1 . . . . 1 . . . . 1 . . . . . . . 4 27 0 0 Moehringia ciliata E1 . . . . . . . . . . . . . + . . . . + . . 1 7 1 17 Armeria alpina E1 . . + . . . . . . . . . . . . . . . . . . 1 7 0 0 AC Arabidetalia caeruleae Salix retusa E1 + . . + + + . . . . . . . . . . . . . . . 4 27 0 0 Salix serpyllifolia E1 . + . . . . . . . . . . . + . + + . . . . 2 13 2 33 CD Carex capillaris E1 . . . . + . . . . . . . + . + . . . . . . 3 20 0 0 Carex ornithopodoides E1 . . . . + + . . . . . . . . . . . . . . . 2 13 0 0 Carex parviflora E1 . . . . . . . . . . . . . . . + . . . . . 0 0 1 17 SH Sagina saginoides E1 . . . . . . . . . . . . . . . 4 . . . 1 . 0 0 2 33 Saxifraga androsacea E1 . . . . . . . . . . . . . . . 1 . . . + . 0 0 2 33 DH Sesleria ovata E1 + . . . . . . . . . . . . . . . . . . . . 1 7 0 0 TR3 Thlaspietea rotundifolii Taraxacum alpinum E1 . r . . + . . . . . . . + + . . . . . . . 4 27 0 0 Saxifraga oppositifolia s.str. E1 + . . . + . . . . . . . . . . . . . 1 . . 2 13 1 17 Linaria alpina E1 . . . . . . . . . . . + . . . . . . . . . 1 7 0 0 Festuca nitida E1 . . . . . . . . . . . . . + . . . . . . . 1 7 0 0 Arabis alpina E1 . . . . . . . . . . . . . . . . . . . . + 0 0 1 17 PC Potentilletalia caulescentis Valeriana elongata E1 + + . . + . . . . . . . . . . . . . . . . 3 20 0 0 Festuca alpina E1 . . . . . + . . + . . . . . . . . . . 1 . 2 13 1 17 Campanula cochleariifolia E1 . . . . . + . . . . . . . + . . . . . . . 2 13 0 0 Saxifraga paniculata E1 . . . . . . . . . . . . 1 . + . . . . . . 2 13 0 0 Petrocallis pyrenaica E1 . . . . . . . . . . . . . + + . . . . + . 2 13 1 17 Cfir Caricion firmae Minuartia verna E1 1 . + + . . + 1 . . . + + . . . + . . + . 7 47 2 33 Silene acaulis E1 + 2 + 1 + . . . . . . . . . . . . + . + . 5 33 2 33 Carex firma E1 1 + 1 1 1 1 . . . . 1 . . . . . . . . . . 7 47 0 0 Minuartia sedoides E1 1 2 + 1 . . + . . . . . + . . . . 1 . . . 6 40 1 17 Phyteuma sieberi E1 . + . + + . . . . . . + + + + . . . . . . 7 47 0 0 Sesleria sphaerocephala E1 . . . . + + + . . + . . + . . . . . . . . 5 33 0 0 Gentiana terglouensis E1 . 1 . . + + . . . . . . . + . . . . . . . 4 27 0 0 Festuca quadriflora E1 . . + . . . . . . . . . . . . + . . . + . 1 7 2 33 Saussurea pygmaea E1 . . . . . . . . . . . . . . + . . . . . . 1 7 0 0 Veronica aphylla E1 . . . . . . . . . . . . . . . . . . . + . 0 0 1 17 OE Oxytropido-Elynion Arenaria ciliata E1 . . . . + + . . . . . . . . . . . . . . . 2 13 0 0 Erigeron uniflorus E1 . . . . . . . . . . . . + . . + . . . . . 1 7 1 17 Lloydia serotina E1 . . . . . . . . . . . . + . . . . . . . . 1 7 0 0 ES Elyno-Seslerietea PAT Poa alpina E1 + + + + . + . . . . . + . + . 1 4 1 + 1 1 7 47 6 100 Myosotis alpestris E1 + . . . . . . . . . . + + + + . . . . . 1 5 33 1 17 Polygonum viviparum E1 + . . 1 + + + . . . . . + . . . . . . . . 6 40 0 0 ML Mosses (Mahovi) Syntrichia norvegica E0 . . . . . . . . . . . . . . . 1 4 . . . . 0 0 2 33 Bryum sp. E0 . . . . . . . . . . . . . . . + . . . . . 0 0 1 17 legend - legenda ID Igor Dakskobler BZ Branko Zupan TW Tone Wraber Gr Gravel - grušč Li Lithosol - kamnišče Pr. Presence (number of relevés in which the species is presented) - število popisov, v katerih se pojavlja vrsta Fr. Frequency in % - frekvenca v % Re Rendzina - rendzina PS Physoplexido-Saxifragion petraeae AA Androsacion alpinae CD Caricetalia davallianae SH Salicetea herbaceae DH Drabion hoppeanae PAT Poo alpinae-Trisetetalia Number of relevé (Zaporedna številka popisa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Pr . 1 -1 5 Fr - 1 -1 5 Pr . 1 6- 21 Fr . 1 6- 21 Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 24 folia biologica et geologica 58/1 – 2017 table 2: groups of diagnostic species in the stands of syntaxa Crepido terglouensis-Potentilletum nitidae (ctPn) and Saxifrago carniolicae-Cerastietum uniflorae (Sccu), relative frequencies Preglednica 2: Skupine diagnostičnih vrst v sestojih sintaksonov Crepido terglouensis-Potentilletum nitidae (ctPn) and Saxifrago carniolicae-Cerastietum uniflorae (Sccu), relativne frekvence Successive number (Zaporedna številka) 1 2 Sign for syntaxa (Oznaka sintaksona) CtPn ScCu Number of relevés (Število popisov) 15 6 Arabidetalia caeruleae 8,304 26,01 Thlaspion rotundifolii 16,07 18,01 Thlaspieetalia rotundifolii 8,333 4,002 Thlaspietea rotundifolii 4,762 4,002 Potentilletalia caulescentis 23,81 4,002 Caricion firmae 25,6 24,01 Oxytropido-Elynion 2,381 2,001 Elyno-Seslerietea 10,71 14,01 Moses (Mahovi) 0 4,002 Total (Skupaj) 100 100 Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 25folia biologica et geologica 58/1 – 2017 table 3: communities with Geum reptans in the triglav Mts. Preglednica 3: Združbi z vrsto Geum reptans v triglavskem pogorju Number of relevé (Zaporedna številka popisa) 1 2 Database number of relevé (Delovna številka popisa) 217413 262400 Author of the relevé (Avtor popisa) IDBZ ID Elevation in m (Nadmorska višina v m) 2470 2060 Aspect (Lega) SSE SW Slope in degrees (Nagib v stopinjah) 5 25 Parent material (Matična podlaga) Gr Gr Soil (Tla) Li Li Stoniness in % (Kamnitost v %) 20 80 Cover of herb layer in % (Zastiranje zeliščne plasti v %): E1 80 35 Number of species (Število vrst) 13 31 Relevé area (Velikost popisne ploskve) m2 5 100 Date of taking relevé (Datum popisa) 7/26/2007 8/8/2016 Locality (Nahajališče) Poprovec-Teme Vrh Zelenic-Skok Quadrant (Kvadrant) 9648/2 9648/2 Coordinate GK y (D-48) m 408402 409533 Coordinate GK X (D-48) m 5135506 5138047 AA Androsacion alpinae Pr. Geum reptans E1 4 3 2 AC Arabidetalia caeruleae Doronicum glaciale E1 . + 1 Galium noricum E1 . + 1 Salix retusa E1 . + 1 TR1 Thlaspion rotundifolii Thlaspi cepeaefolium (T. rotundifolium, Noccaea rotundifolia) E1 + + 2 Alyssum ovirense E1 + . 1 Papaver julicum E1 + . 1 Saxifraga sedoides E1 . 1 1 TR2 Thlaspieetalia rotundifolii Achillea atrata E1 + + 2 Moehringia ciliata E1 + + 2 Festuca nitida E1 . 1 1 Poa minor E1 . 1 1 TR3 Thlaspietea rotundifolii Saxifraga oppositifolia s.str. E1 + . 1 Taraxacum alpinum agg. E1 + . 1 Arabis alpina E1 . + 1 PS Physoplexido-Saxifragion petraeae Potentilla nitida E1 1 . 1 Paederota lutea E1 . + 1 Saxifraga crustata E1 . + 1 Saxifraga squarrosa E1 . + 1 PC Potentilletalia caulescentis Saxifraga paniculata E1 + 1 2 Festuca alpina E1 + . 1 Campanula cochleariifolia E1 . + 1 CA Caricion austroalpinae Arabis vochinensis E1 . + 1 Cfir Caricion ferrugineae Gentiana pumila E1 . + 1 OE Oxytropido-Elynion Arenaria ciliata E1 . + 1 Cfir Caricion firmae Minuartia verna E1 + + 2 Carex firma E1 . + 1 Dryas octopetala E1 . + 1 Pedicularis rostratocapitata E1 . + 1 Phyteuma sieberi E1 . + 1 Silene acaulis E1 . + 1 Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 26 folia biologica et geologica 58/1 – 2017 ES Elyno-Seslerietea Polygonum viviparum E1 . 1 1 Aster bellidiastrum E1 . + 1 Pedicularis verticillata E1 . + 1 Achillea clavenae E1 . + 1 MC Montio-Cardaminetea Saxifraga aizoides E1 . 1 1 PAT Poo alpinae-Trisetetalia Poa alpina E1 + 1 2 legend - legenda ID Igor Dakskobler BZ Branko Zupan Gr Gravel - grušč Li Lithosol - kamnišče Number of relevé (Zaporedna številka popisa) 1 2 Pr. Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 27folia biologica et geologica 58/1 – 2017 appendix 1: Synthetic table of communities with Potentilla nitida and/or Crepis terglouensis in eastern and Southeastern alps Dodatek 1: Sintezna tabela združb z vrstama Potentilla nitida in/ali Crepis terglouensis v Vzhodnih in Jugovzhodnih alpah Successive number (Zaporedna številka) 1 2 3 4 Number of relevés (Število popisov) 25 15 33 1 Sign for syntaxa (Oznaka sintaksonov) CT CTPN PN CTPN TR1 Thlaspion rotundifolii Crepis terglouensis E1 100 100 . 1 Galium megalospermum E1 76 . . . Arabis bellidifolia subsp. bellidifolia E1 52 . . . Pritzelago alpina subsp. alpina (Hutchinsia alpina) E1 44 . 3 . Saxifraga aphyla E1 12 . . . Thlaspi cepeaefolium (T. rotundifolium, Noccaea rotundifolia) E1 8 13 . . Alyssum ovirense E1 . 47 15 1 Papaver julicum E1 . 20 12 . Saxifraga sedoides E1 . . 15 . Festuca rupicaprina E1 . . 8 . TR2 Thlaspietalia rotundifolii Poa cenisia E1 24 . . . Poa minor E1 16 33 . . Linaria alpina E1 8 7 6 + Doronicum grandiflorum E1 4 . . . Cerastium carinthiacum E1 . 27 3 + Achillea atrata E1 . 20 3 . Armeria alpina E1 . 7 . + Moehringia ciliata E1 . 7 . . Sedum atratum E1 . . 3 . AC Arabidetalia caeruleae Salix serpyllifolia E1 16 13 15 1 MC Saxifraga aizoides E1 12 . 3 . Ranunculus alpestris E1 4 . . . Salix retusa E1 . 27 24 . CD Carex capillaris E1 . 20 9 . AA Cerastium uniflorum E1 . 13 3 . Carex ornithopodoides E1 . 13 3 . DH Sesleria ovata E1 . 7 . . JT Carex fuliginosa E1 . . 30 . Ranunculus traunfellneri E1 . . 12 . Doronicum glaciale E1 . . 6 . Salix reticulata E1 . . 3 . Trifolium pallescens E1 . . 3 . TR3 Thlaspietea rotundifolii Athamantha cretensis E1 36 . . . Trisetum distichophyllum E1 12 . . . Gypsophila repens E1 8 . . . Silene vulgaris subsp. glareosa E1 8 . . . Taraxacum alpinum E1 . 27 . . Saxifraga oppositifolia s.str. E1 . 13 70 . Festuca nitida E1 . 7 . . Pritzelago alpina subsp. brevicaulis E1 . . 3 . PS Physoplexido-Saxifragion petraeae Potentilla nitida E1 . 100 97 2 Saxifraga squarrosa E1 . . 73 . Saxifraga crustata E1 . . 27 . Campanula zoysii E1 . . 24 . Paederota lutea E1 . . 3 . PC Potentilletalia caulescentis Campanula cochleariifolia E1 56 13 42 + Eritrichium nanum E1 . 53 52 + Minuartia cherlerioides E1 . 40 55 . Valeriana elongata E1 . 20 3 . Festuca alpina E1 . 13 79 . Petrocallis pyrenaica E1 . 13 42 + Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 28 folia biologica et geologica 58/1 – 2017 Saxifraga paniculata E1 . 13 61 . Draba tomentosa E1 . . 45 . Saxifraga exarata subsp. carniolica E1 . . 24 . Potentilla clusiana E1 . . 21 1 Arabis bellidifolia subsp. stellulata E1 . 18 . Saxifraga burseriana E1 . . 12 . Androsace helvetica E1 . . 6 . Primula auricula E1 . . 3 . Dianthus sylvestris E1 . . 3 . CF Caricion ferrugineae Viola biflora E1 40 . 3 . Heliosperma pusillum E1 12 . . . Carex ferruginea E1 4 . . . Cfir Caricion firmae Festuca quadriflora E1 76 7 6 . Carex firma E1 56 47 45 + Dryas octopetala E1 32 . 3 . Minuartia verna E1 24 47 61 + Silene acaulis E1 24 33 30 + Minuartia sedoides E1 12 40 82 + Crepis kerneri E1 8 . . . Saxifraga caesia E1 8 . 3 . Phyteuma sieberi E1 . 47 . . Sesleria sphaerocephala E1 . 33 70 . Gentiana terglouensis E1 . 27 52 + Saussurea pygmaea E1 . 7 6 . Helianthemum alpestre E1 . . 18 . Gentiana orbicularis E1 . . 12 . Salix alpina E1 . . 9 + Oxytropis neglecta E1 . . 6 . Pedicularis rostratocapitata E1 . . 6 . Carex rupestris E1 . . 3 . Pedicularis rosea E1 . . 3 . Veronica aphylla E1 . . 3 . OE Oxytropido-Elynion Arenaria ciliata E1 13 33 . Lloydia serotina E1 . 7 15 . Erigeron uniflorus E1 . 7 3 . ES Elyno-Seslerietea Polygonum viviparum E1 40 40 39 . Sesleria caerulea E1 28 . 9 . Euphrasia salisburgensis E1 12 . 3 . Carex sempervirens E1 4 . 3 . Pedicularis oederi E1 4 . . . Galium anisophyllon E1 4 . . . PaT Poa alpina E1 . 47 55 . Myosotis alpestris E1 . 33 3 . Draba aizoides E1 . . 33 . Erigeron glabratus E1 . . 18 . Achillea clavenae E1 . . 15 . Leontopodium alpinum E1 . . 6 . Agrostis alpina E1 . . 3 . Aster bellidiastrum E1 . . 3 . EP Erico-Pinetea Asperula aristata E1 8 . . . Rhodothamnus chamaecistus E1 . . 3 . O other species (Druge vrste) Saxifraga sp. E1 . . 3 . Thymus sp. E1 . . 3 . ML Mosses and lichens (Mahovi in lišaji) Tortella tortuosa E0 8 . . . Distichum capillaceum E0 8 . . . Successive number (Zaporedna številka) 1 2 3 4 Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 29folia biologica et geologica 58/1 – 2017 Ctenidium molluscum E0 4 . . . Orthotecium rufescens E0 4 . . . Cladonia sp. E0 4 . . . Pohlia cruda E0 4 . . . Encalypta streptocarpa E0 4 . . . Hypnum bambergeri E0 4 . . . Ctenidium procerrimum E0 4 . . . legend - legenda CT Crepidetum terglouensis (Eggensbeger 1994, Table 6, Columns 85–111) CTPN Crepido-Potentilletum nitidae, this article, Table 1, Coliumns 1-15 PN Potentilletum nitidae, T. Wraber 1972, Table 3 CTPN Crepido-Potentilletum nitidae, Sutter (1969: 353) MC Montio-Cradaminetea CD Caricetalia davallianae AA Androsacion alpinae DH Drabion hoppeanae PAT Poo alpinae-Trisetetalia JT Juncetea trifidi Successive number (Zaporedna številka) 1 2 3 4 appendix 2: communities with Cerastium uniflorum and Saxifraga sedoides in Se alps Preglednica 2: Združbi z vrstama Cerastium uniflorum in Saxifraga sedoides v JV alpah Successive number (Zaporedna številka) 1 2 Number of relevés (Število popisov) 15 6 Sign for syntaxa (Oznaka sintaksonov) Ss ScSu AC Arabidetalia caeruleae AA Cerastium uniflorum E1 47 100 MC Saxifraga stellaris subsp. alpigena E1 13 Soldanella minima E1 13 . AA Doronicum clusii E1 7 . Ranunculus alpestris E1 7 . DH Draba hoppeana E1 7 . Salix serpyllifolia E1 . 33 Saxifraga androsacea E1 . 33 SH Sagina saginoides E1 . 33 Carex parviflora E1 . 17 TR1 Thlaspion rotundifolii Saxifraga sedoides E1 100 100 Pritzelago alpina subsp. alpina E1 60 . Thlaspi cepeaefolium (T. rotundifolium, Noccaea rotundifolia) E1 53 . Papaver rhaeticum E1 27 . Arabis bellidifolia subsp. bellidifolia E1 20 . Papaver julicum E1 . 50 TR2 Thlaspietalia rotundifolii Poa minor E1 67 . Arabis alpina E1 60 17 Moehringia ciliata E1 47 17 Cerastium carinthiacum E1 20 . Achillea oxyloba E1 13 . Achillea atrata E1 . 17 Igor DAKSKoBLEr & BrAnKo ZUPAn: TWo nEW SCrEE PLAnT CoMMUnITIES In THE TrIgLAV MoUnTAInS 30 folia biologica et geologica 58/1 – 2017 Successive number (Zaporedna številka) 1 2 TR3 Thlaspietea rotundifolii Saxifraga oppositifolia s.str. E1 13 17 Pritzelago alpina subsp. brevicaulis E1 7 . Taraxacum alpinum E1 7 . PC Potentilletalia caulescentis Festuca alpina E1 20 17 Campanula cochleariifolia E1 13 . Androsace hausmanii E1 7 . Phyteuma sieberi E1 7 . Valeriana elongata E1 7 . Cystopteris regia E1 7 . Petrocallis pyrenaica E1 . 17 Saxifraga exarata subsp. carniolica E1 . 67 Cfir Caricion firmae Minuartia sedoides E1 20 17 Sesleria sphaerocephala E1 13 . Minuartia verna E1 7 33 Silene acaulis E1 7 33 OE Erigeron uniflorus E1 7 17 Festuca quadriflora E1 . 33 Veronica aphylla E1 . 17 ES Elyno-Seslerietea PAT Poa alpina E1 27 100 Polygonum viviparum E1 13 . CF Heliosperma pusillum E1 7 . Myosotis alpestris E1 . 17 M Mosses and lichens (Mahovi in lišaji) Musci spp. E0 13 . Grimmia sp. E0 7 . Marchantia sp. E0 7 . Syntrichia norvegica E0 . 33 Bryum sp. E0 . 17 legend - legenda Ss Saxifragetum sedoidis, E. & S. Pignatti, 2016, Association Table 9.2 ScCu Saxifrago carniolicae-Cerastietum uniflorae, this article MC Montio-Cradaminetea CD Caricetalia davallianae AA Androsacion alpinae DH Drabion hoppeanae PAT Poo alpinae-Trisetetalia SH Salicetea herbaceae CF Caricion ferrugineae folia biologica et geologica 58/1, 31–45, ljubljana 2017 NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN OF VOLARJA/VOLARNIK (THE JULIAN ALPS) AND PHyTOSOCIOLOGICAL ANALySIS OF ITS SITES NOVA NAHAJALIŠČA VRSTE ADIANTUM CAPILLUS-VENERIS V POREČJU VOLARJE/VOLARNIKA (JULIJSKE ALPE) IN FITOCENOLOŠKA ANALIZA NJENIH RASTIŠČ Igor DAKSKOBLER1, Andrej MARTINČIČ2 & Daniel ROJŠEK3 http://dx.doi.org/10.3986/fbg0019 abStRact New localities of Adiantum capillus-veneris in the river basin of the Volarja/Volarnik (the Julian alps) and a phy- tosociological analysis of its sites The article describes the localities, sites and communi- ties of Adiantum capillus-veneris along the Volarja/Vol- arnik, the right tributary of the Soča River between Tolmin and Kobarid (9747/4). We classified its communities from three locations at elevations between 210 and 250 m into the subassociation Eucladio-Adiantetum cratoneuretosum commutati, a new variant Eucladio-Adiantetum hyme- nostylietosum recurvirostri var. Pinguicula alpina and into the new association Adianto-Molinietum arundina- ceae. Key words: phytosociology, synsystematics, Eucladio- -Adiantetum, Adianto-Molinietum arundinaceae, Natu- ra 2000, Upper Soča Valley, Julian Alps, Slovenia iZVleČeK Nova nahajališča vrste Adiantum capillus-veneris v porečju Volarje/Volarnika (Julijske alpe) in fitocenološka analiza njenih rastišč V članku opisujemo nahajališča, rastišča in združbe vrste Adiantum capillus-veneris ob Volarji/Volarniku, desnem pritoku Soče med Tolminom in Kobaridom (9747/4). Njene združbe na treh krajih, na nadmorski višini od 210 m do 250 m, uvrščamo v subasociacijo Eucladio-Adiantetum cratoneuretosum commutati, v novo varianto Eucladio- -Adiantetum hymenostylietosum recurvirostri var. Pin- guicula alpina in v novo asociacijo Adianto-Molinietum arundinaceae. Ključne besede: fitocenologija, sinsistematika, Eucla- dio-Adiantetum, Adianto-Molinietum arundinaceae, Natura 2000, Zgornje Posočje, Julijske Alpe, Slovenija 1 Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Regional unit Tolmin, Brunov drevored 13, SI-5220 Tolmin, and Biotechnical Faculty of the University in Ljubljana, Department of Forestry and Renewable Forest Resources, Večna pot 83, SI-1000 Ljubljana, igor.dakskobler@zrc-sazu.si 2 Zaloška 78 a, SI-1000 Ljubljana, andrej.martincic@siol.net 3 The Institute of the Republic of Slovenia for Nature Conservation, Regional Unit Nova Gorica, Delpinova 16, SI-5000 Nova Gorica, dar@zrsvn.si DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 32 folia biologica et geologica 58/1 – 2017 The Mediterranean (subtropical, paleotemperate) fern Adiantum capillus-veneris, a character species of com- munities growing on permanently moist to wet rocks, is distributed in the hill belt across the entire southern stretch of the Alps (Aeschimann et al. 2004: 66). Two localities have been reported so far for the Alpine part of Slovenia, in the Brezna/Brizna Grapa gorge at the foothills of Mali Vrh above Grahovo ob Bači and in the river beds of the Mrzlica/Mrzli Potok brook under the village of Krn (at the elevation of 510 m, which makes it its highest locality in Slovenia). Both localities have recently been described by Rojšek (2015a). We exam- ined them in terms of phytosociology as well and looked also into the localities of this fern in the Soča Valley between Ročinj and Solkan, in the Idrija Valley, in the Karst region (Škocjan Caves) and on several other localities in Istria (Dakskobler, Martinčič & Rojšek 2014). On 24 July 2016 we discovered new lo- calities of this fern on three spots on the right bank of the Volarja/Volarnik at the village of Selišče (Daksko- bler 2017 and Figures 1 and 2). They are situated in the basin of the same river (the Volarja) as the locality in the Mrzlica gorge, but are much more extensive and occupy a different quadrant of Central-European flora mapping (9747/4). In this article we provide a detailed description of these localities and present the species composition of the studied communities with a phyto- sociological table. Based on our comparison with rel- evés from other regions of Slovenia we will classify these communities into the syntaxonomic system. 1 INTRODUCTION Figure 1: Distribution of Adiantum capillus-veneris in Slovenia Slika 1: Razširjenost vrste Adiantum capillus-veneris v Sloveniji 2 METHODS Vegetation on the localities of Adiantum capillus-vene- ris was researched applying the standard Central-Eu- ropean method (Braun-Blanquet 1964). On 12 re- corded plots we collected mosses and liverworts which one of the authors, Andrej Martinčič, determined in the laboratory. All relevés were entered into the DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 33folia biologica et geologica 58/1 – 2017 FloVegSi database (T. Seliškar, Vreš & A. Seliškar 2003). Combined cover-abundance values were trans- formed into numerical values 1–9 (van der Maarel 1979). Programme package SyN-TAX (Podani 2001) was used in numerical comparisons. The relevés were mutually compared by means of hierarchical classifi- cation. We applied the (unweighted) pair group meth- od with arithmetic mean (UPGMA) and Wishart’s similarity ratio as a measure of dissimilarity. The no- menclature source for the names of vascular plants is the Mala flora Slovenije (Martinčič et al. 2007). Ros et al. (2007) is the nomenclature source for the names of liverworts (Marcanthiophyta) and Ros et al. (2013) for the names of mosses. The nomenclature sources for the names of syntaxa are Theurillat (2004), Šilc & Čarni (2012) and Dakskobler, Martinčič & Rojšek (2014). The source for geological bedrock data was Buser (1986, 1987, 2009), and Zupančič (1995, 1998), Mekinda-Majaron (1995) and Cegnar (1998) for cli- matic data. 3.1 Description of new localities of Adiantum capillus-veneris in the gorge of the Volarja The Volarja/Volarnik is the right tributary of the Soča River that originates from several distributaries on the southern slopes of the Krn Mountains and runs into 3 RESULTS AND DISCUSSION the Soča at Selišče. In the lower course, for about 1.6 km between the confluence with the Soča and the con- fluence with the left tributary Mrzlica/Mrzli Potok/ Mrzuc/Zalazčenca, it has a relatively wide bed, where- as the beds above this section are narrow as they had been cut into troughs and ravines. The right (western) Figure 2: New localities of Adiantum capillus-veneris in the gorge of the Volarja near the village of Selišče Slika 2: Nova nahajališča vrste Adiantum capillus-veneris v grapi Volarje pri vasi Selišče DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 34 folia biologica et geologica 58/1 – 2017 branch of the Volarja, in the terms used by Podobnik (1983), has the same name, Volarja, even though it is marked as Malenšček on some of the older maps. This is also the name of the next right (western) tributary that joins the Volarja about 500 m upstream from the confluence with the Mrzlica. Its lower course as well as the section of the Volarja up until the confluence with the Mrzlica is known also as Brinta (Medvešček & Skrt 2016: 34). The Volarja/Volarnik has a distinctly torrential outflow and in autumn and spring, when the river bed is full of water, it looks like a small river in its lower course, but turns into a brook with little water in summer and spring. All of the new maidenhair fern localities are on the right bank along the sources in the relatively short section of the Volarja/Volarnik river bed (spanning about 500 m) above the confluence with the Mrzlica, at elevations between 210 and 250 m (Fig- ure 2). Heavily fractured and folded rock is formed by reddish platy limestone and marlstone interlayered with chert sheets and nodules (K21+2, Cenomanian and Turonian, between 90 and 105 million years old). The climate in this part of the Soča Valley is relatively warm and humid, with mean annual temperature be- tween 8 and 10 ºC and mean annual precipitation vol- ume exceeding 2000 mm. The first maidenhair fern locality (relevé 14 in Table 1) is situated about 100 m above the confluence with the Mrzlica at the elevation of about 210 m. More than one hundred maidenhair ferns grow here (a little more than 2 m high and 1.5 m wide) in tufa deposited by the seeping water in the lower part of a perpendicu- lar and rather heavily overgrown, more than 10 m high rock level with distinct, heavily folded and fractured layers of limestone with intercalated marlstone (Fig- ures 2 and 3). The next locality is situated about 150 m upstream from the first, in a pronounced bend (Figures 2 and 4). The almost perpendicular right bank (slope break) is almost 80 metres high there and overgrown with open scrub communities. It is dominated by Salix appendi- culata, Ostrya carpinifolia, Ulmus glabra and Fraxinus ornus, and by Molinia caerulea subsp. arundinacea, Calamagrostis varia and Erica carnea in the herb layer. Tufa is deposited from the seeping water. It is over- grown with maidenhair ferns that occur also on the moist parts of the parent material. The total surface Figure 3: The first locality of Adiantum capillus-veneris in the gorge of the Volarja. Photo: I. Dakskobler Slika 3: Prvo nahajališče vrste Adiantum capillus-veneris v grapi Volarje. Foto: I. Dakskobler DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 35folia biologica et geologica 58/1 – 2017 area extends over several ares at between 220 a d 250 m a.s.l. It is estimated to comprise several thousand spec- imens of Adiantum capillus-veneris and is therefore its most prolific locality both in the Soča Valley and Slo- venia. It is divided into two parts, the south and the north, by a 15-m-high and up to 7-m-wide, dry pillar of bare rock. The pillar is composed of striking lime- stone folds with marlstone intercalations. Five of our relevés (relevés 10, 11, 12, 13 and 20 in Table 1) were made on this locality. The third locality is about 200 m above the second, at the elevation of ca. 235 m. While the bank here is also perpendicular it is not as high as on the previous localities as it ascends only about four metres above the stream. Water seeping through the bedrock forms tufa deposits. These and marlstone layers are over- grown with maidenhair fern, a total of 20 plants. This is a modest yet striking locality, with vertical limestone and marlstone layers that are overgrown with mosses and maidenhair ferns (relevé 15 in Table 1). 3.2 Phytosociological analysis of relevés with Adiantum capillus-veneris in the gorge of the Volarja Our comparison was based on 39 previously published relevés (Dakskobler, Martinčič & Rojšek 2014) to which we added seven relevés from the gorge of the Volarja and three relevés from the Sopet gorge at Plave (Rojšek, 2015b). The new table comprises also the rel- evé from the small brecciated spring above the Brezna/ Brizna gorge at Grahovo ob Bači (det. I. Dakskobler and D. Rojšek, 9. 12. 2014, relevé 19 in Table 1, mosses determined by A. Martinčič, 20. 2. 2017) and a relevé from the Piševec gorge (Šmarje pri Kopru, 0548/1, det. I. Dakskobler and Z. Sadar, 7. 5. 2014, mosses deter- mined by A. Martinčič, 20. 2. 2017, relevé 18 in Table 1). A total of 51 relevés clustered into several groups that mainly correspond to the syntaxa we described in 2014 (Figure 6): Eucladio-Adiantetum eucladietosum,- -hymenostylietosum recurvirostri, -cratoneuretosum commutati, -conocephaletosum conici and Phyteumato columnae-Adiantetum capilli-veneris. New relevés Figure 4: The second locality of Adiantum capillus-veneris in the gorge of the Volarja. Photo: I. Dakskobler Slika 4: Drugo nahajališče vrste Adiantum capillus-veneris v grapi Volarje. Foto: I. Dakskobler DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 36 folia biologica et geologica 58/1 – 2017 from the Volarja grouped mainly with the relevés from the Brezna Grapa gorge at Grahovo ob Bači and the nearby Mrzlica (subassociation -hymenostylietosum re- curvirostri), while the relevés from the first and third locality grouped with the relevés of the subassociation -cratoneuretosum commutati. Table 1 comprises new, previously unpublished relevés (12) as well as some already published relevés that show the greatest similarity to the new relevés. Based on the previously described comparison they are classified into the association Eucladio-Adiantetum Br.-Bl. 1931. Its subassociation -hymenostylietosum re- curvirostri Dakskobler, Martinčič et Rojšek 2014 com- prises the relevés from the Brezna/Brizna Grapa gorge at Grahovo ob Bači and the Mrzlica (which is the clos- est to the new locality in the nearby Volarja) as well as one relevé from the Sopet brook at Plave and four rel- evés from the Volarja gorge. The latter grouped sepa- rately and based on their species composition they can be classified into the new variant with Pinguicula alpi- na. Its differential species include Calamagrostis varia (mainly on account of higher coverage that it has here compared to the relevés of other syntaxa compared), Carex brachystachys, Campanula cespitosa and Saxifra- ga aizoides. The last three species have not yet been recorded on other maidenhair fern localities in Slove- nia. While T. Wraber reported Campanula cespitosa for the maidenhair fern locality at Grahovo ob Bači (field notes from 1984, Wraber’s library at the Botani- cal Garden of the University of Ljubljana), he gave no mention of this species for this locality in the published article (Wraber 1986). Individual occurrences of these taxa, which are mainly distributed in the Alps, charac- terise the stands of the new variant both in terms of phytogeography and ecology. Such occurrence can be attributed to the proximity of mountains rising to 2,000 m and higher under which these gorges with their headwaters are situated as well as with special geological and geomorphological conditions and the local climate. An even more prominent example of co- occurrence of Mediterranean fern and hygrophilous subalpine-alpine chasmophytic species, grassland and headwaters species is known from Italy, where a new association Himenostylio recurvirostri-Pinguiculetum Figure 5: The third locality of Adiantum capillus-veneris in the gorge of the Volarja. Photo: I. Dakskobler Slika 5: Tretje nahajališče vrste Adiantum capillus-veneris v grapi Volarje. Foto: I. Dakskobler DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 37folia biologica et geologica 58/1 – 2017 poldinii (Giovagnoli & Tasinazzo 2012) with Pingui- cula alpina and Carex brachystachys was described sev- eral years ago in the ravines of the Venetian Prealps. Two relevés from the Volarja gorge at Selišče and the Sopet at Plave as well as the relevé from Istria (Piševec) show greater similarity with the relevés clas- sified into the subassociation Eucladio-Adiantetum cratoneuretosum commutati (Pritivera & Lo Guidice) Deil 1996. Four relevés stand out in Table 1, namely those that grouped separately also in the comparison of all relevés from Slovenia (relevés 44, 4, 46 and 9 in Figure 6 or relevés 20 to 23 in Table 1). They are classified into the new association Adianto capilli-veneris-Molinie- tum arundinaceae ass. nov. that was provisionally de- scribed already in 2014. For now it is known on four very different localities situated far apart from each other in the Alpine, pre-Alpine-sub-Mediterranean and sub-Mediterranean phytogeographical regions. The largest area that its stands occupy is in the gorge of the Volarja (Figure 7) and based also on these large surface areas it can be typified as new. Its nomencla- ture type, holotypus, is relevé 21 in Table 1. The stands of the new association are characterised by two herb layers. The upper, which is very distinct and conspicu- ous, is dominated by Molinia caerulea subsp. arundi- nacea (M. arundinacea), and the lower, which is less conspicuous and recognisable only close up, is domi- nated by Adiantum capillus-veneris. The Central-Euro- pean nomenclature requires communities to be named after the dominating species of the highest stand layer, so the rank of the subassociation Eucladio-Adiantetum molinietosum arundinaceae would be less appropriate for these stands. Nevertheless, because of maidenhair Figure 6: Dendrogram of relevés of communities with dominant Adiantum capillus-veneris in Slovenia (UPGMA, 1-similarity ratio). Stands of the subassociation Eucladio-Adiantetum hymenostylietosum recurvirostri are on the left side of the dendro- gram, stands of the syntaxa Eucladio-Adiantetum cratoneuretosum commutati, -eucladietosum and Adianto-Molinietum are in the central part and stands of the syntaxa Eucladio-Adiantetum conocepahaletosum conici and Phyteumato columnae-Adi- antetum on the right. Slika 6: Dendrogram popisov združb z vrsto Adiantum capillus-veneris v Sloveniji (UPGMA, komplement Wishartovega koeficienta podobnosti ). V levem delu dendrograma so sestoji subasociacije Eucladio-Adiantetum hymenostylietosum recurvi- rostri, v srednjem delu sestoji sintaksonov Eucladio-Adiantetum cratoneuretosum commutati, -eucladietosum in Adianto- Molinietum, v desnem delu pa sestoji sintaksonov Eucladio-Adiantetum conocepahaletosum conici in Phyteumato columnae- Adiantetum DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 38 folia biologica et geologica 58/1 – 2017 fern and diagnostic moss species (Eucladium verticilla- tum, Hymenostylium recurvirostre, Palustriella com- mutata) the new association is classified into the alli- ance Adiantion capilli-veneris Br.-Bl. ex Horvatić 1934, order Adiantetalia capilli-veneris Br.-Bl. ex Horvatić 1934 and class Adiantetea capilli-veneris Br.-Bl. 1948. Its stands on steep to very steep slopes with dolomite, limestone or flysch bedrock, where tufa is frequently deposited from, characterise a long-term successional stage in the gradual overgrowing of these extreme sites with shrub vegetation, in the case of the Volarja on the edges of the slope break. Figure 7: Stands of the syntaxa Eucladio-Adiantetum hymenostylietosum recurvirostri (the smaller area in the left part of the figure) and Adianto-Molinietum arundinaceae (the bigger area in the central part of the figure) in the gorge of the Volarja. Photo: I. Dakskobler Slika 7: Sestoja sintaksonov Eucladio-Adiantetum hymenostylietosum recurvirostri (manjša površina bolj v levem delu slike) in Adianto-Molinietum arundinaceae (večja površina v srednjem delu slike) v grapi Volarje. Foto: I. Dakskobler 4 CONCLUSIONS On three locations in the gorge of the Volarja/Volarnik at Selišče (Krn Mountains, Julian Alps) we came across a rare and protected fern Adiantum capillus-veneris. Compared to the only known locality in the basin of the Volarja brook (in the Mrzlica gorge), the second new locality along the brook is very large (extending over several ares) and the richest in the number of specimens in the entire Soča Valley. In terms of the species composition the maidenhair communities there are similar to the communities on other localities known so far in the Julian Alps and in the Central Soča Valley. Two relevés are classified into the subassocia- tion Eucladio-Adiantetum cratoneuretosum commutati and four into the new variant of the subassociation Eu- cladio-Adiantetum hymenostylietosum recurvirostri, var. Pinguicula alpina. This montane headwaters spe- cies has been reported for maidenhair fern localities in the Alpine foothills of northeastern Italy, whereas in DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 39folia biologica et geologica 58/1 – 2017 Slovenia the Volarja is the only place where these two species occur together. One of the differential species of the new variant is also Saxifraga aizoides, a mon- tane-alpine species of moist screes and headwaters, one of whose lowest localities in Slovenia is along the Volarja, at the elevation of only 230 m. Maidenhair ferns along the Volarja occur on a very large area also in a community with tall moor grass (Molinia caerulea subsp. arundinaceae) and such stands, known on smaller areas also elsewhere in west- ern and southwestern Slovenia, were classified into the new association Adianto capilli-veneris-Molinietum arundinaceae. The diverse basin of the Volarja/Volarnik under Mt. Krn with its numerous waterfalls and other fasci- nating geomorphological and geological phenomena (Podobnik 1983, Rojšek 1991) have been declared a natural monument and part of the Natura 2000 site named Soča with the Volarja. The new maidenhair fern localities are not endangered yet as they are not easily accessible, although they are in the vicinity of a popular path leading to the waterfalls. There are no other significant human interventions in these locali- ties, but their populations nevertheless require careful monitoring in the future. 5 POVZETEK V grapi Volarje/Volarnika pri Seliščih (Krnsko pogor- je, Julijske Alpe) smo na treh krajih našli redko in za- varovano praprotnico Adiantum capillus-veneris. V primerjavi z do zdaj znanim edinim nahajališčem v porečju tega potoka (v soteski Mrzilce), je drugo novo nahajališče ob Volarji zelo obsežno (na površini več arov) in po številu primerkov najbogatejše v celotnem Posočju. Po vrstni sestavi so združbe venerinih laskov na njem podobne združbam na drugih do zdaj znanih nahajališčih v Julijskih Alpah in v Srednjem Posočju. Dva popisa uvrščamo v subasociacijo Eucladio-Adian- tetum cratoneuretosum commutati, štiri pa v novo vari- anto Eucladio-Adiantetum hymenostylietosum recurvi- rostri var. Pinguicula alpina. To gorsko vrsto povirij že poznajo na nahajališčih venerinih laskov v alpskem prigorju severovzhodne Italije, v Sloveniji pa je Volarja za zdaj edini kraj, kjer rasteta skupaj. Ena izmed razli- kovalnic nove variante je tudi (visoko)gorska vrsta vla- žnih melišč in povirij Saxifraga aizoides, ki ima ob Vo- larji na nadmorski višini le 230 m eno izmed svojih najnižje ležečih nahajališč v Sloveniji. Ob Volarji venerini laski na precej veliki površini rastejo tudi v združbi s trstikasto stožko (Molinia cae- rulea subsp. arundinaceae) in take sestoje, ki jih na manjših površinah poznamo tudi drugod v zahodni in jugozahodni Sloveniji, smo uvrstili v novo asociacijo Adianto capilli-veneris-Molinietum arundinaceae. Razgibano porečje Volarje/Volarnika pod Krnom je zaradi številnih slapov in drugih zanimivih geomor- foloških in geoloških pojavov (Podobnik 1983, Rojšek 1991) razglašeno za naravni spomenik in sodi tudi v območje Natura 2000 z imenom Soča z Volarjo. Nova nahajališča venerinih laskov za zdaj še niso ogrožena, saj so razmeroma težko dostopna, vendar poteka blizu precej obiskana pot k slapovom. Drugih človekovih posegov na nahajališčih ni zaznati. Kljub vsemu bo v prihodnje potrebno pozorno spremljati njihove popu- lacije. ACKNOWLEDGEMENTS We would like to thank the heirs of the late Tone Wraber for giving his manuscripts and professional lit- erature to the safekeeping of the Botanical Garden of the University of Ljubljana, and to its director, Dr. Jože Bavcon, who allowed us to examine professor’s legacy. Dr. Špela Goričan helped us to translate some of the geological terms into English and Iztok Sajko prepared Figure 2 for print. The authors acknowledge the finan- cial support from the Slovenian Research Agency (re- search core funding No. P1-0236). English translation by Andreja Šalamon Verbič. DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 40 folia biologica et geologica 58/1 – 2017 REFERENCES – LITERATURA Aeschimann, D., K. Lauber, D. M. Moser & J.-P. Theurillat, 2004: Flora alpina. Bd. 1: Lycopodiaceae-Apiaceae. Haupt Verlag, Bern, Stuttgart, Wien. Braun-Blanquet, J., 1964: Pflanzensoziologie. Grundzüge der Vegetationskunde. 3. Auflage. Springer, Wien – New york. Buser, S., 1986: Tolmač listov Tolmin in Videm (Udine) L 33-64 L 33-63. Osnovna geološka karta 1:100 000. Beograd. Buser, S., 1987: Osnovna geološka karta SFRJ. Tolmin in Videm 1 : 100 000. Zvezni geološki zavod, Beograd. Buser, S., 2009: Geološka karta Slovenije 1: 250.000. Geological map of Slovenia 1.250,000. Geološki zavod Sloveni- je, Ljubljana. Cegnar T., 1998: Temperatura zraka. In: J. Fridl, D. Kladnik, M., Orožen Adamič & D. Perko (eds.): Geografski atlas Slovenije. Država v prostoru in času. Državna založba Slovenije, Ljubljana, pp. 100–101. Dakskobler, I., 2017: Dve botanični opombi pod črto: plazeča sretena (Geum reptans) pod Triglavom in venerini laski (Adiantum capillus-veneris) v grapi Volarje pri Seliščih. Proteus 79 (5): 216–223. Dakskobler, I., A. Martinčič, D. Rojšek, 2014: Phytosociological analysis of communities with Adiantum capil- lus-veneris in the foothills of the Julian Alps (Western Slovenia). Hacquetia (Ljubljana) 13 (2): 235–258. https:// doi.org/10.2478/hacq-2014-0016 Giovagnoli, L. & S. Tasinazzo, 2012: Hymenostylio recurvirostri-Pinguiculetum poldinii ass. nova in the Valbren- ta ravines (Venetian Prealps): a new palaeoendemic plant association belonging to the class Adiantetea Br.-Bl. 1948. Plant Sociology 29 (2): 49–58. https://doi.org/10.7338/pls2012492/03 Maarel, van der E., 1979: Transformation of cover-abundance values in phytosociology and its effects on communi- ty similarity. Vegetatio 39 (2): 97–114. https://doi.org/10.1007/BF00052021 Martinčič, A., T. Wraber, N. Jogan, A. Podobnik, B. Turk, B. Vreš, V. Ravnik, B. Frajman, S. Strgulc Krajšek, B. Trčak, T. Bačič, M. A. Fischer, K. Eler & B. Surina, 2007: Mala flora Slovenije. Ključ za dolo- čanje praprotnic in semenk. Četrta, dopolnjena in spremenjena izdaja. Tehniška založba Slovenije, Ljubljana. Medvešček, P. & D. Skrt, 2016: Staroverstvo in straroverci. Katalog etnološke zbirke Pavla Medveščka 2. Goriški muzej, Nova Gorica. Mekinda-Majaron,T., 1995: Klimatografija Slovenije. Temperatura zraka 1961–1990. Hidrometeorološki zavod Republike Slovenije, Ljubljana. Podani, J., 2001: SyN-TAX 2000. Computer Programs for Data Analysis in Ecology and Systematics. User’s Manual, Budapest. Podobnik, R., 1983: Slapovi v okolici Vrsna in Krna. In: A. Ramovš: Slapovi v Sloveniji. Slovenska matica, Lju- bljana, pp. 110–118. Rojšek, D., 1991: Naravne znamenitosti Posočja. Državna založba Slovenije, Ljubljana. Rojšek, D., 2015a: Venerini laski (Adiantum capillus-veneris L.) v Posočju. Prvi del. Proteus (Ljubljana) 77 (9–10): 399–408. Rojšek, D., 2015b: Venerini laski (Adiantum capillus-veneris L.) v Posočju. Drugi del. Proteus (Ljubljana) 78 (1): 24–34. Ros, R. M., V. Mazimpaka, U. Abou-Salama, M. Aleffi, T. L. Blockeel, M. Brugués, M. J. Cano, R. M. Cros, M. G. Dia, G. M. Dirkse, W. El Saadawi, A. Erdağ, A. Ganeva, J. M. González-Mancebo, I. Hernstadt, K. Khalil, H. Kürschner, E. Lanfranco, A. Losada-Lima, M. S. Refai, S. Rodríguez-Nunez, M. Sabo- vljević, C, Sérgio, H. Shabbara, M. Sim-Sim & M. Söderström, 2007: Hepatics and Anthocerotes of the Mediterranean, an annotated checklist. Cryptogamie, Bryologie 28 (4): 351–437. Ros, R. M., V. Mazimpaka, U. Abou-Salama, M. Aleffi, T. L. Blockeel, M. Brugués, R. M. Cros, M. G. Dia, G. M. Dirkse, I. Draper, W. El Saadawi, A. Erdağ, A. Ganeva, R. Gabriel, J. M. González-Mancebo, I. Hernstadt, V. Hugonnot, K. Khalil, H. Kürschner, A. Losada-Lima, L. Luís, S. Mifsud, M., Privitera, M. Puglisi, M. Sabovljević, C. Sérgio, H. M. Shabbara, M. Sim-Sim, A. Sotiaux, R. Tacchi, A. Vander- poorten & O. Werner, 2013: Mosses of the Mediterranean, an annotated checklist. Cryptogamie, Bryologie 34 (2): 99–283. Seliškar, T., B. Vreš & A. Seliškar, 2003: FloVegSi 2.0. Fauna, Flora, Vegetation and Paleovegetation of Slovenia. Computer programme for arranging and analysis of biological data. Biološki inštitut ZRC SAZU, Ljubljana. Šilc, U. & A. Čarni, 2012: Conspectus of vegetation syntaxa in Slovenia. Hacquetia (Ljubljana) 11 (1): 113–164. https://doi.org/10.2478/v10028-012-0006-1 DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 41folia biologica et geologica 58/1 – 2017 Theurillat, J.-P., 2004: Pflanzensoziologisches System. In: D. Aeschimann, K. Lauber, D. M. Moser & J-P. Theuri- llat: Flora alpina 3: Register. Haupt Verlag, Bern, Stuttgart, Wien, pp. 301–313. Wraber, T., 1986: Vsega po nekaj o venerinih laskih. Proteus (Ljubljana) 48 (7): 259–263. Zupančič, B., 1995: Klimatografija Slovenije. Padavine 1961–1990. Hidrometeorološki zavod Republike Slovenije, Ljubljana. Zupančič, B., 1998: Padavine. In: J. Fridl, D. Kladnik, M. Orožen Adamič & D. Perko (eds.): Geografski atlas Slo- venije. Država v prostoru in času. Državna založba Slovenije, Ljubljana, pp. 98–99. DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 42 folia biologica et geologica 58/1 – 2017 ta bl e 1: c om m un it ie s w it h A di an tu m ca pi llu s- ve ne ri s i n w es te rt n an d so ut hw es te rn S lo ve ni a Pr eg le dn ic a 1: Z dr už be z v rs to A di an tu m ca pi llu s- ve ne ri s v za ho dn i i n ju go za ho dn i S lo ve ni ji N um be r of r el ev é (Z ap or ed na š te vi lk a po pi sa ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 D at ab as e nu m be r of r el ev é (D el ov na š te vi lk a po pi sa ) 245266 249922 245260 245261 245264 245262 247815 251661 247819 262257 262259 262268 262258 262255 262260 251662 251663 252436 255440 245263 262256 247658 249162 El ev at io n in m (N ad m or sk a vi ši na v m ) 37 0 50 0 39 5 36 0 36 0 36 0 18 0 97 12 0 23 0 23 0 23 0 23 0 21 0 24 0 10 7 10 7 11 0 40 0 36 5 22 4 15 0 15 0 A sp ec t ( Le ga ) SE SE SE SE S SW SW S SW SE E N EE E E E E SW SS W N E SE S SE SW SW Sl op e in d eg re es (N ag ib v s to pi nj ah ) 90 90 10 0 10 0 10 0 10 0 90 90 90 80 90 90 90 80 80 80 90 70 80 50 85 -9 5 80 45 Pa re nt m at er ia l ( M at ič na p od la ga ) D Tu B D D D Tu Tu Tu Tu Tu LM LM LM LM Tu Tu Tu B D LM Tu Tu C ov er o f h er b la ye r in % (Z as ti ra nj e ze liš čn e pl as ti v % ) E1 40 20 70 70 70 80 70 70 60 80 60 70 60 70 70 20 30 60 30 80 90 70 70 C ov er o f m os s l ay er in % (Z as ti ra nj e m ah ov ne p la st i v % ) E0 70 10 0 40 60 60 40 90 80 70 80 60 50 60 60 60 80 80 70 80 20 60 60 50 N um be r of s pe ci es (Š te vi lo v rs t) 10 16 14 9 9 12 12 24 11 11 9 17 16 22 25 12 20 16 12 16 15 9 21 R el ev é ar ea (V el ik os t p op is ne p lo sk ve ) m 2 6 4 6 5 4 5 2 8 2 8 6 4 4 4 4 1 1 4 1 6 10 3 2 D at e of ta ki ng r el ev é (D at um p op is a) 10/24/2012 9/12/2013 10/24/2012 10/24/2012 10/24/2012 10/24/2012 4/11/2013 1/29/2014 4/11/2013 7/24/2016 7/24/2016 7/25/2016 7/24/2016 7/24/2016 7/24/2016 1/29/2014 1/29/2014 5/7/2014 12/9/2014 10/24/2012 7/24/2016 3/22/2013 7/15/2013 Lo ca lit y (N ah aj al iš če ) Brezna grapa Mrzlica Brezna grapa Brezna grapa Brezna grapa Brezna grapa Avče Plave -Sopet Ročinj-Ajba Volarja Volarja Volarja Volarja Volarja Volarja Plave -Sopet Plave -Sopet Istra-Piševec Brezna grapa Brezna grapa Volarja Trebež Koštabona-Supot Q ua dr an t ( K va dr an t) 9849/1 9748/3 9849/1 9849/1 9849/1 9849/1 9948/1 9947/4 9847/4 9747/4 9747/4 9747/4 9747/4 9747/4 9747/4 9947/4 9947/4 0548/1 9849/1 9849/1 9747/4 9947/2 0548/1 C oo rd in at e G K y (D -4 8) m 412756 397664 412714 412764 412768 412764 398588 390772 396806 396632 396629 396643 396629 396629 396655 390729 390737 399677 412711 412770 396646 391703 402145 C oo rd in at e G K X (D -4 8) m 5113536 5120786 5113572 5113542 5113566 5113552 5106944 5100468 5107796 5120271 5120254 5120286 5120264 5120145 5120384 5100448 5100455 5039212 5113572 5113560 5120284 5102350 5038991 D ia gn os ti c sp ec ie s of th e as so ci at io n (D ia gn os ti čn e vr st e as oc ia ci je ) Pr . Fr . A D A di an tu m c ap ill us -v en er is E1 2 1 4 4 4 5 4 4 4 4 3 3 3 3 3 1 2 4 2 2 3 4 3 23 10 0 A D Eu cl ad iu m v er tic ill at um E0 . + . . . + + + . + 1 + + r + 4 3 3 1 . 1 4 3 17 74 EP M ol in ia c ae ru le a su bs p. a ru nd in ac ea E1 1 . r 1 + + + . . 1 1 1 2 . + . . + . 5 4 3 4 16 70 DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 43folia biologica et geologica 58/1 – 2017 N um be r of r el ev é (Z ap or ed na š te vi lk a po pi sa ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Pr . Fr . D if fe re nt ia l s pe ci es o f t he s ub as so ti at io n (R az li ko va ln ic e su ba so ci ac ij) A D H ym en os ty liu m re cu rv ir os tr e E0 4 5 3 4 4 3 4 4 3 4 4 3 2 2 1 + 1 . . 1 2 2 . 20 87 T R Pe ta si te s p ar ad ox us E1 . . . + + 1 . . . + + + + + . . . . . + 1 . . 10 43 ES Se sl er ia c ae ru le a E1 + . . + . + . . . . . . . . . . . . . 1 . . . 4 17 C D To fie ld ia c al yc ul at a E1 + . r . + . . . . . . . . . . . . . . r . . . 4 17 M C Pa lu st ri el la c om m ut at a E0 1 1 + 1 2 2 1 2 . 4 4 2 3 3 4 1 3 3 4 3 4 + + 22 96 D if fe re nt ia l s pe ci es o f t he v ar ia nt (R az li ko va ln ic e va ri an te ) EP C al am ag ro st is v ar ia E1 + + + . . r . . + 3 2 4 1 + 1 . . . . + + . . 13 57 C D Pi ng ui cu la a lp in a E1 . . . . . . . . . 1 1 1 + . . . . . . . + . . 5 22 C F C ar ex b ra ch ys ta ch ys E1 . . . . . . . . . . . + . . . . . . . . . . . 1 4 T R C am pa nu la c es pi to sa E1 . . . . . . . . . . . r . . . . . . . . . . . 1 4 M C Sa xi fr ag a ai zo id es E1 . . . . . . . . . . . . + . . . . . . . . . . 1 4 A D A di an tio n, A di an te te a Pe lli a en di vi ifo lia E0 . + 1 . . + 1 + + 1 + + 1 1 1 + + 3 . . + . + 17 74 D id ym od on to ph ac eu s E0 . . . . . . . . . . . . . . . . . 1 . . . . + 2 9 M C M on tio -C ar da m in et ea C on oc ep ha lu m c on ic um E0 . + . . . . + 2 2 . . . . + + . 2 . . . . . . 7 30 C am py liu m st el la tu m E0 . . . . . . . . . . . r . . + . . . + . . . . 3 13 C ra to ne ur on fi lic in um E0 . . . . . . . . . . . . . . . . . . . . . . + 1 4 C F Cy st op te ri di on fr ag ili s O rt ho th ec iu m r uf es ce ns E0 . . + . . + . + . . . . . . . . . . . + . . . 4 17 Ju ng er m an ni a at ro vi re ns E0 . . . . + . . . . . . . + . . . . . . . . . . 2 9 A T A sp le ni et ea tr ic ho m an is Ph yt eu m a sc he uc hz er i s ub sp . c ol um na e E1 r . . . . . . . . . . . . . . . . . . . . . . 1 4 O H ie ra ci um c f. po sp ic ha lii E1 . . . . . . . . . r . . . . . . . . . . r . . 2 9 T R T hl as pi et ea ro tu nd ifo lii Pe uc ed an um v er tic ill ar e E1 . . . . . . . . . . . r . . . . . . . . . . . 1 4 H ie ra ci um b ifi du m E1 . . . . . . . . . . . . . . . . . . . . . r . 1 4 FB Fe st uc o- Br om et ea Bl ac ks to ni a pe rf ol ia ta E1 . . . . . . . . . . . . . . . . . + . . . . . 1 4 G lo bu la ri a pu nc ta ta E1 . . . . . . . . . . . . . . . . . . . . . . + 1 4 T G Tr ifo lio -G er an ie te a V io la h ir ta E1 . . . . . . . . . . . . . . . . . r + . . . . 2 9 La se rp iti um la tif ol iu m E1 . . . . . . . . . . . . . . . . . . . r . . . 1 4 M A M ol in io n, M ol in io -A rr he na th er et ea A ng el ic a sy lv es tr is E1 . . + . . . . . . . . . . . 1 . . . . r + . . 4 17 C al th a pa lu st ri s E1 . . . . . . . . . . . . . + . . . . . . + . . 2 9 G al iu m m ol lu go E1 . . . . . . . . . . . . . . . . . . . . . . 1 1 4 Pu lic ar ia d ys en te ri ca E1 . . . . . . . . . . . . . . . . . . . . . . + 1 4 M uA M ul ge di o- A co ni te te a, B et lo -A de no st yl et ea Se ne ci o ov at us E1 . r . . . . . . . . . . . . + . . . . . . . . 2 9 C ha er op hy llu m h ir su tu m E1 . . . . . . . . . . . . . + . . . . . . + . . 2 9 Sa lix a pp en di cu la ta E2 a . . . . . . . . . . . . . . . . . . . r . . . 1 4 EA Ep ilo bi oe te a an gu st ifo lii Eu pa to ri um c an na bi nu m E1 . . . . . . . r . . . r . . . . . . . 1 . . . 3 13 DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 44 folia biologica et geologica 58/1 – 2017 G U G al io -U rt ic et ea Pe ta si te s h yb ri du s E1 . . . . . . . . . . . . . + + . . . . . . . . 2 9 Eq ui se tu m a rv en se E1 . . . . . . . . . . . . . . . . . + . . + . . 2 9 R P R ha m no -P ru ne te a Li gu st ru m v ul ga re E2 a . . . . . r . . . . . . . + . . . . . . . . . 2 9 Ru bu s m ac ro ph yl lu s E2 a . . . . . . . . . . . . . . . . . . . . . . + 1 4 Ru bu s s p. E2 a . . . . . . . . . . . . . . . . . r . . . . . 1 4 EP Er ic o- Pi ne te a Bu ph th al m um sa lic ifo liu m E1 . . . . . . . . . r . r . . r . . . . . . + . 4 17 V P Va cc in io -P ic ee te a V er on ic a ur tic ifo lia E1 . r . . . . . + . . . . . + + . . . . . . . . 4 17 O xa lis a ce to se lla E1 . . . . . . . . r . . . . . . . . . . . . . . 1 4 So lid ag o vi rg au re a E1 . . . . . . . . . . . . . . + . . . . . . . . 1 4 TA Ti lio -A ce ri on A ru nc us d io ic us E1 . r . . . . . . . . . . . + + . . + . . . . . 4 17 Ph yl lit is sc ol op en dr iu m E1 . r . . . . . . . . . . . . . . r . . . . . . 2 9 G er an iu m ro be rt ia nu m E1 . r . . . . . . . . . . . . . . . . . . . . . 1 4 A F A re m on io -F ag io n C yc la m en p ur pu ra sc en s E1 . . . . . . . + . . . . . r . r + . . . . . . 4 17 La m iu m o rv al a E1 . . . . . . . r . . . . . r . r . . . . . . . 3 13 A ne m on e tr ifo lia E1 . . r . . . . . . . . . . . . . . . . . . . . 1 4 C ar da m in e tr ifo lia E1 . . . . . . . + . . . . . . . . . . . . . . . 1 4 Ep im ed iu m a lp in um E1 . . . . . . . r . . . . . . . . . . . . . . . 1 4 EC Er yt hr on io -C ar pi ni on Pr im ul a vu lg ar is E1 . . . . . . + 1 . . . . . 1 + . r r + . . . . 7 30 G al an th us n iv al is E1 . . . . . . . . . . . . . . . . r . . . . . . 1 4 Lo ni ce ra c ap ri fo liu m E2 a . . . . . . . . . . . . . . . . . . . . . . + 1 4 FS Fa ge ta lia sy lv at ic ae G al eo bd ol on fl av id um E1 . + . . . . . 1 . . . . . + . + r . . . . . . 5 22 Pu lm on ar ia o ff ic in al is E1 . . . . . . r + . . . . . r . . + . . . . . . 4 17 Br ac hy po di um sy lv at ic um E1 . + . . . . . + . . . . . . . . . + + . . . . 4 17 M yc el is m ur al is E1 . r . . . . . + . . . . . . . + . . . . . . . 3 13 Sa m bu cu s n ig ra E2 a r . . . . . . . . . . . . . . . r . . . . . . 2 9 Sa lv ia g lu tin os a E1 . . . . . . . . . . . . . . r . . . + . . . . 2 9 A lli um u rs in um E1 . . . . . . . r . . . . . . . . . . . . . . . 1 4 M el ic a nu ta ns E1 . . . . . . . r . . . . . . . . . . . . . . . 1 4 La th yr us v er nu s E1 . . . . . . . . . . . . . r . . . . . . . . . 1 4 A sa ru m e ur op ae um su bs p. c au ca si cu m E1 . . . . . . . . . . . . . . r . . . . . . . . 1 4 Fr ax in us e xc el si or E2 a . . . . . . . . . . . . . . . . r . . . . . . 1 4 V io la re ic he nb ac hi an a E1 . . . . . . . . . . . . . . . . . + . . . . . 1 4 Q P Q ue rc et al ia p ub es ce nt i- pe tr ae ae (i nc . Q ue rc et ea il ic is) C ar ex fl ac ca E1 + . . r . . . . . . . + . . . . . . . . . . . 3 13 Ru sc us a cu le at us E1 . . . . . . . r r . . . . . . r . . . . . . . 3 13 A sp ar ag us a cu tif ol iu s E1 . . . . . . . . . . . . . . . . . r . . . . + 2 9 N um be r of r el ev é (Z ap or ed na š te vi lk a po pi sa ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Pr . Fr . DAKSKOBLER, MARTINČIČ & ROJŠEK: NEW LOCALITIES OF ADIANTUM CAPILLUS-VENERIS IN THE RIVER-BASIN 45folia biologica et geologica 58/1 – 2017 N um be r of r el ev é (Z ap or ed na š te vi lk a po pi sa ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Pr . Fr . Fr ax in us o rn us E2 a . . . . . . . . . . . . . . . . . . r . . . + 2 9 Q ue rc us p ub es ce ns E1 . . . . . . . . . . . . . . . . . . . . . . + 1 4 Se sl er ia a ut um na lis E1 . . . . . . . . . . . . . . . . . . . . . . r 1 4 Q F Q ue rc o- Fa ge te a H ed er a he lix E1 . . + + + . + + + . . . . + + + 1 . 1 r + . + 14 61 C le m at is v ita lb a E2 a . . . . . . . . . . . . . + r . . . . . . . + 3 13 C ar ex d ig ita ta E1 . . . . . . . . . . . . . . + . r . . . . . . 2 9 V in ca m in or E1 . . . . . . . . . . . . . . . . + . . . . + . 2 9 C ep ha la nt he ra sp . E1 . . . . . . . . . . . . r . . . . . . . . . . 1 4 V io la r iv in ia na E1 . . . . . . . . . . . . . . . . . . . . . + 1 4 M M os se s (M ah ov i) O xy rr hy nc hi um sc hl ei ch er i E0 . . . . + . r + . . . . r . . + . . . . + . 6 26 O xy rr hy nc hi um h ia ns E0 . . . . . . 1 + + . . . + . + . 1 . . . . . 6 26 Ju ng er m an ni a sp . E0 . . + . . . . . . . . . . . . . . . . . . + 2 9 Br yu m p se ud ot ri qu et ru m E0 . . . . . + . . . . . . . . . . . . . . . + 2 9 Pr ei ss ia q ua dr at a E0 . . . . . . . . . . . + + . . . . . . . . . 2 9 C te ni di um m ol lu sc um E0 . . . . . . . . . . . . . . + . . . + . . . 2 9 Pe di no ph yl lu m in te rr up tu m E0 . r . . . . . . . . . . . . . . . . . . . . 1 4 Fi ss id en s t ax ifo liu s E0 . . + . . . . . . . . . . . . . . . . . . . 1 4 Se lig er ia tr ifa ri a E0 . . + . . . . . . . . . . . . . . . . . . . 1 4 G ym no st om um a er ug in os um E0 . . . + . . . . . . . . . . . . . . . . . . 1 4 Br ac hy th ec iu m r ut ab ul um E0 . . . . . . . . 1 . . . . . . . . . . . . . 1 4 Pl ag io m ni um ro st ra tu m E0 . . . . . . . . + . . . . . . . . . . . . . 1 4 A ne ur a pi ng ui s E0 . . . . . . . . . . . . r . . . . . . . . . 1 4 Pl ag io m ni um u nd ul at um E0 . . . . . . . . . . . . . . + . . . . . . . 1 4 Pl at yh yp ni di um r ip ar io id es E0 . . . . . . . . . . . . . . . . + . . . . . 1 4 R hy nc ho st eg iu m m ur al e E0 . . . . . . . . . . . . . . . . + . . . . . 1 4 Ri cc ar di a ch am ae dr yf ol ia E0 . . . . . . . . . . . . . . . . . r . . . . . 1 4 Fi ss id en s d ub iu s E0 . . . . . . . . . . . . . . . . . . + . . . . 1 4 Fi ss id en s a di an th oi de s E0 . . . . . . . . . . . . . . . . . . r . . . . 1 4 le ge nd - le ge nd a Pr . P re se nc e (n um be r of r el ev és in w hi ch th e sp ec ie s i s p re se nt ed ) - š te vi lo p op is ov , v k at er ih s e po ja vl ja v rs ta Fr . F re qu en cy in % - fr ek ve nc a v % L Li m es to ne - ap ne ne c M M ar ls to ne - la po ro ve c Tu T uf a - l eh nj ak D D ol om ite - do lo m it B Br ec ci a - b re ča folia biologica et geologica 58/1, 47–57, ljubljana 2017 ZNAČILNOSTI ZGRADBE LESA SADIK BORA (PINUS SYLVESTRIS) IN BUKVE (FAGUS SYLVATICA) IZPOSTAVLJENIH TREM RAZLIČNIM OKOLJSKIM RAZMERAM CHARACTERISTICS OF WOOD STRUCTURE OF PINE (PINUS SYLVESTRIS) AND BEECH (FAGUS SYLVATICA) SEEDLINGS EXPOSED TO DIFFERENT ENVIRONMENTAL REGIMES Jožica Gričar1 http://dx.doi.org/10.3986/fbg0020 iZVleČeK Značilnosti zgradbe lesa sadik bora (Pinus sylvestris) in bukve (Fagus sylvatica) izpostavljenih trem različnim okoljskim razmeram Poznavanje strukture in lastnosti lesa je ključno z vidi- ka njegove smotrnejše obdelave, predelave in končne rabe. V članku opisujemo in primerjamo značilnosti zgradbe lesa triletnih sadik bora (Pinus sylvestris) in bukve (Fagus sylva- tica) izpostavljene trem različnim temperaturnim režimom v rastnih sezonah 2010–2011: kontrola (K, na prostem, povprečna temperatura v času rastne sezone = 17–19°C), rastlinjak (G, povprečna temperatura v času rastne sezone = 22–24°C) in hladilna komora (C, povprečna temperatura v času rastne sezone = 15–17°C). Na preparatih prečnih prere- zov lesa smo tako preverili prisotnost in delež reakcijskega lesa, prisotnost gostotnih fluktuacij, prisotnost kalusa ter za bor še gostoto in položaj aksialnih smolnih kanalov. Rezul- tati kažejo na vrstno specifičen odziv pionirskega rdečega bora in sencovzdržne bukve na različne okoljske razmere v smislu debelinske rasti in strukturnih posebnosti lesa. Po- javnost lesno-anatomskih značilnosti je bila v splošnem večja v letu 2010 kot v 2011. To bi lahko pojasnili s presadit- venim šokom in z večjo verjetnostjo povzročitve mehanskih poškodb ob manipulaciji sadik, ki so negativno vplivali na kakovost lesa. Razlike v strukturnih posebnosti lesnih pri- rastkov v obeh proučevanih letih tudi kažejo na nujnost večletnih tovrstnih poskusov v nadzorovanih razmerah, saj se nekateri odzivi lahko pokažejo šele v daljšem časovnem obdobju. Širina lesnega prirastka in lesno-anatomske značilnosti niso nujno povezane, zato na podlagi priraščanja ne moremo sklepati o kakovosti lesa. Ključne besede: rdeči bor, navadna bukev, reakcijski les, smolni kanal, gostotne fluktuacije, juvenilni les, anatomija, kakovost lesa abStRact characteristics of wood structure of pine (Pinus syl- vestris) and beech (Fagus sylvatica) seedlings exposed to different environmental regimes Knowledge on structure and properties of wood is cru- cial for its optimal woodworking, processing and end-use. In the paper, we describe and compare characteristics of wood structure of three-year-old pine (Pinus sylvestris) and beech (Fagus sylvatica) seedlings exposed to different temperature regimes in the growing seasons of 2010-2011: control (K, outdoors, mean temperature during the growing season = 17–19°C), greenhouse (G, mean temperature during the growing season = 22–24°C) and climatized room (C, mean temperature during the growing season = 15–17°C). On transverse-sections of xylem, presence and proportion of the reaction wood, presence of the density fluctuations, pres- ence of callus tissue, and in the case of pine also density and position of the axial resin canals were evaluated. The results show species-specific response of pioneer Scots pine and late-successional beech to different environmental condi- tions in terms of radial growth and structural characteristics of wood. Incidence of wood-anatomical characteristics were generally higher in 2010 than in 2011. This may be explained by the transplant shock, and higher probability of mechani- cal wounding of cambium, which have a negative impact on the wood quality, when setting up the experiment. The dif- ferences in the structure of xylem increments of 2010 and 2011 demonstrate that a continuation of such observations over several growing seasons is necessary to capture the short- and long-term response of tree growth under chang- ing environmental conditions. Finally, width of the wood increment and wood-anatomical characteristics are not nec- essarily linked, thus increment width cannot be an indicator of wood quality. Key words: Scots pine, common beech, reaction wood, resin canal, density fluctuations, juvenile wood, anatomy, wood quality 1 Gozdarski inštitut Slovenije, Večna pot 2, 1000 Ljubljana, jozica.gricar@gozdis.si Jožica Gričar: ZNačiLNoSTi ZGraDBE LESa SaDiK Bora (PINUS SYLVESTRIS) iN BUKVE (FAGUS SYLVATICA) 48 folia biologica et geologica 58/1 – 2017 Les je ena pomembnejših svetovnih naravnih su- rovin, tudi v Sloveniji (Vlada RS 2015) in ima kot ma- terial številne dobre lastnosti: je naraven in obnovljiv, vsesplošno razširjen in nastaja ob blagodejnem učinku na okolje. Les je tudi dekorativen in ima sorazmerno dobre mehanske lastnosti glede na nizko gostoto, zato je široko uporaben material za različne namene (Čufar 2006). Pomanjkljivost lesa je strukturna nehomoge- nost, saj je zgrajen iz različnih tkiv in tipov celic, ki so različno usmerjene. Zaradi tega ima se lastnosti v raz- ličnih smereh razlikujejo (anizotropnost). Je tudi zelo variabilen material, kajti lastnosti lesa variirajo znotraj ene letne prirastne plasti, med različnimi deli drevesa, kakor tudi med drevesi na istem ali na različnih rasti- ščih (Panshin & de Zeeuw 1980). Poznavanje struk- ture in lastnosti lesa je zato ključno z vidika njegove smotrnejše obdelave, predelave in končne rabe. Les uporabljamo za različne namene (npr. v grad- beništvu, pohištveni industriji, za ogrevanje) in pri tem izkoriščamo različne lastnosti. Kakovost lesa je osnovni kriterij za primernost lesa za določeno rabo in je posledica rasti drevesa, rastnih posebnosti ter po- škodb zaradi delovanja različnih dejavnikov. V določe- nih primerih so posebnosti lesa lahko zaželene, v dru- gih primerih pa jih pojmujemo kot napake, ki ovirajo predelavo, obdelavo in uporabo lesa. Napake lahko ovrednotimo glede na obliko debla, strukturo lesa ter na napake, ki so nastale zaradi zunanjih vplivov. Med napake, ki se nanašajo na strukturo lesa, prištevamo: grčavost, zavitost, reakcijski les, nepravilno zgradbo, odklon vlaken od osi drevesa, razpoke, napake srca (npr. ekscentričnost srca, dvojno srce) (Gričar 2011). Strukturne značilnosti lesa so lahko vidne na mi- kroskopski ali makroskopski ravni in jih lahko bodisi kvantificiramo ali binarno določimo (tj. znak priso- ten/ odsoten). Slednje znake lahko nadalje razvrstimo glede na: (i) frekvenco in intenziteto pojavnosti ali (ii) mesto v lesni braniki, kot denimo pojav smolnih kana- lov v ranem lesu, prehodnem lesu ali kasnem lesu. Šte- vilni znaki (gostotna nihanja, manjkajoče branike, travmatski smolni kanali itd.) se pojavijo kot odziv dreves na stresne vremenske dogodke (poplave, suša, pozeba) in jih zato s pridom izkoriščamo za datiranje tovrstnih dogodkov (dendrokronologija). Kot že ome- njeno, pa lahko spremembe v zgradbi lesa v veliki meri negativno vplivajo na lastnosti lesa in s tem zmanjšuje- jo njegovo vrednost (Bräuning et al. 2016). A po drugi strani lahko rastne posebnosti tudi pozitivno vplivajo na vrednost lesa, kot je to v primeru lokalno zavrtega delovanja kambija pri sladkornem javorju, pri čemer nastanejo drobne ugreznine, ki dajo lesu v vzdolžnem prerezu značilno teksturo ptičjih oči, ki je izredno ce- njena (Torelli 1998). V pričujočem prispevku se bomo osredotočili na strukturne (rastne posebnosti) lesa sadik rdečega bora in navadne bukve izpostavljene trem različnim tempe- raturnim režimom v rastnih sezonah 2010–2011. Pri- sotnost strukturnih posebnosti bomo primerjali med letoma, tudi v odvisnosti od širine prirastka, ki je eden izmed kazalcev stresnih razmer za rast dreves (Bigler et al. 2004). 1 UVOD 2 MATERIAL IN METODE 2.1 izbor in priprava sadik Eksperiment je potekal na enoletnih sadikah bora in bukve v rastnih sezonah 2010 in 2011. Pozimi 2009/2010 smo 120 sadikam rdečega bora (Pinus sylvestris L.) in 90 sadikam navadne bukve (Fagus sylvatica L.), ki smo jih kupili v drevesnici Omorika (Muta), s pomočjo sis- tema za analizo slike WinRHIZO (Regent Instruments Inc.) in 3D skenerja izmerili volumen korenin in ste- bla. Sadikam smo nato s kljunastim merilom izmerili še premer stebla, približno 2 cm na koreninskim vra- tom (bor = 0,2–0,3 cm; bukev = 0,3–0,4 cm) ter višino (bor = 15–20 cm; bukev = 30–40 cm) z merilnim tra- kom, jih označili in posadili v plastične lonce z volu- mnom 3 L. V spodnjo četrtino loncev smo nasuli pesek kot drenažni material za odtekanje odvečne vode. Ostale tri četrtine smo napolnili z mešanico avtoklavi- rane zemlje (distrični kambisol iz peščenjaka in skri- lavca, zgornji horizont tal = 0–30 cm), iz mešanega gozda Rožnik za Gozdarskim inštitutom Slovenije (46°03’N, 14°28’E, 323 m a.s.l.), ki pripada gozdni združbi Blechno fagetum, ter vemikulita (1/3 mešanice) za izboljšanje zračnosti in uravnavanje vlažnosti ze- mlje. Zalivanje sadik je potekalo ročno glede na pred- hodno izmerjeno vlažnost substrata, ki smo ga merili s FD sondo Dacagon EC-5. Vlažnost substrata smo vzdrževali nad 15 %. Spremljali smo relativno zračno vlažnost v obeh prostorih in jo vzdrževali z zračnimi vlažilci (50–80 %) ter CO2 koncentracije (v povprečju 400–700 ppm) (Popović et al. 2015). Jožica Gričar: ZNačiLNoSTi ZGraDBE LESa SaDiK Bora (PINUS SYLVESTRIS) iN BUKVE (FAGUS SYLVATICA) 49folia biologica et geologica 58/1 – 2017 2.2 temperaturne razmere v različnih režimih Eksperiment smo zastavili v treh različnih tempera- turnih razmerah. V vsakem režimu je bilo tako 40 sadik bora in 30 sadik bukve, ki so bile naključno raz- vrščene v posamezne skupine. Ob koncu poskusa smo za podrobnejše lesno-anatomske analize naključno iz- brali po 10 sadik vsake vrste iz posameznega režima (skupno torej 60 sadik). Kontrolne sadike (K) so rasle na prostem, približno 10 m od rastlinjaka, in zaščitene pred dežjem in neposrednim vetrom. Izpostavljene so bile naravnim temperaturnim razmeram v Ljubljani v letih 2010 in 2011. Vremenska postaja, ki je beležila povprečne, maksimalne in minimalne dnevne tempe- rature zraka in količino padavin, je bila nameščena v neposredni bližini sadik. Povprečna temperatura zraka med rastnima sezonama je bila = 17–19°C. Druga skupina sadik (G) je bila podvržena višjim temperatu- ram (T tekom rastne sezone = 22–24°C), tretja skupina pa nižjim (T tekom rastne sezone = 15–17°C). 2.3 Histometrične analize Ob koncu raste sezone 2011 (tj. oktober) smo sadike vzeli iz loncev in na steblu, približno 5 cm nad kore- ninskim vratom, odvzeli 2 cm dolge koščke stebel ter jih dali v fiksirno raztopino FAA (mešanica formalina, 50 % etanola in ocetne kisline). Po enem tednu smo vzorce dehidrirali v etanolni vrsti (30 %, 50 % in 70 %) in jih trajno shranili v 70 % etanolu. Z drsnim mikro- tomom G.S.L. 1 (©Gärtner and Schweingruber; Design and production: Lucchinetti, Schenkung Dapples, Zürich, Švica) smo pripravili 20–25 µm debele prečne prereze lesa in skorje (Gričar et al. 2013), ki smo jih obarvali v vodni mešanici barvil safranin (Merck, Darmstadt, Nemčija) (0.04 %) in astra modro (Sigma- -Aldrich, Steinheim, Nemčija) (0.15 %) (van der Werf et al. 2007) ter jih vklopili v vklopni medij Euparal (Waldeck, Münster, Nemčija). Vse potrebne histometrične analize smo opravili s svetlobnim mikroskopom Olympus BX51 (Olympus, Tokio, Japonska) in programom za analizo slike Ele- ments Basic Research v.2.3 (Nikon, Tokio, Japonska). Na prečnem prerezu vsake sadike smo izmerili širine lesnih prirastkov 2010 in 2011. Meritve smo opravili na štirih mestih in nato izračunali povprečje. V lesnih branikah bukve smo zabeležili: prisotnost in delež ten- zijskega lesa, prisotnost gostotnih fluktuacij ter priso- tnost kalusa. V lesnih branikah bora smo zabeležili: prisotnost in delež kompresijskega lesa, prisotnost go- stotnih fluktuacij in kalusa ter gostoto (število/mm2) in položaj (rani, prehodni oz. kasni les) aksialnih smolnih kanalov. Za statistične analize smo uporabili program Statgraphics, za izdelavo grafov pa Microsoft Excel. Za primerjavo izmerjenih lesno-anatomskih pa- rametrov med posameznimi režimi smo uporabili test One-way ANOVA, za primerjavo med leti pa t-test. Za ugotavljanje moči povezanosti med različnimi lesno- -anatomskimi spremenljivkami smo uporabili Pearso- nov koeficient korelacije. 2.4 osnovna zgradba lesa rdečega bora in bukve Rdeči bor je iglavec z razločnimi branikami in jasnim prehodom iz ranega v kasni les. Zanj so značilni nor- malni smolni kanali, ki so radialno in aksialno usmer- jeni in skupaj tvorijo omrežje (Grosser 1977). Radial- ni smolni kanali se nahajajo v trakovih. Smolni kanal je cevast intercelularni prostor, ki je nastal z razmakni- tvijo nezrelih aksialnih elementov v procesu diferenci- acije. Ta prostor obdajajo epitelne celice in v beljavi vsebuje smolo (Torelli 1990). Pri rdečem boru so epi- telne celice okrog smolnih kanalov tankostene in neli- gnificirane (slika 1a). Bukev je raztreseno porozen li- stavec. Majhne, enakomerno razpršene traheje so vidne le z lupo. Trakovno tkivo je na letnicah značilno kolenčasto razširjeno, široki trakovi so vidni tudi s prostim očesom. Branike v lesu so razločne, rani les se loči od nekoliko temnejšega kasnega lesa. Prehod iz ra- nega v kasni les je postopen (slika 1b, c, d) (Čufar 2006). 3 IZSLEDKI IN RAZPRAVA 3.1 Pojavnost gostotnih fluktuacij Kambijevo delovanje drevesnih vrst zmernega in hla- dnega pasu je periodično, s tipičnimi obdobji aktivno- sti in mirovanja. Tako nastane značilna struktura le- tnih prirastkov lesa (t.i. branik) z redkejšim in svetlej- šim ranim lesom, ki se oblikuje na začetku rastne sezo- ne ter gostejšim in temnejšim kasnim lesom, ki nastaja v drugi polovici rastne sezone. Za rani les iglavcev so značilne velike radialne dimenzije traheid s tankimi celičnimi stenami, za kasni les pa ravno obratno: majh- ne radialne dimenzije celičnih lumnov in debele celič- Jožica Gričar: ZNačiLNoSTi ZGraDBE LESa SaDiK Bora (PINUS SYLVESTRIS) iN BUKVE (FAGUS SYLVATICA) 50 folia biologica et geologica 58/1 – 2017 ne stene (Panshin & de Zeeuw 1980). Pri raztreseno poroznih listavcih, kamor spada bukev, se morfološke značilnosti lesnih celic ranega in kasnega lesa ne razli- kujejo tako opazno, kot denimo pri venčasto poroznih listavcih (npr. hrast). Kljub temu pa so površine lu- mnov trahej oz. njihove radialne in tangencialne di- menzije v ranem lesu nekoliko večje. Poleg tega je lahko v ranem lesu večja gostota trahej (tj. število tra- hej na enoto površine) (Čufar 2006). Vendar pa se lahko v določenih primerih značilna lesno-anatomska zgradba branik posamezne drevesne vrste spremeni in so lahko prisotne t.i. gostotne fluktuacije, ko se v ranem lesu pojavijo celice z morfološkimi značilnost- mi celic kasnega lesa in obratno, ko v kasnem lesu na- stanejo ranem lesu podobne celice (slika 1a, c) (De Micco et al. 2016a, c). Z vidika debelinskega in višinskega prirastka so boru najmanj ustrezale razmere v C in najbolj v K. Bukvi so najbolj ustrezale razmere v C in najmanj v K. Dvoletni lesni prirastek je bil v vseh primerih širši pri boru kot pri bukvi, in sicer za okoli 57 % v G, 9 % v C in 45 % v K (Gričar 2014). Gostotne fluktuacije so se pri boru v letu 2011 v splošnem pogosteje pojavljale v primerjavi s predhodnim letom (slika 2a). Najmanj go- stotnih fluktuacij smo v obeh letih zasledili v G (2010: ena sadika; 2011: ena sadika), največ pa v K, kjer so bile prisotne pri več kot polovici sadik (2010: šest sadik; 2011: osem sadik). V C so bile gostotne fluktuacije v letu 2010 prisotne pri dveh sadikah, v letu 2011 pa pri štirih. Zveze med širino lesne branike in pojavnostjo gostotnih fluktuacij pri boru nismo potrdili. Pri bu- kvah je prisotnost fluktuacij med leti v posameznih Slika 1: a) Prisotnost kompresijskega lesa (bela puščična ost), gostotnih fluktuacij (siva puščična ost) ter aksialnih smolnih kanalov v prehodnem lesu (črna puščica) in kasnem lesu (bela puščica) pri boru, merilce je 500 μm. b) Prisotnost tenzijskega lesa (bela puščična ost) pri bukvi, merilce 200 je μm. c) Prisotnost gostotnih fluktuacij (siva puščična ost) pri bukvi, merilce je 200 μm. d) Prisotnost anomalij (vključki v trahejah) (črna puščična ost) pri bukvi, merilce je 200 μm. Figure 1: a) Presence of compression wood (white arrow-head), density fluctuations (grey arrow-head), and axial resin canals in transition wood (black arrow) and latewood (white arrow) in pine, bar = 500 μm. b) Presence of tension wood (white arrow- head) in beech, bar = 200 μm. c) Presence of density fluctuations (grey arrow-head) in beech, bar = 200 μm. d) Presence of anomalies (deposits in vessels) (black arrow-head) in beech, bar = 200 μm. Jožica Gričar: ZNačiLNoSTi ZGraDBE LESa SaDiK Bora (PINUS SYLVESTRIS) iN BUKVE (FAGUS SYLVATICA) 51folia biologica et geologica 58/1 – 2017 režimih variirala (slika 2b). V letu 2010 jih je bilo naj- več pri sadikah v G, kjer so se pojavile pri štirih sadi- kah, v C so bile prisotne pri dveh sadikah, pri sadikah K jih nismo zabeležili. V letu 2011 se je to razmerje med režimi nekoliko obrnilo, saj v G nismo zabeležili gostotnih fluktuacij pri nobeni sadiki, v C pri štirih sadikah in v K pri dveh sadikah. Zveze med širino lesne branike in prisotnostjo gostotnih fluktuacij tudi pri bukvi nismo potrdili. Pojavnost gostotnih fluktua- cij se je pri vrstah razlikovala, pri boru so se fluktuacij pojavile v obeh rastnih sezonah pri posameznih sadi- kah v vseh treh režimih. V splošnem je bilo največ go- stotnih fluktuacij pri boru v K, v C pa je bilo v obeh letih njihovo število enako pri obeh vrstah. Na nastanek gostotnih fluktuacij vplivajo vremen- ske spremembe, zlasti temperatura in padavine, ki ne- posredno vplivajo na kambijevo delovanje in celično diferenciacijo. Gostotne fluktuacije so se tako izkazale za primerne indikatorje sprememb okoljskih razmer pri različnih drevesih vrstah (Wimmer & Grabner 2000, de Luis et al. 2007). V sredozemski klimi, napri- mer, se gostotne fluktuacije pojavijo v lesnih branikah Slika 2: Prisotnost gostotnih fluktuacij v lesu a) bora in b) bukve v lesnih branikah 2010 in 2011, ki so bile izpostavljene različnim temperaturnim režimom. Figure 2: Presence of density fluctuations in wood of a) pine and b) beech seedlings in annual xylem increments of 2010 in 2011, exposed to different temperature regimes. jeseni, po poletni suši. Zaradi pomanjkanja vode in vi- sokih temperatur poleti se v tem obdobju kambijeva celična produkcija upočasni ali celo ustavi, nastajati pa začnejo celice kasnega lesa (de Luis et al. 2007). Takrat se zaradi zmanjšanega vodnega potenciala zmanjša tur- gorski tlak v celicah, ki negativno vpliva na njihovo rast (Hölttä et al. 2010). Manjša velikost celic pa obenem zmanjšuje tveganje za kavitacijo (Steppe et al. 2015). Je- senske padavine in nižje temperature ponovno spodbu- dijo kambijevo celično produkcijo, ko nastanejo ranem lesu podobne celice s tankimi celičnimi stenami v ka- snem lesu. A da gostotno fluktuacijo opazimo, mora nastati zadostno število celic (de Luis et al. 2011). Gostotne fluktuacije se pojavljajo tudi pri dreve- sih, ki rastejo v zmerni in hladni klimi, in sicer bodisi zaradi sušnega stresa v poletnih mesecih ali pa nad- povprečno vlažnih in hladnih razmer na višku rastne sezone (De Micco et al. 2016c). Poleg tega je pogostost gostotnih fluktuacij pri mladih drevesih z mladostnim lesom večja (Wimmer 2002). Juvenilni ali mladostni les nastaja v prvih letih debelinske rasti drevesa, v t.i. juvenilnem obdobju, ki mnogokrat sovpada s časom prvega cvetenja in ploditve. Juvenilno obdobje nava- dno traja 10–20 let (od 5–60 let). Vlakna tedaj še ne dosežejo svoje maksimalne dimenzije, ki je značilna za zreli les. Za mladostni les so značilne manj izrazite le- tnice, pravi kasni les pa manjka, zato je tudi gostota manjša od gostote zrelega lesa. Za mladostni les je še značilno, da pogosto vsebuje večji delež reakcijskega lesa. Lastnosti mladostnega lesa so v splošnem slabše od zrelega lesa. Kljub temu je ta les je gospodarsko zelo pomemben, saj so drevesa dostikrat posekana še pred koncem juvenilnega obdobja (Torelli et al. 1998), zato so raziskave njegovih lastnosti nujne. Nenazadnje go- stotne fluktuacije lahko nastanejo tudi zaradi zmanj- šanja fotosintetske aktivnosti v primeru poškodbe kro- šnje zaradi abiotskih dejavnikov (npr. požar, zmrzal) ali/in patogenov (Panshin & de Zeeuw 1980, De Luis et al. 2011), zato je razlog za njihov nastanek navadno težko določiti brez dodatnih kemijskih, morfoloških, ekoloških, geografskih ali zgodovinskih informacij (De Micco et al. 2016c). So pa gostotne fluktuacije zelo koristne za ugotavljanje (nenadnih) sprememb rastnih razmer pri posamezni drevesni vrsti v nekem okolju. Jožica Gričar: ZNačiLNoSTi ZGraDBE LESa SaDiK Bora (PINUS SYLVESTRIS) iN BUKVE (FAGUS SYLVATICA) 52 folia biologica et geologica 58/1 – 2017 3.2 Pojavnost reakcijskega lesa Reakcijski les imenujemo aktivno usmerjevalno tkivo anomalne anatomske zgradbe, ki nastaja pri ekscen- tričnih deblih ali vejah na strani z večjim polmerom. Pri iglavcih se imenuje kompresijski les in se nahaja na spodnji, tlačni strani nagnjenih debel ali vej (slika 1a). Pri listavcih se imenuje tenzijski les in se v večini pri- merov nahaja na zgornji natezni strani ukrivljenih debel ali vej (slika 1b). Za poravnavanje debla kompre- sijski les razvije tlačne sile, ki potisnejo deblo v verti- kalno lego, medtem ko v tenzijskem lesu nastanejo na- tezne sile, ki povlečejo deblo v negativno geotropsko lego. V kompresijskem lesu je zvišana vsebnost lignina in zmanjšana vsebnost celuloze. Tenzijski les vsebuje več celuloze, vsebnost lignina in hemiceluloz je zniža- na (Torelli 2002). Kompresijski les je bil pri sadikah bora izpostavlje- nih trem različnim režimom v veliki meri prisoten (slika 3a). V letu 2010 G in K režimih je bil kompresij- ski les tako prisoten kar pri polovici sadik, a le pri eni sadiki v C. V G in K je prisotnost kompresijskega lesa v letu 2011 upadla, in sicer za 40 % v G in 67 % v K. Nasprotno se je njegova prisotnost za 30 % povečala v C. Ocenili smo tudi njegov delež v posamezni lesni braniki, kadar se je pojavil. Tako je v letu 2010 znašal 10–20 % v G, 10 % v C in med 5–23 % v K, v leti 2011 pa 5–15 % v G, 3–50% v C in 3–7 % v K. Pri bukvah je bila prisotnost tenzijskega lesa v letu 2010 znatno večja kot v naslednjem letu (slika 3b). V 2010 se je pojavil pri polovici sadik v G, pri treh v C in kar pri osmih sadi- kah v K. Pri sadikah, kjer smo ga zabeležili, smo oceni- li, da je bil njegov delež med 15–25 % v G, med 10–40 % v C in med 12–40 % v K. V letu 2011 se je v G pojavil le še v dveh primerih, v C je število ostalo nespreme- njeno, v K pa se je pojavil le še pri treh sadikah. Njegov delež smo ocenili na 18–25 % v G, 15–50% v C in 18–20 % v K. Zvez med širino lesne branike in prisotnostjo oz. deležem reakcijskega lesa pri boru in bukvi nismo zasledili (podatki niso prikazani). Reakcijski les se pogosto pojavi pri drevesih, ki ra- stejo na pobočju ali na območjih, kjer pihajo stalni in močni vetrovi ali pri drevesih, ki imajo asimetrično obliko krošnje (npr. robovi jas), saj morajo drevesa navpično lego debla nenehno vzdrževati. Na njegovo pojavnost lahko vplivajo tudi svetlobne razmere. Ker prisotnost reakcijskega lesa, četudi v majhnih količi- nah, bistveno vpliva na kakovost lesa (Torelli 2002), so raziskave povezane z njegovim nastankom gleda na okoljske razmere zelo zanimive, a redke. Pojavnost re- akcijskega lesa je zelo primerna za rekonstrukcije geo- morfoloških procesov (npr. plazovi) (Bräuning et al. 2016). 3.3 gostota in položaj aksialnih smolnih kanalov pri boru Gostota aksialnih smolnih kanalov se je pri borih iz- postavljenih različnim rastnim razmeram le nekoliko razlikovala (slika 4a). V letu 2010 je bila gostota aksial- nih smolnih kanalov najmanjša pri borih v G (4,13±1,85 mm-2), največja pa v K (6,63±2,29 mm-2), razlike pa niso bile statistično značilne (F = 3,09, p = 0,0617). V letu 2011 je v splošnem gostota smolnih kanalov upa- dla, vendar nismo zabeležili značilnih razlik med reži- mi (F = 1,35, p = 0,2787) (slika 4b). Gostota smolnih kanalov je bilo tokrat najmanjša pri borih v K (3,31±0,97 mm-2) in največja pri borih v C (5,51±2,56 mm-2). Med letom 2010 in 2011 smo zabeležili značilne razlike v gostoti aksialnih smolnih kanalov le v K (t = 4,806, p=0,0001). Gostota aksialnih smolnih kanalov je bila v Slika 3: Prisotnost a) kompresijskega lesa pri sadikah bora in b) tenzijskega lesa pri sadikah bukve v lesnih branikah 2010 in 2011, ki so bile izpostavljene različnim temperaturnim režimom. Figure 3: Presence of a) compression wood in pine and b) tension wood in beech seedlings in annual xylem increments of 2010 in 2011, exposed to different temperature regimes. Jožica Gričar: ZNačiLNoSTi ZGraDBE LESa SaDiK Bora (PINUS SYLVESTRIS) iN BUKVE (FAGUS SYLVATICA) 53folia biologica et geologica 58/1 – 2017 splošnem v negativni zvezi s širino branike (r = –0,275), razen v C (r = 0,242) in K (r = 0,321) v 2010. Z izjemo travmatskih smolnih kanalov, ki smo jih zasledili v par primerih ob kalusu kot odziv na po- škodbo kambija in so bili tangencialno razporejeni, so bili normalni aksialni smolni kanali posamično razpr- šeni po lesni braniki (slika 1a). Preverili smo njihovo lokacijo v braniki, ki smo jo razdelili na tri dele: rani les, prehodni les in kasni les. To razdelitev smo naredi- li vizualno pod 10x povečavo svetlobnega mikroskopa na osnovi obarvanosti tkiva ter radialnih dimenzij in debeline celičnih sten traheid. V splošnem se je naj- manj aksialnih smolnih kanalov nahajalo v preho- dnem lesu (2010 = pod 5 %). V letu 2011 se je njihov delež nekoliko povečal v vseh treh režimih, a še vedno ni presegel 10 % (slika 5). Pri K borih aksialnih smol- nih kanalov v tem delu branike sploh nismo zabeležili. Pri G in C borih je bil delež aksialnih smolnih kanalov v ranem in kasnem lesu primerljiv v obeh letih in je v kasnem lesu znašal nekoliko več kot 50 % v letu 2010 (G = 53,58 %; C = 53,48 %) ter v letu 2011 upadel za okoli 4 % (G = 49,34 %; C = 48,98 %). Porast deleža aksialnih smolnih kanalov v prehodnem lesu je soraz- merno zmanjšala njihove delež v ranem in kasnem lesu (slika 5). Pri C borih je delež aksialnih smolnih kana- lov v ranem lesu predstavljal 59,09 %, v letu 2011 pa se je razmerje obrnilo in se je njihov delež v ranem lesu zmanjšal na 26,49 %. Prisotnost normalnih smolnih kanalov je zelo po- membna karakteristika lesa pri določanju vrste. Za les borov so značilni (Grosser 1977). Smolni kanali so po- membna pasivna zaščita iglavcev v primeru napada pa- togenov. Ob stresnem dogodku (npr. ranitev drevesa) se lahko tvorijo tudi poškodbeni ali travmatski smolni kanali, ki so urejeni v tangencialnih nizih in predsta- vljajo aktivni obrambni sistem (Bräuning et al. 2016). Slika 4: Gostota aksialnih smolnih kanalov v lesu sadik bora v letu a) 2010 in b) 2011, ki so bile izpostavljene različnim tempera- turnim režimom. Figure 4: Density of axial resin canals in wood of pine seedlings in a) 2010 and b) 2011, exposed to different temperature re- gimes. Slika 5: Položaj aksialnih smolnih kanalov v lesu sadik bora v letu a) 2010 in b) 2011, ki so bile izpostavljene različnim tempera- turnim režimom. EW – rani les, TW – prehodni les, LW – kasni les Figure 5: Position of axial resin canals in wood of pine seedlings in a) 2010 and b) 2011, exposed to different temperature re- gimes. EW – earlywood, TW – transition wood, LW – latewood Jožica Gričar: ZNačiLNoSTi ZGraDBE LESa SaDiK Bora (PINUS SYLVESTRIS) iN BUKVE (FAGUS SYLVATICA) 54 folia biologica et geologica 58/1 – 2017 Normalni smolni kanali so pri rdečem boru večinoma prisotni v kasnem lesu, njihova pojavnost pa naj bi bila povezana s spremenjenimi okoljskimi razmerami (Ri- gling et al. 2003). Sicer je položaj normalnih smolnih kanalov v lesni braniki in natančen čas stresnega do- godka težko povezati, saj navadno nastanejo nekoliko z zamikom v procesu celične diferenciacije. Nekateri av- torji navajajo, da je neodvisno od rastiščnih pogojev, njihov nastanek v pozitivni zvezi s poletnimi tempera- turami in vodnim stresom (Wimmer & Grabner 1997, Rigling et al. 2003, de Luis et al. 2007). V našem pri- meru bi lahko njihovo večjo gostoto v leto 2010 poveza- li s presaditvenimi šokom, ki je potem vplival tudi na njihovo debelinsko rast. Rigling in sodelavci (2003) za rdeči bor navajajo, da je v širokih branikah delež smol- nih kanalov višji v ranem lesu, pri ožjih pa višji v ka- snem lesu. V našem primeru teh zvez ni bilo mogoče potrditi, kar bi lahko pojasnili s tem, da so omenjeni avtorji raziskovali lesno-anatomske značilnosti odra- slih borov, mi pa triletnih sadik (mladostni les). 3.4 Pojavnost kalusa Prisotnost poškodb kambija smo določili na podlagi prisotnosti kalusa in anomalij v strukturi lesa, kot na- primer netipična obarvanja celičnih sten ali vključki v lumnih aksialnih lesnih celic in trakovnih celic (De Micco et al. 2016b). Pri borih so se anomalije oz. po- škodbe v večji meri pojavljale v letu 2010, in sicer pri štirih sadikah v G, pri polovici sadik v C in pri treh sadikah v K (slika 6a). V letu 2010 se je prisotnost po- škodb v vseh treh režimih zmanjšala, pri čemer smo jih zabeležili pri treh sadikah v G, pri dveh v C, medtem ko jih pri sadikah v K nismo opazili. Pri bukvah smo opazili le anomalije, in sicer v obliki netipičnih obar- vanj celičnih sten ali lumnov aksialnih lesnih celic in trakovnih celic. V letu 2010 smo ta pojav zabeležili pri polovici sadik v G in pri treh sadikah v C (slika 6b). Pri K sadikah anomalij v obeh letih nismo zasledili. V letu 2011 nasploh nismo zasledili anomalij v strukturi le- snih branik v nobenem režimu. Poškodbe živih tkiv skorje in kambija povzročijo izsušitev poškodovanega tkiva, nekrozo kambija in ne- diferenciranih lesnih celic, nastanek kalusa in porani- tvenega lesa. Pri iglavcih nastanejo še travmatski smol- ni kanali, ki so razporejeni v tangencialnih nizih. Pri manjših poškodbah je obseg ranitvenega tkiva manjši, struktura poškodovanega tkiva pa je neodvisna od ve- likosti rane. Poranitveni les mesto poškodbe preraste. Celice poranitvenega lesa, ki nastanejo nad kalusom, so dezorientirane in nepravilnih oblik (Gričar 2007). V lumnih celic se pogosto pojavijo tile in depoziti, ki jih opazimo z obarvanjem (slika 1d). Naštete struktur- ne spremembe so pomembne pri omejevanju območja rane in širitve patogenov (Torelli et al. 1990). Znatno večja pogostost tovrstnih poškodb v letu 2010 kaže vpliv manipulacije sadik pri presaditvi za potrebe po- skusa. Vse te spremembe lesa pa negativno vplivajo na njegovo kakovost. Slika 6: Prisotnost kalusa v lesu a) bora in b) bukve v lesnih branikah 2010 in 2011, ki so bile izpostavljene različnim tempera- turnim režimom. Figure 6: Presence of callus tissue in wood of a) pine and b) beech in annual xylem increments of 2010 in 2011, exposed to different temperature regimes. Jožica Gričar: ZNačiLNoSTi ZGraDBE LESa SaDiK Bora (PINUS SYLVESTRIS) iN BUKVE (FAGUS SYLVATICA) 55folia biologica et geologica 58/1 – 2017 V predhodnji analizi debelinske in višinske rasti sadik rdečega bora in navadne bukve smo zaključili, da je bil vpliv različnih okoljskih razmer na debelinsko rast dreves bolj opazen pri sadikah bora kot pri sadikah bukve. Na debelinsko rast sadik bora je hladnejše oko- lje negativno vplivalo, saj se je rast pri teh sadikah za- ključila prej kot pri sadikah na prostem in v rastlinja- ku. Pri sadikah bukve, ki so bile izpostavljene različ- nim okoljskim razmeram, nismo opazili razlik v dina- miki debelinske rasti. Rezultati kažejo na vrstno speci- fičen odziv pionirskega rdečega bora in sencovzdržne bukve na različne okoljske razmere v smislu debelinske rasti (Gričar 2014). V pričujoči raziskavi ugotavljamo, da je bila pojav- nost lesno-anatomskih značilnosti v splošnem večja v letu 2010 kot v 2011. To bi lahko pojasnili s presaditve- nim šokom in z večjo verjetnostjo povzročitve mehan- skih poškodb ob manipulaciji sadik, ki so negativno vplivali na kakovost lesa. Razlike v strukturnih poseb- nosti lesnih prirastkov v obeh proučevanih letih tudi kažejo na nujnost večletnih tovrstnih poskusov v nad- zorovanih razmerah. Nenazadnje se nekateri odzivi lahko pokažejo šele v daljšem obdobju. Rezultati nada- lje nakazujejo, da širina lesnega prirastka in lesno-ana- tomske značilnosti niso nujno povezane, zato na pod- lagi priraščanja ne moremo sklepati o kakovosti lesa. Ugotovitev opravljenih na mladostnem lesu mladih sadik ni mogoče neposredno prenesti na zreli les, ven- dar pa tovrstne raziskave pokažejo vpliv okoljskih de- javnikov na strukturne značilnosti lesa. Sadike so pri tem še posebej primerne, saj so zaradi majhnosti, ne- posrednega stika z dinamično mikro-klimo površja zelo občutljive na stresne razmere. Informacije o ran- ljivost sadik na spreminjajoče se okoljske razmere so tako pomembne z ekološkega in ekonomskega razlika, saj je mladostni les gospodarsko zelo pomemben, zato je nujno poznavanje njegovih lastnosti (Torelli et al. 1998). Poznavanje vzrokov za nastanek glavnih napak pri pomembnejših drevesnih vrstah, ustrezna gojitve- na praksa ter izogibanje poškodbam drevja pri goz- dnih posegih lahko tako veliko prispevajo h kakovosti lesa (Gričar 2011). 4 ZAKLJUČKI 5 SUMMARy Wood is used for various purposes and exploits it to its different properties. The quality of wood is the basic criterion for the suitability of wood for certain pur- poses, and is the result of tree growth, growth specifics and damage due to various factors. Thus, knowledge on structure and properties of wood is crucial for its optimal woodworking, processing and end-use. Wood anatomical features may be visible on the microscopic as well as on the macroscopic scale. While the former can often be quantified by detailed wood anatomical analyses, the latter are often treated as qualitative fea- tures or as binary variables (present/absent). Macro- scopic tree-ring features can be quantified in terms of frequency, intensity, or classified according to their position within a xylem ring. In the paper, we describe and compare characteristics of wood structure of three-year-old pine (Pinus sylvestris) and beech (Fagus sylvatica) seedlings exposed to different temperature regimes in the growing seasons of 2010-2011: control (K, outdoors, mean temperature during the growing season = 17–19°C), greenhouse (G, mean temperature during the growing season = 22–24°C) and climatized room (C, mean temperature during the growing sea- son = 15–17°C). On transverse-sections of xylem, pres- ence and proportion of the reaction wood, presence of the density fluctuations, presence of callus tissue, and in the case of pine also density and position of the axial resin canals were evaluated. On transverse-sec- tions of xylem, presence and proportion of the reac- tion wood, presence of the density fluctuations, pres- ence of callus tissue, and in the case of pine also den- sity and position of the axial resin canals were evalu- ated. A characteristic of tree species in the temperate climatic zone is a seasonal alternation of cambial ac- tivity and dormant (resting) periods, which is gener- ally related to alternations of cold and hot or rainy and dry seasons Cambial activity usually starts in spring with cell division and ends in late summer with the completed development of the latest newly formed cells. Xylem rings are composed of early wood and late wood. Early wood cells are formed at the beginning of the growing season and are characterized by a large radial dimension and thin cell walls. The development of late wood cells with small radial dimensions and thick cell walls occurs in summer, resulting in its high- er density. Intra-annual density fluctuations in xylem rings are generally considered structural anomalies in the normal structure of wood increments, such as ear- lywood-like cells in within latewood or latewood-like cells in earlywood. The formation of intra-annual den- Jožica Gričar: ZNačiLNoSTi ZGraDBE LESa SaDiK Bora (PINUS SYLVESTRIS) iN BUKVE (FAGUS SYLVATICA) 56 folia biologica et geologica 58/1 – 2017 sity fluctuations can be triggered directly by environ- mental changes, especially in precipitation and tem- perature, that affect cambial activity and cell differen- tiation. It can also be the result of limited photosyn- thesis, due to defoliation induced by biotic or abiotic constraints. Normal resin canals are usually present in wood of Pinus genus. Axial and radial resin canals to- gether form a network. In addition, traumatic resin canals can appear which form as a response of cambi- um to mechanical wounding. Intensive exploitation of trees with smaller diameter of logs will result in higher proportions of juvenile wood in the timber. The crite- ria for definition of the boundary between juvenile and mature wood are various and are mostly based on stabilising of anatomical dimensions. The juvenile pe- riod is very variable, depending on cambial activity, and usually occupies at least 10 to 20 growth rings, rarely even up to 60 years. Juvenile wood with shorter fibres, thinner cell walls, spiral grain and larger amounts of reaction wood poses a serious problem in performance of solid wood products. The juvenile wood has generally worse anatomical characteristics and physical properties as those in the mature wood of the same tree. Thus, structure and properties of juve- nile wood need to be well characterized, to process and use the timber effectively. The formation of reaction wood is related to gravitropic signals and is formed in tilted trees because of external forces or mechanical stresses on the stems or crowns. In conifers, it is formed in lower part of the stem/ branches and is called compression wood while in angiosperms it is formed in upper part of the stem/ branches and is called tension wood. It is often present in juvenile wood and if present in higher proportions, it reduces wood quality. The mechanical damage of the cambium causes the formation of callus, wound-wood and trau- matic resin canals. The structure of wounded tissue is independent of the size of the wound. Presence of such tissues in the wood reduces its quality. The results show species-specific response of pioneer Scots pine and late-successional beech to different environmental conditions in terms of radial growth and structural characteristics of wood. Incidence of wood-anatomical characteristics were generally higher in 2010 than in 2011. This may be explained by the transplant shock, and higher probability of mechanical wounding of cambium, which have a negative impact on the wood quality, when setting up the experiment. The differ- ences in the structure of xylem increments of 2010 and 2011 demonstrate that a continuation of such observa- tions over several growing seasons is necessary to cap- ture the short- and long-term response of tree growth under changing environmental conditions. Finally, width of the wood increment and wood-anatomical characteristics are not necessarily linked, thus incre- ment width cannot be an indicator of wood quality. ZAHVALA - ACKOWLEDGEMENTS Pripravo prispevka so omogočili raziskovalni program št. P4-0107 (Gozdna biologija, ekologija in tehnologija) ter raziskovalna projekta L7-2393 (Vpliv klimatskih sprememb na trajnost, stabilnost in biodiverziteto se- stojev bukve in črnega bora na Balkanu) in J4-7203 (Kratkoročni in dolgoročni odzivi hrastov v submedi- teranu na ekstremne vremenske dogodke s pomočjo drevesno-anatomskih analiz in eko-fizioloških meri- tev), ki jih je sofinancirala Javna agencija za raziskoval- no dejavnost Republike Slovenije iz državnega prora- čuna. Zahvaljujem se Špeli Jagodic, univ. dipl. geog., dr. Boštjanu Maliju, Meliti Hrenko, univ. dipl. biol., in dr. Ines Štraus z Gozdarskega inštituta Slovenije za pomoč pri oskrbi in analizi sadik. Hvala tudi študentki Urški Mihoci z Oddelka za gozdarstvo in obnovljive vire, Biotehniške fakultete, Univerze v Ljubljani za pomoč pri analizi lesno-anatomskih preparatov. 6 LITERATURA - REFERENCES Bigler, C., J. Gričar, H. Bugmann & K. Čufar, 2004: Growth patterns as indicators of impending tree death in silver fir. Forest Ecology and Management (Amsterdam) 199: 183-190. http://dx.doi.org/10.1016/j.fore- co.2004.04.019 Bräuning, A., M. De Ridder, N. Zafirov, I. García-González, D. Petrov Dimitrov & H. Gärtner, 2016: Tree-ring features: Indicators of extreme event impacts. IAWA Journal (Leiden) 37: 206-231. http://dx.doi. org/10.1163/22941932-20160131 Jožica Gričar: ZNačiLNoSTi ZGraDBE LESa SaDiK Bora (PINUS SYLVESTRIS) iN BUKVE (FAGUS SYLVATICA) 57folia biologica et geologica 58/1 – 2017 Čufar, K., 2006: Anatomija lesa. Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za lesarstvo. Ljubljana. (Univerzitetni učbenik,185 str.). De Luis, M., J. Gričar, K. Čufar & J. Raventós, 2007: Seasonal dynamics of wood formation in from dry and se- mi-arid ecosystems in Spain. IAWA Journal (Leiden) 28: 389-404. http://dx.doi.org/10.1163/22941932-90001651 De Luis, M., K. Novak, J. Raventós, J. Gričar, P. Prislan & K. Čufar, 2011: Climate factors promoting intra- -annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia (Vero- na) 29: 163-169. http://dx.doi.org/10.1016/j.dendro.2011.01.005 De Micco, V., A. Balzano, K. Čufar, G. Aronne, J. Gričar, M. Merela & G. Battipaglia, 2016a: Timing of false ring formation in Pinus halepensis and Arbutus unedo in southern Italy: Outlook from an analysis of xylo- genesis and tree-ring chronologies. Frontiers in Plant Science (Lausanne) 7: . http://dx.doi.org/10.3389/ fpls.2016.00705 De Micco, V., A. Balzano, E. A. Wheeler & P. Baas, 2016b: Tyloses and gums: A review of structure, function and occurrence of vessel occlusions. IAWA Journal (Leiden) 37: 186-205. http://dx.doi.org/10.1163/22941932-20160130 De Micco, V., F. Campelo, M. De Luis, A. Bräuning, M. Grabner, G. Battipaglia & P. Cherubini, 2016c: Intra-annual density fluctuations in tree rings: How, when, where, and why? IAWA Journal (Leiden) 37: 232-259. http://dx.doi.org/10.1163/22941932-20160132 Gričar, J., 2007: Xylo- and phloemogenesis in silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst.). Ljubljana. Gričar, J., 2011: Lastnosti in kakovost lesa. V: M. Medved (ur.): Gospodarjenje z gozdom za lastnike gozdov. Kmečki glas (Ljubljana), str. 252-257. Gričar, J., M. De Luis, P. Hafner & T. Levanič, 2013: Anatomical characteristics and hydrologic signals in tree- -rings of oaks (Quercus robur L.). Trees (Berlin) 27: 1669-1680. http://dx.doi.org/10.1007/s00468-013-0914-9 Gričar, J., 2014: Effect of temperature on radial growth of beech and pine saplings in the first and second year of the experiment: a comparison. Drvna Industrija (Zagreb) 65: 283-292. http://dx.doi.org/10.5552/drind.2014.1344 Grosser, D., 1977: Die Hölzes Mitteleuropas. Berlin, Heidelberg, New york. Hölttä, T., H. Mäkinen, P. Nöjd, A. Mäkelä & E. Nikinmaa, 2010: A physiological model of softwood cambial growth. Tree Physiology (Victoria B.C.) 30: 1235-1252. http://dx.doi.org/10.1093/treephys/tpq068 Panshin, A.J. & C. De Zeeuw, 1980: Textbook of wood technology. New york. Popović, M., V. Šuštar, J. Gričar, I. Štraus, G. Torkar, H. Kraigher & A. De Marco, 2015: Identification of environmental stress biomarkers in seedlings of European beech (Fagus sylvatica) and Scots pine (Pinus sylve- stris). Canadian Journal of Forest Research (Ottawa Ont.) 46: 58-66. http://dx.doi.org/10.1139/cjfr-2015-0274 Rigling, A., H. Brühlhart, O. U. Bräker, T. Forster & F. H. Schweingruber, 2003: Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzer- land. Forest Ecology and Management (Amsterdam) 175: 285-296. http://dx.doi.org/10.1016/S0378- 1127(02)00136-6 Steppe, K., F. Sterck & A. Deslauriers, 2015: Diel growth dynamics in tree stems: linking anatomy and ecophysi- ology. Trends in Plant Science (Oxford) 20: 335-343. http://dx.doi.org/10.1016/j.tplants.2015.03.015 Torelli, N., 1990: Les & skorja. Slovar strokovnih izrazov. Ljubljana. Torelli, N., 1991: Makroskopska in mikroskopska identifikacija lesa (ključi). Ljubljana. Torelli, N., 1998: Lesna tekstura. Les (Ljubljana) 50: 11-15. Torelli, N., Ž. Gorišek, M. Zupančič & T. Logar, 1998: Juvenilni les pri jelki (Abies alba Mill.) in smreki (Picea abies Karst.). Les (Ljubljana) 50: 5-7. Torelli, N., 2002: Reakcijski les in njegova mehanika. Les (Ljubljana) 54: 140-147. Van Der Werf, G.W., U. Sass-Klaassen & G.M.J. Mohren, 2007: The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Nether- lands. Dendrochronologia (Verona) 25: 103-112. http://dx.doi.org/10.1016/j.dendro.2007.03.004 Vlada RS, 2015: Slovenska strategija pametne specializacije S4. Ljubljana. Wimmer, R. & M. Grabner, 1997: Effects of climate on vertical resin duct density and radial growth of Norway spruce [Picea abies (L.) Karst.]. Trees (Berlin) 11: 271-276. http://dx.doi.org/10.1007/pl00009673 Wimmer, R. & M. Grabner, 2000: A comparison of tree-ring features in Picea abies as correlated with climate. IAWA Journal (Leiden) 21: 403-416. http://dx.doi.org/10.1163/22941932-90000256 Wimmer, R., 2002: Wood anatomical features in tree-rings as indicators of environmental change. Dendrochrono- logia (Verona) 20: 21-36. http://dx.doi.org/10.1078/1125-7865-00005 folia biologica et geologica 58/1, 59–75, ljubljana 2017 FOSILNI RIBJI ZOBJE IZ NAJDIŠČ MED TRBOVLJAMI IN LAŠKIM FOSSIL FISH TEETH FROM SITES BETWEEN TRBOVLJE AND LAŠKO, SLOVENIA Vasja MIKUŽ1, Aleš ŠOSTER2 & Špela ULAGA3 http://dx.doi.org/10.3986/fbg0021 iZVleČeK Fosilni ribji zobje iz najdišč med trbovljami in laškim V prispevku so obravnavani ribji zobje oziroma njihove krone iz miocenskih plasti Centralne Paratetide, ki izdanja- jo na območju med krajema Trbovlje in Laško oziroma na ozemlju med rekama Savo in Savinjo. Ugotovljeni so prim- erki štirih rodov hrustančnic Carcharias, Carcharoides, Co- smopolitodus in Carcharhinus ter dveh rodov kostnic Diplo- dus in Pagrus. Ključne besede: ribe, miocen, Centralna Paratetida, Tr- bovlje – Laško, Slovenija abStRact Fossil fish teeth from sites between trbovlje and laško, Slovenia In this contribution we are dealing with fish remains found in Miocene beds in the area between Trbovlje and Laško. The fossil material consists of fish teeth, belonging to fossil shark genera Carcharias, Carcharoides, Cosmopolito- dus and Carcharhinus and of two kinds of bony fish belong- ing to genera Diplodus and Pagrus. Key words: fishes, Miocene, Central Paratethys, Trbovlje – Laško, Slovenia 1 Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za geologijo, Privoz 11, SI-1000 Ljubljana, Slovenija; vasja. mikuz@ntf.uni-lj.si 2 Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za geologijo, Aškerčeva 12, SI-1000 Ljubljana; ales.soster@geo. ntf.uni-lj.si 3 Log 15a, SI-1430 Hrastnik, Slovenija; spela.ulaga@gmail.com Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 60 folia biologica et geologica 58/1 – 2017 UVOD Po večkratnem obiskovanju in pregledovanju kamnolomov Plesko – Retje in izdankov v okolici Hrastnika, Govc in Trnovega Hriba, smo v nekaj letih našli na terenu in zasebnih zbirkah več fosilnih ribjih zobnih kron hrustančnic in kostnic. Večina zob je na- jdenih v kamnolomu Plesko (1), posamezne najdbe so iz najdišč Dol pri Hrastniku (2), Govce (3) in Trnov Hrib pri Govcah (4) (slika 1). Vse zobne krone rib so najdene v miocenskih kamninah, nekaj v spodnje, največ v srednjemiocenskih – badenijskih laporovcih in biokalkarenitih. Ker omenjene ribje krone še niso bile predstav- ljene, smo se odločili, da jim določimo ustrezno tak- sonomsko mesto in jih v krajšem prispevku predočimo širši javnosti. Tako bomo obogatili zbirko fosilnih vretenčarjev iz naših najdišč, ki je trenutno na sloven- skih tleh izredno skromna in pomanjkljiva. V Sloveni- ji nimamo ustreznega fosilnega in recentnega primer- jalnega materiala za razpoznavanje fosilnih rib in drugih vretenčarjev. Zato so njihove določitve večinoma otežkočene in včasih nezanesljive. Slika 1. Geografski položaj najdišč miocenskih ribjih zob z območja med Trbovljami in Laškim 1 – kamnolom Plesko, 2 – Dol pri Hrastniku, 3 – Govce, 4 – Trnov Hrib Figure 1. Geographical position of sites of Miocene fish teeth from the area between Trbovlje and Laško 1 – Plesko quarry, 2 – Dol at Hrastnik, 3 – Govce, 4 – Trnov Hrib PALEONTOLOŠKI DEL Sistematika po: Glikman 1964a, b, Cappetta 1987 in Schultz 2013 Classis Chondrichthyes Huxley, 1880 Subclassis Elasmobranchii Bonaparte, 1838 Cohort Euselachii Hay, 1902 Subcohort Neoselachii Compagno, 1977 Superordo Galeomorphii Compagno, 1973 Ordo Lamniformes Berg, 1958 Familia Odontaspididae Müller & Henle, 1839 Genus Carcharias Rafinesque, 1810 Carcharias taurus Rafinesque, 1810 Tab. 1, sl. 1-2, 4 1810 24. Sp. Carcharias Taurus – Rafinesque, 10 1959 Odontaspis (Synodontaspis) acutissima (Agassiz, 1844) – Kruckow, 85, Taf. 1, Figs. 4, 5a-c 1960 Odontaspis acutissima Agassiz, 1843 – Pawłowska, 421, Pl. 1, Figs. 1a-1c, 2a-2c 1969 Odontaspis acutissima (Agassiz) 1843 – Menesi- ni, 10, Tav. 1, Figs. 11a-11c, 13a-13c 1972 Odontaspis (Synodontaspis) acutissima acutissi- ma (Agassiz) – Schultz, Taf. 1, Fig. 2 1973 Odontaspis (Synodontaspis) acutissima (Agassiz) 1843 – Bauzá & Plans, 76, Lám. 4, Figs. 28-30 1974 Odontaspis (Synodontaspis) acutissima Agassiz 1843 – Menesini, 127, Tav. 45 (1), Figs. 1a-1c, 6a-6c 1978 Odontaspis taurus (Rafinesque, 1810) – Antu- nes, 67, Pl. 2, Fig. 16 1981 Odontaspis taurus Rafinesque – Antunes, Jonet & Nascimento, 17, Pl. 2, Figs. 4-6 1990 Eugomphodus acutissimus (Agassiz) – Rückert- -Ülkümen, 34, Taf. 3, Figs. 7-8 1995 Synodontaspis acutissima (Agassiz, 1844) – Holec, Hornáček & Sýkora, 40, Pl. 10, Figs. 4a-b, 5a-b, Pl. 1, Figs. 1a-b 2001 Carcharias taurus Rafinesque, 1810 – Purdy et al., 101, Figs. 16. b, e-f Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 61folia biologica et geologica 58/1 – 2017 2003 Carcharias cf. taurus Rafinesque, 1810 – Vicens & Rodríguez-Perea, 120, Fig. 4. 1 2007 Carcharias acutissima (Agassiz, 1843) – Kocsis, 31, Figs. 4. 7-8, 11 2008 Carcharias taurus Rafinesque, 1810 – Portell et al., 280, Figs. 2 A-B 2011 Carcharias taurus Rafinesque, 1810 – Reinecke et al., 27, Pl. 11, Figs. 1a-c, 2a-c, 4a-c; Pl. 12, Figs. 10a-c; Text-Fig. 12. a-b 2012 Carcharias acutissima (Agassiz, 1833) – Ávila, Ramalho & Vullo, 174, Figs. 4. 1-3 2014 Carcharias cf. acutissimus Rafinesque, 1810 – Križnar & Mikuž, 99, Sl. 136-137, 139 2016 Carcharias acutissima (Agassiz, 1843) – Szabó & Kocsis, 580-582, Figs. 6. E-H Material in opis: Tri zobne krone, dve iz badenij- skih plasti kamnoloma Plesko, prva izolirana krona (tab. 1, sl. 1) in druga v laporastem apnencu (tab. 1, sl. 4) ter ena izolirana krona iz spodnjega miocena v oko- lici Govc (tab. 1, sl. 2). Za vse tri primerke je značilna labialno-lingvalna ukrivljenost ozke in suličaste krone. Njihovi rezalni robovi so gladki in ostri. Zobje so brez ohranjenih koreninskih delov. Velikosti zob: Carcharias taurus Višina in širina zoba (Height and width of tooth) mm Višina krone (crown height) mm Debelina krone (crown thickness) mm Širina krone (crown width) mm Tab. 1, sl. 1a-c 16 x 7 15,5 3,5 5 Tab. 1, sl. 2a-c 15 x 5 14,5 3 4,5 Tab. 1, sl. 4 27 x 7 24 ? 6 Najdbe v Sloveniji: Mikuž in sod. (2014b: 28-29) predstavljajo manjšo zobno krono vrste Carcharias cf. taurus iz spodnjemiocenskih plasti v okolici Govc. Mikuž in Šoster (2014: 47) poročata, da je na ozemlju med Loko in Gorenjim Mokrim poljem v turitelnem laporovcu najden zob vrste Carcharias taurus Rafine- sque, 1810. Pollerspöck in Beaury (2014: 25, 30) opi- sujeta in predstavljata ostanke vrste Carcharias acutis- simus iz ottnangijskih plasti Bavarske v Nemčiji. Szabó in Kocsis (2016: 580-581) vrsto Carcharias acutissima opisujeta iz badenijskih plasti Madžarske (Nyirád). Ista avtorja (2016: 576) še navajata, da so njihovi ostan- ki zob najdeni v badenijskih skladih Dunajske kotline, Spodnjeavstrijske molase, v Štajerskem, Savskem, Pa- nonskem in Transilvanskem bazenu ter ob vznožju Karpatov. Carcharias sp. Tab. 1, sl. 7 Material in opis: Ena manjša krona v badenijskem biokalkarenitu iz kamnoloma Plesko (tab. 1, sl. 7). Krona je nizka, asimetrična in tipično karharidno suli- časta, lingvalna stran je izbočena in izolirana, druga labialna stran je v kamnini. Koreninski del manjka. Velikost zoba: Carcharias sp. Višina in širina zoba (Height and width of tooth) mm Višina krone (crown height) mm Debelina krone (crown thickness) mm Širina krone (crown width) mm Tab. 1, sl. 7 ? 5 2,5 6 Najdbe v Sloveniji: Mikuž in Šoster (2013: 201) poročata o zelo številnih zobnih kronah rodu Carcha- rias iz spodnjemiocenskih plasti okolice Žvarulj pri Mlinšah. Šoster in Mikuž (2013a: 76) opisujeta več zobnih kron morskega psa rodu Carcharias najdenih v miocenskih plasteh Višnje vasi pri Vojniku. Šoster in Mikuž (2013b: 154) poročata o najdbi dveh karhari- dnih kron iz miocenskih peščenjakov Pristove pri Do- brni. O najdbah zob ali samo njihovih kron morskih psov rodu Carcharias poroča Šoster (2014: 17-19) iz spodnjemiocenskih plasti Višnje vasi pri Vojniku. Mikuž in sod. (2014b: 28) poročajo o najdbi vretenca iz spodnjemiocenskih plasti v okolici Govc, ki najverje- tneje pripada morskemu psu iz rodu Carcharias. Familia Lamnidae Müller & Henle, 1838 Genus Carcharoides Ameghino, 1901 Carcharoides catticus (Philippi, 1846) Tab. 1, sl. 10 1846 Otodus catticus – Philippi, 24, Tab. 2, Figs. 5-7 1968 Lamna cattica (Philippi, 1846) – Schultz, 82, Taf. 4, Fig. 58 1974 Lamna cattica (Philippi), 1846 – Menesini, 135, Tav. 1, Figs. 18a-18c 1987 Carcharoides catticus (Philippi, 1846) – Cappet- ta, 94-95 1990 Lamna cattica (Philippi, 1846) – Kruckow & Thies, 45 1995 Carcharoides catticus (Philippi, 1846) – Holec, Hornáček & Sýkora, 42, Pl. 12, Figs. 2a-b 2005 Carcharoides catticus (Philippi, 1846) – Holec & Krempaská, 560-561, Obr. 3 Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 62 folia biologica et geologica 58/1 – 2017 2005 Carcharoides catticus (Philippi, 1846) – Rei- necke et al., 28, Taf. 19, Fig. 5 2007 Carcharoides catticus (Philippi, 1851) – Kocsis, 33, Figs. 5. 3a-3b 2011 Carcharoides catticus (Philippi, 1846) – Rei- necke et al., 31, Pl. 28, Figs. 9a-b, 14a-c 2013 Carcharoides catticus (Philippi, 1846) – Schultz, 43 2016 Carcharoides cf. catticus (Philippi, 1846) – Szabó & Kocsis, 581, Figs. 7. C-G Material in opis: Ohranjen je zelo majhen zob v celoti, dobra polovica je v kamnini, drugi manjši del je izoliran (tab. 1, sl. 10). Krona je majhna, nizka in trigla- va, sestoji iz glavne in velike osrednje simetrično triko- tne konice ter dveh stranskih širokih in precej nižjih konic. Koreninski del je plitev in širok. Zob je najden v spodnjemiocenskem izdanku v Trnovem Hribu blizu Govc. Velikost zoba: Carcharoides catticus Višina in širina zoba (Height and width of tooth) mm Višina krone (crown height) mm Debelina krone (crown thickness) mm Širina krone (crown width) mm Tab. 1, sl. 10 4 x 5 3 ? 5 Najdbe v Sloveniji in drugod: Šoster in Mikuž (2013a: 77) ter Šoster (2014: 20) predstavljajo skromno zobno krono vrste Carcharoides catticus iz spodnjemi- ocenskih plasti Višnje vasi pri Vojniku. Schultz (2013: 43) omenja ostanke vrste Carcharoides catticus iz ot- tnangijskih skladov Avstrije, iz spodnjemiocenskih plasti v preostali Paratetidi, iz oligocenskih Severno- morske kotline in spodnjega miocena Mediterana. Szabó in Kocsis (2016: 576) obliko Carcharoides cf. catticus predstavljata iz badenijskih plasti najdišča Nyirád na Madžarskem. Genus Cosmopolitodus Glückman, 1964 Cosmopolitodus hastalis (Agassiz, 1843) Tab. 1, sl. 3, 5-6 1838 Oxyrhina hastalis Agass. – Agassiz, 277, Ch. 27, Tab. 34, Figs. 1-1a, 2-2a,10-10a 1849 Oxyrhina hastalis Ag. – Sismonda, 40, Tav. 1. Figs. 45-47 1850 Oxyrhina hastalis Ag. – Costa, 196, Tav. 9, Figs. 10 1855 Oxyrhina hastalis – Giebel, 116, Taf. 47, Figs. 21a-b 1861 Oxyrhina hastalis Ag. – Sismonda, 473 1896 Oxyrhina hastalis Agassiz. – De Alessandri, 269, Tav. 1, Fig. 1b 1900 Oxyrhina hastalis, Agassiz. – Woodward, 4, Pl. 1, Figs. 6, 6a 1917 Oxyrhina hastalis Agass. – Stefanini, 21 1922 Oxyrhina hastalis Ag. – Vardabasso, Tav. 1, Figs. 6, 6a-6b 1957 Oxyrhina hastalis Agassiz. – Leriche, 27, Pl. 2 (Pl.45), Figs. 1, 2a-2b 1964a Cosmopolitodus hastalis (Agassiz) – Glikman, Tabl. 5, Fig. 5 1964b Cosmopolitodus hastalis (Ag.) – Glikman, 154, Ris. 75 1965 Oxyrhina hastalis Agassiz, 1843 – Radwański, 269, Pl. 1, Figs. 3a-3c 1966 Oxyrhina hastalis Ag. – Steininger, Taf. 4 1968 Oxyrhina hastalis Agassiz, 1843 – Schultz, 77, Taf. 2, Figs. 27-29 1969 Isurus hastalis (Agassiz) 1843 – Menesini, 15, Tav. 2, Figs. 5a-5c, 7a-7c 1971 Isurus hastalis hastalis (Agassiz, 1843) – Schul- tz, 321, Taf. 2, Fig. 14 1971 Isurus hastalis escheri (L. Agassiz, 1844) – Brzo- bohatý & Schultz, 732, Taf. 3, Fig. 1 1973 Isurus oxyrhynchus hastalis (Agassiz), 1843 – Ca- retto, 42 (30), Tav. 6, Figs. 1a-1c, 4a-4b,12a-12c 1973 Isurus hastalis hastalis (L. Agassiz, 1843) – Brzo- bohatý & Schultz, 666, Taf. 3, Figs. 13-14 1974 Isurus hastalis (Agassiz), 1843 – Menesini, 129, Tav. 55 (2), Figs. 4a-4c, 10a-10c 1977 Isurus hastalis Agassiz 1843 – Landini, 107, Tav. 13 (2), Figs. 4a-4c, 6a-6c 1978 Isurus hastalis hastalis (Ag.) – Brzobohatý & Schultz, 443, Taf. 2, Fig. 19 1987 Isurus hastalis (Agassiz 1843B) – Cappetta, 96 1990 Isurus hastalis (Agassiz, 1843) – Kruckow & Thies, 44 1995 Isurus hastalis (Agassiz, 1843) – Holec, Hor- náček & Sýkora, 42, Pl. 12, Figs. 4a-b 1996 Isurus hastalis (Agassiz, 1843) – Hiden, 59-60, Abb. 7. B 1997 Isurus oxyrhynchus hastalis (Agassiz) – Majcen, Mikuž & Pohar, 115, Tab. 8, Sl. 2-4 1998 Isurus hastalis (Agassiz) – Schultz, 122-123, Taf. 55, Fig. 9 2001 Isurus hastalis (Agassiz, 1838) – Purdy et al., 116- 117, Fig. 27, Fig. 28e 2003 Isurus hastalis (Agassiz, 1843) – Vicens & Rodrí- guez-Perea, 123, Fig. 4. 2a-b, 3 2005 Isurus hastalis (Agassiz, 1843) – Mikuž, 118, Tab. 3, Sl. 1a-b, 2a-b 2005 Cosmopolitodus aff. hastalis (Agassiz, 1838) – Reinecke et al., 33, Taf. 16, Fig. 1 Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 63folia biologica et geologica 58/1 – 2017 2007 Isurus hastalis (Agassiz, 1843) – Kocsis, 34, Fig. 5. 7 2010 Cosmopolitodus hastalis (Agassiz, 1843) – Schul- tz, Brzobohatý & Kroupa, 500, Pl. 1, Figs. 9a-9b 2010 Isurus hastalis – Whitenack & Gottfried, 18, Figs. 1C 2011 Cosmopolitodus hastalis (Agassiz, 1838) – Rei- necke et al., 36, Pl. 29, Figs. 6a-6b 2012 Cosmopolitodus hastalis (Agassiz, 1833) – Ávila, Ramalho & Vullo, 177, Figs. 5. 8-9, 12, 14-15 2013a Cosmopolitodus hastalis (Agassiz, 1838) – Šoster & Mikuž, 78, Tab. 3, Sl. 19-20 2013 Cosmopolitodus hastalis (Agassiz, 1838) – Mikuž & Šoster, 201, Tab. 2, Sl. 12-18 2013 Cosmopolitodus hastalis (Agassiz, 1838) – Mikuž, Šoster & Ulaga, 122, Tab. 1, 2a-2c 2013 Cosmopolitodus hastalis (Agassiz, 1843) – Schul- tz, 43, Taf. 4, Fig. 21 2014 Cosmopolitodus hastalis (Agassiz, 1838) – Kri- žnar & Mikuž, 100, Sl. 140 2016 Cosmopolitodus hastalis (Agassiz, 1843) – Szabó & Kocsis, 582, 584, Fig. 7. I-K Material in opis: Najdeni so trije zobje ali krone, prvi zob (tab. 1, sl. 3) je izoliran in najden v spodnjemi- ocenskih plasteh v Govcah. Krona je visoka in asime- trična, rezalna robova sta gladka. Koreninski del je odlomljen. Druga krona (tab. 1, sl. 5) je izolirana in najdena v badenijskih plasteh kamnoloma Plesko. Je tudi asimetrična z rahlo konkavno labialno stranjo in konveksno lingvalno stranjo, rezalna robova sta glad- ka, spodnji del krone širok. Koreninski del je odlo- mljen. Tretji izoliran zob (tab. 1, sl. 6) je iz spodnjega miocena Govc, našla ga je R. Verdel. Krona je asime- trična in malo ukrivljena, labialna stran je ravna do rahlo izbočena, lingvalna je bolj izbočena. Rezalna ro- bova sta gladka in zašiljena. Koreninski del manjka. Velikosti zob: Cosmopolitodus hastalis Višina in širina zoba (Height and width of tooth) mm Višina krone (crown height) mm Debelina krone (crown thickness) mm Širina krone (crown width) mm Tab. 1, sl. 3 17 x 6,5 17 3,5 5,5 Tab. 1, sl. 5 ? 35 8 24 Tab. 1, sl. 6 23 x ? 17 5 9,5 Najdbe v Sloveniji in drugod: Majcen in sod. (1997: 115) predstavljajo tri zobne krone iz okolice La- škega, ki pripadajo vrsti Cosmopolitodus hastalis. Ža- lohar in sod. (2010: 30) predstavljajo dve večji zobni kroni morskega psa iz srednjemiocenskih plasti pod Viševco v Tunjiškem gričevju. Kroni pripadata vrsti Cosmopolitodus hastalis. Majcen (2011: 27) piše, da so zobje morskih psov dokaj pogosti v peščenjakih pri Govcah in znova predstavlja tri kozmopolitodusove zobne krone. Mikuž in Šoster (2013: 201-203) poroča- ta o razmeroma pogostnih najdbah zobnih kron vrste Cosmopolitodus hastalis iz spodnjemiocenskih kamnin okolice Žvarulj pri Mlinšah. Šoster in Mikuž (2013a: 78) opisujeta dve zobni kroni iz miocenskih plasti Vi- šnje vasi pri Vojniku. Šoster in Mikuž (2013b: 155- 156) predstavljata eno izolirano kozmopolitodusovo zobno krono iz miocenskih peščenjakov Pristove pri Dobrni. Mikuž in sod. (2013: 122-125) poročajo o dveh lepše ohranjenih zobnih kronah vrste Cosmopolitodus hastalis iz badenijskih plasti kamnoloma Plesko. Šo- ster (2014: 23-24) opisuje tri zobne krone morskega psa vrste Cosmopolitodus hastalis iz spodnjemiocen- skih plasti najdišča Višnja vas pri Vojniku. Mikuž in Šoster (2014: 47) poročata, da so v badenijskih turitel- nih laporovcih na ozemlju med Loko in Gorenjim Mo- krim poljem našli zob vrste Cosmopolitodus hastalis (Agassiz, 1838). Schultz (2013: 45-47) tovrstne ostan- ke zob omenja iz številnih oligocenskih in miocenskih najdišč Centralne Paratetide, Severnomorske kotline, Atlantske province in Mediterana. Szabó in Kocsis (2016: 576) opisujeta vrsto Cosmopolitodus hastalis iz badenijskih plasti Madžarske. Nadalje še poročata, da je ugotovljena v celotni Centralni Paratetidi: v Dunaj- ski kotlini, v Avstrijski molasi, Štajerkem, Savskem, Panonskem in Transilvanskem bazenu ter v vznožju Karpatov. Ordo Carcharhiniformes Compagno, 1973 Familia Carcharhinidae Jordan & Evermann, 1896 Genus Carcharhinus Blainville, 1816 Carcharhinus priscus (Agassiz, 1843) Tab. 1, sl. 8-9 1843 Sphyrna prisca Agass. – Agassiz, 234, Ch. 20, Vol. 3, Tab. 26a, Fig. 44 1968 Carcharhinus (Hypoprion) acanthodon (Le Hon, 1871) – Schultz, Taf. 4, Figs. 77-78 1971 Carcharhinus priscus (Agassiz, 1843) – Schultz, 328, Taf. 4, Figs. 18a-18c 1973 Carcharhinus plumbeus priscus (Agassiz), 1843 – Caretto, 71 (59), Tav. 12, Figs. 1a-1b, 5a-5b 1974 Sphyrna prisca Agassiz, 1843 – Menesini, Tav. 8, Figs. 4a-4c, 5a-5c 1978 Carcharhinus sp. II gr. »priscus« (Ag.) – Antu- nes, 70, Pl. 3, Figs. 85, 87 Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 64 folia biologica et geologica 58/1 – 2017 1981 Carcharhinus priscus (Agassiz) – Antunes, Jonet & Nascimento, 18, Pl. 2, Figs. 18a-18b 1990 Carcharhinus priscus (Agassiz 1843) – Kruckow & Thies, 52 1992 Carcharhinus priscus (Agassiz) – Solt, 500, Táb. 1, Fig. 5 1995 Carcharhinus priscus (Agassiz, 1843) – Holec, Hornáček & Sýkora, 46, Pl. 18, Figs. 1a-b, 2a-b 1996 Carcharhinus priscus (Agassiz, 1843) – Hiden, 65, Taf. 5, Fig. 2 1998 Carcharhinus priscus (Agassiz) – Schultz, 122- 123, Taf. 55, Figs. 14a-14b 2001 Carcharhinus priscus (Agassiz, 1843) – Holec, 123, Tab. 2, 4a-4b, 6a-6b 2003 Carcharhinus priscus Agassiz, 1843 – Vicens & Rodríguez-Perea, 124, Fig. 4. 8a-b 2005 Carcharhinus priscus (Agassiz, 1843) – Fernan- des dos Reis, 35, Figs. 4 A-B 2006 Carcharhinus priscus (Agassiz, 1843) – Holec, 75, 7a-7b 2007 Carcharhinus priscus (Agassiz, 1843) – Kocsis, 36, Figs. 6. 11-12 2009 Carcharhinus gibbesi (Woodward, 1889) – Cici- murri & Knight, 632-633, Figs. 5C-D 2010 Carcharhinus priscus (Agassiz, 1843) – Schultz, Brzobohatý & Kroupa, 502-503, Pl. 2, Figs. 11a- 11b 2011 Carcharhinus priscus (Agassiz, 1843) – Reinecke et al., 63, Text-Fig. 22. a, k-o; Pl. 72, Figs. 7a-c; Pl. 73, Figs. 7a-c; Pl. 74, Figs. 1a-c; Pl. 76, Figs. 7a-d 2013 Carcharhinus priscus (Agassiz, 1843) – Schultz, 80, Taf. 7. Figs. 6a-6b, 7a-7b 2014 Carcharhinus priscus (Agassiz, 1843) – Poller- spöck & Beaury, 29, 25, Taf. 1, Figs. 2a-2b 2016 Carcharhinus priscus (Agassiz, 18439 – Szabó & Kocsis, 585-586, Fig. 8. F,G Material in opis: Dva primerka, prvi je v sivem peščenem laporovcu s preseki koron morskih ježkov iz badenija kamnoloma Plesko (tab. 1, sl. 8), našla ga je Š. Ulaga. Drugi zob, ki ga je ob potoku blizu Dola pri Hrastniku našla osmošolka OŠ NH Rajka v Hrastniku (tab. 1, sl. 9) je v spodnjemiocenskem biokalkarenitu z dvema odtisoma kardiid in enim večjim delom lupine pektenidne školjke. Za oba zoba je značilna nizka tri- kotna osrednja krona, ki se razširi na vsako stran z niz- kimi in drobnimi zobci. Koreninski del je nizek s širo- ko razprtima rogljema. Velikosti zob: Carcharhinus priscus Višina in širina zoba (Height and width of tooth) mm Višina krone (crown height) mm Debelina krone (crown thickness) mm Širina krone (crown width) mm Tab. 1, sl. 8 7 x 10 5 ? 9 Tab. 1, sl. 9 7 x 7,5 5 ? 5 Najdbe v Sloveniji in drugod: Mikuž in Šoster (2013: 204) poročata o nekaj kronah in redkih celih zobeh vrste Carcharhinus priscus iz spodnjemiocenskih plasti okolice Žvarulj pri Mlinšah. Mikuž in Šoster (2014: 47) pišeta, da je na območju Šmarjete na Dolenj- skem v badenijskem laporovcu najden zob vrste Car- charhinus priscus (Agassiz, 1843). Schultz (2013: 81- 84) omenja ostanke vrste Carcharhinus priscus iz zgor- njeoligocenskih in miocenskih plasti Centralne in Za- hodne Paratetide ter miocenskih plasti Severnomorske kotline, Atlantske province in Mediterana. Poller- spöck in Beaury (2014: 29) vrsto Carcharhinus priscus predstavljajo iz ottnangijskih plasti Bavarske v Nemčiji. Szabó in Kocsis (2016: 585) pišeta, da je vrsta Carchar- hinus priscus ugotovljena v badenijskih skladih Ma- džarske, v Dunajski kotlini in okolici, na območju Av- strijske molase, v Štajerskem, Savskem, Panonskem in Transilvanskem bazenu ter na vznožju Karpatov. Sistematika po: Nelson 2006 Classis Actinopterygii Klein, 1885 Divisio Teleostei Müller, 1846 Ordo Perciformes Bleeker, 1859 Familia Sparidae Bonaparte, 1831 Genus Diplodus Rafinesque, 1810 Diplodus jomnitanus (Valenciennes, 1844) Tab. 2, sl. 1-2 1844 Sargus Jomnitanus – Valenciennes, 103, Pl. 1, Figs. 1a-1b 1957 Sargus jomnitanus Valenciennes – Leriche, 46, Pl. 4, Figs. 19-22 1960 Sargus jomnitanus Valenciennes, 1844 – Pawłowska, 425, Pl. 3, Figs. 13-16 1973 Diplodus jomnitanus Valenciennes 1844 – Bauzá & Plans, 105, Lám. 8, Figs. 65-67 1973 Diplodus jomnitanus Valenc. – Obrador & Mer- cadal, 118, Fig. 3. 10 1981 Diplodus jomnitanus (Valenciennes) – Antunes, Jonet & Nascimento, 21, Pl. 5, Figs. 7a-7b Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 65folia biologica et geologica 58/1 – 2017 2003 Diplodus jomnitanus (Valenciennes, 1844) – Vi- cens & Rodríguez-Perea, 127, Fig. 4. 19a-b 2010 Diplodus sitifensis (Valenciennes, 1844) – Schul- tz, Brzobohatý & Kroupa, 504, Pl. 3, Figs. 6-7 2011 Diplodus jomnitanus – Križnar, 40-41, Sl. 4a-4b 2013 Diplodus jomnitanus (Valenciennes, 1844) – Mikuž, Šoster & Ulaga, 125, Tab. 1, Sl. 3a-3c 2013 Diplodus jomnitanus (Valenciennes, 1844) – Sc- hultz, 300, Taf. 67, Figs. 1a-1b Material in opis: Najdeni sta dve kroni, prva je skoraj cela (tab. 2, sl. 1), druga ima poškodovano zgor- njo rezalno površino (tab. 2, sl. 2). Obe sta iz anterior- nega dela čeljustnic, najdeni v badenijskih plasteh ka- mnoloma Plesko. Velikosti zob: Diplodus jomnitanus Višina (Height) mm Širina (Width) mm Debelina (thickness) mm Tab. 2, sl. 1a-c 10,5 9 5 Tab. 2, sl. 2a-c 9 7 3 Najdbe v Sloveniji in drugod: Križnar (2011: 40) predstavlja eno zobno krono vrste Diplodus jomnita- nus iz miocenskih plasti nad Trbovljami, omenja pa tudi najdbe iz Dola pri Hrastniku. Schultz (2013: 301) omenja vrsto Diplodus jomnitanus iz miocenskih plasti Avstrije, iz srednjemiocenskih preostale Centralne Pa- ratetide in Atlantske province ter miocenskih in plio- censkih plasti Mediterana. Mikuž in sod. (2013: 125- 126) poročajo o najdbi zobne krone vrste Diplodus jo- mnitanus iz badenijskih plasti kamnoloma Plesko. Genus Pagrus Cuvier, 1817 Pagrus cinctus (Agassiz, 1839) Tab. 2, sl. 3-15 1850 Sphaerodus cinctus Ag. – Costa, 197, Tav. 9, Fig. 24 1899 Chrysophrys cincta Ag. – Vinassa de Regny, 84, Tav. 2, Figs. 17a-17b 1902 Chrysophrys cincta Agass. – De Alessandri, 310, Tav. 5, Figs. 8, 8a-8b 1912 Chrysophrys cincta Ag. sp. – Gemmellaro, 142, Tav. 4, Figs. 35-43 1916 Chrysophrys cincta (Ag.) – Sacco, 173 (145) 1916 Chrysophrys cicta (Lawl.) var. astensis Sacc. – Sacco, 173 (145), Figs. 1a-1b 1917 Chrysophrys cincta (Agass.) – Stefanini, 16, Tav. 1, Figs. 9-10 1955 Sparus cinctus Agassiz – Veiga Ferreira, 37, Est. 4, Fig. 38 1960 Chrysophrys sp. (cf. Sphaerodus cinctus Münster, 1870) – Pawłowska, 426, Pl. 3, Figs. 1-6 1969 Sparus cinctus (Agassiz) 1843 – Menesini, 41, Tav. 7, Figs. 7-11 1973 Sparus cinctus (Agassiz) – Caretto, 77, Tav. 14, Figs. 5a-5b 1973 Sparus cinctus (Agassiz) 1843 – Bauzá & Plans, 102, Lám. 4, Figs. 32-33 1973 Sparus cinctus Ag. – Obrador & Mercadal, 118, Fig.3. 11 1974 Sparus cinctus (Agassiz), 1843 – Menesini, 156, Tav. 61 (8), Figs. 21-23 1981 Sparus cinctus (Agassiz) – Antunes, Jonet & Nascimento, Pl. 5, Figs. 19a-19b, 23a-23b 1998 Pagrus cinctus (Agassiz) – Schultz, 126-127, Taf. 57, Fig. 3 2002 Sparus cinctus (Agassiz, 1843) – Mas & Fiol, 110, Fig. 4. 3 2003 Sparus cinctus (Agassiz, 1843) – Vicens & Rodrí- guez-Perea, 126, Fig. 4. 16 2010 Pagrus cinctus (Agassiz, 1836) – Schultz, Brzo- bohatý & Kroupa, 504, Pl. 3, Figs. 8-9 2011 Pagrus cinctus – Križnar, 40-41, Sl. 1-3 2013a Pagrus cinctus (Agassiz, 1836) – Šoster & Mikuž, 79, Tab. 3, Sl. 21-25 2013 Pagrus cf. cinctus (Agassiz, 1839) – Mikuž & Šo- ster, 206, Tab. 4, Sl. 32-36 2013 Pagrus cinctus (Agassiz, 1836) – Mikuž, Šoster & Ulaga, 126, Tab. 1, Sl. 4a-4c, 5a-5c, 6-7 2013 Pagrus cinctus (Agassiz, 1839) – Schultz, 305, Taf. 67, Figs. 7a-7b, 8a-8c, 9, 10a-10b 2014 Pagrus cinctus (Agassiz, 1836) – Križnar & Mikuž, 105, Sl. 147-148 2014 Pagrus cinctus (Agassiz, 1836) – Šoster, 26, Tab. 3, sl. 21-27 2014 Pagrus cinctus (Agassiz, 1839) – Mikuž, Bartol & Šoster, 34, Tab. 1, Sl. 1a-1c Material in opis: Najdenih je več kron, osem kron je v obodu okroglih do ovalnih različnih velikosti, te so iz stranskih delov čeljustnic. Sedem je izoliranih (tab. 2, sl. 8-13, 15) in ena v kamnini (tab. 2, sl. 14). Pet zobnih kron je koničastih iz sprednjega ali anteriorne- ga dela čeljustnic, dve izolirani (tab. 2, sl 3, 5) in tri v ali s kamnino (tab. 2, sl. 4, 6-7). Tudi te so različnih oblik in velikosti. Vse so iz badenijskih plasti kamnoloma Plesko. Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 66 folia biologica et geologica 58/1 – 2017 Velikosti zob: Pagrus cinctus Višina (Height) mm Premer (Diameter) mm Tab. 2, sl. 3 9 5 x 4 Tab. 2, sl. 4 9 5 Tab. 2, sl- 5 5 5 Tab. 2, sl. 6 8,5 5,5 x 5 Tab. 2, sl. 7 9,5 7,5 x 7 Tab. 2, sl. 8a-b 8,5 12 x 10 Tab. 2, sl. 9a-b 5,5 7 Tab. 2, sl. 10a-b 5,5 11 x 10 Tab. 2, sl. 11a-b 7 12 x 10 Tab. 2, sl. 12a-b 3 6 Tab. 2, sl. 13a-b 5,5 10 x 9 Tab. 2, sl. 14a-b 5 7 Tab. 2, sl. 15a-b 8,5 13 x 12 Najdbe v Sloveniji in drugod: Križnar (2011: 40) poroča o najdbah zobnih kron vrste Pagrus cinctus iz miocenskih plasti okolice Trbovelj, peskokopov Tomc in Drtija pri Moravčah ter iz kamnoloma Lipovica. Sc- hultz (2013: 306-307) omenja tovrstne ostanke zob iz zgornjeoligocenskih in miocenskih skladov Avstrije, iz miocenskih preostale Centralne Paratetide, iz miocen- skih in pliocenskih Atlantske province ter pliocenskih Mediterana. Mikuž in Šoster (2013: 206-207) poroča- ta o redkih najdbah pagarjevih zob iz spodnjemiocen- skih plasti okolice Žvarulj pri Mlinšah. Mikuž in sod. (2013: 126-127) opisujejo zobne krone vrste Pagrus cinctus iz srednjemiocenskih badenijskih plasti ka- mnoloma Plesko. Šoster in Mikuž (2013a: 79) opisu- jeta pet pagarjevih zobnih kron iz miocenskih plasti Pristove pri Vojniku. Iz spodnjemiocenskih plasti Vi- šnje vasi pri Vojniku in Klanca nad Dobrno opisuje Šoster (2014: 26-27) najdbe zob vrste Pagrus cinctus. Mikuž in sod. (2014: 34-36) predstavljajo del pagarjeve čeljustnice z zobnimi kronami v badenijskem laporov- cu z Mastnega hriba nad Škocjanom. Križnar in Mikuž (2014: 105) predstavljata pagarjeve zobne krone iz badenijskih plasti kamnoloma Lipovica nad Briša- mi. Šoster in Kovalchuk (2016: 418, Pl. 1) predsta- vljata zobne krone sparid iz neogenskih in pleistocen- skih plasti južnovzhodnega dela Ukrajine. ZAKLJUČKI Raziskovali smo ostanke ribjih zob, najdenih v mio- censkih skladih kamnolomov Plesko-Retje nad Trbo- vljami (sl. 1, 1) ter v najdiščih Dol pri Hrastniku (sl. 1, 2), Govce (sl. 1, 3) in Trnov Hrib (sl. 1, 4). Večinoma so ohranjene samo zobne krone hrustančnic in kostnic, nekaj zob je skoraj celih, tudi z delno ohranjenimi ko- reninskimi osnovami. Med hrustančnicami so ugoto- vljeni morski psi vrst: Carcharias taurus Rafinesque, 1810 (tab. 1, sl. 1-2, 4), Carcharias sp. (tab. 1, sl. 7), Car- charoides catticus (Philippi, 1846) (tab. 1, sl. 10), Co- smopolitodus hastalis (Agassiz, 1843) (tab. 1, sl. 3, 5-6) in Carcharhinus priscus (Agassiz, 1843) (tab. 1, sl. 8-9). Med kostnicami sta ugotovljeni dve obliki: Diplodus jomnitanus (Valenciennes, 1844) (tab. 2, sl. 1-2) in Pa- grus cinctus (Agassiz, 1839) (tab. 2, sl. 3-15). Zobje večine vrst ugotovljenih hrustančnic in ko- stnic v najdiščih z območja med rekama Savo in Savi- njo oziroma med Trbovljami in Laškim, so najdeni tudi v nekaterih drugih slovenskih najdiščih miocen- skih skladov. Registrirane oblike rib so najbolj primer- ljive z miocenskimi in deloma z oligocenskimi ribjimi ostanki iz nekdanjih sedimentacijskih prostorov Cen- tralne Paratetide ter z območij Mediterana, Atlantika in Severnomorskega bazena, nekatere oblike tudi širše. CONCLUSIONS Fossil fish teeth from sites between trbovlje and laško, Slovenia Fish remains from several localities between Trbovlje and Laško were considered in this contribution. Lo- calities include Plesko-Retje quarry near Trbovlje (Fig. 1, 1), Dol near Hrastnik (Fig. 1, 2), Govce (Fig. 1, 3) and Trnov hrib (Fig. 1, 4). The studied material consists mostly of tooth crowns without basal parts. Entirely preserved teeth are rare. We have determined 5 species of fossil sharks: Carcharias taurus Rafinesque, 1810 (tab. 1, fig. 1-2, 4), Carcharias sp. (tab. 1, fig. 7), Carcha- roides catticus (Philippi, 1846) (tab. 1, fig. 10), Cosmo- politodus hastalis (Agassiz, 1843) (tab. 1, fig. 3, 5-6) and Carcharhinus priscus (Agassiz, 1843) (tab. 1, fig. 8-9) and 2 species of bony fish Diplodus jomnitanus (Valen- ciennes, 1844) (tab. 2, fig. 1-2) and Pagrus cinctus (Agassiz, 1839) (tab. 2, fig. 3-15). Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 67folia biologica et geologica 58/1 – 2017 Teeth of most determined species of cartilaginous and bony fish from localities between Trbovlje and Laško were also found in other Slovenian Miocene fos- sil sites. The specimens are comparable with Miocene and partially Oligocene fish remains from paleogeo- graphical areas of the Central Paratethys, Mediterra- nean, Atlantic and North Sea basins. ZAHVALE Učiteljici Romani Verdel iz Hrastnika in učenki Špeli Zupančič OŠ NH Rajka Hrastnika, Podružnica Dol pri Hrastniku se zahvaljujemo za posojena in v prispevku uporabljena fosilna zoba morskih psov. LITERATURA – REFERENCES Agassiz, L., 1833-1843: Recherches sur les poissons fossiles. Tome III. Imprimerie de Petitpierre (Neuchatel, Suisse): VIII, 1-390 + Tab. 1-47. Antunes, M. T., 1978: Faunes ichthyologiques du Néogène supérieur d Àngola, leur âge, remarques sur le Pliocène marin en Afrique australe. Ciências da Terra (UNL) (Lisboa) 4: 59-90 + (Pl. 1-3). Antunes, M. T., S. Jonet & A. Nascimento, 1981: Vertébrés (Crocodiliens, Poissons) du Miocène marin de l Àlgarve occidentale. Ciências da Terra (UNL) (Lisboa) 6: 9-38 + (Pl. 1-5). Ávila, S. P., R. Ramalho & R. Vullo, 2012: Systematics, palaeoecology and palaeobiogeography of the Neogene fossil sharks from the Azores (Northeast Atlantic). Annales Paléontologie (Paris, New york, Barcelona) 98: 167- 189. https://doi.org/10.1016/j.annpal.2012.04.001 Bauzá, J. & J. Plans, 1973: Contribucion al conocimiento de la fauna ictiologica del Neogeno Catalano Balear. Bolet. Soc. Hist. Natur. Baleares (Palma de Mallorca) 18: 72-131 + (Lám. 1-8). Brzobohatý, R. & O. Schultz, 1971: Die Fischfauna der Eggenburger Schichtengruppe. In: J. Seneš (Ed.), Chron- ostratigraphie und Neostratotypen, Miozän der zentralen Paratethys. Bd. 2, M1 Eggenburgien. Vydavatelstvo Slovenskej akadémie vied (Bratislava): 719-759 + (Taf. 1-8). Brzobohatý, R. & O. Schultz, 1973: Die Fischfauna der Innviertler Schichtengruppe und der Rzehakia Formation. In: J. Seneš (Ed.), Chronostratigraphie und Neostratotypen, Miozän der zentralen Paratethys. Bd. 3, M2 Ottnangien. Vydavatelstvo Slovenskej akadémie vied (Bratislava): 652-693 + (Taf. 1-5). Brzobohatý, R. & O. Schultz, 1978: Die Fischfauna des Badenien. In: J. Seneš (Ed.), Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys. Bd. 4, M4 Badenien. Verlag der Slowakischen Akademie der Wissenschaften (Bratislava): 441-464 + (Taf. 1-5). Cappetta, H., 1987: Chondrichthyes II. Mesozoic and Cenozoic Elasmobranchii. In: H. P. Schultze (Ed.), Handbook of Paleoichthyology, Vol. 3B. Gustav Fischer Verlag (Stuttgart-New york): 1-193. Caretto, P. G., 1973: Osservazioni tassonomiche su alcuni Galeoidei del Miocene piemontese. Boll. Soc. Paleont. Italiana 1972 (Modena) 11 (1):14-85 (3-73) + Tav. 1-14. Cicimurri, D. J. & J. L. Knight, 2009: Late Oligocene sharks and rays from the Chandler Bridge Formation, Dor- chester County, South Carolina, USA. Acta Palaeont. Polonica (Warszawa) 54 (4): 627-647. http://dx.doi. org/10.4202/app.2008.0077 Costa, O. G., 1850: Paleontologia del Regno di Napoli contenente la descrizione e figura di tutti gli avanzi organici fossili. Parte 1. (Napoli): 1-203 + Tav. 1-15. De Alessandri, G. 1896: Avanzi di Oxyrhina hastalis del Miocene di Alba. Atti Soc. Italiana Sci. Natur. Mus. Civ. Stor. Natur. Milano (Milano) 36: 263-269 + Tav. 1-2. De Alessandri, G., 1902: Sopra alcuni odontoliti pseudomiocenici dell`istmo di Suez. Atti Soc. Ital. Sci. Natur., Mus. Civ. Stor. Natur. Milano (Milano) 41 (3): 287-312 + Tav. 5. Fernandes dos Reis, M. A., 2005: Chondrichthyan Fauna from the Pirabas Formation, Miocene of Northern Bra- zil, with Comments on Paleobiogeography. Anuário Inst. Geociências (UFRJ) (Rio de Janeiro) 28 (2): 31-58. Gemmellaro, M. 1912: Ittiodontoliti del Miocene medio di alcune regioni delle provincie di Palermo e di Girgenti. Giorn. Sci. Natur. Econ. (Palermo) 29: 117-156 + Tav. 1-4. Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 68 folia biologica et geologica 58/1 – 2017 Giebel, C. G., 1855: Odontographie. Vergleichende darstellung des Zahnsystemes der lebenden und fossilen Wir- belthiere. Verlag von Ambrosius Abel (Leipzig): XX, 1-129 + Taf. 1-52. Glikman, L. S., 1964 a: Podklass Elasmobranchii. Akylovie. In: D. V. Obručev (redaktor), Osnovi paleontologii. Spravočnik dlja paleontologov i geologov SSSR. Besčeljustnie, ribi. Izdatelstvo »Nauka« (Moskva): 196-265 + Tabl. 1-6. Glikman, L. S., 1964 b: Akuli paleogena i ih stratigrafičeskoe značenie. Akademija nauk SSSR, Otdelenie nauk o Zemle, otdel monografičeskih kollekcij. Izdatelstvo »Nauka« (Moskva – Leningrad): 1-227 + (Tabl. 1-31). Hiden, H. R., 1996: Elasmobranchier (Pisces, Chondrichthyes) aus dem Badenium (Mittleres Miozän) des Steirischen Beckens (Österreich). Mitt. Abt. Geol. Paläont. Landesmuseum Joanneum, 1994/95 (Graz) 52/53: 41-110 + (Taf. 1-10). Holec, P., 2001: Miocénne drsnokožce a kostnaté ryby (Chondrichthyes et Osteichthyes, Vertebrata) z viedenskej panvy pri Bratislave (Slovensko). Mineralia Slovaca (Bratislava) 33: 111-134. Holec, P., 2006: Žraloky (Chondrichthyes, Vertebrata) z Hajnáčky. Mineralia Slovaca (Bratislava) 38: 71-76. Holec, P., M. Hornáček & M. Sýkora, 1995: Lower Miocene Shark (Chondrichthyes, Elasmobranchii) and Whale Faunas (Mammalia, Cetacea) near Mučín, Southern Slovakia. Geologické práce (Bratislava) 100: 37-52 + Pl. 8-22. Holec, P. & Z. Krempaská, 2005: Nález zuba žraloka Carcharoides catticus (Philippi, 1846) (Chondrichthyes, Ver- tebrata) na Slovensku z lokality Hlinisko v Spišskej Novej Vsi (paleogén). Mineralia Slovaca (Bratislava) 37: 559- 562. Kocsis, L., 2007: Central Paratethyan shark fauna (Ipolytarnóc, Hungary). Geol. Carpathica (Bratislava) 58 (1): 27- 40. Križnar, M., 2011: Miocenski zobje rib kostnic iz Zasavja. Društvene novice (Tržič) 44: 40-41. Križnar, M. & V. Mikuž, 2014: Kamnolom Lipovica in njegove paleontološke zanimivosti. (Lipovica quarry and its interesting paleontological characteristics). Scopolia (Ljubljana) 82: 1-120. Kruckow, T., 1959: Eine untermiozäne Haifisch-Fauna in Schleswig-Holstein. Meyniana (Kiel) 8: 82-95 + Taf. 1-2. Kruckow, T. & D. Thies, 1990: Die Neoselachier der Paläokaribik (Pisces: Elasmobranchii). Cour. Forsch.-Inst. Senckenberg Frankfurt am Main (Frankfurt am Main) 119: 1-102. Landini, W., 1977: Revisione degli »Ittiodontoliti pliocenici« della collezione Lawley. Palaeontographia Italica (Pisa) 70, n. ser., 40: 92-134 + Tav. 12 (1)-16 (5). Leriche, M., 1957: Les Poissons Néogènes de la Bretagne de l Ànjou et de la Touraine. Mémoires Soc. Géol. France 36, Nouv. ser. Mém. (Paris) 81:1-64 + Pl. 1-4. Majcen, T., 2011: Geološka učna pot na Govce. Že spet ali še vedno? Društvene novice (Tržič) 44: 26-28. Majcen, T., V. Mikuž & V. Pohar, 1997: Okamnine v paleontološki zbirki laškega muzeja. Geološki zbornik (Lju- bljana) 13: 104-118 + (Tab. 1-11). Mas, G. & G. Fiol, 2002: Ictiofauna del Messinià de la plataforma sedimentària de Llucmajor (Illes Balears, Mediterrània occidental). Aspectes paleoambientals. Boll. Soc. Hist. Nat. Balears (Palma de Mallorca) 45: 105-116. Menesini, E., 1969: Ittiodontoliti miocenici di Terra d`Otranto (Puglia). Palaeontographia Italica 1969 (Pisa) (n. ser. 35), 65: 1-61 + Tav. 1-7. Menesini, E., 1974: Ittiodontoliti delle formazioni terziarie dell Àrcipelago maltese. Palaeontographia Italica 1971 (Pisa) (n. ser. 37), 67: 121-162 + Tav. 54-61 (1-8). Mikuž, V., 2005: Miocenski selahiji (Chondrichthyes) iz opuščenega peskokopa Tomc pri Moravčah. (Miocene sela- chians (Chondrichthyans) from abandoned sand pit Tomc near Moravče, Slovenia). Razprave 4. razreda SAZU (Ljubljana) 46 (1): 111-131 + (Tab. 1-4). Mikuž, V., M. Bartol & A. Šoster, 2014a: Zobje miocenskega špara v laporovcu z Mastnega hriba nad Škocjanom. (Porgy fish teetht in Miocene marl from Mastni hrib near Škocjan, Slovenia). Geologija (Ljubljana) 57 (1): 33-38 + (Tab. 1). Mikuž, V., M. Bartol & Š. Ulaga, 2014b: Ribje vretence iz miocenskih plasti v okolici Govc. (Fish vertebra from Miocene beds at Govce, Slovenia). Geologija (Ljubljana) 57 (1): 27-32 + (Tab. 1). Mikuž, V., & A. Šoster, 2013a: Spodnjemiocenske ribe in želva iz Žvarulj pri Mlinšah (Centralna Paratetida). (Lower Miocene fishes and turtle from Žvarulje near Mlinše, Slovenia (Central Paratethys). Geologija (Ljublja- na)56 (2): 199-218 + (Tab. 1-4). Mikuž, V., A. Šoster & Š. Ulaga, 2013b: Miocenski ribji zobje iz kamnoloma Plesko. (Miocene fish teeth from the Plesko quarry, Slovenia). Folia biologica et geologica (Ljubljana) 54 (1): 121-133 + (Tab. 1-2). Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 69folia biologica et geologica 58/1 – 2017 Mikuž, V. & A. Šoster, 2014: Miocenski neoselahiji Dolenjske in primerjava z drugimi slovenskimi najdišči. In: B. Rožič, T. Verbovšek & M. Vrabec (uredniki), 4. Slovenski geološki kongres Ankaran, 8. – 10. oktober 2014. Povzetki in ekskurzije. Univerza v Ljubljani, Naravoslovnotehniška fakulteta (Ljubljana): 1-121 (46-47). Nelson, J. S., 2006: Fishes of the World. Fourth Edition. John Wiley & Sons, Inc. (Hoboken, New Jersey): XV, 1-601. Obrador, A. & B. Mercadal, 1973: Nuevas localidades con fauna ictiológica para el Neógeno menorquín. Acta Geológica Hispánica (Barcelona) 4: 115-119. Pawłowska, K., 1960: Szczatki ryb z wapieni mioceńskich Pińczowa. Acta Palaeontologica Polonica (Warszawa) 5 (4): 421-432 + Pl. 1-3. Philippi, R. A., 1846: Ueber Tornatella abbreviata, Otodus mitis, Otodus catticus und Myliobatis Testae. Palaeon- tographica (1851) (Cassel) 1 (1): 23-25 + Tab. 2. Pollerspöck, J. & B. Beaury, 2014: Eine Elasmobranchierfauna (Elasmobranchii, Neoselachii) aus der Oberen Meeresmolasse (Ottnangium, Unteres Miozän) des Heigelsberger Grabens bei Teisendorf, Oberbayern. Zitteliana A (München) 54: 23-37, (Taf. 1-2). Portell, R. W., G. Hubbel, S. K. Donovan, J. L. Green, D. A. T. Harper & R. Pickerill, 2008: Miocene sharks in the Kendeace and Grand Bay formation of Carriacou, The Grenadines, Lesser Antilles. Caribbean Journ. Sci. (Puerto Rico) 44 (3): 279-286. http://dx.doi.org/10.18475/cjos.v44i3.a2 Purdy, R. W., V. P. Schneider, S. P. Applegate, J. H. Mc Lellan, R. L. Meyer & B. H. Slaughter, 2001: The Neogene Sharks, Rays, and Bony Fishes from Lee Creek Mine, Aurora, North Carolina. Smithsonian Contribu- tions Paleobiology (Washington) 90: 71-202. Radwański, A., 1965: A contribution to the knowledge of Miocene Elasmobranchii from Pińczów (Poland). Acta Palaeont. Polonica (Warszawa) 10 (2): 267-276 + Pl. 1-2. Rafinesque Schmaltz, C. S., 1810: Caratteri di alcuni nuovi generi e nuove specie di animali e piante della Sicilia con varie osservazioni sopra i medesimi. Stampe di Sanfilippo: 3-105. Reinecke, T., S. Louwye, U. Havekost & H. Moths, 2011: The elasmobranch fauna of the late Burdigalian, Mio- cene, at Werde-Uesen, Lower Saxony, Germany, and its relatioships with Early Miocene faunas in the North Atlantic, Central Paratethys and Mediterranean. Palaeontos (Antwerpen) 20: 1-170 + Pl. 1-101. Reinecke, T., H. Moths, A. Grant & H. Breitkreuz, 2005: Die Elasmobranchier des norddeutschen Chattiums, insbesondere des Sternberger Gesteins (Eochattium, Oberes Oligocän). Palaeontos (Antwerpen) 8: 1-135 + Taf. 1-60. Reinecke, T., H. Stapf & M. Raisch, 2001: Selachier und Chimären des Unteren Meeressandes und Schleichsandes im Mainzer Becken (Alzey- und Stadecken-Formation, Rupelium, Unteres Oligocän). Palaeontos (Antwerpen) 1: 1-73 + Taf. 1-63. Rückert-Ülkümen, N., 1990: Neue Ergebnisse zum Alter der miozänen Fisch-Schichten in Nord-Thrakien (Türkei). Stratigraphie I. Mitt. Bayer. Staatsslg. Paläont. hist. Geol. (München) 30: 27-37 + (Taf. 1-3). Sacco, F., 1916: Apparati dentali di »Labrodon« e di »Chrysophrys« del Pliocene italiano. Atti Acad. Sci. Torino (Torino) 51: 172 (144) – 177 (149) + Tav. 1. Schultz, O., 1968: Die Selachierfauna (Pisces, Elasmobranchii) aus den Phosphoritsanden (Unter-Miozän) von Plesching bei Linz, Oberösterreich. Naturkundl. Jb. Stadt Linz (Linz) 14: 61-102 + Taf. 1-4. Schultz, O., 1971: Die Selachier-Fauna (Pisces, Elasmobranchii) des Wiener Beckens und seiner Randgebiete im Badenien (Miozän). Ann. Naturhist. Mus. Wien (Wien) 75: 311-341 + Taf. 1-4. Schultz, O., 1972: Eine Fischzahn.Brekzie aus dem Ottnangien (Miozän) Oberösterreichs. Ann. Naturhistor. Mus. Wien (Wien) 76: 485-490 + Taf. 1. Schultz, O., 1998: Tertiärfossilien Österreichs. Wirbellose, niedere Wirbeltiere und marine Säugetiere. Goldsch- neck-Verlag (Korb): 1-159 + (Taf. 1-65). Schultz, O., 2013: Pisces. In: W. E. Piller (Ed.), Catalogus Fossilium Austriae. Ein systematisches Verzeichnis aller auf österreichischem Gebiet festgestellten Fossilien. Bd. 3. Verlag der Österreichischen Akademie der Wis- senschaften (Wien): I-XXXVIII, 1-411 + Taf. 1-71. Schultz, O., R. Brzobohatý & O. Kroupa, 2010: Fish teeth from the Middle Miocene of Kienberg at Mikulov, Czech Republic, Vienna Basin. Ann. Naturhist. Mus. Wien, Ser. A (Wien) 112: 489-506 + (Pl. 1-3). Sismonda, E., 1849: Descrizione dei pesci e dei crostacei fossili nel Piemonte. Memorie Reale Accad. Sci. Torino (Torino) ser. 2, 10: 1-88 + Tav. 1-3. Sismonda, E., 1861: Appendice alla descrizione dei pesci e dei crostacei fossili nel Piemonte. Memorie Reale Accad. Sci. Torino (Torino) ser. 2, 19: 453-474 + Tav. 1. Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 70 folia biologica et geologica 58/1 – 2017 Solt, P., 1992: A Kazári cápafogas réteg halmaradványai. A Magyar Áll. Földtani Intézet, Évi Jelentése 1990 (Buda- pest): 495-500 + (1 táb.). Stefanini, G., 1917: Fossili del Neogene Veneto. Mem. Ist. Geol. Univ. Padova 1916 (Padova) 4: 1-198 + Tav. 1-7. Steininger, F., 1966: Über eine Fossiliensammlung aus dem Stadtbereich von Linz. Naturkundl. Jb. Stadt Linz (Linz) 12: 7-10 + Taf. 1-4. Szabó, M. & L. Kocsis, 2016: A new Middle Miocene selachian assemblage (Chondrichthyes, Elasmobranchii) from the Central Paratethys (Nyirád, Hungary): implications for temporal turnover and biogeography. Geologica Car- pathica (Bratislava) 67/6, 573-594. https://doi.org/10.1515/geoca-2016-0036 Šoster, A., 2014: Miocenska ribja favna Hudinjskega gričevja in okolice. (Miocene fish fauna of Hudinja hills and its surroundings). Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za geologijo, Diplomsko delo (Ljubljana): 1-39 + (Tab. 1-3). Šoster, A. & O. M. Kovalchuk, 2016: Late Neogene and Pleistocene porgy fishes (Teleostei, Sparidae) of the Eastern Paratethys, with comments on their palaeoecology. Vestnik zologii (Kiev) 50 (5): 415-422 + (Pl. 1). https://doi. org/10.1515/vzoo-2016-0048 Šoster, A. & V. Mikuž, 2013a: Ostanki rib iz miocenskih plasti Višnje vasi blizu Vojnika. (Fish remains from Mio- cene beds of Višnja vas near Vojnik, Slovenia). Geologija, (Ljubljana) 56 (1): 73-86 + (Tab. 1-3). https://doi. org/10.5474/geologija.2013.006 Šoster, A. & V. Mikuž, 2013b: Ostanki rib iz miocenskih peščenjakov Pristove pri Dobrni. Geološki zbornik (Lju- bljana) 22: 154-158. Valenciennes, A., 1844: Description de quelques dents fossiles de poissons trovées aux environs de Staoueli, dans la province d Àlger. Annales sciences naturelles, 3eme ser., Zoologie (Paris) 1: 99-104 + Pl. 1. Vardabasso, S., 1922: Ittiofauna delle arenarie mioceniche di Belluno. Mem. Ist. Geol. Univ. Padova (Padova) 6: 1-23 + Tav. 1-2. Veiga Ferreira, O., 1955: A Fauna Miocénica da Ilha de Santa Maria (Açores). Comun. Serv. Geol. Portugal (Lis- boa) 36: 9-40 + Est. 1-11. Vicens, D., A. Rodríguez-Perea, 2003: Vertebrats fòssils (Pisces i Reptilia) del Burdigalià de cala Sant Vicenç (Pol- lença, Mallorca). Boll. Soc. Hist. Natur. Balears (Palma de Mallorca) 46: 117-130. Vinassa de Regny, P., 1899: Pesci neogenici del Bolognese. Rivista Italiana Paleont. (Bologna) 5: 79-84 + Tav. 2. Whitenack, L. B. & M. D. Gottfried, 2010: A morphometric approach for addressing tooth-based species delimi- tation in fossil Mako shark, Isurus (Elasmobranchii: Lamniformes). Journ. Vertebr. Paleont. (Norman, Okla- homa) 30 (1): 17-25. http://dx.doi.org/10.1080/02724630903409055 Woodward, A. S., 1900: On some Fish-remains from the Parana Formation, Argentine Republic. Ann. Mag. Nat. Hist. (London) Ser. 7, 6: 1-7 + Pl. 1. Žalohar, J., M. Križnar, T. Hitij & E. Grmšek, 2010: Fosili iz okolice Kamnika. Uredila J. Železnikar. Medobčinski muzej Kamnik (Kamnik): 1-48. Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 71folia biologica et geologica 58/1 – 2017 TABLE – PLATES Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 72 folia biologica et geologica 58/1 – 2017 TABLA 1 – PLATE 1 Sl. 1 Carcharias taurus Rafinesque, 1810; a – pogled z jezične strani, b – pogled s strani, c – pogled z ustnične strani, kamnolom Plesko, povečano Fig. 1 Carcharias taurus Rafinesque, 1810; a – lingual view, b – lateral view, c – labial view, Plesko quarry, enlarged Sl. 2 Carcharias taurus Rafinesque, 1810; a – pogled z jezične strani, b – pogled s strani, c – pogled z ustnične strani, Govce, povečano Fig. 2 Carcharias taurus Rafinesque, 1810; a – lingual view, b – lateral view, c – labial view, Govce, en- larged Sl. 3 Cosmopolitodus hastalis (Agassiz, 1843); a – pogled z jezične strani, b – pogled s strani, c – pogled z ustnične strani, Govce, povečano Fig. 3 Cosmopolitodus hastalis (Agassiz, 1843); a – lingual view, b – lateral view, c – labial view, Govce, enlarged Sl. 4 Carcharias taurus Rafinesque, 1810; pogled z jezične strani, kamnolom Plesko, povečano Fig. 4 Carcharias taurus Rafinesque, 1810; lingual view, Plesko quarry, enlarged Sl. 5 Cosmopolitodus hastalis (Agassiz, 1843); a – pogled z jezične strani, b – pogled s strani, c – pogled z ustnične strani, kamnolom Plesko, povečano Fig. 5 Cosmopolitodus hastalis (Agassiz, 1843); a – lingual view, b – lateral view, c – labial view, Plesko quarry, enlarged Sl. 6 Cosmopolitodus hastalis (Agassiz, 1843); a – pogled z jezične strani, b – pogled s strani, c – pogled z ustnične strani, Govce, najditeljica Romana Verdel, povečano Fig. 6 Cosmopolitodus hastalis (Agassiz, 1843); a – lingual view, b – lateral view, c – labial view, Govce, finder Romana Verdel, enlarged Sl. 7 Carcharias sp.; pogled z jezične strani, kamnolom Plesko, povečano Fig. 7 Carcharias sp.; lingual view, Plesko quarry, enlarged Sl. 8 Carcharhinus priscus (Agassiz, 1843); pogled z jezične strani, kamnolom Plesko, povečano Fig. 8 Carcharhinus priscus (Agassiz, 1843); lingual view, Plesko quarry, enlarged Sl. 9 Carcharhinus priscus (Agassiz, 1843); pogled z jezične strani, najditeljica Špela Zupančič, Dol pri Hrastniku, povečano Fig. 9 Carcharhinus priscus (Agassiz, 1843); lingual view, finder Špela Zupančič, Dol pri Hrastniku, enlarged Sl. 10 Carcharoides catticus (Philippi, 1846); pogled z ustnične strani, Trnov Hrib blizu Govc, povečano Fig. 10 Carcharoides catticus (Philippi, 1846); labial view, Trnov Hrib near Govce, enlarged 73folia biologica et geologica 58/1 – 2017 TABLA 1 – PLATE 1 Vasja Mikuž, aleš šoster & špela ulaga: fosilni ribji zobje iz najdišč Med trboVljaMi in laškiM 74 folia biologica et geologica 58/1 – 2017 TABLA 2 – PLATE 2 Sl. 1 Diplodus jomnitanus (Valenciennes, 1844); a – pogled z ustnične strani, b – pogled s strani, c – pogled z jezične strani, kamnolom Plesko, povečano Fig. 1 Diplodus jomnitanus (Valenciennes, 1844); a – labial view, b – lateral view, c – lingual view, Plesko quarry, povečano Sl. 2 Diplodus jomnitanus (Valenciennes, 1844); a – pogled z ustnične strani, b – pogled s strani, c – pogled z jezične strani, kamnolom Plesko, povečano Fig. 2 Diplodus jomnitanus (Valenciennes, 1844); a – labial view, b – lateral view, c – lingual view, Plesko quarry, enlarged Sl. 3 Pagrus cinctus (Agassiz, 1839); pogled z ustnične strani, kamnolom Plesko, povečano Fig. 3 Pagrus cinctus (Agassiz, 1839); labial view, Plesko quarry, enlarged Sl. 4 Pagrus cinctus (Agassiz, 1839); pogled s strani, kamnolom Plesko, povečano Fig. 4 Pagrus cinctus (Agassiz, 1839); lateral view, Plesko quarry, enlarged Sl. 5 Pagrus cinctus (Agassiz, 1839); konica zoba s strani, kamnolom Plesko, povečano Fig. 5 Pagrus cinctus (Agassiz, 1839); crown tip, lateral view, Plesko quarry, enlarged Sl. 6 Pagrus cinctus (Agassiz, 1839); pogled s strani, kamnolom Plesko, povečano Fig. 6 Pagrus cinctus (Agassiz, 1839); lateral view, Plesko quarry, enlarged Sl. 7 Pagrus cinctus (Agassiz, 1839); pogled s strani, kamnolom Plesko, povečano Fig. 7 Pagrus cinctus (Agassiz, 1839); lateral view, Plesko quarry, enlarged Sl. 8 Pagrus cinctus (Agassiz, 1839); a – pogled od zgoraj, b – pogled s strani, kamnolom Plesko, povečano Fig. 8 Pagrus cinctus (Agassiz, 1839); a – occlusal view, b – lateral view, Plesko quarry, enlarged Sl. 9 Pagrus cinctus (Agassiz, 1839); a – zgornja površina zoba, b – pogled s strani, kamnolom Plesko, povečano Fig. 9 Pagrus cinctus (Agassiz, 1839); a – occlusal view, b – lateral view, Plesko quarry, enlarged Sl. 10 Pagrus cinctus (Agassiz, 1839); a – zgornja površina zoba, b – pogled s strani, kamnolom Plesko, povečano Fig. 10 Pagrus cinctus (Agassiz, 1839); a – occlusal view, b – lateral view, Plesko quarry, enlarged Sl. 11 Pagrus cinctus (Agassiz, 1839); a – zgornja površina zoba, b – pogled s strani, kamnolom Plesko, povečano Fig. 11 Pagrus cinctus (Agassiz, 1839); a – occlusal view, b – lateral view, Plesko quarry, enlarged Sl. 12 Pagrus cinctus (Agassiz, 1839); a – zgornja površina zoba, b – pogled s strani, kamnolom Plesko, povečano Fig. 12 Pagrus cinctus (Agassiz, 1839); a – occlusal view, b – lateral view, Plesko quarry, enlarged Sl. 13 Pagrus cinctus (Agassiz, 1839); a – zgornja površina zoba, b – pogled s strani, kamnolom Plesko, povečano Fig. 13 Pagrus cinctus (Agassiz, 1839); a – occlusal view, b – lateral view, Plesko quarry, enlarged Sl. 14 Pagrus cinctus (Agassiz, 1839); a – zgornja površina zoba, b – pogled s strani, kamnolom Plesko, povečano Fig. 14 Pagrus cinctus (Agassiz, 1839); a – occlusal view, b – lateral view, Plesko quarry, enlarged Sl. 15 Pagrus cinctus (Agassiz, 1839); a – zgornja površina zoba, b – pogled s strani, kamnolom Plesko, povečano Fig. 15 Pagrus cinctus (Agassiz, 1839); a – occlusal view, b – lateral view, Plesko quarry, enlarged Primerki ribjih zob na tabli 1, slike 1-5, 7-8 in na tabli 2, slike 1-15 so iz zbirke Špele Ulaga iz Hrastnika (The specimens of fish teeth on plate 1, figures 1-5, 7-8 and plate 2, figures 1-15 are from collection of Špela Ulaga from Hrastnik) Vse fotografije (All photos): Aleš Šoster 75folia biologica et geologica 58/1 – 2017 TABLA 2 – PLATE 2 folia biologica et geologica 58/1, 77–92, ljubljana 2017 RAZŠIRJENOST LIŠAJEV IZ SKUPINE LOBARIA S. LAT. V SLOVENIJI DISTRIBUTION OF LICHENS FROM THE LOBARIA S. LAT. GROUP IN SLOVENIA Tanja MRAK1* http://dx.doi.org/10.3986/fbg0022 iZVleČeK Razširjenost lišajev iz skupine Lobaria s. lat. v Sloveniji V Sloveniji iz skupine Lobaria s. lat. zasledimo najdbe petih vrst, in sicer Lobaria pulmonaria (L.) Hoffm. in Lo- baria linita (Ach.) Rabenh., Lobarina scrobiculata (Scop.) Nyl. ter Ricasolia virens (With.) H.H. Blom. & Tønsberg in Ricasolia amplissima (Scop.) De Not. Epifitske vrste iz sku- pine Lobaria s. lat. se pojavljajo v združbi Lobarion, ki je zelo občutljiva na gozdarske posege in zračno onesnaženje. Za naštete vrste smo pregledali zgodovinske in sodobne vire, in izrisali njihove karte razširjenosti. Hkrati smo pregledali, na katerih substratih uspevajo ter v katerih habitatih oz. združbah. Preverili smo status teh vrst v bližnjih evropskih državah, kjer je lihenologija bolje razvita. Naštete vrste so v Sloveniji vezane na območja z veliko količino padavin, največ najdb je z območja alpsko-dinarske pregrade. Za vse vrste, razen za navadnega pljučarja (L. pulmonaria), smo uspeli najti zelo majhno število navedb. Status populacij vrst ni znan. Izpostavili smo možne dejavnike, ki ogrožajo obstoj vrst iz skupine Lobaria s. lat. v Sloveniji. Ključne besede: lihenizirane glive, epifitski lišaji, karte razširjenosti, Lobaria abStRact Distribution of lichens from the Lobaria s. lat. group in Slovenia In Slovenia, findings of five species from the Lobaria s.lat. group of lichens are recorded, namely Lobaria pulmo- naria (L.) Hoffm. and Lobaria linita (Ach.) Rabenh., Loba- rina scrobiculata (Scop.) Nyl., Ricasolia virens (With.) H. H. Blom. & Tønsberg and Ricasolia amplissima (Scop.) De Not. Epiphytic species from the Lobaria s. lat. group occur in Lobarion community, which is very sensitive to forestry interventions and air pollution. For these species, the his- torical and contemporary sources were investigated and dis- tribution maps produced. At the same time, it was examined which substrates, habitats and forest communities are pre- ferred by the species. The status of these species in neigh- bouring lichenologically better developed European coun- tries, was checked. Listed species are related to areas of high mean annual precipitation areas in Slovenia, most of the finds are from the area of the Alpine-Dinaric barrier. For all species except for L. pulmonaria, we managed to find a very small number of entries. The status of populations is unknown. The potential factors that threaten the existence of species from the group Lobaria s. lat. in Slovenia are highlighted. Keywords: lichenized fungi, epiphytic lichens, distri- bution maps, Lobaria 1 Gozdarski inštitut Slovenije, Večna pot 2, 1000 Ljubljana, *tanja.mrak@gozdis.si Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 78 folia biologica et geologica 58/1 – 2017 Lobaria s. lat. je skupina lišajev iz družine Lobariaceae. V družino Lobariaceae spadajo največji lišaji na svetu, ki lahko v premeru dosežejo tudi več decimetrov. Filo- genetske raziskave so pokazale, da skupino Lobaria s. lat. tvori sedem manjših ločenih skupin, ki so takso- nomsko na ravni rodu. Od teh rodov v Sloveniji najde- mo tri, in sicer Lobaria s. str. z vrstama L. pulmonaria (L.) Hoffm. in L. linita (Ach.) Rabenh., Lobarina z vrsto L. scrobiculata (Scop.) Nyl. ter Ricasolia z vrsta- ma R. virens (With.) H.H. Blom. & Tønsberg in R. am- plissima (Scop.) De Not. Za rod Lobaria s. str. so značil- ne steljke s satastimi vdolbinami, pri katerih je tomen- tum razvit v obliki žil med izboklinami na spodnji površini. Spore so kratke in široko vretenaste. Rod Lobarina je podoben rodu Lobaria s. str. po obliki krp (lobulov), ima pa gostejši tomentum na spodnji površi- ni, med katerimi so bela gladka območja, ki pa se ne ujemajo z mesti izboklin na spodnji površini. Asko- spore so ozko vretenaste do iglaste in veliko daljše. Za rod Ricasolia so značilne steljke z gladkimi krpami ter enakomeren tomentum po celotni spodnji površini. Rodovi se razlikujejo tudi po vsebnosti lišajskih snovi (Moncada s sod. 2013). Epifitske vrste iz skupine Lobaria s. lat. se pojavlja- jo v združbah iz zveze Lobarion, ki so glavne epifitske lišajske klimaksne združbe gozdnega drevja na obmo- čju Evrope. Poleg vrst iz skupine Lobaria s. lat. te združbe gradijo tudi velike listaste vrste iz rodov Sticta in Pseudocyphellaria, manjši listasti lišaji iz rodov Par- meliella, Pannaria, Nephroma, Peltigera in Parmelia, številni skorjasti lišaji ter mahovi. Združbe iz zveze Lobarion niso vedno izključno epifitske, lahko se poja- vljajo tudi na skalovju. Najbolj značilna in stalna vrsta združb je vrsta L. pulmonaria. Bogat herbarijski mate- rial ter notice v lokalnih naravoslovnih revijah potrju- jejo nekdanjo široko razširjenost združb iz zveze Loba- rion v večini Zahodne Evrope, kjer so imele oceansko- -montanski značaj (Rose 1988). Zgodovinski podatki kažejo, da so druge vrste iz združb zveze Lobarion upadle celo bolj drastično kot sama L. pulmonaria, posebno rodovi s cianobakterij- skimi fotobionti, kot so Collema, Leptogium, Nephro- ma, Pannaria, Parmeliella in Sticta ter tudi vrsta L. scrobiculata (Rose 1988). Vzroki za propadanje združb iz zveze Lobarion so spremembe v načinu gospodarjenja z gozdovi (npr. za- menjava listnatih vrst z iglastimi, vzdrževanje gostih sestojev brez osončenih vrzeli, selektivna sečnja dre- ves, ki merijo v premeru 30-40 cm, prekratka obhodna doba sečnje) (Gauslaa 1995, Rose 1988). Sprememba zgradbe gozda v smislu fragmentacije lahko vpliva na epifitske vrste z lokalnimi spremembami klime ter z vplivom na učinkovitost razširjanja med ustreznimi gozdnimi fragmenti (Ellis & Coppins 2007). V drugi polovici 20. stoletja so združbe iz zveze Lobarion pro- padale tudi zaradi onesnaženja z žveplovim dioksidom (Gauslaa 1995, Rose 1988). 1 UVOD 2 MATERIAL IN METODE Zbrani so bili podatki za vse vrste iz skupine Lobaria s. lat., za katere obstaja kakršnakoli informacija o njiho- vem pojavljanju na območju Slovenije: Lobaria pulmo- naria, L. linita, Lobarina scrobiculata, Ricasolia amplis- sima (vključujoč »Dendriscocaulon umhausense«) ter R. virens. Nomenklatura je povzeta po Nimisu (2016), kratki opisi ob slikah pa po Wirthu (1995). Podatke smo zbrali s pomočjo Kataloga liheniziranih in liheni- kolnih gliv Slovenije (Suppan s sod. 2000), podatkovne zbirke Boletus informaticus (Ogris 2008) ter objavlje- nih popisov lišajev oz. omemb navedenih vrst za ob- močje Slovenije v literaturi. Za vse navedbe smo izpisa- li lokacijo pojavljanja, nadmorsko višino, substrat, na katerem je bila lišajska vrsta zabeležena, ter podatke o habitatih ali združbah, v katerih je bila vrsta najdena, v kolikor so bili ti podatki navedeni. Kjer so bile goz- dne združbe poimenovane z neveljavnimi imeni, smo poiskali veljavna imena s pomočjo literature (Kutnar s sod. 2012, Šilc & Čarni 2012). Lokacije pojavljanja smo izrisali v obliki karte razširjenosti na MTB mreži. Znotraj vsakega MTB kvadranta, v katerem je bila vrsta zabeležena, je lahko več lokacij pojavljanja. Pose- bej smo izrisali podatke za obdobje pred letom 1950 in po njem. Pri virih izpred leta 1950 so podatki o naha- jališčih zelo skopi, zato smo vrisali približne lokacije. Npr. če vir navaja, da se lišaj pojavlja v okolici Idrije, smo poiskali, v kateri MTB kvadrant spada mesto Idri- ja. Pri vrsti L. pulmonaria je bilo v nekaterih primerih nahajališče podano tako široko, da ga ni bilo mogoče vrisati v karto. Kot avtorji kart razširjenosti so navede- ni določitelji vrst (po abecednem redu), v kolikor ta podatek ni znan, pa avtorji vira, v katerem je najdba objavljena. Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 79folia biologica et geologica 58/1 – 2017 Slika 1: Lobaria pulmonaria; navadni pljučar – steljka je v navlaženem stanju intenzivno zelena (zgoraj), saj je primarni fotobiont zelena alga, v posušenem stanju pa olivno zelena do rjava (spodaj levo). Zgornja stran steljke je mrežasto-vdolbinasta, z razvitimi sorali in/ali izidiji, občasno tudi z apoteciji (razvidni na sliki zgoraj). Spodnji del prekriva temno rjav tomentum, ki se razrašča na izboklinah v obliki žil, proti robu prehaja v svetlo rjavo barvo (spodaj desno). Figure 1: Lobaria pulmonaria; tree lungworth, lung lichen – thallus in wet condition intensively green (above), as primary photobiont is green algae, and olive-green to brown in dry condition (below to the left). Upper side of the thallus with the comb-like structure, with soralia and/or isidia, apothecia infrequent (visible on picture above). Lower side of the thallus covered by dark brown tomentum on vein like ridges, getting light brown towards the edges. 3 IZSLEDKI 3.1 Lobaria pulmonaria (l.) Hoffm. V Sloveniji je bila vrsta po letu 1950 zabeležena 158x, največkrat na gorskem javorju (46,8 %), sledila je bukev (15,2 %), na ostalih podlagah se je pojavljala v manj kot 5 % (Ulmus glabra, Fraxinus excelsior > Abies alba > Picea abies, Tilia sp. > Quercus sp. > Coryllus avellana > Juglans regia, Pyrus communis, Salix caprea, Sorbus Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 80 folia biologica et geologica 58/1 – 2017 aucuparia, Populus tremula). V 12,7 % je bila podlaga nedefinirana. Uspeva na skorji, dnišču debla, mahovih na deblu, mahovih na dnišču debla, mahovih na lesu, štorih, skalah. Najdemo jo predvsem v bukovih gozdo- vih (Omphalodo-Fagetum (Tregubov 1957) Marinček et al. 1993, Anemono trifoliae-Fagetum Tregubov 1962, Ranunculo platanifoli-Fagetum Marinček et al. 1993, Polysticho lonchitis-Fagetum (Horvat 1938) Marinček in Poldini et Nardini 1993, Stellario montanae-Fage- tum (Zupančič 1969) Marinček et al. 1993, mešanih li- stnatih gozdovih, smrekovih gozdovih s primesjo li- stavcev (Hacquetio-Piceetum Zupančič (1980) 1999, Lonicero ceruleae-Piceetum Zupančič (1976) 1994, Stel- lario montanae-Piceetum Zupančič (1980) 1999, Ade- nostylo glabrae-Piceetum M. Wraber ex Zukrigl 1973), na gozdnih robovih, na gozdnih jasah z osamelimi drevesi in na osamelih drevesih v zaselkih. Slika 2: Karta razširjenosti vrste Lobaria pulmonaria v Sloveniji: (a) pred letom 1950 (Arnold F., Biasoletto B., Glowacki J., Kernstock E., Lämmermayr L., Pötsch J.S., Schuler J., Scopoli I.A.) (b) po letu 1950 (Arup U., Batič F., Bilovitz P., Christensen S.N., Grube M., Koch M., Kruhar B., Mayrhofer H., Mrak T., Primožič K., Prügger J., Suppan U., Surina B.) Figure 2: Distribution map of Lobaria pulmonaria in Slovenia: (a) before 1950 (Arnold F., Biasoletto B., Glowacki J., Kernstock E., Lämmermayr L., Pötsch J.S., Schuler J., Scopoli I.A.) (b) after 1950 (Arup U., Batič F., Bilovitz P., Grube M., Koch M., Kruhar B., Mayrhofer H., Mrak T., Primožič K., Prügger J., Suppan U., Surina B.) a b Karta razširjenosti vrste L. pulmonaria kaže, da je tudi vrsta vezana na območja z večjo količino padavin, v nasprotju z ostalimi epifitskimi vrstami iz skupine Lobaria s. lat. pa jo najdemo tudi na Pohorju. Od vseh vrst iz skupine Lobaria s. lat. je tudi najbolj razširjena. Najmanjša nadmorska višina, na kateri je bila vrsta za- beležena je bila 150 m (Krakovski gozd), največja pa 1460 m v Julijskih Alpah. Vrsta je še prisotna na večini območij, kjer se je pojavljala tudi v preteklosti oz. je bila najdena na ob- močjih, ki v preteklosti niso bila lihenološko raziska- na. Historična navedba z Javornikov ni bila ponovno potrjena. Historični viri so jo navajali kot pogosto, npr. Glowacki & Arnold (1871): »posebno v okolici Idrije pogosta«. V nekaterih predelih Slovenije (npr. območje Snežnika) je status vrste še vedno zadovoljiv, steljke so velike in zdrave, na mnogih nahajališčih pa najdemo samo po par primerkov ali celo eno samo steljko, stelj- ke pa so slabo razvite ali poškodovane. 3.2 Lobaria linita (ach.) Rabenh. V celotni zgodovini lihenoloških raziskav vemo na Slovenskem samo za tri najdbe (Glowacki 1874, Ho- čevar s sod. 1985, priprave na BLAM ekskurzijo l. 2003 - neobjavljeno), od tega je ena (Hočevar s sod. 1985) dvomljiva. Pri tej najdbi gre verjetno za mlado steljko vrste L. pulmonaria, ki še nima razvitih soralov in/ali izidijev (Suppan s sod. 2000). Obe zanesljivi najdbi izvirata iz gora v okolici Bovca (nad gozdno mejo), kjer med apnencem najdemo silikatne vložke. Najdba iz leta 2003 je z nadmorske višine 1880 m. Glede na to, da gre za vrsto, ki običajno uspeva nad gozdno mejo na svežih, kislih humoznih tleh, na ma- hovih, med silikatnimi skalnatimi bloki (Wirth 1995), je v Sloveniji je možnih rastišč vrste L. linita malo, saj zaradi prevlade karbonatnih kamnin primanjkuje sub- stratov zanjo. Poznavanje lišajske flore nad gozdno mejo je v Sloveniji izjemno slabo, tako da ne poznamo njene dejanske pogostnosti ter velikosti populacij. Poleg tega so steljke na alpskih tratah izjemno težko Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 81folia biologica et geologica 58/1 – 2017 Slika 3: Lobaria linita; mali pljučar – steljka mrežasto nagubana, zeleno-rjave barve, v navlaženem stanju intenzivneje zelena (primarni fotobiont je zelena alga), brez soralov in izidijev. Apoteciji se pojavljajo redko. Tomentum svetlo rjav, prisoten med izboklinami na spodnjem delu steljke. Figure 3: Lobaria linita; cabbage lung lichen – thallus with net-like structure of ridges, greenish-brown, intensively green when wet (primary photobiont is green algae), without soralia or isidia. Apothecia rarely present. Tomentum of light brown colour, developed between protrusions on the lower side of the thallus. a b Slika 4: Razširjenost vrste Lobaria linita v Sloveniji: a) pred letom 1950 (Glowacki J.) in b) po letu 1950 (Batič F., Mayrhofer H.) Figure 4: Distribution of Lobaria linita in Slovenia: a) before 1950 (Glowacki J.) and b) after 1950 (Batič F., Mayrhofer H.) opazne, sploh v suhem stanju. Glede na pogostnost si- likatnih kamnin nad gozdno mejo v slovenskem pro- storu lahko domnevamo, da je zelo redka ter da so po- pulacije zelo majhne. 3.3 Lobarina scrobiculata (Scop.) Nyl. Vrsto je prvi opisal Scopoli v svojem delu Flora Carni- olica iz leta 1772 pod imenom Lichen scrobiculatus, in sicer iz okolice Idrije. Tipski Scopolijev material je iz- gubljen, zato so za lektotip izbrali primerek, ki odgo- varja Dilleniusovemu opisu (Lichenoides pulmoneum villosum, superficie scrobiculata et peltata) in ilustra- ciji »Lichenoides no. 114« v delu Historia Muscorum iz leta 1741 (navaja ju že Scopoli), in je shranjen v oxford- skem herbariju (yoshimura & Isoviita 1969). Število najdb vrste L. scrobiculata je majhno tako pred letom 1950, kot tudi po njem. Najdbe po l. 1950 so zabeležene na substratih: Ulmus glabra, Acer pseudo- platanus, Populus tremula ter Quercus robur, historični viri poleg hrasta navajajo tudi vrsti Fagus sylvatica in Abies alba. Uspeva na deblih ali dniščih debla. Podatki o habitatih, kjer se vrsta pojavlja v Sloveniji, so zelo skopi. Vrsta naj bi uspevala v mešanih listopadnih goz- dovih in na osamelih drevesih. Zabeležena je bila na nadmorskih višinah med 600 in 880 m. Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 82 folia biologica et geologica 58/1 – 2017 Slika 5: Lobarina scrobiculata; sivi pljučar - steljka plitvo vdolbinasta, svetlo zeleno-siva, v navlaženem stanju svinčeno siva, saj so primarni fotobiont cianobakterije. V herbariju postane bledo rumene ali sivo-rumene barve (slika levo). Na površini s točkastimi sivo obarvani sorali, ki se med seboj združujejo, na robovih pa so sorali črtalasti (slika v sredini). Izidijev ni. Apo- teciji so zelo redko razviti. Tomentum s posameznimi majhnimi belimi golimi mesti (slika desno), na robovih svetlo rjav, v sredini temno rjav. Figure 5: Lobarina scrobiculata; textured lungworth - thalli with shallow indentations, pale green-grey, lead grey when wet (primary photobiont cyanobacteria). In herbarium, colour changes to pale yellow or grey-yellow (figure to the left). With round- ish grey coloured soralia on the surface, which are getting confluent, and edge soralia (figure in the middle). Isidia are not developed. Apothecia rarely developed. Lower side with distinct small tomentum-free spots of white colour (figure to the right). Tomentum light brown on edges and dark brown in the middle. Slika 6: Razširjenost vrste Lobarina scrobiculata v Sloveniji: a) pred letom 1950 (Arnold F., Dolšak F. Glowacki J., Pötsch J.S., Scopoli I.A.), in b) po letu 1950 (Batič F., Mayrhofer H., Primožič K., Prügger J., Suppan U.). Figure 6: Distribution map of Lobarina scrobiculata in Slovenia: a) before 1950 (Arnold F., Dolšak F. Glowacki J., Pötsch J.S., Scopoli I.A.) and b) after 1950 (Batič F., Mayrhofer H., Primožič K., Prügger J., Suppan U.). a b Razširjenost vrste se ujema z območji največje ko- ličine padavin na padavinski karti Slovenije. Nekatera območja, kjer bi vrsto lahko pričakovali glede na veli- ko količino padavin, bodisi niso bila nikoli v zadostni meri raziskana (npr. Kamniško-Savinjske Alpe, Kara- vanke) bodisi so bila podvržena korenitim gozdarskim posegom (npr. Pohorje). V Panovcu, okolici Idrije in Medvod, na Javornikih in Trnovskem gozdu po letu 1950 L. scrobiculata ni bila več najdena, kljub temu, da so na tem območju potekale intenzivne raziskave lišaj- ske flore. Štiri od petih najdb po letu 1950 so z območja Snežnika. Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 83folia biologica et geologica 58/1 – 2017 3.4 Ricasolia amplissima (Scop.) De Not. & »Dendriscocaulon umhausense« Pri vrsti R. amplissima naletimo na taksonomsko in nomenklaturno težavo. »Cefalodiji« te vrste namreč lahko uspevajo samostojno in so bili obravnavani kot samostojen takson z imenom Dendriscocaulon umhau- sense (Auersw.) Degel. Pogosto jih najdemo skupaj z listasto obliko na istem rastišču. Z molekularnimi raz- iskavami so dokazali, da »Dendriscocaulon umhausen- se« gradi ista gliva kot listasto obliko z zelenim primar- nim fotobiontom. Ker lišaj nosi ime po glivi, dveh imen preprosto ne more biti, saj oba rastna tipa gradi ista gliva. Za poimenovanje cianobakterijske različice je predlagano citiranje nepravilnega imena v narekova- jih: »Dendriscocaulon umhausense« ali pa dodajanje pridevka cyan. ali chlor. za nomenklaturno pravilnim imenom, npr. R. amplissima cyan., kar nam prav tako poda informacijo o rastni obliki (Jorgensen 1998). Kot podlage R. amplissima so po letu 1950 zabele- žene naslednje drevesne vrste: Ulmus glabra > Acer pseudoplatanus > Fagus sylvatica, Pyrus communis, v Slika 7: Ricasolia amplissima; bledi pljučar - Lobuli so gladki do valoviti (niso mrežasto nagubani). Primarni fotobiont je zelena alga. Zgornja površina je svetlo siva, v navlaženem stanju zeleno-siva; v herbariju postane svetlo rjava (slika levo). Izidiji in soral niso razviti, apoteciji pa so razmeroma pogosti. Skoraj vedno so prisotni 0,2-1 cm veliki olivno rjavi do črni zunanji grmičasti cefalodiji (desno). Tomentum je rjav, enakomerno razporejen. Figure 7: Ricasolia amplissima – Thalli with smooth to wavy lobules (not with net-like ridges). Primary photobiont green algae. Upper surface pale grey when dry and green-grey when wet; light brown in herbarium (to the left). Isidia and soralia developed, apothecia relatively common. Upper surface with 0.2-1 cm olive brown to black external ramified cephalodia (to the right). Tomentum brown, even. Slika 8: Razširjenost vrste Ricasolia amplissima v Sloveniji pred (Arnold F., Glowacki J., Lettau G., Pötsch J.S., Scopoli I.A., Suza J., Zahlbruckner A.) in po letu 1950 (Arup U., Batič F., Grube M., Mayrhofer H., Mrak T., Prügger J., Spribille T., Surina B.). Figure 8: Distribution of Ricasolia amplissima in Slovenia before (Arnold F., Glowacki J., Lettau G., Pötsch J.S., Scopoli I.A., Suza J., Zahlbruckner A.) and after 1950 (Arup U., Batič F., Grube M., Mayrhofer H., Mrak T., Prügger J., Spribille T., Surina B.). a b Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 84 folia biologica et geologica 58/1 – 2017 Slika 9: Ricasolia virens; zelenkasti pljučar – Temno olivno rjava do zeleno-siva, v namočenem stanju zelena. Herbarijski material je svetlo rjave barve. Primarni fotobiont je zelena alga. Zgornja površina gladka, starejši deli rahlo nagubani. V sredini steljke primarni lobuli pogosto tvorijo majhne sekundarne lobule, ki se medsebojno prekrivajo. Spodnji del steljke svetlo rjav z zelo kratkim tomentumom. Apoteciji razviti na lamini steljke. Figure 9: Ricasolia virens – Thallus dark olive brown to green-grey; green when wet. Herbarium material light brown. Primary photobiont green algae. Upper surface smooth, older parts slightly wrinkled. In the middle of the thallus, primary lobules often form small secondary lobules which are overlapping. Lower part of the thallus light yellow-brown with very short tomentum. Apothecia developed on thallus lamina. Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 85folia biologica et geologica 58/1 – 2017 nekaterih primerih podatka o podlagi ni. V preteklosti so kot podlage omenjeni tudi Abies alba, Castanea sa- tiva, Quercus sp., Picea abies ter iglavci. Uspeva na dre- vesni skorji ali na lesu, na gozdnih robovih, gozdnih jasah z osamelimi listavci, prostostoječih drevesih na območjih, kjer je gospodarska raba omejena na košnjo in krmljenje divjadi (Prügger 2005), mešanih gozdo- vih. Zabeležena je bila na nadmorskih višinah med 720 m (Babno polje) ter 1400 m (Julijske Alpe). Razširjenost vrste (razen historičnega nahajališča na Donački gori) se ujema z območji največje količine padavin. Nekatera območja, kjer bi vrsto lahko priča- kovali glede na veliko količino padavin, bodisi z lihe- nološkega vidika niso bila nikoli v zadostni meri razi- skana (npr. Kamniško-Savinjske Alpe, Karavanke) bodisi so bila v preteklosti podvržena korenitim goz- darskim posegom (npr. Pohorje). Po letu 1950 je zna- nih dvanajst najdb. Raziskave lišajske flore v 90. letih 20. stol. in začetku 21. stol. so pokazale, da vrsta R. amplissima ne uspeva več na območju Panovca, Javor- nikov, Trnovskega gozda, Šenturške in Donačke gore. Za Panovec že Glowacki (1871), navaja, da je vrsta zelo redka. V Julijskih Alpah, za katere ni historičnih zapisov, ki bi poročali o tej vrsti, je bil po letu 1950 najden samo en primerek. Vsi ostali primerki so bili najdeni na Snežniku ali Goteniški gori. 3.5 Ricasolia virens (With.) H.H. blom. & tøns- berg V Sloveniji je bila vrsta R. virens najdena na drevesnih vrstah Abies alba in Fagus sylvatica. Podatkov o habi- tatih ali gozdnih združbah, v katerih se pojavlja, ni. Za Slovenijo obstaja samo pet historičnih navedb o pojavljanju vrste L. virens, od tega je ena neobjavljena (herbarij F. Dolšak). Po letu 1950 je navedba samo ena, vendar potrjuje širše območje pojavljanja v preteklosti. Glede na to, da naj bi bila R. virens vrsta zmernega pasu z blago klimo ter vlažnih subtropskih predelov (Wirth 1995), je zanimivo, da se te navedbe nanašajo na območje Kamniško-Savinjskih Alp. Ker je v ostalih območjih, ki bi glede na ohranjenost gozdnih ekosiste- mov in količino padavin lahko bile potencialni habitat vrste, novejše lihenološke raziskave niso zabeležile, je v Sloveniji verjetno blizu izumrtja oz. je že izumrla. Slika 10: Karta razširjenosti vrste Ricasolia virens v Sloveniji pred (Arnold F., Degelius G., Dolšak F., Glowacki J.) in po letu 1950 (Batič F.). Figure 10: Distribution of Ricasolia virens before (Arnold F., Degelius G., Dolšak F., Glowacki J.), and after 1950 (Batič F.) in Slovenia. a b 4 RAZPRAVA Vrste iz skupine Lobaria s. lat. so v Sloveniji večinoma omejene na območje z veliko količino padavin (alpsko- -dinarska pregrada, Pohorje). Nekateri predeli Sloveni- je, kjer bi bile klimatske razmere lahko ustrezne za vrste iz skupine Lobaria s. lat. (Kamniško-Savinjske Alpe, Karavanke) lihenološko še vedno niso v zadostni meri raziskani. Na Pohorju je bila zabeležena samo vrsta L. pulmonaria, kar je najverjetneje povezano s korenitimi gozdarskimi posegi v preteklosti. Za obmo- čja pojavljanja velikosti populacij večinoma niso po- znane, v nekaterih primerih pa gre za najdbo samo ene lišajske steljke oz. so steljke slabo razvite ali poškodo- Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 86 folia biologica et geologica 58/1 – 2017 vane, nobenega podatka pa ni o genski pestrosti, razen za dve lokaciji vrste L. pulmonaria, ki so bile zajete v raziskavo Scheideggerja s sod. (2012). V tej raziskavi so ugotovili, da sta slovenski populaciji v Rajhena- vskem Rogu in Notranjskem Snežniku mešani saj sta vsebovali gene iz dveh različnih genetskih bazenov, kar prispeva k večji genetski pestrosti. Majhne popula- cije so ne glede na genetsko pestrost močno ogrožene, saj jih lahko uniči že en sam katastrofični dogodek (Zoller s sod. 1999). Sicer je Zoller s sod. (1999) na švicarskih populacijah vrste L. pulmonaria ugotovil, da genetska pestrost in velikost populacije nista pove- zani. Večjo genetsko pestrost so zasledili v populaci- jah, kjer se je glivni simbiont razmnoževal spolno. Vendar pa je za vrsto L. pulmonaria znano, da naj bi bil delež spolnega razmnoževanja še manjši od 30 % (dal Grande s sod. 2012), po nekaterih podatki pa še precej manj (Scheidegger s sod. 2012). Tudi v primerih, ko so apoteciji razviti, so pogosto okuženi z glivnim para- zitom in nefunkcionalni (Jordan 1973). Poleg vrste L. pulmonaria naj bi se tudi vrsti L. scrobiculata in L. lini- ta razmnoževali predvsem vegetativno (Nimis 2016). Za vrsto L. pulmonaria so ugotovili, da se njene vegeta- tivne propagule lahko razširjajo le na kratke razdalje, identične genotipe so ugotovili le na največ 230 m od- daljenosti med seboj (Walser 2004). Pri populacijah, ki se razmnožujejo le vegetativno, ob fragmentaciji ha- bitatov torej zelo hitro lahko pride do stanja, kjer se sosednji fragmenti ne morejo kolonizirati, kljub temu, da so razmere za uspevanje vrste tam ugodne. Za vrsto L. pulmonaria je bilo ugotovljeno, da celo blago gospo- darjenje z gozdovi znatno zmanjšajo genetsko pestrost, še preden se pojavijo spremembe v pogostnosti vrste, kar naj bi bilo povezano ravno s fragmentacijo popula- cije v več manjših prostorsko izoliranih populacij, za- radi česar se prostorsko mešanje genotipov zmanjša (Scheidegger s sod. 2012). Podobno je tudi v primeru, ko vrsta naseljuje prosto stoječa, osamela drevesa. Ker se kulturna krajina s prosto stoječimi osamelimi dre- vesi ne vzdržuje več, v bližini ni novih ustreznih sub- stratov za kolonizacijo. Za lokacijo vrste L. amplissima, kjer je vrsta uspevala na gorskem brestu, je bilo ugoto- vljeno, da so prav vsa drevesa, ki jih je bilo 15, v letih 2006-2009 odmrla zaradi okužbe z glivo Ophiostoma novo-ulmi (Obermayer 2011), s tem pa tudi vrsta L. amplissima na tej lokaciji. Vrste iz skupine Lobaria s. lat. ogroža tudi intenziviranje kmetijstva s povečanim vnosom dušikovih spojin, saj vrste bodisi ne prenesejo evtrofikacije ali pa le v majhni meri (L. amplissima in L. pulmonaria; Wirth 1995, Nimis 2016), pa tudi zara- ščanje, saj za uspevanje potrebujejo večinoma zado- stno količino difuzne svetlobe (Nimis 2016). Ker so vrste higrofilne, jih lahko prizadene tudi lokalno zmanjšana vlažnost zaradi gozdarskih posegov. Vrsta L. linita, za katero je potencialnih habitatov v Sloveniji zelo malo, bi bila lahko prizadeta zaradi globalnega se- grevanja ozračja, saj gre za arktično-alpsko vrsto, da- ljinskega onesnaženja z dušikovimi spojinami ter uni- čevanja habitatov zaradi športnih dejavnosti v gorah. Glede na navedeno ni presenetljivo, da so v številnih evropskih državah vrste iz rodu Lobaria umeščene na rdeči seznam ogroženih vrst. V Italiji imajo vrste R. amplissima, L. virens in L. scrobiculata status potenci- alno ogrožene vrste, L. pulmonaria pa status najmanj ogrožene vrste (Nimis 2016). V Nemčiji je vrsta L. vi- rens veljala za izumrlo, a so pred cca. desetletjem od- krili eno lokacijo, kjer se je ohranila (Fischer & Kill- man 2008), tudi v Švici velja za izumrlo (Scheidegger s sod. 2002), v Avstriji pa se ne pojavlja (H. Mayrhofer, os. komunikacija). R. amplissima je v Avstriji zelo redka, prav tako L. scrobiculata. R. amplissima in L. scrobiculata sta v Švici ogroženi (Scheidegger s sod. 2002). L. pulmonaria velja za ranljivo vrsto v Švici (Scheidegger s sod. 2002). O terikolnih vrstah (L. li- nita) je podatkov manj, Scheidegger s sod. 2002 jo opredeljuje kot vrsto zunaj nevarnosti, kar gre na račun velike površine, ki ga v Švici zavzemajo krista- linske Alpe. V Italiji je vrsta odsotna povsod, razen v alpski in predalpski regiji, kjer velja za zelo do ekstre- mno redko (Nimis 2016). ZAHVALA Članek je nastal v okviru raziskovalnega programa št. P4-0107, ki ga sofinancira Javna agencija za raziskoval- no dejavnost Republike Slovenije iz državnega prora- čuna, vodi pa prof. dr. Hojka Kraigher. Najlepše se za- hvaljujem dr. Nikici Ogris (Gozdarski inštitut Sloveni- je) za izdelavo kart razširjenosti, dr. Aleksandru Ma- rinšku (Gozdarski inštitut Slovenije) za pomoč pri is- kanju veljavnih imen gozdnih združb ter prof. dr. Helmutu Mayrhoferju (Karl-Franzens Universität, Graz) za podatke o novejših omembah vrst iz skupine Lobaria s. lat. v literaturi za območje Slovenije. Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 87folia biologica et geologica 58/1 – 2017 Lobaria s. lat. is a group of lichens from Lobariaceae family. Lobariaceae family includes some of the largest lichens in the world that can reach several decimetres in diameter. Phylogenetic studies have shown that the group Lobaria s. lat. is formed from seven distinct groups that were given the genus level. Of these genera, three are found in Slovenia, namely Lobaria s. str. with species L. pulmonaria (L.) Hoffm. and L. linita (Ach.) Rabenh., Lobarina with L. scrobiculata (Scop.) Nyl. and Ricasolia with R. virens (With.) H. H. Blom. & Tøns- berg and R. amplissima (Scop.) De Not. Lobaria s. str. is characterized by thalli with a honeycomb structure where tomentum is developed in the form of veins be- tween the protrusions on the lower surface. Spores are short and broadly fusiform. Genus Lobarina is similar to genus Lobaria s. str. in the shape of lobes, but has a dense tomentum on the lower surface, leaving out smooth circular white areas that do not match with the position of protrusions on the lower surface. Asco- spores are narrowly fusiform to acicular and much longer than in Lobaria s. str. For genus Ricasolia, plane lobe surface with smooth and uniform tomentum on the lower side is characteristic. Genera also differ in the content of lichen substances (Moncada et al. 2013). Epiphytic species from the group Lobaria s. lat. form a Lobarion alliance, which communities are the main lichen climax communities of forest trees in Eu- rope. In addition to species of Lobaria s. lat. group, large foliose species from Sticta and Pseudocyphellaria genera are present in these communities, as well as smaller foliose lichens from Parmeliella, Pannaria, Nephroma, Peltigera and Parmelia genera, and many crustose lichens and mosses. Communities from the Lobarion alliance are not always exclusively epiphytic and may also occur on rocks. The most significant and permanent species in communities of the Lobarion al- liance is L. pulmonaria. A rich herbarium material and notices in the local scientific journals confirmed the former wide prevalence of Lobarion communities in most of Western Europe, where they had an oceanic- montane character (Rose 1988). Historical data show that other species of Lobarion alliance declined even drastically than L. pulmonaria itself, specifically genera with cyanobacterial fotobi- onts, such as Collema, Leptogium, Nephroma, Panna- ria, Parmeliella and Sticta, as well as L. scrobiculata (Rose 1988). The causes for decline of communities from the Lobarion alliance are changes in forest management (eg. the replacement of deciduous for coniferous spe- cies, maintenance of dense stands with no forest gaps, selective logging of trees, which measure 30-40 cm in diameter, too short rotation period) (Gauslaa 1995, Rose 1988). Changes in the structure of the forest in terms of fragmentation can affect the epiphytic lichen species due to local climate changes and due to impact on the effectiveness of dispersion between the respec- tive forest fragments (Ellis & Coppins 2007). In the second half of the 20th century, strong decline in com- munities from the Lobarion alliance was observed due sulphur dioxide pollution (Gauslaa 1995, Rose 1988). SUMMARy 5 INTRODUCTION 6 MATERIAL AND METHODS Data for all species from Lobaria s. lat. group, for which there is any information about their occurrence in Slo- venia, were collected: Lobaria pulmonaria, L. linita, Lobarina scrobiculata, Ricasolia amplissima (including “Dendriscocaulon umhausense”) and R. virens. The no- menclature is following Nimis (2016). Short descrip- tions accompanying figures are based on Wirth (1995). Data were collected with the help of Catalogue of the lichenized and lichenicolous fungi of Slovenia (Suppan et al. 2000), Boletus informaticus database (Ogris 2008) and published inventories of lichen or references of those species for the territory of Slovenia in the literature. For each reference, the following in- formation was gathered, where available: location, alti- tude, the substrate on which the lichen species was re- corded and habitat or community where the species was found. Invalid names of forest communities were substituted with corresponding valid names according to Kutnar et al. (2012) and Šilc & Čarni (2012). Lo- cations were translated into MTB network distribution maps. Within each MTB quadrant, where the species was recorded, there might be several locations includ- ed. Data for the period before and after 1950 were mapped separately. For the period before 1950, data for locations were very scarce, therefore only approximate locations could have been drawn, eg. if it was referred Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 88 folia biologica et geologica 58/1 – 2017 that the lichen was occurring in the vicinity of Idrija, the MTB quadrant was assigned to the town of Idrija. In the case of L. pulmonaria, sometimes the location was given so widely that it was not possible to plot it. As authors of distribution maps, determinators of li- chens are given in alphabetical order. Where informa- tion on determinator was not known, author of the reference was given. 7 RESULTS 7.1 Lobaria pulmonaria (l.) Hoffm. After 1950, there were 158 records for L. pulmonaria in Slovenia, in 46.8 % it was reported from Acer pseudo- platanus, followed by Fagus sylvatica (15.2 %). Other substrates were occurring in less than 5 % (Ulmus gla- bra, Fraxinus excelsior > Abies alba > Picea abies, Tilia sp. > Quercus sp. > Coryllus avellana > Juglans regia, Pyrus communis, Salix caprea, Sorbus aucuparia, Popu- lus tremula). In 12.7 % of cases, the substratum was not defined. The species was growing on bark, tree bases, mosses on trunks and trunk bases, mosses on wood, stumps and rocks. It is reported mainly from beech forests (Omphalodo-Fagetum (Tregubov 1957) Marinček et al. 1993, Anemono trifoliae-Fagetum Tregubov 1962, Ranunculo platanifoli-Fagetum Marinček et al. 1993, Polysticho lonchitis-Fagetum (Horvat 1938) Marinček in Poldini et Nardini 1993, Stellario montanae-Fagetum (Zupančič 1969) Marinček et al. 1993), mixed broadleaved forests, spruce forests with admixed broadleaved trees (Hacquetio-Piceetum Zupančič (1980) 1999, Lonicero ceruleae-Piceetum Zupančič (1976) 1994, Stellario montanae-Piceetum Zupančič (1980) 1999, Adenostylo glabrae-Piceetum M. Wraber ex Zukrigl 1973), from forest edges, forest clearings with solitary treed and solitary trees in small settlements. From distribution map of L. pulmonaria it is evi- dent that this species is present in areas with high amount of precipitation. In contrast to other species from Lobaria s. lat. group, L. pulmonaria was found also in Pohorje area. It is the most widespread of all species from Lobaria s.lat. group. It was reported from 150 m a.s.l. in Krakovski gozd to 1460 m a.s.l. in Julian Alps. It is still occurring in areas where it was present in the past and additionally in some areas that were li- chenologically not investigated before. Historical re- cord from Javorniki in Dinaric mountains was not confirmed any more. In historical records, L. pulmo- naria was referred as common, e. g. as in Glowacki & Arnold (1871): »especially in the vicinity of Idrija common«. Nowadays, in some areas of Slovenia (eg. Snežnik), the status of the species is still satisfactory, thalli are big and healthy, while on many locations only some specimens or even single thallus is evidenced, thalli are badly developed or damaged. 7.2 Lobaria linita (ach.) Rabenh. In the whole history of lichenological investigations there are only three findings known for Slovenia (Glo- wacki 1874, Hočevar et al. 1985, BLAM excursion preparations in 2003 - unpublished), one of them is re- garded as doubtful (Hočevar et al. 1985). This record may refer to young poorly developed thallus of L. pul- monaria, with no developed isidia or soralia (Suppan et al. 2000). Both reliable findings are from the moun- tains near Bovec (above tree line), where siliceous in- clusions are found in carbonaceous rocks. The finding from 2003 is from 1880 m a.s.l. As this species is occur- ring on acid soil rich in humus, on bryophytes and be- tween siliceous blocks (Wirth 1995), there are few po- tential sites for L. linita in Slovenia, due to prevalence of carbonate rocks. Knowledge of lichen flora above tree line is extraordinary low, therefore its frequency and the size of populations are not known. Besides all, thalli are hardly noticeable between alpine vegetation, especially in dry condition. As siliceous rocks above tree line in Slovenia are rare, it can be assumed that it is very rare and that the populations are small. 7.3 Lobarina scrobiculata (Scop.) Nyl. Species was first described by Scopoli in his Flora Car- niolica from 1772 under the name Lichen scrobiculatus, it originated from the vicinity of Idrija. Type Scopoli‘s material was lost, therefore a lectotype was chosen, that corresponded to Dillenius‘s description (Li- chenoides pulmoneum villosum, superficie scrobicu- lata et peltata) and to illustration »Lichenoides no. 114« in Historia Muscorum from 1741 (already referred by Scopoli), and is kept in Oxford herbarium (yoshimu- ra & Isoviita 1969). The number of findings of L. scrobiculata is small, both before and after 1950. Findings after 1950 are from the substrates Ulmus glabra, Acer pseudoplatanus, Po- Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 89folia biologica et geologica 58/1 – 2017 pulus tremula and Quercus robur, in historical records also Fagus sylvatica and Abies alba are mentioned be- sides oak. L. scrobiculata is found on trunks or trunk bases. There is very little information on habitats where it was found. It was reported from mixed broadleaved forests and solitary trees from 600 to 880 m a.s.l. Distribution of species corresponds to areas with the highest amount of precipitation in Slovenia. Some areas, where it could potentially occur based on amount of precipitation, either have not been investigated in detail (e.g. Kamniško-Savinjske Alps, Karavanke) ei- ther were intensively managed (e.g. Pohorje). In Pan- ovec (close to Nova Gorica), vicinity of Idrija and Med- vode, on Javorniki and Trnovski gozd L. scrobiculata has not been found any more after 1950, although these areas were thoroughly investigated by lichenologists. 7.4 Ricasolia amplissima (Scop.) De Not. & »Den- driscocaulon umhausense« In R. amplissima species, there is taxonomic and no- menclature problem. »Cephalodia« of this species can grow independently and were treated as independent taxon named Dendriscocaulon umhausense (Auersw.) Degel. Often, they are found together with foliose form on the same site. Molecular studies have revealed that »Dendriscocaulon umhausense« is built by the same fungus as foliose form with green primary photobiont. As lichens are named after fungus, two names cannot exist as both growth types are formed by the same fungus. To name a cyanobacterial form, a citing of incorrect name in quotation marks was suggested: »Dendriscocaulon umhausense« or adding of a corresponding adjective cyan. or chlor. after the correct name, e.g. R. amplissima cyan. In this way, in- formation on growth form is given (Jorgensen 1998). As substrates for R. amplissima, the following tree species were recorded after 1950: Ulmus glabra > Acer pseudoplatanus > Fagus sylvatica, Pyrus communis, in some cases there was no record on the type of the sub- stratum. In the past, it was reported also from Abies alba, Castanea sativa, Quercus sp., Picea abies and co- nifers. It grows on tree bark or wood on forest edges, forest clearings with solitary broadleaved trees, soli- tary trees in areas where management is limited to hay harvesting and feeding of wild animals (Prügger 2005), and in mixed forests. It was recorded between 720 m.s.l (Babno polje) to 1400 m (Julian Alps). Distribution of the species (except for the histori- cal record from Donačka gora) is matching the areas with the highest amount of precipitation in Slovenia. Some areas, where it could potentially occur based on amount of precipitation, either have not been investi- gated in detail (e.g. Kamniško-Savinjske Alps, Kara- vanke) either were intensively managed (e.g. Pohorje). After 1950, there are twelve findings known. Investiga- tions of lichen flora in 90ties of 20th century and in the beginning of 21st century have shown that R.amplissima does not occur anymore in Panovec (close to Nova Gorica), Javorniki, Trnovski gozd, Šenturška and Donačka gora. For Panovec it was already noted by Glowacki (1871) that it is very rare. For Julian Alps, where there were no historical records, after 1950 only one specimen was found. All other specimens were found at Snežnik or Goteniška gora. 7.5 Ricasolia virens (With.) H.H. blom. & tøns- berg In Slovenia, R. virens was reported from tree spe- cies Abies alba and Fagus sylvatica. There is no infor- mation available on habitats or forest communities where it was found. There are only five historical records on occurence of R. virens in Slovenia, one of them is unpublished (herbarium F. Dolšak). After 1950, there is only one record, but is confirming wider area of occurrence in the past. Considering that R. virens is a species of mild temperate to humid subtropic climate (Wirth 1995), it is interesting that these records are referring to alpine region – Kamniško-Savinjske Alps. As recent licheno- logical investigations have not discovered it in its po- tential habitats (areas with high amount of precipita- tion in combination with low disturbance of forest ecosystems), it can be assumed that it is close to extinc- tion or it is already extinct in Slovenia. 8 DISCUSSION Species from the Lobaria s. lat. group are mostly limited to an area with high annual amount of precipitation (Alpine-Dinaric barrier, Pohorje) in Slovenia. Some parts of Slovenia, where the climatic conditions may be appropriate for the species from the Lobaria s. lat. group (Kamniške Alpe, Karavanke) are lichenologically still understudied. At Pohorje, only L. pulmonaria was re- corded, which is most likely related to the radical forest Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 90 folia biologica et geologica 58/1 – 2017 management measures in the past. The sizes of popula- tions for locations are mostly not known. However, in some cases, a single lichen thallus of the species was found at a location or the thalli were badly developed and damaged. There is no data on genetic diversity, ex- cept for two locations of L. pulmonaria, which were in- cluded in the study of Scheidegger et al. (2012). This study found that the Slovenian populations from Ra- jhenavski Rog and Notranjski Snežnik are admixed i.e. contain genes from two different genetic pools, which contributes to greater genetic diversity. Anyway, small populations are highly endangered regardless of genetic diversity as they may be destroyed by a single cata- strophic event (Zoller et al. 1999). Otherwise, Zoller et al. (1999) found out that in Swiss populations of L. pulmonaria genetic diversity and size of the population were not linked. Greater genetic diversity was observed in populations where the fungal simbiont reproduced sexually. However, L. pulmonaria is known that, the sexual reproduction occurs in even less than 30 % (dal Grande et al. 2012), furthermore, according to some data the percentage of sexual reproduction is even sig- nificantly smaller (Scheidegger et al. 2012). In general, it is known that even when apothecia are developed, they are often infected with a fungal parasite and there- fore nonfunctional (Jordan 1973). Besides L. pulmona- ria, also L. scrobiculata and L. linita reproduce primar- ily by vegetative means (Nimis 2016). For L. pulmonaria it was reported that its vegetative propagules may dis- perse only on a short distance and that identical geno- types are found only at a maximum distance of 230 m from each other (Walser 2004). In populations, which are propagated only vegetatively, fragmentation of habi- tats can lead to situations where neighbouring frag- ments cannot be colonized due to distance in between, although they might be ecologically suitable. Even mild forest management significantly reduces genetic diver- sity of L. pulmonaria populations before changes in fre- quency occur due to fragmentation of one population into several small populations isolated in space, result- ing in reduced mixing of genotypes (Scheidegger et al. 2012). Similar effects occur in cases where species oc- cupies free-standing isolated trees. As the cultural land- scape of free standing isolated trees is not maintained anymore, there are no appropriate substrates for coloni- zation in the vicinity. For the location, where R. amplis- sima was known to flourish on Ulmus glabra (Prügger 2002), it was found out that all 15 trees died in 2006- 2009 due to infection with Ophiostoma novo-ulmi fun- gus (Obermayer 2011), as well as R. amplissima disap- peared with from this location. As lichens from the Lo- baria s.lat. group cannot tolerate eutrophication or only to a small extent (L. pulmonaria and R. amplissima) (Wirth 1995, Nimis 2016), they are also threatened by intensification of agriculture with increased levels of ni- trogen compounds. They also need a sufficient amount of diffused light for their growth (Nimis 2016), there- fore abandonment of extensive agricultural land use is not advantageous. All lichens from Lobaria s. lat. group are hygrophilous (Nimis 2016), so they can be affected by reduced air humidity as a result of forestry measures. L. linita, with only a small number of potential habitats in Slovenia could be affected by global warming, as it is arctic-alpine species, remote pollution with nitrogen compounds and destruction of habitats due to sports activities in the mountains. Taking all the presented is- sues into account, it is not surprising that in many Eu- ropean countries, species of the Lobaria s.lat. group are placed on the red list of endangered species. In Italy, R. amplissima, R. virens and L. scrobiculata have a status of potentially endangered species, whereas L. pulmonaria is least threatened (Nimis 2016). In Germany L. virens considered to be extinct, but before approx. a decade a location where it has preserved was discovered (Fi- scher & Killman 2008). It is also considered extinct in Switzerland (Scheidegger et al. 2002), whereas in Aus- tria it does not occur (H. Mayrhofer, pers. communica- tion). R. amplissima in Austria is very rare, as well as L. scrobiculata. L. amplissima and L. scrobiculata are en- dangered, and L. pulmonaria is considered as vulnera- ble in Switzerland (Scheidegger et al. 2002). Terrico- lous species L. linita is out of danger in Switzerland (Scheidegger et al. 2002), probably due to large area that is occupied by crystalline Alps. In Italy, the species is absent everywhere except in alpine and subalpine re- gion, where it is very to extremely rare (Nimis 2016). ACKNOWLEDGEMENTS Author acknowledges the financial support from the Slovenian Research Agency (research core funding No. P4-0107, lead by prof. dr. Hojka Kraigher). Author thanks dr. Nikica Ogris (Slovenian Forestry Institute) for the preparation of distribution maps, dr. Alek- sander Marinšek (Slovenian Forestry Institute) for the help with syntaxonomical nomenclature and prof. dr. Helmut Mayrhofer (Graz) for data on recent references on Lobaria s. lat. species for Slovenia. Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 91folia biologica et geologica 58/1 – 2017 9 LITERATURA - REFERENCES Arso. Vreme in podnebje. Napovedi in podatki. Padavinska karta. Obdobje 1961-1990. Ministrstvo za okolje in prostor, Agencija za okolje. http://www.arso.gov.si/vreme/napovedi %20in%20podatki/padavinska_karta. html (april 2017) Arup, U., A. Wilfling, J. Prügger & H. Mayrhofer, 2001: Contributions to the lichen flora of SLovenia VIII. Lichenized and lichenicolous fungi from Veliki Snežnik. Bibliotheca Lichenologica (Berlin & Stuttgart) 78: 17- 25. Batič, F., 1976: Prispevek k flori lišajev (Lichenophyta) na Slovenskem I. Biološki vestnik (Ljubljana) 24(1): 61-67. Batič, F., 1976: Prispevek k flori lišajev (Lichenophyta) na Slovenskem II. Biološki vestnik (Ljubljana) 26(1): 1-8. Batič, F., 2001: Lišajska flora. V: Papež J. (ur.): Panovec. Mestna občina Nova Gorica & Zavod za gozdove Slo- venije, Območna enota Tolmin: 70-75. Batič, F., K. Primožič, B. Surina, T. Trošt & H. Mayrhofer, 2003: Contributions to the lichen flora of Slovenia X. Lichens from the Slovenian Julian Alps. Herzogia (Halle (Saale)) 16: 143-154. Bilovitz, P. O., U. Arup & H. Mayrhofer, 2010: Contributions to the lichen biota of Slovenia XII. Some lichens from Logarska dolina. Hladnikia (Ljubljana) 26: 15-20. Bilovitz, P. O., F. Batič & H. Mayrhofer, 2011: Epiphytic lichen mycota of the virgin forest reserve Rajhenavski Rog (Slovenia). Herzogia (Halle (Saale)) 24(2): 315-324. Christensen, S. N., 1987: Contribution to the lichen flora of Yugoslavia. Acta Bot. Croat. 46: 161-171. Dal Grande, F., I. Widmer, H. H. Wagner & C. Scheidegger, 2012: Vertical and horizontal photobiont tran- smission within populations of lichen symbiosis. Molecular Ecology (Oxford) 21: 3159-3172. https://doi. org/10.1111/J.1365-294X.2012.05482.X Elllis, C. J. & B. J. Coppins, 2007: Changing climate and historic-woodland structure interact to control species diversity of the ‘Lobarion’ epiphyte community in Scotland. Journal of Vegetation Science (Uppsala) 15: 725-734. https://doi.org/10.1111/J.1654-1103.2007.TB02587.X Fischer, E. & D. Killmann, 2008: Wiederfund von Lobaria virens in Deutschland. Herzogia (Halle (Saale)) 21: 79–84. Gauslaa, y., 1995: The Lobarion, an epiphytic community of ancient forests threatened by acid rain. Lichenologist (London) 27(1): 59-76. https://doi.org/10.1006/lich.1995.0005 Glowacki, J., 1871: Prodromus einer Flechten-Flora von Görz. V: Gatti F. (ur.): Elfter Jahresbericht der K. K. Ober- Realschule in Görz: 1-31. Glowacki, J., F. Arnold, 1870: Flechten aus Krain und Küstenland. Verh. K. K. Zool.- Bot. Ges. Wien, 20: 431-466. Glowacki, J., 1874: Die Flechten des Tommasini’schen Herbars, ein Beitrag zur Flechtenflora des Küstenlandes. Verh. K. K. Zool. — Bot. Ges. (Wien) 24: 539-552. Grube, M., F. Batič & H. Mayrhofer, 1995: Contributions to the lichen flora of Slovenia I. Epiphytic lichens of the Snežnik Area. Herzogia (Halle (Saale)) 11: 189-196. Grube, M., H. Mayrhofer & F. Batič, 1998: Contributions to the Lichen Flora of Slovenia III. Epiphytic lichens from Goteniški Snežnik and Krokar Area. Herzogia (Halle (Saale)) 13: 181-188. Jordan, W. P., 1973: The Genus Lobaria in North America North of Mexico. The Bryologist (College Station, TX) 76(2): 225-251. https://doi.org/10.2307/3241326 Jorgensen, P. M., 1998: What shall we do with the blue-green counterparts? The Lichenologist (London) 30(4-5): 351-356. https://doi.org/10.1006/lich.1998.0146 Kranner, I., 2002: Glutathione status correlates with different degrees of desiccation tolerance in three lichens of desiccation tolerance in three lichens. New Phytologist (London) 154: 451–460. https://doi.org/10.1046/j.1469-8137.2002.00376.x Kutnar, L., Ž. Veselič, I. Dakskobler & D. Robič, 2012: Tipologija gozdnih rastišč Slovenije na podlagi ekoloških in vegetacijskih razmer za potrebe usmerjanja razvoja gozdov = Typology of Slovenian forest sites according to ecological and vegetation conditions for the purposes of forest management. Gozdarski vestnik (Ljubljana) 70(4): 195-214. Mayrhofer, H., M. Koch & F. Batič, 1996: Beiträge zur Flechtenflora von Slowenien II. Die Flechten des Pohorje. Herzogia (Halle (Saale)) 12: 111–127. Mayrhofer, H., M. Matzer & Z. Belec, 1998: Beiträge zur Flechtenflora von Slowenien V. Nachträge zur Flech- tenflora des Pohorje. Hladnikia (Ljubljana) 10: 5-10. Tanja MRaK: RaZŠIRjEnOST LIŠajEV IZ SKUPInE Lobaria S. LaT. V SLOVEnIjI 92 folia biologica et geologica 58/1 – 2017 Moncada, B., R. Lücking & L. Betancourt-Macuase, 2013: Phylogeny of the Lobariaceae (lichenized Ascomyco- ta: Peltigerales), with the reappraisal of the genus Lobariella. The Lichenologist (London) 45(2): 203-263. https:// doi.org/10.1017/S0024282912000825 Mrak, T., H. Mayrhofer & F. Batič, 2004: Contributions to the lichen flora of Slovenia XI. Lichens from the vici- nity of Lake Bohinj (Julian Alps). Herzogia (Halle (Saale)) 17: 107-127. Nimis, P. L., 2016: The Lichens of Italy. A Second Annotated Catalogue. EUT. Trieste. Obermayer, W., 2011: Dupla Graecensia Lichenum (2011, nos 681-800). Fritschiana (Graz) 69: 17-53. Ogris, N., 2008: Podatkovna zbirka gliv Slovenije Boletus informaticus. Računalniški program. Pötsch, J. S., Lichenes Welwitschiani. Aufzählung mehrerer von Dr. F. Welwitsch in österreich gesammelten Flech- ten. Verh. K.K. Zool.-Bot. Ges. (Wien) 13: 581-583. Prügger, J., 2005: Lišajska flora Snežnika in Javornikov. Die Flechtenflora des Snežnik und der Javorniki mit beson- derer Berücksichtigung der epiphytischen Arten. Studia Forestalia Slovenica, Strokovna in znanstvena dela: 122, Gozdarski inštitut Slovenije. Ljubljana. Prügger, J., H. Mayrhofefr & F. Batič, 2000: Beiträge zur Flechtenflora von Slowenien IV. Die Flechten des Trno- vski gozd. Herzogia (Halle (Saale)) 14: 113–143. Prügger, J., B. Surina & H. Mayrhofefr, 2000: The lichens of the Ždrocle forest reserve. Zbornik gozdarstva in lesarstva (Ljubljana), 63: 7-25. Robič, S., 1895: Kranjski lišaji (Lichenes). Izvestja muzejskega društva za Kranjsko: 33-42, 83-85, 118-121, 153-159. Rose, F., 1988: Phytogeographical and ecological aspects of Lobarion communities in Europe. Botanical Journal of the Linnean Society (London) 96: 69-79. https://doi.org/10.1111/j.1095-8339.1988.tb00628.x Scheidegger, C., P. O. Bilovitz, S. Werth, I. Widmer & H. Mayrhofer, 2012: Hitchhiking with forests: popula- tion genetics of the epiphytic lichen Lobaria pulmonaria in primeval and managed forests in southeastern Europe. Ecology and Evolution (Oxford) 2(9): 2223-2240. https://doi.org/10.1002/ece3.341 Scheidegger, C., P. Clerc, M. Dietrich, M. Frei, U. Groner, C. Keller, I. Roth, S. Stofer & M. Vust, 2002: Rote Liste der gefährdeten Arten der Schweiz. Baum und erdbewohnende Flechten. BUWAL, Bern, WSL, Birmensdorf & CJBG Geneve: 124 str. Suppan, U., J. Prügger & H. Mayrhofer, 2000: Catalogue of the lichenized and lichenicolous fungi of Slovenia. Bibliotheca Lichenologica, Band 76. J.Cramer. Berlin. Stuttgart. Šilc, U. & M. Čarni, 2012: Conspectus of vegetation syntaxa in Slovenia. Hacquetia (Ljubljana) 11(1): 113–164. https://doi.org/10.2478/v10028-012-0006-1 Walser, J.-C., 2004: Molecular Evidence for Limited Dispersal of Vegetative Propagules in the Epiphytic Lichen Lo- baria pulmonaria. American Journal of Botany (Ames, Iowa) 91(8): 1273-1276. https://doi.org/10.3732/ ajb.91.8.1273 Wirth, V., 1995: Flechtenflora, Bestimmung und ökologische Kennzeichnung der Flechten Südwestdeutschland und angrenzender Gebiete. 2.Auflage. Ulmer. Stuttgart. yoshimura, I. & P. Isoviita, 1969: Scopoli’s lichen specimens and the typification of Lobaria scrobiculata (Scop.) DC. Annales Botanici Fennici (Helsinki) 6(4): 348-352. Zoller, S., F. Lutzoni & C. Scheidegger, 1999: Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Molecular Ecology (Oxford) 8: 2049-2059. https://doi.org/10.1046/j.1365-294x.1999.00820.x folia biologica et geologica 58/1, 93–104, ljubljana 2017 POMEN MAKROFITOV V JEZERSKEM EKOSISTEMU THE IMPORTANCE OF MACROPHyTES IN LAKE ECOSySTEM Rebeka ŠILING1 & Mateja GERM2, * http://dx.doi.org/10.3986/fbg0023 iZVleČeK Pomen makrofitov v jezerskem ekosistemu V preglednem članku povzemamo temeljne značilnosti makrofitov v jezerskem ekosistemu. Makrofiti so povezoval- ni člen med sedimentom, vodo in ozračjem. Vodne rastline vplivajo na zgradbo habitata, prav tako pa so vir avtohtonih snovi, ki so osnova za prehranjevalni splet. Rast vodnih rast- lin je odvisna od mnogih okoljskih dejavnikov, ki so med seboj povezani - svetloba, temperatura, vodni tok, globina ipd. Za prehod od velike kalnosti do prosojnosti vode v jeze- ru sta značilni spremembi v prevladi skupin primarnih pro- ducentov in vrst v celotnem prehranjevalnem spletu, kjer namesto prevladujočega fitoplanktona postanejo prevla- dujoči primarni producenti submerzni makrofiti ali peri- fitonske alge. Makrofiti so pomembni tudi za vrednotenje človekovega vpliva na jezerski ekosistem ter posredno pri izvajanju upravljavskih načrtov za vode. Ključne besede: makrofiti, jezera, fitoplankton, ekološko stanje abStRact the importance of macrophytes in lake ecosystem In a review paper we summarized the basic features of macrophytes in lake system. Macrophytes present link be- tween sediment, water and atmosphere. Primarily aquatic plants determine the structure of habitat and present the vital source of autochthonous matter as a base for food web. The growth of aquatic plants depends on a number of envi- ronmental factors, which are linked - light, temperature, water flow, depth etc. Transition from high turbidity to the transparency of the water in the lake is characterized by a change in the dominance of primary producers and species throughout the food web, where instead of the dominant phytoplankton the dominant primary producers becomes submerged macrophytes or periphytic algae. Macrophytes are important for evaluating human impact on lake ecosys- tems and indirectly in the management plans for water. Key word: macrophytes, lakes, phytoplankton, ecologi- cal status 1 Inštitut za vode Republike Slovenije - 1000 Ljubljana, Slovenija, rebeka.siling@izvrs.si 2 Univerza v Ljubljani, Biotehniška fakulteta, oddelek za biologijo - Jamnikarjeva 101, SI-1001 Ljubljana, Slovenija, mateja. germ@bf.uni-lj.si * e-mail: mateja.germ@bf.uni-lj.si Rebeka ŠILING & Mateja GeRM: POMeN MakROFItOV V jeZeRSkeM ekOSISteMU 94 folia biologica et geologica 58/1 – 2017 Makrofiti imajo pomembno vlogo v vodnih ekosiste- mih (Flint & Madsen 1995, Luo et al. 2016), saj so povezovalni člen med sedimentom, vodo in ozračjem. S tvorjenjem mikrohabitatov za perifiton, mest za od- laganja jajčec rib in skrivališč mnogih organizmov, vplivajo na večjo biodiverziteto in heterogenost vodne- ga ekosistema (Klaassen & Nolet 2007, Lampert & Sommer 2007). S svojim koreninskim sistemom in listi absorbirajo hranila in na ta način čistijo vodo (Zhou et al. 2017) ter istočasno povečujejo koncentracijo hranil ko odmrejo in razpadejo. Lahko delujejo kot indika- torji kakovosti vode in sodelujejo pri kroženju hranil. Vključeni so v ekosistemske procese kot so biominera- lizacija, transpiracija, izpust biogenih plinov v ozračje in sedimentacija (Carpenter & Lodge 1986). Izločajo tudi alelopatske snovi, ki vplivajo na prehranjevalni splet. Zavirajo rast fitoplanktona, bakterioplanktona (Mulderij et al. 2006) in epifitskih alg (Hilt et al. 2006, Cerbin et al. 2007, Gross et al. 2007, Wu et al. 2007). Raziskovalci so ugotovili, da alelopatski učinki makrofitov lahko vplivajo na velik del sprememb raz- položljivega ogljika v jezerih (Hilt & Gross 2008, Hilt 2006, Jürgens & Jeppesen 1998, Cerbin et al. 2007). Razpoložljiv ogljik je potencialno vir za prehranje- valni splet (Cole et al. 2000), zato so za ravnovesje je- zerskih ekosistemov makrofiti ključnega pomena (Hutchninson 1975). S posrednimi in neposrednimi učinki vplivajo na delovanje jezerskega ekosistema. Potopljeni makrofiti igrajo pomembno vlogo pri vzdr- ževanju kakovosti vode v plitvih jezerih (Kuiper et al. 2017). Potopljeni makrofiti preprečujejo erozijo in pre- mikanje mehkega sedimenta in vplivajo na odstranje- vanje suspendiranih delcev iz vodnega stolpca (Mad- sen et al. 1996). Prisotnost plavajočih rastlin lahko močno vpliva na prehranjevalni splet s posrednim in neposrednim učinkom na združbe organizmov (npr. planktona, nevretenčarjev, rib) ki naseljujejo obrežna in pelagična območja (Meerhoff & Mazzeo 2004). Številne raziskave dokazujejo, da na podlagi prisotno- sti in pogostosti makrofitov lahko ugotavljamo vplive človekovih dejavnosti na vodne ekosisteme (Poikane et al. 2015, Sudnitsyna 2015). UVOD VPLIV OKOLJSKIH DEJAVNIKOV NA MAKROFITE Makrofiti vključujejo semenke, praprotnice, mahove in nekatere makroskopske alge (Fox 1992). Razvršča- mo jih glede na rastno obliko, način pritrjanja in polo- žaj v vodnem stolpcu. Na podlagi morfoloških značil- nosti in položaja v vodnem stolpcu, delimo makrofite v štiri skupine: potopljene (submerzne) makrofite, pla- vajoče (natantne) ukoreninjene makrofite (slike 1-3), plavajoče (natantne) neukoreninjene makrofite in emergentne makrofite (Hutchinson 1975, Fox 1992, Germ 2013). Prisotnost in razporeditev makrofitov je odvisna od izpostavljenosti različnim abiotskim (fizi- kalnim in kemijskim) in biotskim dejavnikom (npr. herbivorija) (Haslam 2006, Lacoul & Freedman 2006, Ali & Soltan 2006, Zelnik et al. 2012). Pogo- stost makrofitov je odvisna tudi od uspešnosti vrst, ki temelji na sposobnosti hitre prilagoditve na spremem- be okoljskih dejavnikov in kompeticiji (Germ 2013). Poleg svetlobe h ključnim abiotskim dejavnikom, ki vplivajo na uspevanje makrofitov, uvrščamo tempe- raturo, vodni tok, globino in obliko jezerske kotanje, izpostavljenost valovom in vetru, vrsto sedimenta v jezeru in kemizem vode (Dar et al. 2014). Makrofiti kot primarni producenti opravljajo fotosintezo, za ka- tero je potrebno dovolj svetlobe. Globina, do katere sega svetloba, je odvisna od dejavnikov kot so barva vode, kalnost in osenčenost jezera, ter razvitost obre- žnega pasu (Lacoul & Freedman 2006). Znano je, da se približno 10 % sevanja izgubi na meji med zrakom in vodo (Janauer & Englmaier 1986). V plitvih jeze- rih lahko pride do resuspenzije delcev (Blom et al. 1994), kar zmanjša prosojnost vode in posledično tudi rast makrofitov. V globokih jezerih je tudi v osončenih delih litorala pojavljanje makrofitov manjše zaradi va- lovanja (Kantrud 1990). Valovi in veter vplivajo na razpršenost sončnega sevanja v vodnem stolpcu in temperaturo vode. V obdobju nizkih temperatur, ki vpliva na uspešnost in stopnjo fotosinteze, je rastlinska proizvodnja manjša (Scheffer 1998, Pilon et al. 2003). Temperatura vode in sedimenta vplivata na fizi- ologijo makrofitov (npr. tvorba semen, začetek sezon- ske rasti in začetek dormance), medtem ko hitrost me- tabolizma, prenos razmnoževalnih organov in dosto- pnost hranil v večji meri določa vodni tok (Dodds & Biggs 2002, Haslam 2006). Eden izmed ključnih dejavnikov, ki vpliva na ver- tikalno razporeditev združb submerznih makrofitov, je sestava sedimenta (povprečna velikost delcev, delež organske snovi, frakcija mulja). Sediment služi kot pri- Rebeka ŠILING & Mateja GeRM: POMeN MakROFItOV V jeZeRSkeM ekOSISteMU 95folia biologica et geologica 58/1 – 2017 trjevalna podlaga za korenine in rizoide (Handley & Davy 2002) in kot vir hranil (Peralta et al. 2003). Sc- hulthorpe (1967) je izpostavil, da je vpliv sestave se- dimenta na razporeditev makrofitov večji kot sama kemijska sestava sedimenta. Raziskovalci interakcij med vegetacijo in sedimentom so jasno razlikovali med lastnostmi združb makrofitov na pesku z nizko vsebnostjo hranil in lastnostmi združb makrofitov, ki rastejo na glini, ki vsebuje veliko hranil (Lindner 1987, Selig et al. 2007). Na vsebnost organskih in anorganskih snovi v sedimentu vplivajo raba tal, vege- tacijska pokrovnost in deloma geomorfologija (Laco- ul & Freedman 2006). Od kamninske podlage je od- visen pH vode, ki se lahko zaradi fotosinteze, dihanja in asimilacije nitrata spreminja. Kjer je pH višji od 7 je vrstno bogastvo makrofitov veliko, v vodi kjer je pH manjši od 7, pa majhno (Lampert & Sommer 2007). Zaradi posrednih, neposrednih vplivov in delova- nja drugih dejavnikov (vrsta substrata, nihanje vodne gladine, svetlobne razmere) je povezavo med kemiz- mom vode in uspevanjem makrofitov težko opisati (Pip 1989, Germ 2013). Nedvomno je v stoječih vodah ključnega pomena vsebnost kisika, ki v veliki meri do- loča aktivnost organizmov (Allan 1995). Primarna proizvodnja fitoplanktona, makrofitov in bentoških alg, predstavlja avtohtono podlago prehranjevalnega spleta. Primarna proizvodnja in dihanje sta glavni me- tabolni poti, po katerih se organske snovi proizvedejo in razgrajujejo. Ekosistemi, v katerih stopnja fotosinte- ze presega stopnjo dihanja, predstavljajo vir kisika in organske snovi ter ponor za ogljikov dioksid. V na- sprotnem primeru pa govorimo o ekosistemih, ki predstavljajo vir ogljikovega dioksida in porabnike or- ganskega ogljika (Carignan et al. 2000). VPLIV MAKROFITOV NA INTERAKCIJE FITOPLANKTONA IN BAKTERIJ Velika prisotnost makrofitov je značilnost subtropskih plitvih jezer, kjer zaradi ugodne klime rastejo vse leto (Petr 2000). Zaradi visoke primarne proizvodnje ma- krofiti prispevajo velike količine organskih snovi v je- zeru in po navadi celo presežejo primarno proizvodnjo alg (Wetzel 2001, Lauster et al. 2006). V nekaterih jezerih lahko makrofiti vzdržujejo velik del bakterijske proizvodnje (Stanley et al. 2003). Ker makrofiti v pli- tvih jezerih vplivajo tako na fitoplankton in bakterije (They et al. 2013) je pričakovano, da bodo vplivali tudi na interakcijo med fitoplanktonom in bakterijami. Po- večanje biomase makrofitov je pozitivno povezano z razmerjem med bakterijami in fitoplanktonom (De Kluijver et al. 2015). Pozitivna povezanost pomeni, da se s povečanjem makrofitske prisotnost poveča bakterijska biomasa, ki je večja v primerjavi s fito- planktonom. Večja bakterijska biomasa je verjetno po- sledica močnega negativnega vpliva makrofitov na fi- toplankton. Na območjih z velikim vplivom makrofi- tov in nizko biomaso in proizvodnjo fitoplanktona, bakterijska proizvodnja verjetno temelji na starejših delih ali izločkih makrofitov (Wetzel & Søndergaard 1997, Rooney & Kalff 2003). Ta premik vira ogljika igra pomembno vlogo pri pojavu (Huss & Wehr 2004) in sestavi bakterioplanktonske združbe (Wu et al. 2007). V laboratorijskem poskusu, kjer so uporabili različne biomase makrofitov vrste dristavca Potamoge- tom illinoensis, bakterijska gostota in biomasa nista bili povezani s koncentracijo klorofila a, ampak z razpolo- žljivostjo ogljika in biomaso makrofitov. Koncentracija uporabljenega raztopljenega organske ogljika (DOC) pri bakterijah je izvirala iz obeh: vrste P. illinoensis in perifitonske združbe na dristavcu (Canterle 2011). They et al. (2013) so ugotovili, da je raztopljen organ- ski ogljik, ki izvira iz makrofitov, še posebej pomem- ben za bakterije v litoralu jezer. PRODUKTIVNOST JEZER Makrofiti iz vodnega stolpca ali sedimenta pridobivajo hranila. Hranila so bistvena za zagotavljanje primarne produkcije, ki je izhodišče vsem ostalim trofičnim ni- vojem v ekosistemu. S primerno količino hranil in po- sledično ustrezajočo primarno produkcijo, se vzdržuje naravna dinamika ekosistema (Cis 2005). Negativni vplivi zelo velike vsebnosti hranil v vodnih ekosiste- mih so cvetenje strupenih alg, večja rast epifitskih alg, rast makro alg, izguba potopljene vegetacije zaradi senčenja, razvoj hipoksije (anoksičnih razmer) zaradi razgradnje organske biomase in spremembe v sestavi združb vodnih organizmov zaradi pomanjkanja kisika ali prisotnosti strupenih fitoplanktonskih vrst (Revil- la et al. 2009). Produktivnost znotraj celinskih voda je določena z različnimi dejavniki in kontrolnimi mehanizmi, ki de- Rebeka ŠILING & Mateja GeRM: POMeN MakROFItOV V jeZeRSkeM ekOSISteMU 96 folia biologica et geologica 58/1 – 2017 lujejo na različnih prostorskih ravneh (Wetzel 2001). Osnovna lastnost vseh ekosistemov je stalno spremi- njanje, razvoj in podvrženost sukcesiji. Razvoj jezera običajno poteka v smeri od nizke k visoki produktiv- nosti, vendar imajo lahko jezera obraten razvoj. S pre- hodom oligotrofnega jezera v evtrofično stanje se spre- menijo značilnosti ekosistema (Rohlich 1969). Zato so oligotrofni ekosistemi posebnega pomena za razi- skave o virih hranil in strategijah za preživetje makro- fitov. V takšnih jezerih se ustvarjajo oblaki z veliko gostoto fitoplanktona, ki so soodvisni od prisotnosti makrofitov v litoralnih območjih (Fragoso et al. 2008). Razporeditev, številčnost in odziv fitoplanktona v plitvih jezerih brez makrofitov je drugačna od tistih, kjer so makrofiti prisotni (Moss 1990, Jasser 1995, O’ Farrell et al. 2009). Dejavniki, ki uravnavajo avtotrofno proizvodnjo in hitrost dekompozicije nastalih organskih snovi, vplivajo na nalaganje organskih snovi. Wetzel (2001) navaja, da avtohtona primarna proizvodnja temelji pretežno na planktonski združbi. Ko se poveča vseb- nost hranil, pride v jezerskem ekosistemu do bistvenih sprememb. Razmere v vodnih ekosistemih, kjer pre- vladujejo makrofiti ter številne piscivore ribe, se s po- večano koncentracijo hranil spremeni. Poveča se mo- tnost vode, pojavi se velika gostota fitoplanktona in zmanjša gostota makrofitov (Søndergaard et al. 1990). Sočasno se s povečano količino hranil poveča biomasa rib, kjer prevladujejo ciprinidne ribe, še pose- bej vrsti rdečeoka (Rutilus rutilus) in ploščič (Abramis brama). Povečana biomasa zooplanktivornih rib se od- raža v povečanem plenjenju zooplanktona in posledič- no zmanjšanje paše na fitoplanktonu. Povečana bio- masa fitoplanktona zmanjša prodiranje svetlobe v nižje plasti vode. Povečano plenilstvo rib lahko zmanj- ša tudi število strgalcev (npr. polžev), ki se prehranju- jejo z epifiti. Epifiti so pritrjeni na rastlinah in s pre- prečevanjem prodiranja svetlobe do rastlinskih delov spremenijo razmere za rast. Makrofiti lahko iz ekosis- tema izginejo in vir hrane za številne ptice se zmanjša. Rezultat je jezero z veliko biomaso ciprinidnih rib, ve- liko številčnostjo fitoplanktona, zmanjšano pristnostjo in številčnostjo potopljenih makrofitov in močno po- večanim številom ptic, ki se prehranjujejo z ribami (Je- ppesen et al. 2005). Za prehod od velike kalnosti do prosojnosti vode sta značilni spremembi v prevladi skupini primarnih producentov in vrst v celotnem prehranjevalnem sple- tu. Namesto prevladujočega fitoplanktona postanejo prevladujoči primarni producenti submerzni makrofi- ti ali perifitonske alge (Scheffer et al. 1992, Vade- boncoeur et al. 2001, Liboriussen & Jeppesen 2003). Raziskovalci menijo, da se biomasa višjih prehranje- valnih ravni poveča zaradi učinkovitega prenosa ener- gije v prehranjevalnem spletu. Svetloba v prosojni vodi lahko prodre do sedimenta in primarnih producentov, med tem ko je proizvodnja primarnih producentov v kalnih vodah omejena, bodisi zaradi hranil (zgornja plast vodnega stolpca) ali svetlobe (spodnje plasti vo- dnega stolpca in dno) (Wetzel 2001). EKOLOŠKO STANJE Evtrofikacija predstavlja enega poglavitnih problemov jezerskih ekosistemov (Nijboer & Verdonschot 2004). V mnogih jezerih prihaja do povečane produk- tivnosti, pogosto kot neposredna posledica povečane- ga vnosa hranil zaradi delovanja človeka (Bennett et al. 2001, Dong 2010). Termin »evtrofen« se tako nana- ša na razmere, ko so naravne trofične razmere (vključ- no biološke) neuravnotežene zaradi antropogenih po- segov (Cis 2005, Direktiva 2000). Makrofiti izboljšajo kakovost vode neposredno s proizvodnjo kisika in po- novno uporabo hranil ter posredno z zagotavljanjem površin algam, glivam in bakterijam (Holmes 1999). Vrstna sestava in številčnost makrofitov predstavljajo kakovost ekosistema kot celote. Iz tega razloga so ma- krofiti vključeni v Direktivo o vodah, in predstavljajo enega izmed štirih nepogrešljivih bioloških elementov za določanje ekološkega stanja jezer (Dodkins et al. 2005). Vodna direktiva uporablja vodne makrofite, nji- hovo vrstno sestavo in številčnost kot biološki element kakovosti po vsej Evropi. V skladu z direktivo bi mora- la podobna jezera imeti podobno sestavo združbe ma- krofitov, če so v podobnem ekološkem stanju. Okvir- no, direktiva poudarja pomen vrstne sestave in številč- nosti ampak dopušča svobodo pri izboru metodologi- je. V principu ocena stanja makrofitov temelji na od- stopanju od referenčne skupine makrofitov, značilnih za določen tip vode. Indeksi služijo kot sredstva za količinsko prepoznavanje odstopanja od referenčnih razmer. Mnoge evropske države članice si prizadevajo za oblikovanje ocene stanja metod za jezera, ki temelji- jo na združbah makrofitov (Pall & Moser 2009). V Sloveniji so raziskovalci razvili Slovenski indeks za vrednotenje ekološkega stanja jezerskih ekosiste- mov na podlagi makrofitov (SMILE) (Pall et al. 2014, Metodologija Vrednotenja… 2016). Indeks je vre- dnotenje odziva predvsem na obremenitev jezer s hra- Rebeka ŠILING & Mateja GeRM: POMeN MakROFItOV V jeZeRSkeM ekOSISteMU 97folia biologica et geologica 58/1 – 2017 nili, v manjši meri pa tudi splošna degradacija. Indeks sestavljajo tri metrike: indeks makrofitov, maksimalna globina vegetacije, maksimalna globina har. S pomočjo tega indeksa se vodno telo uvrsti v razred ekološkega stanja po modulu trofičnosti na podlagi makrofitov. Makrofitska združba se na spremembe odziva s spre- membo vrstne sestave in pogostosti posamezne vrste ter s spremembo globine, do katere se posamezne vrste še pojavljajo. V novih razmerah se gostota sestojev ma- krofitov spremeni razmeroma hitro, medtem, ko so spremembe v globinski razporeditvi in vrstni sestavi počasnejše, kar je zelo pomembno za vrednotenje iz- boljšanja stanja jezer (Metodologija Vrednotenja... 2016). Pri vodnih ekosistemih, ki so bogati s hranili, se pojavljajo težave pri ocenjevanju posledic vpliva člove- ka in spremembe trofičnega stanja (Bernez et al. 2004), saj se v jezerih z naraščajočo evtrofikacijo, ma- krofitske združbe pogosto odzovejo z velikim časov- nim zamikom (Søndergaard et al. 2010). ZAKLJUČEK Makrofiti so vodni fotosintezni organizmi, vidni s prostim očesom. Predstavljajo pomemben element vo- dnih ekosistemov, saj omogočajo njihovo stabilnost. Na uspevanje makrofitov vplivajo abiotski in biotski dejavniki. Abiotski dejavniki so svetloba, temperatura, vodni tok, substrat, globina in oblika jezerske kotanje, izpostavljenost valovom in vetru ter kemizem vode. Med tem ko sta biotska dejavnika, ki vplivata na raz- poreditev in sestavo makrofitov v vodnem telesu, kom- peticija in herbivorija. Makrofiti vplivajo na kemizem vode - znižajo ali povečajo koncentracijo hranil, pove- čajo vsebnost kisika in tako posredno vplivajo na ži- valstvo v vodnem okolju. Številni raziskovalci obravnavajo vpliv evtrofika- cije na makrofite kot primarne producente. V tovr- stnih raziskavah so preučili tudi odnose in povezavo med makrofiti, fitoplanktonom in bakterijami. Prou- čevanje takšnih povezav prispeva k razumevanju pro- cesov celotnega vodnega ekosistema. Vodne rastline so pokazatelji stanja in obremenitev v vodnih okoljih. Raziskave o makrofitih kot bioindikatorjih služijo kot izhodišče pri upravljanju z vodami. SUMMARy Macrophytes are important components of aquatic ecosystems (Flint & Madsen 1995, Luo et al. 2016), since they present links between sediment, water and atmosphere. By creating microhabitats for periphy- ton, fish eggs and shelter for many organisms, macro- phytes contribute to higher biodiversity and greater heterogeneity of aquatic ecosystems (Laassen & Nolet 2007, Lampert & Sommer 2007). Macro- phytes absorb nutrients from water and effectively purify water quality (Zhou et al. 2017). Additionally, they recycle nutrients when they die and decompose. They’re involved in many ecosystems processes like biomineralisation, transpiration, release of biogenic gases and chemical precipitation (Carpented & Lodge 1986). Researchers discovered that macro- phytes play an important role by contributing to available carbon in lakes (Hilt & Gross 2008). Mac- rophyte-derived carbon is a potential basal food source within food webs, thus macrophytes are cru- cial for lake ecosystem balance (Hutchninson 1975). Macrophytes have direct and indirect effects on lake ecosystems. Submergent macrophytes prevent ero- sion and movement of soft sediments, and reduce the resuspension of sediment in the water column (Mad- sen et al., 1996). Presence of f loating plants can affect littoral and even pelagic food webs (Meerhoff & Mazzeo 2004). Macrophytes are commonly used for bioassessment, especially to assess human impacts on water ecosystems (Poikane et al. 2015). Classification of macrophytes depends on their growth form and position in water column. Based on morphological characteristics and their position in lakes, we divide them in four basic groups: sub- merged, f loating (natant) rooted macrophytes (Fig- ures 1-3), f loating (natant) unrooted and emergent macrophytes (Germ 2013). In addition to light, key abiotic factors influencing the growth of macrophytes include water temperature, f low, the depth and shape of lake basin, exposure to waves and wind, the nature of the lake sediment and water chemistry (Dar et al. 2014). Sediment is also one of the main factors, where researchers clearly distinguished between macro- phyte communities on the sand with low nutrients and macrophyte communities that grow on clay with Rebeka ŠILING & Mateja GeRM: POMeN MakROFItOV V jeZeRSkeM ekOSISteMU 98 folia biologica et geologica 58/1 – 2017 abundant nutrients (Selig et al. 2007). Due to the di- rect and indirect impacts of abiotic factors, the link between water chemistry and macrophyte’s growth is not that clear (Pip 1989). However, macrophytes con- tribute large amounts of organic matter in the lake and usually exceed the primary production of algae (Wetzel 2001). Macrophytes in shallow lakes affect both the phytoplankton and bacteria and their inter- actions (They et al. 2013). Distribution, abundance and response of phytoplankton in shallow lakes with- out macrophytes is different from those in which the macrophytes are present (Moss 1990, O’farrell et al. 2009). When macrophytes are abundant in shallow lakes, significant changes appear in dominance of primary producers, and the shift from clear to turbid water occurs. Instead of macrophytes high densities of phytoplankton occur and instead of piscivorus fish, cyprinid fish dominate (Søndergaard et al. 1990). Eutrophication is one of the main stressors af- fecting lake ecosystems (Nijboer & Verdonschot 2004). The term “eutrophic” mostly refers to situa- tions when the natural trophic conditions are unbal- anced due to anthropogenic activities (Cis 2005, Di- rektiva 2000). Macrophytes improve the quality of water directly with production of oxygen and recy- cling of nutrients. Species composition and abun- dance of macrophytes can indicate the quality of the whole ecosystem. For this reason, macrophytes are included in the Water Framework Directive as one of the four biological elements for determination eco- logical status of lakes (Dodkins et al. 2005). In Slove- nia, researchers developed a multimetric index evalu- ating ecological status of lakes based on macrophytes (SMILE) (Metodologija Vrednotenja… 2016). With their index, the primary evaluation is eutrophi- cation and to a lesser extent general degradation. However, in nutrient reach lakes it is hard to assess the anthropogenic effect due to the slow response of macrophytes (Bernez et al. 2004). Research on mac- rophytes as bioindicators serves as a basis for water management plans, whereas research based on mac- rophytes and other biotic and abiotic factors contrib- ute to understanding of aquatic ecosystems processes. ZAHVALA - ACKNOWLEDGEMENT Projekt Mladi raziskovalci (št. pogodbe: No. 1000-15-0211) je sofinancirala Javna agencija za raziskovalno de- javnost Republike Slovenije iz državnega proračuna. LITERATURA - REFERENCES Ali, M. M. & M. A. Soltan, 2006: Expansion of Myriophyllum spicatum (Eurasian water milfoil) into Lake Nasser, Egypt: invasive capacity and habitat stability. Aquatic Botany (Amsterdam) 84 (3): 239-244. http://doi. org/10.1016/j.aquabot.2005.11.002 Allan, J. D., 1995: Structure and function of running waters. Stream Ecology, Springer Science & Business Media, Dordrecht. Bennett, E. M., S. R. Carpenter & N. F. Caraco, 2001: Human Impact on Erodable Phosphorus and Eutrophica- tion: A Global Perspective. BioSicence (Oxford) 51 (3): 227-234. http://dx.doi.org/10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2 Bernez, I., H. Daniel, J. Haury & M. T. Ferreira, 2004: Combined effects of environmental factors and regulati- on on macrophyte vegetation along three rivers in Western France. River Research and Applications (Hoboken) 20: 43-59. http://dx.doi.org/10.1002/rra.718 Blom, G., E. H. S. Van Duin & L. Lijklema, 1994: Sediment resuspension and light conditions in some shallow Dutch lakes. Water Science & Technology (London) 30 (10): 243-252. Canterle, E. R. B., 2011: Metabolismo mediado pelo bacterioplâncton em um lago raso subtropicale sua relação com a presença de macrófitas, sedimento e regime hídrico. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS. Carignan, R., P. D’arcy & S. Lamontagne, 2000: Comparative impacts of fire and forest harvesting on water qua- lity in Boreal Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences (Ottawa) 57: 105-117. http:// dx.doi.org/10.1139/cjfas-57-S2-105 Rebeka ŠILING & Mateja GeRM: POMeN MakROFItOV V jeZeRSkeM ekOSISteMU 99folia biologica et geologica 58/1 – 2017 Carpenter, S. R. & D. M. Lodge, 1986: Effects of submersed macrophytes on ecosystem processes. Aquatic Botany (Amsterdam) 26: 341-370. https://doi.org/10.1016/0304-3770(86)90031-8 Cerbin, S., E. Van Donk & R. D. Gulati, 2007: The influence of Myriophyllum verticillatum and artificial plants on some life history parameters of Daphnia magna. Aquatic Ecology (Amsterdam) 41: 263-271. http://dx.doi.org/10.1007/s10452-007-9091-5 Cis, Common Implementation Strategy for the Water Framework Directive, 2005: Towards a Guidance Document on Eutrophication Assessment in the context of European water policies. Interim document. Cole, J. J., M. L. Pace, S. R. Carpenter & J. F. Kitchell, 2000: Persistence of net heterotrophy in lake during nutrient and foob web manipulation. Limnology and Oceanography (Hoboken) 45: 1718-1730. http://dx.doi. org/10.4319/lo.2000.45.8.1718 Dar, N. A., A. K. Pandit & B. A. Ganai, 2014: Factors affecting the distribution patterns of aquatic macrophytes. Limnological Review (Toruń) 14 (2): 75-81. https://doi.org/10.2478/limre-2014-0008 De Kluijver, A., J. Ning, Z. Liu, E. Jeppesen, R. D. Gulati & J. J. Middelburg, 2015: Macrophytes and pe- riphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China. Limnology and Oceanography (Hoboken) 60: 375-385. http://dx.doi.org/10.1002/lno.10040 Direktiva 2000/60/ES Evropskega parlamenta in sveta Evrope, Directive of the European. Dodds, W. K. & B. J. F. Biggs, 2002: Water velocity attenuation by stream periphyton and macrophytes in relation to growth form and architecture. Water Resources research (Hoboken) 43: 2-15. http://dx.doi.org/10.2307/1468295 Dodkins, I., B. Rippley & P. Hale, 2005: An application of canonical correspondence analysis for developing ecolo- gical quality assessment metrics for river macrophytes. Freshwater Biology (Hoboken) 50: 891-904. http://dx.doi.org/10.1111/j.1365-2427.2005.01360.x Dong, H., H. Jiang, B. yu & X. Liu, 2010: Impacts of environmental change and human activity on microbial eco- systems on the Tibetan Plateau, NW China. GSA Today Archive (Harrisonburg) 20 (6): 4-10. http://dx.doi. org/10.1130/GSATG75A.1 Flint, N. A. & J. D. Madsen, 1995: Effect of temperature and daylength on the germination of Potamogeton nodosus tubers. Journal of freshwater ecology (Abingdon) 10 (2): 125-128. http://dx.doi.org/10.1080/02705060.1995.966 3426 Fox, A. M., 1992: Macrophytes. In: Calow P. & G. E. Petta (eds.). The Rivers Handbook. Hydrological and ecological priciples. Oxford. Fragoso, C. R., D. M. L. Motta Marques, W. Collischonn, C. E. M. Tocci & E. H. Van Nes, 2008: Modelling spatial heterogeneity of phytoplankton in Lake Mangueira, a large shallow subtropical lake in South Brazil. Eco- logical Modelling (Amsterdam) 219: 125-137. http://doi.org/10.1016/j.ecolmodel.2008.08.004 Germ, M., 2013: Biologija vodnih rastlin. Učbenik, Ljubljana. Gross, E. M., S. Hilt, P. Lombardo & G. Mulderij, 2007: Searching for allelopathic effects of submerged macrophytes on phytoplankton- state of the art and open questions. Hydrobiologia (Berlin) 584: 77-88. http:// dx.doi.org/10.1007/s10750-007-0591-z Handley, R. J. & A. J. Davy, 2002: Seedling root establishment may limit Najas marina L. to sediment of low cohe- sive strength. Aquatic Botany (Amsterdam) 73 (2): 129-136. http://doi.org/10.1016/S0304-3770(02)00015-3 Haslam, S. M., 2006. River Plants. The Macrophytic Vegetation of Watercourses. New york. Hilt, S., 2006: Allelopathic inhibition of epiphytes by submerged macrophytes. Aquatic Botany (Amsterdam) 85 (3): 252-256. http://doi.org/10.1016/j.aquabot.2006.05.004 Hilt, S., M. G. N. Ghobrial & E. M. Gross, 2006: In situ allelopathic potential of Myriophyllum verticillatum (Haloragaceae) against selected phytoplankton species. Journal of Phycology (Hoboken) 42: 1189-1198. http://dx.doi.org/10.1111/j.1529-8817.2006.00286.x Hilt, S. & E. M. Gross, 2008: Can allelopathically active submerged macrophytes stabilise clear-water states in shallow eutrophic lakes? Basic and Applied Ecology (Amsterdam) 9: 422-432. http://doi.org/10.1016/j.baae.2007.04.003 Holmes, N. T. H., 1999: Recovery of headwater stream flora following the 1989-1992 groundwater drought. Hydro- logical Processes (Hoboken) 13: 341-54. http://dx.doi.org/10.1002/(SICI)1099-1085(19990228)13:3<341::AID- HyP742>3.0.CO;2-L Huss, A. A. & J. D. Wehr, 2004: Strong indirect effects of a submersed aquatic macrophyte,Vallisneria americana, on bacterioplankton densities in a mesotrophic lake. Microbial Ecology (Berlin) 47: 305-315. http://dx.doi. org/10.1007/s00248-003-1034-7 Rebeka ŠILING & Mateja GeRM: POMeN MakROFItOV V jeZeRSkeM ekOSISteMU 100 folia biologica et geologica 58/1 – 2017 Hutchinson, G. E., 1975: Limnological Botany. New york. Janauer, G. A. & P. Englmaier, 1986: The effects of emersion on soluble carbohydrate accumulations in Hippuris vulgaris L. Aquatic Botany (Amsterdam) 24 (3): 241-248. https://doi.org/10.1016/0304-3770(86)90060-4 Jasser, I., 1995: The influence of macrophytes on a phytoplankton community in experimental conditions. Hydro- biologia (Berlin) 306 (1): 21-32. http://dx.doi.org/10.1007/BF00007855 Jeppesen, E., M. Søndergaard, J. P. Jensen & T. L. Lauridsen, 2005: Shallow Lakes: Effects of Nutrient Loading and How to Remedy Eutrophication. Vol. I. Oceans and aquatic ecosystems. Encyclopedia of Life Support Sys- tems (EOLSS). Paris. Jürgens, K. & E. Jeppesen, 1998: Cascading effects on microbial food web structure in a dense macrophyte bed. in the structuring role of submerged macrophytes in lakes. In: Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds.): The Structuring Role of Submerged Macrophytes in Lakes. New york. http://dx.doi. org/10.1007/978-1-4612-0695-8_16 Kantrud, H. A., 1990: Sago Pondweed (Potamogeton pectinatus L.): A Literature Review. Washington, DC. Klaassen, M. & B. Nolet, 2007: The role of herbivorous water birds in aquatic systems through interactions with aquatic macrophytes, with special reference to the Bewick’s Swan-Fennel Pondweed system. Hydrobiologia (Ber- lin) 584 (1): 205-213. http://dx.doi.org/10.1007/s10750-007-0598-5 Kuiper, J. J., M. J. J. M. Verhofstad, E. L. M. Louwers, E. S. Bakker, R. J. Brederveld, L. P. A. Van Gerven, A. B. G. Janssen, J. J. M. De Klein & W. M. Mooij, 2017: Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys? Environmental Management (Berlin) 59 (4): 619-634. http://dx.doi.org/10.1007/s00267-016-0811-2 Lacoul, P. & B. Freedman, 2006: Environmental influences on aquatic plans in freshwater ecosystems. Environ- mental Reviews (Ottawa) 14 (2): 89-136. http://dx.doi.org/10.1139/a06-001 Lampert, W. & U. Sommer, 2007: Limnoecology: the Ecology of Lakes and Streams. Oxford. Lauster, G. H., P. C. Hanson & K. Kratz, 2006: Gross primary production and respiration differences among lit- toral and pelagic habitats in northern Wisconsin lakes. Canadian Journal of Fisheries and Aquatic Sciences (Ottawa) 63 (5): 1130-1141. http://dx.doi.org/10.1139/f06-018 Liboriussen, L. & E. Jeppesen, 2003: Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology (Oxford) 48: 418–431. http://dx.doi.org/10.1046/j.1365-2427.2003.01018.x Lindner, A., 1987: Soziologisch- ökologische Untersuchungen an der submersen Vegetation in der Boddenkette su- dlich des Darß und Zingst. Limnologica (Amsterdam) 11: 299-305. Luo, J., X. Li, R. Ma, F. Li, H. Duan, W. Hu, B. Qin & W. Huang, 2016: Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecological Indicators (Amsterdam) 60: 503-513. http://doi.org/10.1016/j.ecolind.2015.07.029 Madsen, J. D., J. A. Bloomfield, J. W. Sutherland, W. L. Eichler & C.W. Boylen, 1996: The aquatic macrophyte community of Onondaga Lake: field survey and plant growth bioassays of lake sediments. Lake and Reservoir Management (Abingdon) 12: 73-79. http://dx.doi.org/10.1080/07438149609353998 Meerhoff, M. & N. Mazzeo, 2004: Importancia de las plantas flotantes libres de gran porte en la conservación y rehabilitación de lagos someros de Sudamérica. Revista Ecosistemas (Madrid) 13: 13-22. Metodologija Vrednotenja Ekološkega Stanja Jezer Na Podlagi Fitobentosa In Makrofitov, 2016. Republika Slovenija, Ministrstvo za okolje in prostor, Ljubljana. http://www.mop.gov.si/fileadmin/mop.gov.si/ pageuploads/podrocja/voda/ekolosko_stanje/metod_vredn_ekoloskega_st_jezer_fitobentosa_makrofitov. pdf Moss, B., 1990: Engineering and biological approaches to the restoration from eutrophication in which aquatic aqua- tic plant communities are important components. Hydrobiologia (Berlin) 200 (1): 367-377. http://doi.org/10.1007/ BF02530354 Mulderij, G., A. J. P. Smolders & E. Van Donk, 2006: Allelopathic effect of the aquatic macrophyte, Stratiotes aloides, on natural phytoplankton. Freshwater Biology (Hobok) 51: 554-561. http://dx.doi.org/10.1111/j.1365-2427.2006.01510.x Nijboer, R. C. & P. F. M. Verdonschot, 2004: Variable selection for modelling effects of eutrophication on stream and river ecosystems. Ecological modelling (Amsterdam) 177 (1-2): 17-39. http://doi.org/10.1016/j.ecolmodel.2003.12.050 Rebeka ŠILING & Mateja GeRM: POMeN MakROFItOV V jeZeRSkeM ekOSISteMU 101folia biologica et geologica 58/1 – 2017 O’farrell, I., P. P. Tezanos, P. L. Rodriguez, G. Chaparro & H. N. Pizarro, 2009: Experimental evidence of the dynamic effect of free-floating plants on phytoplankton ecology. Freshwater Biology (Berlin) 54 (2): 363-375. http://dx.doi.org/10.1111/j.1365-2427.2008.02117.x Pall, K. & V. Moser, 2009: Austrian Index Macrophytes (AIM-Module 1) for lakes: a Water Framework Directive compliant assessment system for lakes using aquatic macrophytes. Hydrobiologia (Berlin) 633: 83-104. http://dx.doi.org/10.1007/s10750-009-9871-0 Pall, K., V. Bertrin, F. Buzzi, S. Bountry, A. Dutartrem, M. Germ, A. Oggioni, J. Schaumburg & G. Urba- nič, 2014: Alpine Lake Macrophyte ecological assessment methods. Water Framework Directive Intercalibration Technical Report, Luxembourg. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC88126/ alpine%20lake%20macrophyte%20intercalibration.pdf Peralta, G., T. J. Bouma, J. Van Soelen, J. L. Perez-Lorens & I. Hernandez, 2003: On the use of sediment fer- tilization for seagrass restoration: a mesocosm study on Zostera marina L. Aquatic Botany (Berlin) 75 (2): 95- 110. http://doi.org/10.1016/S0304-3770(02)00168-7 Petr, T., 2000: Interactions between fish and aquatic macrophytes in inland waters. Rome. Pilon, J. J., L. Santamaria, M. J. M. Hootsmans & W. Van Vierssen, 2003: Latitudinal variation in life-cycle characteristics of Potamogeton pectinatus L.: vegetative and reproductive traits. Plant Ecology (Berlin) 165 (2): 247-262. http://dx.doi.org/10.1023/A:1022252517488 Pip, E., 1989: Water temperature and freshwater macrophyte distribution. Aquatic Botany (Amsterdam) 34 (4): 367- 373. https://doi.org/10.1016/0304-3770(89)90079-X Poikane, S., S. Birk, J. Böhmer, L. Carvalho, C. De Hoyos, H. Gassner, S. Hellsten, M. Kelly, A. Lyche, M. Olin, K. Pall, G. Phillips, R. Portielje, D. Ritterbusch, L. Sandin, A. Schartau, A.G. Solimini, M. Berg, G.Wolfram & W. Van De, 2015: A hitchhiker’s guide to European lake ecological assessment and inter- calibration. Ecological Indicators (Amsterdam) 52: 533-544. http://doi.org/10.1016/j.ecolind.2015.01.005 Revilla, M., J. Franco, J. Bald, Á. Borja, A. Laza, S. Seoane & V. Valencia, 2009: Assessment of the phyto- plankton ecological status in the Basque coast (northern Spain) according to the European Water Framework Directive. Journal of Sea Research (Amsterdam) 6 (1-2): 60-67. http://doi.org/10.1016/j.seares.2008.05.009 Rohlich, G. A., 1969: Eutrophication: Causes, Consequences, Correctives. Washington. Rooney, N. & J. Kalff, 2003: Submerged macrophyte-bed effects on water-column phosphorus, chlorophyll a, and bacterial production. Ecosystems (Berlin) 6 (8): 797-807. http://doi.org/10.1007/s10021-003-0184-2 Scheffer, M., M. R. De Redelijkheid & F. Noppert, 1992: Distribution and dynamics of submerged vegetation in a chain of shallow eutrophic lakes. Aquatic Botany (Amsterdam) 42 (3): 199-216. https://doi.org/10.1016/0304- 3770(92)90022-BScheffer, M., 1998: Ecology of Shallow Lakes. London. https://doi.org/10.1007/978-1-4020-3154-0 Schultrope, C. D., 1967: The Biology of Aquatic Vascular Plants. London. Selig, U., M. Schubert, A. Eggert, T. Steinhardt, S. Sagert & H. Schubert, 2007: The influence of sediment on soft bottom vegetation in inner coastal waters of Mecklenburg-Vorpommern (Germany). Estuarine, Coastal and Shelf Science (Amsterdam) 71 (1–2): 241-249. http://doi.org/10.1016/j.ecss.2006.07.015 Søndergaard, M., E. Jeppesen, E. Mortensen, E. Dall, P. Kristensen & O. Sortkjær, 1990: Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia (Berlin) 200 (1): 229-240. http://doi.org/10.1007/BF02530342 Søndergaard, M., L. S. Johansson, T. L. Lauridsen, T. B. Jørgensen, L. Liboriussen & E. Jeppesen, 2010: Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology (Hoboken) 55 (4): 893-908. http://dx.doi.org/10.1111/j.1365-2427.2009.02331.x Stanley, E. H., M. D. Johnson & A. K. Ward, 2003: Evaluating the influence of macrophytes on algal and bacteri- al production in multiple habitats of a freshwater wetland. Limnology and Oceanography (Hoboken) 48 (3): 1101-1111. http://dx.doi.org/10.4319/lo.2003.48.3.1101 Sudnitsyna, D. N., 2015: Anthropogenic Impact on the Macrophytes of Pskov Region Alkalitrophic Lakes. Environ- ment. Technology. Resources. Proceeding of the 10th International Scientific and Practical Conference 2 (Rezekne) 2: 303-306. http://dx.doi.org/10.17770/etr2015vol2.248 They, N. H., D. M. Marques, R. S. Souza & L. R. Rodrigues, 2013: Short-term photochemical and biological unre- activity of macrophyte-derived Dissolved Organic Matter in a subtropical shallow lake. Journal of Ecosystems (Berlin) 2013: 1-9. http://dx.doi.org/10.1155/2013/316709 Rebeka ŠILING & Mateja GeRM: POMeN MakROFItOV V jeZeRSkeM ekOSISteMU 102 folia biologica et geologica 58/1 – 2017 Vadeboncoeur, y., D. M. Lodge & S. R. Carpenter, 2001: Whole-lake fertilization effects on distribution of pri- mary production between benthic and pelagic habitats. Ecology (Hoboken) 82 (4): 1065-1077. http://doi.org/10.2307/2679903 Wetzel R. G. & M. Søndergaard, 1997: Role of submersed macrophytes for the microbial community and dyna- mics of dissolved organic carbon in aquatic ecosystems. In The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies (Berlin) 131: 133-148. http://doi.org/10.1007/978-1-4612-0695-8_7 Wetzel, R. G., 2001: Limnology, 3rd ed. Orlando. Wu, Q. L., G. Zwart, J. Wu, M. P. Agterveld, S. Liu & M. W. Hahn, 2007: Submersed macrophytes play a key role in structuring bacterioplankton community composition inthe large, shallow, subtropical Taihu Lake, China. Environmental Microbiology (Hoboken) 9 (11): 2765-2774. Zelnik, I., M. Potisek & A. Gaberščik, 2012: Environmental Conditions and macrophytes of Karst Ponds. Polish Journal of Environmental Studies (Olsztyn) 21 (6): 1911-1920. Zhou, y., X. Zhou, R. Han, X. Xu, G. Wang, X. Liu, F. Bi & D. Feng, 2017: Reproduction capacity of Potamogeton crispus fragments and its role in water purification and algae inhibition in eutrophic lakes. Science of the total environment (Amsterdam) 580: 1421-1428. http://dx.doi.org/10.1016/j.scitotenv.2016.12.108 Rebeka ŠILING & Mateja GeRM: POMeN MakROFItOV V jeZeRSkeM ekOSISteMU 103folia biologica et geologica 58/1 – 2017 Slika 2: Beli lokvanj (Nymphaea alba). Zadrževalnik Medvedce. Figure 2: European white water lily (Nymphaea alba). Accumulation Medvedce. Slika 1: Vodni orešek (Trapa natans). Zadrževalnik Medvedce. Figure 1: Water caltrop (Trapa natans). Accumulation Medvedce. Rebeka ŠILING & Mateja GeRM: POMeN MakROFItOV V jeZeRSkeM ekOSISteMU 104 folia biologica et geologica 58/1 – 2017 Slika 3: Rumeni blatnik (Nuphar luteum). Škalsko jezero Figure 3: Nuphar luteum. Lake Škalsko jezero. folia biologica et geologica 58/1, 105–114, ljubljana 2017 CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE OF FREE-LIVING BIRDS CAPTURED IN SLOVENIA KULTIVABILNA BAKTERIJSKA MIKROBIOTA IZ SAPIŠČ PROSTOŽIVEČIH PTIC, UJETIH V SLOVENIJI Jure ŠKRABAN1,a, Tjaša MATJAŠIČ1,a, Franc JANŽEKOVIČ1, Gottfried WILHARM2 & Janja TRČEK1,3* http://dx.doi.org/10.3986/fbg0024 abStRact cultivable bacterial microbiota from choanae of free-liv- ing birds captured in Slovenia We have analysed the structure of cultivable choanal microbiota from free-living birds in relation to bird diet, its richness and the relative number of opportunistic bacteria acquired from the environment. For this purpose, we have taken choanal swabs from 25 free-living birds representing 13 different bird species captured in Slovenia. From the grown cultures, 98 bacterial colonies were isolated and their 16S rRNA genes sequenced. Most of the bacteria belonged to the phylum Actinobacteria (52 %), Proteobacteria (31 %), Firmicutes (15 %) and Bacteroidetes (4 %). Thirty-two per- cent of sampled birds were colonized by known human op- portunists and 44 % of birds by at least one known plant pathogen. Hierarchical clustering of the analyzed microbio- ta grouped the birds according to their predominant diet. The richness of choanal microbiota from birds feeding mainly on insects was poorer compared to the birds feeding on diverse animal and plant material. The study has shown that the free-living birds carry an important reservoir of op- portunistic human and plant pathogenic bacteria in their upper respiratory tract. To get a deeper insight into its com- position, a bigger pool of birds will have to be analyzed in the future. Keywords: birds, microbiota, choanae, pathogenic bac- teria, diet iZVleČeK Kultivabilna bakterijska mikrobiota iz sapišč prosto- živečih ptic, ujetih v Sloveniji Sestavo kultivabilne bakterijske mikrobiote v sapiščih prostoživečih ptic smo analizirali z vidika vpliva prehrane, bogatosti mikrobiote in prisotnosti oportunističnih bakterij. Petindvajsetim prostoživečim pticam, ki so bile ujete v Slo- veniji in so pripadale 13 vrstam, smo odvzeli bris sapišča. Po nacepitvi brisov na mikrobiološka gojišča in gojenju, smo izolirali 98 bakterijskih kolonij in jim določili nukleotidno zaporedje gena za 16S rRNK. Večina izoliranih bakterij je pripadala deblu Actinobacteria (52 %), Proteobacteria (31 %), Firmicutes (15 %) in Bacteroidetes (4 %). Pri približno eni tretjini ptic (32 %) smo iz sapišča izolirali vsaj eno oportunistično bakterijsko vrsto, ki lahko povzroča okužbe pri ljudeh. Pri slabi polovici ptic (44 %) pa smo v sapišču našli vsaj eno bakterijsko vrsto, ki lahko okuži rastline. Z metodo hierarhičnega združevanja smo pokazali, da imajo ptice s podobno prehrano, podobno bakterijsko mikrobioto sapišč. Ptice, ki se prehranjujejo pretežno z žuželkami so imele manj bogato mikrobioto kot ptice, ki se prehranjujejo z bolj raznoliko živalsko in rastlinsko hrano. Raziskava je tudi pokazala, da so zgornja dihala prostoživečih ptic pomemben rezervoar oportunističnih bakterij, ki lahko okužijo ljudi in rastline. Da bi dobili globji vpogled v sestavo mikrobiote zgornjih dihal, bi v prihodnosti morali povečati število analiziranih ptic. Ključne besede: ptice, mikrobiota, sapišče, patogene bakterije, prehrana 1 Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia 2 Robert Koch Institute, Wernigerode Branch, Germany 3 Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia * Corresponding author: telephone: +386 2 2293749, e-mail: janja.trcek@um.si a both authors contributed equally to the work ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 106 folia biologica et geologica 58/1 – 2017 Free-living birds are recognized vectors for spreading pathogenic bacteria across long distances with well- known transmission of various respiratory infections to humans (Murthy et al. 2008, Pan et al. 2012, Tsio- dras et al. 2008). Despite of this, our knowledge on the avian respiratory tract microbiota is very limited. While some data exist for the lower respiratory tract, almost nothing is known about the bacteria living in the upper respiratory regions. Data on microbiota of the lower respiratory tract in domestic birds have shown that it harbors poten- tially pathogenic bacteria. Majority of cultured bacte- ria found in the lungs and trachea of birds belonged to phyla Proteobacteria, Firmicutes, Tenericutes, Actino- bacteria, Bacteroidetes and Chlamydia/Verrucomicro- bia (Murthy et al. 2008, Charlton et al. 1993, Byrum & Slemons 1995). Additionally, culture independent analyses detected groups of fastidious or poorly repre- sented taxons belonging to Fusobacteria, Acidobacte- ria, Chloroflexi, Cyanobacteria and Deinococcus -Thermus in the lower respiratory tract of poultry. Among them were also potential pathogens (Myroides spp., Collinsella aerofaciens, Bacteroides fragilis, Ente- rococcus cecorum, Kurthia zopfii, Kushneria sp. and Bordetella sp.) (Shabbir et al. 2015). Even though the pathogen Riemerella sp. has been isolated from the upper respiratory tract of some species of domestic and free-living birds (Vancanneyt et al. 1999), a deeper insight into the structure of the upper respiratory mi- crobiota in birds is lacking. Thus far, a very limited number of research attempted to analyze the bacterial composition of the upper respiratory tract in free-liv- ing birds, besides, they used selective media for cultur- ing specific groups of pathogenic bacteria, and thus substantially limiting the overall view on microbial diversity of the upper respiratory tract (Lamberski et al. 2003, Stenkat et al. 2014). In such a way, Lamber- ski et al. (2003) analyzed two species of hawks which harbored pathogens like Salmonella sp. and Pasteurella sp.. Stenkat et al. (2014) focused more on water birds and also found potential avian and human pathogens (Klebsiella pneumoniae, Escherichia coli and Pseudo- monas aeruginosa among others). More knowledge about the microbiota of the upper respiratory tract of birds is necessary for better under- standing the influence, positive or negative, of this mi- crobiome on animal health and the risks of spreading potential infections between free-living birds, in the environment and subsequently to humans (Walden- strom et al. 2003, Abulreesh et al. 2007). 1 INTRODUCTION 2 MATERIALS AND METHODS bird sampling, culturing of bacteria and identi- fication All of the 25 healthy adult birds included in this study were captured in fine mist nets for bird ringing during fall, between September 18 and December 10, 2013 in Maribor and its surroundings (Slovenia). The birds were caught in the frame of bird ringing scheme coor- dinated by EURING. Choanal swabs (pre moistened with sterile saline) were immediately taken from each bird and put in a transport medium (Amies agar gel medium transport swabs – no charcoal, Copan) until further processing. All samples were sent to the laboratory within 2 to 3 hours after sampling and inoculated on nutrient agar (NA, Sigma). Inoculated plates were incubated 4 - 7 days at 30°C. After incubation, each colony morpho- type per bird was isolated and stored at -80°C until further processing. Colony morphotypes were differ- entiated based on form, margin and pigmentation of the colonies. Total DNA was isolated and cleaned using a com- mercial kit (NucleoSpin Tissue, Macherey-Nagel). Full lengths of 16S rRNA genes were amplified with PCR. The final concentrations of the PCR reaction mix con- tained 0.2 mM dNTP (Thermo Scientific), 1x PCR buf- fer with KCl (Thermo Scientific), 2.5 mM MgCl2 (Thermo Scientific), 1.0 µM of forward primer (5’-AAA TTG AAG AGT TTG ATC ATG GC-3’), 1.0 µM of re- verse primer (5’-AAG GAG GTG ATC CAG CCG CA- 3’) and 0.025 units/µL of Taq polymerase (Thermo Sci- entific). Amplicons were obtained using the following PCR protocol: initial denaturation at 95°C for 5 min followed by 30 cycles of denaturation at 95°C for 30 s, annealing at 56°C for 30 s and elongation at 72°C for 1.5 min, followed by a final extension at 72°C for 10 min. The PCR product was purified with a commercial kit (GeneJET PCR Purification Kit, Thermo Scientific) and sequenced (Eurofins Genomics). The obtained se- quences were compared to EMBL/GenBank/DDBJ da- tabases and identified using BLAST. The closest hits to type strains, with 98.7 or higher % similarity, were ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 107folia biologica et geologica 58/1 – 2017 identified at species level. In case of two or more differ- ent hits with similarity score above 98.7 %, the isolate was identified at the genus level. Hierarchical clustering Ward method with Euclidian distances was used for the clustering of the choanal microbiota of the investi- gated birds, for which the data on the presence or ab- sence of bacterial species were included in the analysis. Statistical analysis To test the differences in the presence of microbial groups between different species of birds, we used Fisher’s exact test, where P < 0.05 was considered sig- nificant. Where the differences in the frequencies of microbial groups were significant, odds ratio was cal- culated (P < 0.05). The differences in species richness between the groups of birds were tested with Student - T test, P < 0.05 was considered significant. 3 RESULTS AND DISCUSSION In this study we performed identification of bacteria isolated on a complex nutrient agar medium from birds’ choanae with the aim to assess microbial diver- sity from this specific niche and find a possible corre- lation with birds’ diet. For this, we have sampled 25 table 1: Richness of choanal microbiota. Preglednica 1: bogatost mikrobiote sapišč. Bird Species Number of birds Average number of different isolates per bird species European robin (Erithacus rubecula) 4 2.8 ± 2.0a Garden warbler (Sylvia borin) 1 4 Common reed bunting (Emberiza schoeniclus) 1 3 Willow warbler (Phylloscopus trochilus) 1 1 Dunnock (Prunella modularis) 4 2.5 ± 1.1a Common redstart (Phoenicurus phoenicurus) 1 5 Common chiffchaff (Phylloscopus collybita) 1 3 yellowhammer (Emberiza citrinella) 1 4 Eurasian blackcap (Sylvia atricapilla) 2 2.5 ± 1.5a Song thrush (Turdus philomelos) 1 12 Pigeon (Columba livia) 4 3.3 ± 2.3a Common chaffinch (Fringilla coelebs) 1 10 Eurasian tree sparrow (Passer montanus) 3 5.7 ± 1.9a a, standard deviation birds, from which 98 bacterial colonies were isolated and sequenced. The number of different bacterial spe- cies per bird ranged from 12 (Song thrush (Turdus phi- lomelos) to 1 (Willow warbler (Phylloscopus trochilus)) (Table 1). ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 108 folia biologica et geologica 58/1 – 2017 Majority of isolates belonged to phyla Actinobacte- ria (52 %) and Proteobacteria (31 %). The phyla Fir- micutes and Bacteroidetes were represented by only 15 % and 4 %, respectively. The isolates belonged to 22 families. The majority constituted families Microbacte- riaceae (36 %), Pseudomonadaceae (11 %), Enterobacte- riaceae (10 %), Micrococcaceae (7 %), Flavobacteriace- ae, Xanthomonadaceae and Staphylococcaceae (all 4 %). Other families were found only sporadically. Of 13 different bird species, which have been sampled, 85 % were colonized with members of Microbacteriaceae. Pseudomonadaceae, Nocardiaceae and Enterobacteria- ceae were found in 38 %, 31 % and 31 % of bird species, respectively. Xanthomonadaceae, Moraxellaceae, Staphylococcaceae were found in 23 % and Micrococ- caceae in 15 % of analyzed bird species. Other isolates were found only per single bird. Although two previous studies analyzed choanal swabs from birds, there are some substantial differences in experimental approach- es in comparison to our study and also in the birds analyzed. Lamberski et al. (2003) analyzed choanal swabs from captive and free-living red-tailed and Coo- per’s hawks, but the samples were grown on blood and MacConkey media. In this way they found the micro- biota to be composed of Bacillus sp., Corynebacterium sp., Escherichia sp., Salmonella sp., Pasteurella sp., Streptococcus sp. and coagulase positive and negative staphylococci. Since we have performed the isolation on a complex nutrient medium in order to detect a wider range of environmental bacteria our results only partially overlapped. We have also isolated the genus Bacillus sp. and coagulase negative staphylococci, but otherwise the choanal microbiota of our birds greatly differed. This can be explained also by the fact that we have sampled different species of birds, with different diets (Cooper’s hawk feeds exclusively on small and mid-sized birds and red-tailed hawk is opportunistic carnivorous feeder) and in different geographical loca- tions (Slovenia vs. Unites States). The other group, Stenkat et al. (2014) used blood, MacConkey and Bril- liant green agar to investigate pharyngeal bacterial mi- crobiota in water rails, spotted crakes, barn swallows, mute swans, reed warblers and black cormorants, and found numerous ubiquitous bacteria belonging pre- dominantly to Enterobacteriaceae, Pseudomonadaceae, Aeromonadaceae, Bacillaceae, Staphylococcaceae and Streptococcaceae which are frequently present in the environment and on food. We have also found mem- bers of the forementioned bacterial families, except the family Aeromonadaceae, which is more associated with water habitats and the family Streptococcaceae, which was absent in our study, possibly due to different growth media (nutrient agar as opposed to blood agar). Out of 98 isolates from choanal swabs, 13 (13.3 %) have been known to cause opportunistic infections in humans. Species previously described as being associ- ated with human infections were Acinetobacter calcoa- ceticus (Nonaka et al. 2014), Cellulosimicrobium fun- kei (Petkar et al. 2011), Curtobacterium citreum (Ri- vera et al. 2012), Curtobacterium flaccumfaciens (Francis et al. 2011), Exiguobacterium sibiricum (Tena et al. 2014), Hafnia alvei (Gunthard & Pennekamp 1996), Microbacterium oleivorans (Kim & Lee 2012), Microbacterium resistens (Panackal 2013), Pantoea agglomerans (Rezzonico et al. 2010), Pseudomonas ae- ruginosa (yamazaki et al. 2012), Serratia grimesii (Kumar et al. 2013), Staphylococcus epidermidis (Vuong & Otto 2002) and Staphylococcus gallinarum (Tibra et al. 2010). Eight out of 25 (32 %) sampled birds carried one or more human opportunistic bacteria in their choanae. Five out of 25 (20 %) birds were colo- nized by one, two birds were simultaneously colonized by two opportunists and the song thrush (Turdus phi- lomelos) by three different putative pathogens. Pigeons also seemed to be frequent carriers of potential patho- gens. Three out of four sampled pigeons were colo- nized by Staphylococcus gallinarum (in our study found only in pigeons) and the fourth bird was colonized by Acinetobacter calcoaceticus. Two out of three sampled eurasian tree sparrows which, as pigeons, also live in close proximity to humans, also carried opportunists (Curtobacterium citreum, Curtobacterium flaccumfaci- ens and Exiguobacterium sibiricum) in choanal micro- biota. In addition to human opportunistic bacteria, 7 po- tential plant pathogens were also isolated from choa- nae of 11 (44 %) sampled birds. These were Agrobacte- rium larrymoorei (Bouzar & Jones 2001), Clavibacter michiganensis (Xu et al. 2010), Curtobacterium fla- ccumfaciens (Francis et al. 2011), Plantoea agglome- rans (Rezzonico et al. 2010), Pseudomonas aeruginosa (yamazaki et al. 2012), Pseudomonas flavescens (Fett, Cescutti & Wijey 1996) and Rhodococcus fascians (Crespi et al. 1992). Ten (40 %) birds were colonized by one plant pathogen and only one tree sparrow by two (Agrobacterium larrymoorei and Curtobacterium fla- ccumfaciens). The most frequently isolated plant patho- gen was Rhodococcus fascians, which was isolated from four different birds belonging to four different species (Eurasian tree sparrow, Common chaffinch, yellow- hammer and Dunnock) with different feeding habits (seeds/insects, seeds/insects, insects and insects), re- spectively. This suggests that it is commonly present in bird population. Previous investigations have shown that the com- position of intestinal microbiota in birds depends on ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 109folia biologica et geologica 58/1 – 2017 Fi gu re 1 : C lu st er in g of sa m pl ed b ir d sp ec ie s b as ed o n ba ct er ia l ( fa m ily le ve l) co m po si tio n of c ho an al m ic ro bi ot a. T op : E uc lid ia n di st an ce . N um be rs a t e ac h no de d es ig na te bo ot st ra p va lu e (b oo ts tr ap n um be r 1 00 ). a (C ra m p 19 88 ); b (C ra m p et a l. 19 92 ); c (C ra m p & P er ri ns 1 99 4) ; d (C ra m p 19 85 ); e (C ra m p 19 94 ); f ( in ve rt eb ra te s) ; g (a rt ifi ci al m an -m ad e fo od ). Sl ik a 1: H ie ra rh ič no z dr už ev an je v zo rč en ih v rs t p tic g le de n a se st av o ba kt er ijs ke (n a ni vo ju d ru ži n) m ik ro bi ot e v sa pi šč ih . Z go ra j: Ev kl id sk a ra zd al ja . Š te vi lk e pr i r az ve jit va h so b oo ts tr ap v re dn os ti (š te vi lo p on ov ite v 10 0) . a (C ra m p 19 88 ); b (C ra m p et a l. 19 92 ); c (C ra m p & P er ri ns 1 99 4) ; d (C ra m p 19 85 ); e (C ra m p 19 94 ); f ( ne vr et en ča rj i); g (p re hr an a čl ov eš ke ga iz vo ra ). D IE T (w in te r) D IE T (b re ed in g se as on ) D IE T (s um m er ) D IE T (a ut um n) Eu ro pe an ro bi n (E ri th ac us r ub ec ul a) a in se ct s / s ee ds / fr ui t in se ct s in se ct s in se ct s G ar de n w ar bl er (S yl vi a bo ri n) b be rr ie s in se ct s be rr ie s be rr ie s C om m on re ed b un tin g (E m be ri za sc ho en ic lu s) c se ed s in ve rt .f se ed s se ed s W ill ow w ar bl er (P hy llo sc op us tr oc hi lu s) b in se ct s in se ct s in se ct s in se ct s / b er ri es D un no ck (P ru ne lla m od ul ar is )a in se ct s / se ed s in se ct s in se ct s in se ct s C om m on re ds ta rt (P ho en ic ur us p ho en ic ur us )a in se ct s in se ct s in se ct s in se ct s C om m on c hi ffc ha ff (P hy llo sc op us c ol ly bi ta )b in se ct s in se ct s in se ct s in se ct s Ye llo w ha m m er (E m be ri za c itr in el la )c se ed s in ve rt .f se ed s se ed s Eu ra si an b la ck ca p (S yl vi a at ri ca pi lla )b be rr ie s in se ct s be rr ie s be rr ie s So ng th ru sh (T ur du s p hi lo m el os )a in ve rt .f in ve rt .f in ve rt .f / f ru it in ve rt .f / f ru it Pi ge on (C ol um ba li vi a) d in ve rt .f / s ee ds / ar tif .g in ve rt .f / s ee ds / ar tif .g in ve rt .f / s ee ds / ar tif .g in ve rt .f / s ee ds / ar tif .g C om m on c ha ffi nc h (F ri ng ill a co el eb s) e se ed s in ve rt . se ed s se ed s Eu ra si an tr ee sp ar ro w (P as se r m on ta nu s) e in ve rt .f / s ee ds / be rr ie s in ve rt .f / s ee ds / be rr ie s in ve rt .f / s ee ds / be rr ie s in ve rt .f / s ee ds / be rr ie s 53 15 51 12 48 15 26 26 41 2 58 10 0 D is ta nc e 14 .4 12 .8 11 .2 9. 6 8. 0 6. 4 4. 8 3. 2 1. 6 0. 0 ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 110 folia biologica et geologica 58/1 – 2017 table 2: identified bacterial isolates from choanae of free-living birds. the birds were grouped based on choanal microbiota composition with hierarchical clustering on group 1 (predominantly insectivorous birds) and group 2 (birds with mixed diet of invertebrates and seeds). Preglednica 2: identificirani bakterijski izolati iz sapišč prostoživečih ptic. Ptice smo s hierarhičnim zduževanjem združili v dve skupini, skupina 1 (pretežno žužkojede ptice) in skupina 2 (ptice z mešano prehrano sestavljeno iz nevretenčarjev in semen). Bacterial isolates found in group 1 Bacterial isolates found in group 2 Bacterial isolates found in group 1 and 2 Aeromicrobium ponti/ A. tamlense Agrobacterium larrymoorei Acinetobacter calcoaceticus Aeromicrobium sp. nov.a Agromyces terreus Chryseobacterium indoltheticum Agrococcus versicolor Agromyces sp. nov.b Frigoribacterium faeni Agromyces allii Arthrobacter aurescens Microbacterium hydrocarbonoxydans/M. phyllosphaerae Bacillus aryabhattai Arthrobacter nitroguajacolicus/A. aurescens Microbacterium phyllosphaerae Citrobacter gillenii Arthrobacter oxydans Micrococcus sp. Clavibacter michiganensis Brochothrix campestris Paenibacillus xylanexedens/ P. amylolyticus/ P. tundra Curtobacterium plantarum Cellulosimicrobium funkei Pseudomonas flavescens Enterococcus plantarum Chryseobacterium daecheongense Rathayibacter festucae Hafnia alvei Chryseobacterium sp. nov.c Rhodococcus fascians Microbacterium hominis Curtobacterium citreum Stenotrophomonas rhizophila Microbacterium oleivorans Curtobacterium flaccumfaciens Microbacterium oxydans Exiguobacterium sibiricum Microbacterium sp. Leucobacter exalbidus Microbacterium xylanilyticum Microbacterium hydrocarbonoxydans Micrococcus yunnanensis Microbacterium resistens Ochrobactrum thiophenivorans Microbacterium testaceum Pantoea agglomerans Oerskovia sp. Pantoea anthophila Okibacterium fritillariae Plantibacter flavus Pantoea agglomerans Pseudomonas aeruginosa Pseudoclavibacter helvolus Pseudomonas moraviensis Pseudomonas cedrina Pseudomonas orientalis Pseudomonas extremorientalis Pseudomonas psychrotolerans Pseudoxanthomonas koreensis Sanguibacter keddieii Sphingobacterium faecium Serratia grimesii Staphylococcus gallinarum Staphylococcus epidermidis Staphylococcus sp. Stenotrophomonas chelatiphaga Variovorax paradoxus a,b,c, potentially new species isolated from garden warbler (Sylvia borin)a, song thrush (Turdus philomelos)b and Eurasian tree sparrow (Passer montanus)c various factors, among them being the host species and feeding patterns. The differences extend to functional properties such as the greater capacity for amino acid metabolism and energy harvest in carnivores com- pared to herbivores (Waite & Taylor 2014). There- fore, since the gastrointestinal and respiratory tracts are connected, it is reasonable to assume that these fac- tors also influence the composition of the respiratory microbiota. To assess the differences in the choanal microbiota of the sampled birds, we have performed hierarchical clustering which grouped the birds into two groups (Fig. 1). Choanal microbiota of the birds with similar diet grouped together. Birds which feed predominantly on insects or have more monotonous ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 111folia biologica et geologica 58/1 – 2017 diet clustered in one group, those that have more mixed diet of animals (invertebrates) and seeds throughout the year formed a separate group (Fig. 1). The number of bacterial species was used to assess the difference in choanal microbiota richness between the two groups. The first group which contains the birds predominant- ly feeding on insects, or which have a more monoto- nous diet in general, had a significantly lower average number of species (2.9 ± 1.6) in comparison to birds enjoying a more mixed diet of animals and plants throughout the season (7.8 ± 3.4) (P = 0.0002) (Table 1). The choanal microbiota differed between the two groups not only in terms of species richness, but also in terms of bacterial composition. Majority of isolates were found in only one of the two groups of birds (29 – the first group, 27 – the second group) and only 11 bacterial species colonized choanae of birds belonging to both groups (Table 2). Stenkat et al. (2014) have previously found cor- relations between certain bacterial families and feed- ing habits, although they targeted specific pathogenic groups of bacteria. Enterobacteriaceae and Aeromon- adaceae were correlated to piscivores, Staphylococca- ceae and Streptococcaceae to aerial insectivores, and Pseudomonadaceae and Bacillaceae to herbivores. Our findings corroborate this, as hierarchical clustering grouped the choanal microbiota of the sampled birds into two groups based on the bird diet. When comparing the presence or absence of indi- vidual bacterial species, pigeons showed to be far more likely colonized with Staphylococcus gallinarum than other sampled birds (Fisher’s exact test (P = 0.013); odds ratio (pigeons/other birds) = 31.5, P = 0.012). Fur- thermore, the presence of the genus Staphylococcus sp. was indicative of the birds with a more diverse diet throughout the season; these birds also clustered in one of the two groups (Fig. 1, Fisher’s exact test (P = 0.040); odds ratio (second group/first group) = 12.0; P = 0.044). Apart from finding numerous human and plant opportunists, we have also isolated one novel species from garden warbler (Sylvia borin) (Aeromycrobium choanae sp. nov.) (Ber et al. 2017), and two potentially novel species from song thrush (Turdus philomelos) (Agromyces sp., 16S rRNA gene sequence similarity < 97 %) and Eurasian tree sparrow (Passer montanus) (Chryseobacterium sp., 16S rRNA sequence similarity < 98.7 %). Their description is part of ongoing research. 4 CONCLUSIONS Our study has shown that the choanal microbiota of free-living birds with a diet composed predominantly of insects, or with a generally monotonous diet, was poorer in terms of species richness, compared to birds with a more diverse diet during the year. Previously, correlation between selected bacterial families and diet has been determined, however our analyses have shown that the differences in microbiota extend be- yond selected bacterial families. Hierarchical cluster- ing of bacteria showed a correlation between the birds feeding patterns and the upper respiratory microbiota composition. Our study has also shown that free-living birds carry a wide array of known human and plant pathogens in their upper respiratory tract, but also possible novel species. Given the impact microbiota has on the bird ś health and bird ś potential for spread- ing pathogens in the environment, it will be necessary to extend the analysis of choanal microbiota and fac- tors that shape its structure, on more free-living bird species. 5 POVZETEK Da bi ocenili mikrobno diverziteto v sapiščih prostoži- večih ptic, smo 25 pticam odvzeli brise sapišč, ki smo jih nacepili na hranilni agar. Po gojitvi smo izolirali 98 bakterijskih kolonij in jih na podlagi nukleotidnega zaporedja za 16S rRNK identificirali. Število različnih bakterijskih izolatov pri posamezni ptici se je gibalo med 12 (cikovt, Turdus philomelos) in 1 (severni kova- ček, Phylloscopus trochilus). Večina izolatov je pripada- la deblom Actinobacteria (52 %), Proteobacteria (31 %), Firmicutes (15 %) in Bacteroidetes (4 %). Izolati so ve- činoma pripadali družinam Microbacteriaceae (36 %), Pseudomonadaceae (11 %), Enterobacteriaceae (10 %), Micrococcaceae (7 %), in Flavobacteriaceae, Xantho- monadaceae in Staphylococcaceae (vse 4 %). Največ ptic (11) je bilo koloniziranih z bakterijami, ki so pri- padale družini Microbacteriaceae, nato Pseudomona- daceae (pet ptic), Nocardiaceae (štiri ptice), Enterobac- teriaceae (štiri ptice), Xanthomonadaceae (tri ptice), ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 112 folia biologica et geologica 58/1 – 2017 Moraxellaceae (tri ptice), Staphylococcaceae (tri ptice) in Micrococcaceae (dve ptici). Ostale družine bakterij smo detektirali le pri posamezni ptici. Od skupno 98 bakterijskih izolatov, smo našli 13 (13,3 %) takih, ki lahko povzročajo okužbe pri ljudeh: Acinetobacter calcoaceticus, Cellulosimicrobium funkei, Curtobacterium citreum, Curtobacterium flaccumfaci- ens, Exiguobacterium sibiricum, Hafnia alvei, Micro- bacterium oleivorans, Microbacterium resistens, Panto- ea agglomerans, Pseudomonas aeruginosa, Serratia gri- mesii, Staphylococcus epidermidis in Staphylococcus gallinarum. Pri osmih pticah (32 %) smo v sapišču našli vsaj eno oportunistično bakterijo. Petina ptic je bila koloniziranih z eno, dve ptici z dvema, cikovt pa hkra- ti s tremi oportunističnimi vrstami bakterij. Tudi ptice urbanih okolij (golob in domači vrabec) so bile koloni- zirane s človeškimi oportunisti. Golobi s Staphyloco- ccus gallinarum in Acinetobacter calcoaceticus, vrabci pa s Curtobacterium citreum, Curtobacterium flaccum- faciens in Exiguobacterium sibiricum. Poleg oportunističnih bakterij, ki povzročajo okužbe pri ljudeh, smo pri 44 % vzorčenih ptic našli bakterije, ki so patogene za rastline: Agrobacterium larrymoorei, Clavibacter michiganensis, Curtobacteri- um flaccumfaciens, Plantoea agglomerans, Pseudomo- nas aeruginosa, Pseudomonas flavescens in Rhodoco- ccus fascians. Največkrat smo detektirali bakterijo Rhodococcus fascians, ki je bila prisotna pri štirih raz- ličnih vrstah ptic (domači vrabec, ščinkavec, rumeni strnad in siva pevka). Prvi dve vrsti se prehranjujeta z raznovrstno hrano sestavljeno iz semen in žuželk, za- dnji dve pa pretežno z žuželkami, kar bi lahko pome- nilo, da je bakterija med pticami splošno prisotna. Na sestavo in delovanje črevesne mikrobiote pri pti- cah vplivajo različni dejavniki, kot sta vrsta gostitelja in vrsta hrane (mesojedci/rastlinojedci). Ker so prebavila in dihala povezana, ti dejavniki verjetno vplivajo tudi na sestavo in delovanje mikrobiote v dihalih. Z metodo hierarhičnega združevanja smo ptice na podlagi sestave bakterijske mikrobiote sapišč združili v dve skupini. V prvi skupini so bile pretežno žužkojede ptice, v drugi pa ptice z bolj raznovrstno prehrano rastlinskega in žival- skega izvora. Tudi bogatost mikrobiote, ki smo jo oceni- li na podlagi števila prisotnih bakterijskih vrst, je med obema skupinama ptic bila različna. Pri žužkojedih pti- cah smo zaznali manjše število vrst (2,9 ± 1,6) v primer- javi s pticami, ki se hranijo z bolj raznovrstno hrano ži- valskega in rastlinskega izvora (7,8 ± 3,4) (P = 0,0002). Obe skupini ptic sta imeli tudi različno sestavo mikrobi- ote, saj smo večino bakterijskih vrst našli le pri eni ali drugi skupini (29 bakterijskih vrst pri žužkojedih pti- cah, 27 bakterijskih vrst pri pticah z raznoliko prehra- no) in le 11 bakterijskih vrst smo detektirali pri obeh skupinah ptic. Pri vrtni penici (Sylvia borin), cikovtu (Turdus philomelos) in vrabcu (Passer montanus) smo v sosledju našli tudi novo in dve domnevno novi vrsti bakterij; Aeromycrobium choanae sp. nov., Agromyces sp. in Chryseobacterium sp.. Z metodo hierarhičnega združevanja smo poka- zali, da imajo ptice s podobno prehrano, podobno bakterijsko mikrobioto sapišč. Ptice, ki se prehranju- jejo pretežno z žuželkami, so imele manj bogato mi- krobioto kot ptice, ki se prehranjujejo z bolj raznoliko živalsko in rastlinsko hrano. Raziskava je tudi poka- zala, da so zgornja dihala prostoživečih ptic pomem- ben rezervoar oportunističnih bakterij, ki lahko oku- žijo ljudi in rastline, in tudi novih vrst bakterij. Da bi dobili globji vpogled v sestavo mikrobiote zgornjih dihal, bi v prihodnosti morali povečati število analizi- ranih ptic. ACKNOWLEDGEMENTS – ZAHVALA This research was funded by the Slovenian Research Agency through programs IP-0552 and P2-0006. For help with bird sampling, we thank bird ringing researcher Iztok Vreš (Slovenian Museum of Natural History). REFERENCES - LITERATURA Abulreesh, H. H., R. Goulder & G. W. Scott, 2007: Wild birds and human pathogens in the context of ringing and migration. Ringing Migration. (Oxford) 23: 193–200. http://dx.doi.org/10.1080/03078698.2007.9674363 Ber, P., S. Van Trappen, P. Vandamme & J. Trček, 2017: Aeromicrobium choanae sp. nov., an actinobacterium isolated from the choana of a garden warbler. Int. J. Syst. Evol. Microbiol. (Reading) 67: 357-361. https://doi. org/10.1099/ijsem.0.001632 ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 113folia biologica et geologica 58/1 – 2017 Bouzar, H. & J. B. Jones, 2001: Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. Int. J. Syst. Evol. Microbiol. (Reading) 51: 1023-1026. https://doi.org/10.1099/00207713-51-3-1023 Byrum, B. R. & R. D. Slemons, 1995: Detection of proteolytic bacteria in the upper respiratory-tract flora of poultry. Avian. Dis. (Ithaca) 39: 622-626. https://doi.org/10.2307/1591817 Charlton, B. R., S. E. Channing-Santiago, A. A. Bickford, C. J. Cardona, R. P. Chin, G. L. Cooper, R. Dro- ual, J. S. Jeffrey, C. U. Meteyer, H. L. Shivaprasad & R. L. Walker, 1993: Preliminary characterization of a pleomorphic Gram-negative rod associated with avian respiratory-disease. J. Vet. Diagn. Invest. (Columbia) 5: 47-51. https://doi.org/10.1177/104063879300500111 Cramp, S., 1985: Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Pale- arctic. Volume 4: terns to woodpeckers. Oxford. Cramp, S., 1988: Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Pale- arctic. Volume 5: tyrant flycatchers to thrushes. Oxford. Cramp, S., D. J. Brooks, E. Dunn, R. Gillmor, J. Hall-Craggs, P. A. D. Hollom, E. M. Nicholson, M. A. Ogilvie & C. S. Roselaar, 1992: Handbook of the birds of Europe, the Middle East and North Africa. The birds of the Western Palearctic. Volume 6: warblers. Oxford. Cramp, S., 1994: Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Pale- arctic. Volume 9: buntings and New World warblers. Oxford. Cramp, S. & C. M. Perrins, 1994: Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic. Volume 8: crows to finches. Oxford. Crespi, M., E. Messens, A. B. Caplan, M. V. Montagu & J. Desomer, 1992: Fasciation induction by the phyto- pathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. (Eynsham) 11: 795-804. Fett, W. F., P. Cescutti & C. Wijey: 1996: Exopolysaccharides of the plant pathogens Pseudomonas corrugata and Ps. flavescens and the saprophyte Ps. chlororaphis. J. Appl. Bacteriol. (Oxford) 81: 181-187. http://dx.doi. org/10.1111/j.1365-2672.1996.tb04497.x Francis, M. J., R. R. Doherty, M. Patel, J. F. Hamblin, S. Ojaimi & T. M. Korman, 2011: Curtobacterium fla- ccumfaciens septic arthritis following puncture with a Coxspur Hawthorn thorn. J. Clin. Microbiol. (Washing- ton) 49: 2759-2760. https://doi.org/10.1128/JCM.00340-11 Gunthard, H. & A. Pennekamp, 1996: Clinical significance of extraintestinal Hafnia alvei isolates from 61 patients and review of the literature. Clin. Infect. Dis. (Chicago) 22: 1040-1045. Kim, B. H. & M. Lee, 2012: A Case of Bacteremia Due to Microbacterium oleivorans Identified by 16S rRNA Sequen- cing Analysis. Korean J. Clin. Microbiol. (Iksan) 15: 110-113. https://doi.org/10.5145/KJCM.2012.15.3.110 Kumar, S., M. Bandyopadhyay, M. Chatterjee, P. Mukhopadhyay, S. Pal, S. Poddar & P. Banerjee, 2013: Red discoloration of urine caused by Serratia rubidae: a rare case. Avicenna J. Med. (Mumbai) 3: 20-22. https:// doi.org/10.4103/2231-0770.112790 Lamberski, N., A. C. Hull, A. M. Fish, K. Beckmen & T. y. Morishita, 2003: A survey of the choanal and cloacal aerobic bacterial flora in free-living and captive red-tailed hawks (Buteo jamaicensis) and Cooper’s hawks (Acci- piter cooperii). J. Avian. Med. Sur. (Boca Raton) 17: 131-135. https://doi.org/10.1647/2002-025 Murthy, T. R. G. K., N. Dorairajan, G. A. Balasubramaniam, A. M. Dinakaran, & K. Saravanabava, 2008: Pathogenic bacteria related to respiratory diseases in poultry with reference to Ornithobacterium rhinotracheale isolated in India. Vet. Arhiv (Zagreb) 78: 131–140. Nonaka, y., M. Nagae, T. Omae, S. yamamoto, R. Horitani, D. Maeda & T. yoshinaga, 2014: Community- -acquired necrotizing fasciitis caused by Acinetobacter calcoaceticus: a case report and literature review. J. Infect. Chemother. (Amsterdam) 20: 330-335. https://doi.org/10.1016/j.jiac.2013.12.011 Pan, Q., A. Liu, F. Zhang, y. Ling, C. Ou, N. Hou & C. He, 2012: Co-infection of broilers with Ornithobacterium rhino- tracheale and H9N2 avian influenza virus. BMC Vet. Res. (London) 8:104. https://doi.org/10.1186/1746-6148-8-104 Panackal, A. A., 2013: Microbacterium resistens prosthetic joint infection: a case report due to a vancomycin-resis- tant coryneform and brief literature review of infections due to the genus. Infect. Dis. Clin. Pract. (Philadelphia) 21: 349-354. https://doi.org/10.1097/IPC.0b013e31828d73db Petkar, H., A. Li, N. Bunce, K. Duffy, H. Malnick & J. J. Shah, 2011: Cellulosimicrobium funkei: first report of infection in a nonimmunocompromised patient and useful phenotypic tests for differentiation from Cellulosi- microbium cellulans and Cellulosimicrobium terreum. J. Clin. Microbiol. (Washington) 49: 1175-1178. https:// doi.org/10.1128/JCM.01103-10 ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 114 folia biologica et geologica 58/1 – 2017 Rezzonico, F., G. Vogel, B. Duffy & M. Tonolla, 2010: Application of whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification and clustering analysis of pantoea species. Appl. Environ. Microbiol. (Washington) 76: 4497-4509. https://doi.org/10.1128/AEM.03112-09 Rivera, R., A. Cheema, J. Mai, R. L. Oehler, R. L. Sandin & J. N. Greene, 2012: Curtobacterium brain abscess: case report. Infect. Dis. Clin. Pract. (Philadelphia) 20: 17-19. https://doi.org/10.1097/IPC.0b013e318255d5bc Shabbir, M. Z., T. Malys, y. V. Ivanon, J. Park, M. A. Shabbir, M. Rabbani, T. yagub & E. T. Harvill, 2015: Microbial communities present in the lower respiratory tract of clinically healthy birds in Pakistan. Poultry Sci. (Oxford) 94: 612-620. https://doi.org/10.3382/ps/pev010 Stenkat, J., M. E. Krautwald-Junghanns, A. Schitz-Ornes, A. Eilers & V. Schmidt, 2014: Aerobic cloacal and pharyngeal bacterial flora in six species of free-living birds. J. Appl. Microbiol. (Oxford) 117: 1564-1571. https://doi.org/10.1111/jam.12636 Tena, D., N. M. Martinez, J. Casanova, J. L. Garcia, E. Roman, M. J. Medina & J. A. Saez-Nieto, 2014: Possi- ble Exiguobacterium sibiricum skin infection in human. Emerg. Infect. Dis. (Atlanta) 20: 2178-2179. https:// dx.doi.org/10.3201/eid2012.140493 Tibra, N. K., S. Jalali, A. K. Reddy, R. Narayanan & R. Agarwal, 2010: Traumatic endophthalmitis caused by Staphylococcus gallinarum. J. Med. Microbiol. (London) 59: 365-366. https://doi.org/10.1099/jmm.0.011551-0 Tsiodras, S., T. Kelesidis, I. Kelesidis, U. Bauchinger & M. E. Falagas, 2008: Human infections associated with wild birds. J. Infect. (London) 56: 83-98. https://doi.org/10.1016/j.jinf.2007.11.001 Vancanneyt, M., P. Vandamme, P. Segers, U. Torck, R. Coopman, K. Kersters & K. H. Hinz, 1999: Riemerel- la columbina sp. nov., a bacterium associated with respiratory disease in pigeons. Int. J. Syst. Bacteriol. (Reading) 49: 289-295. https://doi.org/10.1099/00207713-49-1-289 Vuong, C. & M. Otto, 2002: Staphylococcus epidermidis infections. Microbes Infect. (Paris) 4:481-489. https://doi. org/10.1016/S1286-4579(02)01563-0 Waite, D. W. & M. W. Taylor, 2014: Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front. Microbiol. (Lausanne) 5: 223. https://doi.org/10.3389/fmicb.2014.00223 Waldenstrom, J., S. L. W. On, R. Ottvall, D. Hasselquist, C. S. Harrington & B. Olsen, 2003: Avian reser- voirs and zoonotic potential of the emerging human pathogen Helicobacter canadensis. Appl. Environ. Micro- biol. (Washington) 69: 7523-7526. https://doi.org/10.1128/AEM.69.12.7523-7526.2003 Xu, X., S. A. Miller, F. Baysal-Gurel, K. H. Gartemann, R. Eichenlaub & G. Rajashekara, 2010: Biolumi- nescence imaging of Clavibacter michiganensis subsp. michiganensis infection of tomato seeds and plants. Appl. Environ. Microbiol. (Washington) 76: 3978-3988. https://doi.org/10.1128/AEM.00493-10 yamazaki, A., J. Li, Q. Zeng, D. Khokhani, W. C. Hutchins, A. C. yost, E. Biddle, E. J. Toone, X. Chen & C. H. yang, 2012: Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas ae- ruginosa via a GacS-GacA two-component signal transduction system. Antimicrob. Agents. Chemoth. (Wash- ington) 56: 36-43. https://doi.org/10.1128/AAC.00732-11 folia biologica et geologica 58/1, 115–123, ljubljana 2017 SILVER FIR (ABIES ALBA MILL.) ECTOMyCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH EKTOMIKORIZNI SIMBIONTI BELE JELKE (ABIES ALBA MILL.) NA NARAVNEM OBMOČJU RAZŠIRJENOSTI - PREGLED Tina UNUK1,* & Tine GREBENC1 http://dx.doi.org/10.3986/fbg0025 abStRact Silver fir (Abies alba Mill.) ectomycorrhiza across its areal – a review approach Silver fir is a long-living ecologically valuable and in- digenous conifer species. In temperate forests it is consid- ered as a ˝stabilization tree species .̋ Currently, knowledge of silver fir ectomycorrhiza community is manly based on morphological-anatomical description of ectomycorrhizal fungi and their fruiting bodies. Only recently few studies were published in which authors identified ectomycorrhizal symbionts of silver fir with an aid of molecular (DNA-based) markers. We analysed the silver fir ectomycorrhiza diversity and species richness from different geographic areas and stand types. From all together nine original studies we cal- culated average species richness as well as a Bray-Curtis similarity index. The highest species diversity was observed in studies where a combination of morphological-anatomi- cal and molecular approaches were used for identification. Bray-Curtis similarity index indicated highest dissimilarity of the southern sites comparing to other areas. We correlat- ed the observed outcome to differences in soil conditions, climate, and only basic identification approach. Keywords: Silver fir, ectomycorrhiza, literature review, community composition, site conditions, species diversity, species richness iZVleČeK ektomikorizni simbionti bele jelke (Abies alba Mill.) na naravnem območju razširjenosti – pregled Bela jelka je vednozelena drevesna vrsta, ki ima v nara- vnih gozdovih ekološko pomembno vlogo, saj velja za stabi- lizacijsko drevesno vrsto. Podatki o ektomikoriznih simbi- ontih bele jelke pretežno temeljijo na morfološko- anatomskih opisih ektomikoriznih gliv in njihovih trosnja- kov. Šele v zadnjih letih je bilo objavljenih nekaj študij, v katerih so avtorji združbo ektomikoriznih gliv bele jelke analizirali z molekularnimi pristopi. V preglednem članku smo analizirali rezultate pestrosti ektomikorize bele jelke z devet lokacij in preračunali povprečne vrednostmi vrstne pestrosti ter Bray-Curtisov indeks podobnosti združb. Največjo vrstno pestrost smo ugotovili za vzhodni del areala bele jelke. Poleg ugodnih rastiščnih razmer k temu predvid- oma doprinesejo tudi kombinacija uporabljenih metod za identifikacijo. Bray-Curtisov indeks podobnosti združb kaže, da med zastopanimi regijami znotraj areala (centralna, vzhodna in južna) po vrstni sestavi najbolj odstopajo rastišča v južnem arealu bele jelke. Odstopanja vrstne sestave lahko povežemo z razlikami v pH tal, s tipom tal in s toplejšo, za belo jelko manj primerno klimo. Ključne besede: bela jelka, ekomikoriza, pregledni članek, združba ektomikorize na jelki, rastišči pogoji, bogastvo vrst, vrstna pestrost 1 Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia. * email: tina.unuk@gozdis.si T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 116 folia biologica et geologica 58/1 – 2017 Although in recent years few studies, focusing on ecto- mycorrhizae of silver fir (Abies alba Mill.) have been published, little is known about ectomycorrhiza spe- cies richness of silver fir along its geographic areal. Sil- ver fir is a long-living conifer and the largest tree (up to 60 m) in the genus Abies in Europe. The distribution area is limited mainly to the mountainous regions of eastern, western, southern and central Europe (Figure 1) (Westergren et al. 2010). Silver fir is also an eco- logically valuable and indigenous tree species (Eber- hardt et al. 2000). It is considered as a ˝stabilization tree species” as well as a key tree species, without which maintenance of selection structure in forest communi- ties would be difficult (Klopčič et al. 2009). As most European forest tree species, silver fir forms an ectomycorrhiza, a symbiosis with fungi from Ascomycota and Basidiomycota (Schirkonyer et al. 2013). Beside the exchange of nutrients and metabolites between symbiotic ectomycorrhizal fungi and plant host, formation of ectomycorrhizae on tree roots alters root growth (Smith & Read 2008) and protects them against root diseases, which increases the survival rate of silver fir seedlings (Schirkonyer et al. 2013). Currently ectomycorrhizal communities on silver fir remain poorly identified. Most silver fir ectomycor- rhiza descriptions were based on morphological and anatomical characteristics (Comandini et al. 2004, Pacioni et al. 2001, Cremer 2009) and characterized without the exact identification of fungal symbiont (Rudawska et al. 2016). In addition, some potential ec- tomycorrhiza fungi were connected to silver fir based on proximity of sporocarps occurrence (Lagana et al. 2000, 2002). Until now only few studies have been pub- lished in which authors had identified ectomycorrhiza on silver fir applying molecular (DNA-based) markers (Eberhardt et al. 2000, Cremer 2009, Wazny 2014, Schirkonyer et al. 2013, Rudawska et al. 2016, Wazny & Kowalski 2017). Ectomycorrhiza diversity and community struc- ture, tree age, rooting depth, soil characteristics, and other characteristics can be used as a prediction data for potentially altered tree responses in given environ- ments. To evaluate the significance of the ectomycor- rhiza community shifts, a base knowledge on the ecto- mycorrhiza diversity and community structure is re- quired. For this reason, we reviewed all published studies that focused ectomycorrhiza on silver fir to assess and analyse the species richness and its varia- tion on geographic gradient, and under generalized site conditions from the currently analysed locations. 1 INTRODUCTION 2 MATERIALS AND METHODS 2.1 collection of mycorrhizal occurrence data The review is based on published studies of ectomycor- rhiza on silver fir (Table 1) where at least the list of identified types of ectomycorrhiza and basic site char- acteristics such as soil pH, soil type, stand type and location of the study were given. Authors from reviewed studies have analysed ec- tomycorrhizal taxa either in pure adult natural silver fir stands, mixed stands with variable share of silver fir as well as from planted silver fir stands. Reviewed stands differ soil conditions, climatic condition, alti- tude and in tree species composition. Although most studies provided the stand characteristics, not all were readily available thus missing values for soil pH were gained either from online soil databases (soilgrids.org) or from other studies performed at the same study sites. Ectomycorrhiza studies on silver fir covered three general parts of the silver fir distribution areal in Eu- rope. The areal was also the rationale for grouping them into representative areas, namely southern, east- ern and central Europe. No studies were available for western part of its areal. The position of studied loca- tion in areal as well as silver fir distribution in Europe is given in Figure 1. 2.2 Data analyses From published papers the following variables have been extracted: number of ectomycorrhizal species of silver fir per study/site, basic soil characteristics (if given) such as soil pH and soil type, as well as type of stand in which ectomycorrhizal fungal of silver fir were analysed. To compare species richness between geographic areas, average species richness per geographic area was calculated (Atlas & Bartha 1981). To show similarity of communities among geographic areas we calculated a Bray-Curtis similarity index for species richness (Bray & Curtis 1957). T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 117folia biologica et geologica 58/1 – 2017 3.1 ectomycorrhizal fungal symbionts overview The review of published works on ectomycorrhiza on silver fir revealed nine studies where sufficient data and metadata were available, to be included in the re- view. Studies covered only central, eastern and south- ern part of the silver fir areal (Table 1, Figure 1). southern Europe 12 out of 18 different ectomycorrhiza taxa of silver fir were identified to a species level and the rest to a genus level. However, there were still 13 ectomycorrhiza fungal taxa that remained as unidenti- fied ectomycorrhiza. In central Europe, authors man- aged to identify 17 different ectomycorrhiza fungal taxa at a species level and 3 at a genus level. Figure 1: The location of reviewed stands and silver fir (Abies alba Mill.) distribution (source: EUFOR- GEN database). Slika 1: Lokacije analiziranih sestojev bele jelke (Abies alba Mill.) in območje razširjenosti bele jelke (vir: podatkovna baza EUFORGEN). 3 RESULTS table 1: Studies included in review. tabela 1: Študije vključene v pregled. geographic area Data Southern Europe Comandini et al. 2001 Lagana et al. 2002 Pacioni et al. 2006 Central Europe Schirkonyer et al. 2013 Cremer, 2009 Eastern Europe Wazny 2014 Rudawska et al. 2016 Wazny and Kowalski 2017 Kowalski 2008 The average number of different types of ectomy- corrhiza on silver fir was high, overall 85 different ec- tomycorrhizal types have been identified (Table 2). In eastern Europe 62 different ectomycorrhiza fungal taxa have been identified, however 5 ectomycorrhiza fungal taxa remained identified only at genus level. For table 2: Number of different identified ectomycorrhiza fungal taxa on silver fir and number of different identi- fied ectomycorrhiza taxa recorded per geographic area. tabela 2: Število različnih določenih ektomikoriznih glivnih taksonov bele jelke in število različnih določenih ekotmikoriznih glivnih taksonov zabeleženih po geografskih območjih. Overall number Southern Europe Eastern Europe Central Europe Unidentified species 85 18 62 20 13 By comparing emerging ectomycorrhiza fungal taxa among areas only few species were present at all areas, namely Byssocorticium atrovirens, Cenococcum geophilum and Laccaria amethystina. Southern Europe differed most in terms of ectomycorrhiza taxa diversi- ty while eastern and central Europe have much more species in common compared to southern Europe (Table 3). T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 118 folia biologica et geologica 58/1 – 2017 Fungal species Present at eastern Europe Present at southern Europe Present at central Europe Amanita rubescens + Amanita spissa + Amphinema byssoides + + Boletus edulis + + Boletus badius + Boletus pruinatus + + Byssocorticium atrovirens + + + Cantharellus sp. + Cenococcum geophilum + + + Clavulina cristata + + Clavulina rugosa + Cortinarius anomalus + Cortinarius casimiri + Cortinarius fulvescens + Cortinarius malachius + Cortinarius semisanguineus + Cortinarius sp. + Craterellus lutescens + Elaphomyces muricatus + Entoloma sp. + Genea sp. + + Geopora cervina + Hydnotrya bailii + Hydnotrya tulasnei + Hydnum repandum + Hydnum rufescens + Hygrophorus pudorinues + Hysterangium sp. + Imleria badia + Inocybe geophylla + Inocybe terrigena + Inocybe sp. + Laccaria amethystina + + + Laccaria laccata + Laccaria maritima + Lactarius aurantiacus + Lactarius camphoratus + Lactarius ichoratus + Lactarius intermedius + Lactarius lignyotus + Lactarius necator + Lactarius rufus + Lactarius salmonicolor + + Fungal species Present at eastern Europe Present at southern Europe Present at central Europe Lactarius scrobiculatus + Lactarius subericatus + Lactarius subdulcis + Lactarius sp. + Melanogaster variegatus + Meliniomyces variabilis + Mycena galopus + Paxillus involutus + + Phellodon niger + Piloderma byssinum + Piloderma fallax + Piloderma sp. + Pseudotomentella tristis + Russula amethystina + Russula cyanoxantha + Russula fellea + Russula integra + Russula nigricans + Russula ochroleuca + + Russula olivacea + Russula puellaris + Russula vesca + Russula xerampelina + Russula sp. + Scleroderma citrinum + Sebacina sp. + Thelephora terrestris + + Tomentella albomarginata + Tomentella botryoides + Tomentella ellisii + Tomentella stuposa + Tomentella sublilacina + Tomentella terrestris + Tomentella sp. + Tomentellopsis sp. + Tuber puberulum + Tuber sp. + Tricholoma bufonium + Tricholoma saponaceum + Tylopilus felleus + Tylospora asterophora + Tylospora fibrillosa + table 3: identified ectomycorrhiza fungal taxa in symbiosis with silver fir based on area their occurrence. + indicates present of the species in particular area. tabela 3: Določeni ektomikorizni glivni taksoni v simbiozi z belo jelko na podlagi njihovega območja pojavljanja. + označuje prisotnost vrste na posameznem območju. 3.2 Stands characteristic and ectomycorrhizal fungal species richness All reviewed studies have analysed pure silver fir stands as well as mixed or planted stands. The south- ern Europe stands deviate from other areas mainly by the average pH values which are significantly higher, compared to eastern and central Europe (Table 3). As well as pH also soil type differed between reviewed areas, although for southern Europe we could not gain information from original papers about soil character- istics. The highest average species richness was calculat- ed for eastern Europe sites and the lowest for central European sites (Figure 2). High standard deviation within areas indicates high variability among sites and individual soil samples. T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 119folia biologica et geologica 58/1 – 2017 As average species richness, specifically a standard deviation calculated for individual areas showed high differences inside the same area, we compared species richness by a stand type (Table 4). Except in central Europe, pure (monospecific) silver fir stands showed To show similarity of communities among re- viewed geographic areas, Bray-Curtis similarity index was calculated. The highest species richness similarity was calculated among eastern and central Europe, while southern Europe differed more from eastern and from central Europe (Table 5). The result coincides with pattern of ectomycorrhizal fungal species occur- rence. table 4: generalised characteristics of reviewed stands. tabela 4: Splošne značilnosti analiziranih sestojev. Geographic generalized area Reviewed stand type Soil characteristics pH Eastern Europe pure silver fir and mixed stands acid brown 4.46 ± 0.4 Southern Europe natural and planted silver fir stands not specified 6.1 ± 1.13 Central Europe pure silver fir and mixed stands middle-red sandstone 4.28 ± 0.17 Figure 2: Average ectomycorrhiza fungal taxa richness analysed for eastern, southern and central Europe. Slika 2: Povprečna pestrost ektomikoriznih glivnih taksonov analiziranih za območje vzhodne, južne in osrednje Evrope. table 5: average species richness for stand type and geographic area. tabela 5: Povprečna vrstna pestrost po tipih sestojev in geografskih območjih. Stand type Av. spec.richn. Monospecific silver fir stands Mixed stands with silver fir Plantation silver fir stands Eastern Europe 33.5 26.7 20 Southern Europe 27 / 21 Central Europe 15 33 / table 6: bray-curtis similarity index for species richness. tabela 6: bray-curtisov indeks podobnosti za vrstno pestrost. Geographic areas Bray-Curtis similarity index Eastern & southern Europe 0.13 Eastern & central Europe 0.24 Southern & central Europe 0.16 higher species richness than mixed stands and planta- tion stands. In central Europe species richness in mixed stands with silver fir was higher compared to natural silver fir stands, where have been detected half less species compared to mixed stands. 4 DISCUSSION 4.1 Silver fir ectomycorrhiza has high diversity potential that remains underexploited Silver fir ectomycorrhiza is not among better studied topics, what is reflecting in results of the review. From nine studies a relative high number of ectomycorrhizal taxa per site was retrieved, indicating a high potential for ectomycorrhiza diversity in silver fir stands. A high po- tential for hidden ectomycorrhiza taxa diversity on silver fir is also indicated with high number of types of ecto- mycorrhiza that remained unknown or identified only at genus level either due to lack of recognizable features or due to an insufficient identification method. Both in- dicate a need to study additional silver fir sites along the species distribution gradient in particular areas, where Silver fir ectomycorrhiza was not studied yet. 4.2 the silver fir ectomycorrhiza community differs among areas In this review, published studies have been grouped into three general parts, which were further compared based on species occurrence, species richness, envi- ronmental propertied as well as based on ectomycor- rhizal species similarity. Bray-Curtis similarity index for species richness showed higher similarity between eastern and central T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 120 folia biologica et geologica 58/1 – 2017 Europe, compared to southern Europe, which stands out. This could be a consequence of different climatic and environmental condition, as southern Europe is more characterized by Mediterranean conditions while silver fir prefers relatively high elevated areas (above 500 m a.s.l.) and requires high moisture condi- tions throughout the year (Tinner et al. 2013). This all can put silver fir in permanent stress conditions and a selection toward more resistant / pioneer types of ecto- mycorrhiza among which we identified at least genera Cenococcum, Genea, Hysterangium and Tuber. Silver fir tolerates a wide variety of soil types with different nutrient content and alkalinity conditions (Ruosch et al. 2015) associated ectomycorrhiza com- munity reacts to differences among site soils as only three ectomycorrhizal species were present at all areas, namely B. atrovirens, C. geophilum and L. amethystina. Several other types of ectomycorrhiza were present at two areas – eastern Europe and central Europe, name- ly Genea sp., Clavulina cristata, Russula ochroleuca, Thelephora terrestris etc. which favour conditions as well as on stand types in common for eastern and cen- tral sites. These species can also be regarded as gener- alist as they occur at two different geographic areas. Species richness analysis showed the highest ecto- mycorrhizal species richness in eastern Europe and on lowest species richness in central Europe. This result could be a consequence of either lower sampling inten- sity in central Europe or either of insufficient ectomy- corrhizas identification. As the sampling intensity of studies was in general between four till six-week peri- od, we can assume that beside the differences in envi- ronmental properties, the identification method was the mainly reason for a large ectomycorrhizas species richness differences between geographic areas. Analy- sis success of ectomycorrhiza fungal diversity based on morphological descriptions is often low and only rare- ly allows sufficient identification of mycorrhizas at the fungal species level (Rudawska et al. 2016). Only for eastern Europe sites DNA-based identifi- cation approaches were used for ectomycorrhiza iden- tification thus we assume, that higher number of ecto- mycorrhiza fungal species is a result of combination of methods used for identification (Suz et al. 2008). The ectomycorrhiza species richness differ also be- tween stand types. The species richness was higher at natural pure fir stands compared to mixed stands and plantation fir stands. Although it is generally accepted that co-occurrence of different host tree species within a stand promotes ectomycorrhiza diversity at the local scale (Rudawska et al. 2016), the ectomycorrhiza com- munities can be highly diverse even in a mono-specific stands (Cremer 2009). Many studies have shown that relevant factors determining the composition of the ec- tomycorrhizal fungi are age of the associated host trees and stand history (PACIOni et al. 2001, Lagana et al. 2002). Cremer (2009) indicated that adult silver fir trees on average, host higher number of different ecto- mycorrhiza than juvenile trees suggesting an increase of the ectomycorrhiza species richness over time. In case of other conifers, a rapid increase was shown in species richness and sporocarp productivity during first 30-40 years of the stand and a more gradual de- crease to a constant level afterwards (Comandini et al. 2004). This explains observations where the individual tree increased its ectomycorrhiza community richness in time by allowing multi-mycorrhization of its ex- pending root systems (Cremer 2009). Lack of some silver fir ectomycorrhizal fungi in analysed stands could be also a result of unfavourable site characteris- tics such as pH, litter and soil quality, climate, etc. (Ru- dawska et al. 2016). This explains the higher ectomy- corrhiza species richness at natural fir stands com- pared to planted sites supporting the idea to focus di- versity studies on either more natural or combination of natural and planted sites (Lagana et al. 2002). 4.3 Specialists versus generalist ectomycorrhiza species on silver fir At all investigated silver fir stands, Cenococcum ge- ophilum was present in most soil samples. The species is known to be one of the most widely distributed ecto- mycorrhizal fungal species in various ectomycorrhiza forests (Hrenko et al. 2009). Predominance of C. ge- ophilum can indicate thick organic layer or high fluc- tuations of soil temperature and moisture content as it is regarded as stress tolerant species and can persist as ectomycorrhiza up to 10 times longer compared to other ectomycorrhiza species (Lobuglio 1999). In such conditions, C. geophilum is a highly competitive ectomycorrhizal fungus. Similar Tomentella stuposa can be regarded as common ectomycorrhiza symbiont of silver fir with long list of ectomycorrhiza plant part- ners (Cremer 2009, Wazny 2014). Among silver fir specialist ectomycorrhizal fungi is Lactarius salmonicolor (Pillukat 1996). This ecto- mycorrhiza was found at silver fir stands in southern and eastern Europe, but was not recorded in central Europe. Other species that exhibit some level of silver fir preference are also L. albocarneus, L. intermedius and Russula spp. (Rudawska et al. 2016). From men- tioned Lactarius species, only L. intermedius has been identified in southern Europe. Absence of other silver fir-specialist ectomycorrhizal fungi in southern Eu- T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 121folia biologica et geologica 58/1 – 2017 rope can be a result of distinct climate and soil condi- tions or of an insufficient (e.g. only ectomycorrhiza morphology-based) identification. The occurrence of several other species and be re- lated to the area or forest type characteristics. Laccaria amethystina was also found in ectomycorrhiza with silver fir occurring regardless to the age of the stand, although it was previously regarded as an early stage ectomycorrhizal species (Cremer 2009). Occurrence of Clavulina cristata at stands in eastern and central Europe may indicate at high concentrations of Ca- and Mg-cations in the soil, as high cation concentrations positively affected the development of C. cristata in spruce and beech stands (Wazny 2014). CONCLUSSIONS All together nine studies were conducted focusing the ectomycorrhiza of silver fir. Observed differences in silver fir stands between analysed areas (eastern, southern and central Europe) reflect some of the gen- eral site characteristics while the strong bias cannot be excluded and likely related to insufficient sampling ef- fort and use of identification approaches and sampling strategies with poor discriminative power. POVZETEK Bela jelka je vednozelena drevesna vrsta iz rodu Abies, katere območje razširjenosti je omejeno na vzhodno, zahodno, južno ter centralno Evropo. Tako kot večina evropskih drevesnih vrst, tvori tudi bela jelka ektomi- korizno simbiozo z več vrstami gliv. Mikorizna simbi- oza je stalen simbiotski odnos med korenino rastline in glivo, pri katerem prihaja do dvosmernega pretoka hranil. Do sedaj je bilo objavljenih le nekaj študij v ka- teri so avtorji analizirali pestrost ektomikoriznih sim- biontov bele jelke. Trenutno, znanje o ektomikorizah bele jelke povečini temelji na morfološko-anatomskih opisih ektomikoriznih gliv in njihovih trosnjakov. V zadnjih letih je bilo objavljenih tudi nekaj študij, v ka- terih so avtorji za identifikacijo ektomikoriznih gliv- nih vrst uporabili tudi analize molekularnih marker- jev. V članku smo povzeli rezultate objavljenih študij in z analizami vrstne pestrosti in podobnosti združb, med seboj primerjali posamezna geografska območja ter tipe sestojev. Največja vrstna pestrost ektomikoriznih simbion- tov bele jelke je bila ugotovljena za območje vzhodne Evrope, medtem ko je južna Evropa najmanj vrstno pestra glede na število vrst ektomikoriz bele jelke. Ugotovljena razlika je najverjetneje posledica izbire identifikacijskih metod, saj so samo na območju vzho- dne Evrope, avtorji študij za identifikacijo ektomikori- znih gliv bele jelke uporabili tudi molekularne metode identifikacije – analize molekularnih markerjev. Vrstna pestrost se razlikuje tudi med posamezni- mi analiziranimi tipi sestojev. V naravnih sestojih bele jelke je vrstna pestrost ektomikoriznih gliv večja v pri- merjavi z umetnimi oz. mešanimi sestoji. Zraven sta- rosti sestojev so najverjetnejši vzroki za ugotovljeno razliko neugodni okoljski dejavniki. Pri primerjavi prisotnosti ektomikoriznih glivnih simbiontov na posameznem geografskem območju smo ugotovili, da se v vseh analiziranih sestojih poja- vljajo nekateri generalisti, kot npr. B. atrovirens, C. ge- ophilum in L. amethystine. Kljub prisotnosti nekaterih generalistov, se v analiziranih sestojih bele jelke poja- vljajo tudi vrste, ki preferirajo sestoje bele jelke, Lacta- rius salmonicolor, Lactarius intermedius ipd. Na podla- gi prisotnosti nekaterih ektomikroiznih glivnih vrst lahko ocenimo tudi starost sestojev ter lastnosti tal. Skupaj smo analizirali devet objavljenih študij, v katerih so se avtorji osredotočili na analize pestrosti ektomikoriznih gliv bele jelke. Ugotovljene razlike so zraven vpliva različnih lastnosti sestojev, najverjetneje rezultat uporabe identifikacijskih metod, kot tudi raz- ličnih metod ter časovne dinamike vzorčenja, katerih so se v svojih študijah poslužili avtorji. T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 122 folia biologica et geologica 58/1 – 2017 7 REFERENCES - LITERATURA Atlas, R. & R. Bartha, 1981: Introduction to microbiology. Boston. Bray, J. R. & J. T. Curtis, 1957: An ordination of upland forest communities of southern Wisconsin. Ecological Monographs (Washington) 27(4): 325-349. http://dx.doi.org/10.2307/1942268 Comandini, O., I. Haug, A. C. Rinaldi & T. W. Kuyper, 2004: Uniting Tricholoma sulphureum and T. bufonium. Mycological Research (London) 108(10): 1162-1171. https://doi.org/10.1017/S095375620400084X Cremer, E., K. Donges, S. Liepelt, K. H. Rexer, G. G. Vendramin, I. Leyer, G. Kost & B. Ziegenhagen, 2009: Ontogenetic and genotypic effects of silver fir (Abies alba Mill.) on associated ectomycorrhizal communities. In: Cremer, E. (ed): Population genetics of silver fir (Abies alba) in the Northern Black Forest-preconditions for the recolonization of wind throw areas and associated ectomycorrhizal communities. Phillipps-Universität Mar- burg, Biologie (Marburg, pp. 62-83). Eberhardt, U., F. Oberwinkler, A. Verbeken, A. C. Rinaldi, G. Pacioni & O. Comandin, 2000: Lactarius ectomycorrhizae on Abies alba: morphological description, molecular characterization, and taxonomic remarks. Mycologia (Oxfordshire) 92(5): 860-873. https://doi.org/10.2307/3761582 Euforgen database, 2017. EUFORGEN Secretariat. Rim. http://www.euforgen.org/forest-genetic-resources/poplars-clones-database/ Hrenko, M., B. Štupar, T. Grebenc & H. Kraigher, 2009: Mycobioindication method simplified : Sclerotia of Cenoco- ccum geophilum Fr. as indicators of stress in forest soils. V: Himmelbauer, M. (Ed.): Short paper abstracts : 7th ISRR Symposium root research and applications. Institute of Hydraulics and Rural Water Management (Vienna, p. 116). Klopčič, M., K. Jerina & A. Bončina, 2009: Long-term changes of structure and tree species composition in Dina- ric uneven-aged forests: are red deer an important factor? European Journal of Forest Research (Berlin) 129(3): 277-288. https://doi.org/10.1007/s10342-009-0325-z Kowalski, S., 2008: Mycorrhizaef of the European silver fir (Abies alba Mill.) seedlings from natural and artificial regeneration in forests of the Karkonosze National Park. In: Barzdajn, W. & A. Raj (eds): Silver fir in the Karko- nosze National Park. Karkonoski National Park (Jelenia Góra, 175–212 pp.). Lagana, A., E. Salerini, C. Barluzzi, C. Perini & V. De Dominicis, 2000: Mycocoenology in Abies alba Miller woods of central-southern Tuscany (Italy). Acta societatis Botanicorum Poloniae (Varšava) 69(4): 293-298. https://doi.org/10.5586/asbp.2000.039 Lagana, A., C. Angioli, S. Loppi, E. Salerini, C. Perini, C. Barluzzi & V. De Dominicis, 2002: Periodicity, fluctuations and successions of macrofungi in fir forests (Abies alba Miller) in Tuscany, Italy. Forest Ecology and Management (Amsterdam) 169(3): 187-202. https://doi.org/10.1016/S0378-1127(01)00672-7 Lobuglio, K. F., 1999: Cenococcum. In: Cairney J. W. G & S. M. Chambers (eds.): Ectomycorrhizal fungi: key gene- ra in profile. Springer-Verlag Berlin. (Berlin, 287–309 pp.). https://doi.org/10.1007/978-3-662-06827-4 Pacioni, G., O. Comandini & A. C. Rinaldi, 2001: An assessment of below-ground ectomycorrhizal diversity of Abies alba miller in central Italy. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology (Firenze) 135(3): 337-350. https://doi.org/10.1080/11263500112331350960 Pillukat, A., 1996: Lactarius salmonicolor R. Heim &Leclair + Abies alba Mill. Descr Ectomyc (Schwäbisch Gmünd) 2: 59–64. https://doi.org/10.2307/3761582 Rudawska, M., M. Pietras, I. Smutek, P. Strzelisnki & T. Leski, 2016: Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza (Berlin) 26(1): 57-65. https://doi.org/10.1007/ s00572-015-0646-3 Ruosch, M., R. Spahni , F. Joos, P. D. Henne, W.O. Van der Knaap & W. Tinner, 2015: Past and future evolu- tion of Abies alba forests in Europe – comparison of a dynamic vegetation model with paleo data and observati- ons. Global Change Biology (Switzerland) 22: 727-740. https://doi.org/10.1111/gcb.13075 Schirkonyer, U., C. Bauer & G. M. Rothe, 2013: Ectomycorrhizal diversity at five different tree species in forests of the Taunus Mountains in Central Germany. Open Journal of Ecology (Berlin) 3(1): 66-81. https://doi. org/10.4236/oje.2013.31009 Smith, S. E. & D. J. Read, 2008: Mycorrhizal Symbiosis. London. Suz, L. M., A. M. Azul, M. H. Morris, C. S. Bledsoe & M. P. Martin, 2008: Morphotyping and Molecular Me- thods to Characterize Ectomycorrhizal Roots and Hyphae in Soil. In: Nautiyal C. S. & P. Dion (Eds.): Molecular Mechanisms of Plant and Microbe Coexistence. Heidelberg: Springer Berlin Heidelberg. (Berlin, 437-474 pp.). https://doi.org/10.1007/978-3-540-75575-3 T. UNUK & T. GREBENC: SILVER FIR (ABIES ALBA MILL.) ECTOMYCORRHIZA ACROSS ITS AREAL – A REVIEW APPROACH 123folia biologica et geologica 58/1 – 2017 Tinner, W., D. Colombaroli, O. Heiri, P. D. Henne, M. Seitnacher, J. Untenecker, E. Vescovi, J. R. M. Allern, G. Carro, M. Conedera, F. Joos, A. F. Lotter, J. Luterbacher, S. Sanartin & V. Valsecchi, 2013: The past ecology of Abies alba provides new perspectives on future responsesn of silver fir forests to global warming. Ecological Monographs (Washington) 83(4): 419-439. https://doi.org/10.1890/12-2231.1 Wazny, R., 2014: Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Annals of Forest Science (Paris) 71(7): 801-810. https://doi. org/10.1007/s13595-014-0378-0 Wazny, R. & S. Kowalski, 2017: Ectomycorrhizal fungal communities of silver-fir seedlings regenerating in fir stan- ds and larch forecrops. Trees (Berlin): 1-11. https://doi.org/10.1007/s00468-016-1518-y Westergren, M., A. Poljanec & H. Kraigher, 2010: Tehnične smernice za ohranjanje in rabo genskih virov : bela jelka : Abies alba : Sloveenija. Gozdarski vestnik (Ljubljana) 68 (10): 491-494. NAVODILA AVTORJEM Folia biologica et geologica so znanstvena revija IV. razreda SAZU za naravoslovne vede. Objavljajo naravoslovne znanstvene razprave in pregledne članke, ki se nanašajo predvsem na raziskave v našem etničnem območju Slovenije, pa tudi raziskave na območju Evrope in širše, ki so pomembne, potrebne ali primerljive za naša preučevanja. 1. ZNANSTVENA RAZPRAVA Znanstvena razprava zajema celovit opis izvirne raziskave, ki vključuje teoretični pregled tematike, po- drobno predstavlja rezultate z razpravo in zaključki ali sklepi in pregled citiranih avtorjev. V izjemnih primerih so namesto literaturnega pregleda dovoljeni viri, če to zahteva vsebina razprave. Razprava naj ima klasično razčlenitev (uvod, ma- terial in metode, rezultati, diskusija z zaključki, zahvale, literatura idr.). Dolžina razprave, vključno s tabelami, grafikoni, tablami, slikami ipd., praviloma ne sme presegati 2 avtor- skih pol oziroma 30 strani tipkopisa. Zaželene so razpra- ve v obsegu ene avtorske pole oziroma do dvajset strani tipkopisa. Razpravo ocenjujeta recenzenta, od katerih je eden praviloma član SAZU, drugi pa ustrezni tuji strokovnjak. Recenzente na predlog uredniškega odbora revije Folia biologica et geologica potrdi IV. razred SAZU. Razprava gre v tisk, ko jo na predlog uredniškega odbora na seji sprejmeta IV. razred in predsedstvo SAZU. 2. PREGLEDNI ČLANEK Pregledni članek objavljamo po posvetu uredniške- ga odbora z avtorjem. Na predlog uredniškega odbora ga sprejmeta IV. razred in predsedstvo SAZU. Članek naj praviloma obsega največ 3 avtorske pole (tj. do 50 tipka- nih strani). 3. NOVOSTI Revija objavlja krajše znanstveno zanimive in aktu- alne prispevke do 7000 znakov. 4. IZVIRNOST PRISPEVKA Razprava oziroma članek, objavljen v reviji Folia biologica et geologica, ne sme biti predhodno objavljen v drugih revijah ali knjigah. 5. JEZIK Razprava ali članek sta lahko pisana v slovenščini ali katerem od svetovnih jezikov. V slovenščini zlasti te- daj, če je tematika lokalnega značaja. Prevod iz svetovnih jezikov in jezikovno lektorira- nje oskrbi avtor prispevka, če ni v uredniškem odboru dogovorjeno drugače. 6. POVZETEK Za razprave ali članke, pisane v slovenščini, mora biti povzetek v angleščini, za razprave ali članke v tujem jeziku ustrezen slovenski povzetek. Povzetek mora biti do- volj obširen, da je tematika jasno prikazana in razumljiva domačemu in tujemu bralcu. Dati mora informacijo o na- menu, metodi, rezultatu in zaključkih. Okvirno naj pov- zetek zajema 10 do 20 % obsega razprave oziroma članka. 7. IZVLEČEK Izvleček mora podati jedrnato informacijo o na- menu in zaključkih razprave ali članka. Napisan mora biti v slovenskem in angleškem jeziku. 8. KLJUČNE BESEDE Število ključnih besed naj ne presega 10 besed. Pred- staviti morajo področje raziskave, podane v razpravi ali članku. Napisane morajo biti v slovenskem in angleškem jeziku. 9. NASLOV RAZPRAVE ALI ČLANKA Naslov razprave ali članka naj bo kratek in razum- ljiv. Za naslovom sledi ime/imena avtorja/avtorjev (ime in priimek). 10. NASLOV AVTORJA/AVTORJEV Pod ključnimi besedami spodaj je naslov avtorja/ avtorjev, in sicer akademski naslov, ime, priimek, ustano- va, mesto z oznako države in poštno številko, država, ali elektronski poštni naslov. 11. UVOD Uvod se mora nanašati le na vsebino razprave ali članka. 12. ZAKLJUČKI ALI SKLEPI Zaključki ali sklepi morajo vsebovati sintezo glavnih ugotovitev glede na zastavljena vprašanja in razrešujejo ali nakazujejo problem raziskave. 13. TABELE, TABLE, GRAFIKONI, SLIKE IPD. Tabele, table, grafikoni, slike ipd. v razpravi ali član- ku naj bodo jasne, njihovo mesto mora biti nedvoumno označeno, njihovo število naj racionalno ustreza vsebini. Tabele, table, slike, ilustracije, grafikoni ipd. skupaj z na- slovi naj bodo priloženi na posebnih listih. Če so slike v digitalni obliki, morajo biti pripravljene u zapisu .tiff v barvni skali cMYK in resoluciji vsaj 300 DPi/inch. Risa- ne slike pa v zapisu .eps. Pri fitocenoloških tabelah se tam, kjer ni zastopana rastlinska vrsta, natisne pika. 14. LITERATURA IN VIRI Uporabljeno literaturo citiramo med besedilom. Citirane avtorje pišemo v kapitelkah. Enega avtorja piše- mo » (Priimek leto)« ali »(Priimek leto: strani)« ali »Pri- imek leto« [npr. (Bukry 1974) ali (Oberdorfer 1979: 218) ali ... Poldini (1991) ...]. Če citiramo več del istega avtorja, objavljenih v istem letu, posamezno delo ozna- čimo po abecednem redu »Priimek leto mala črka« [npr. ...Horvatić (1963 a)... ali (Horvatić 1963 b)]. Avtor- jem z enakim priimkom dodamo pred priimkom prvo črko imena (npr. R. Tuxen ali J. Tuxen). Več avtorjev istega dela citiramo po naslednjih načelih: delo do treh avtorjev »Priimek, Priimek & Priimek leto: strani« [npr. (Shearer, Papike & Simon 1984) ali Pearce & Cann (1973: 290-300)...]. Če so več kot trije avtorji, citiramo »Priimek prvega avtorja et al. leto: strani« ali »Priimek prvega avtorja s sodelavci leto« [npr. Noll et al. 1996: 590 ali ...Meusel s sodelavci (1965)]. Literaturo uredimo po abecednem redu. Imena av- torjev pišemo v kapitelkah: – Razprava ali članek: Dakskobler, L, 1997: Geografske variante asoci- acije Seslerio autumnalis-Fagetum (Ht.) M. Wraber ex Borhidi 1963. Razprave IV razreda SAZU (Ljubljana) 38 (8): 165–255. Kajfež, L. & A. Hočevar, 1984: Klima. Tlatvorni činitelji. V D. Stepančič: Komentar k listu Murska Sobota. Osnovna pedološka karta SFRJ. Pedološka karta Slovenije 1:50.000 (Ljubljana): 7–9. Le Loeuff, J., E. Buffeaut, M. Martin & H. Tong, 1993: Decouverte d’Hadrosauridae (Dinosauria, Orni thischia) dans le Maastrichtien des Corbieres (Aude, France). C. R. Acad. Sci. Paris, t. 316, Ser. II: 1023–1029. – Knjiga: GORTANI, L. & M. GORTANI, 1905: Flora Friuliana. Udine. Če sta različna kraja založbe in tiskarne, se navaja kraj založbe. – elaborat ali poročilo: PRUS, T., 1999: Tla severne Istre. Biotehniška fakulteta. Univerza v Ljubljani. Center za pedologijo in varstvo okolja. Oddelek za agronomijo. Ljubljana. (Elabo- rat, 10 str.). – atlasi, karte, načrti ipd.: KLIMATOGRAFIJA Slovenije 1988: Prvi zvezek: Temperatura zraka 1951–1980. Hidrometeorološki zavod SR Slovenije. Ljubljana. LETNO poročilo meteorološke službe za leto 1957. Hidrometeorološki zavod SR Slovenije. Ljubljana. Za vire veljajo enaka pravila kot za literaturo. 15. LATINSKA IMENA TAKSONOV Latinska imena rodov, vrst in infraspecifičnih tak- sonov se pišejo kurzivno. V fitocenoloških razpravah ali člankih se vsi sintaksoni pišejo kurzivno. 16. FORMAT IN OBLIKA RAZPRAVE ALI ČLAN- KA Članek naj bo pisan v formatu RTF z medvrstičnim razmikom 1,5 na A4 (DIN) formatu. Uredniku je treba oddati izvirnik in kopijo ter zapis na disketi 3,5 ali na CD-ROM-u. Tabele in slike so posebej priložene tekstu. Slike so lahko priložene kot datoteke na CD-ROM-u, za podrobnosti se vpraša uredništvo. INSTRUCTIONS FOR AUTHORS Folia biologica et geologica is a scientific periodical of the Classis IV: Natural history that publishes natural sci- entific proceedings and review articles referring mainly to researches in ethnic region of ours, and also in Europe and elsewhere being of importance, necessity and comparison to our researches. 1. SCIENTIFIC TREATISE It is the entire description of novel research includ- ing the theoretical review of the subjects, presenting in detail the results, conclusions, and the survey of litera- ture of the authors cited. In exceptional cases the survey of literature may be replaced by sources, if the purport requires it. It should be composed in classic manner: introduc- tion, material and methods, results, discussion with con- clusions, acknowledgments, literature, etc. The treatise should not be longer than 30 pages, in- cluding tables, graphs, figures and others. Much desired are treatises of 20 pages. The treatises are reviewed by two reviewers, one of them being member of SASA as a rule, the other one a foreign expert. The reviewers are confirmed by the Classis IV SASA upon the proposal of the editorial board of Folia biologica et geologica. The treatise shall be printed when adopted upon the proposal of the editorial board by Classis IV and the Presidency SASA. 2. REVIEW ARTICLE On consultation with the editorial board and the author, the review article shall be published. Classis IV and the Presidency SASA upon the proposal of the edito- rial board adopt it. It should not be longer than 50 pages. 3. NEWS The periodical publishes short, scientificaly relevant and topical articles up to 7000 characters in lenght. 4. NOVELTy OF THE CONTRIBUTION The treatise or article ought not to be published previously in other periodicals or books. 5. LANGUAGE The treatise or article may be written in one of world language and in Slovenian language especially when the subjects are of local character. The author of the treatise or article provides the translation into slovenian language and corresponding editing, unless otherwise agreed by the editorial board. 6. SUMMARy When the treatise or article is written in Slovenian, the summary should be in English. When they are in foreign language, the summary should be in Slovenian. It should be so extensive that the subjects are clear and understandable to domestic and foreign reader. It should give the information about the intention, method, result, and conclusions of the treatise or article. It should not be longer than 10 to 20% of the treatise or article itself. 7. ABSTRACT It should give concise information about the inten- tion and conclusions of the treatise or article. It must be written in English and Slovenian. 8. KEy WORDS The number of key words should not exceed 10 words. They must present the topic of the research in the treatise or article and written in English and Slovenian. 9. TITLE OF TREATISE OR ARTICLE It should be short and understandable. It is fol- lowed by the name/names of the author/authors (name and surname). 10. ADDRESS OF AUTHOR/AUTHORS The address of author/authors should be at the bot- tom of the page: academic title, name, surname, institu- tion, town and state mark, post number, state, or e-mail of the author/authors. 11. INTRODUCTION Its contents should refer to the purports of the trea- tise or article only. 12. CONCLUSIONS Conclusions ought to include the synthesis of the main statements resolving or indicating the problems of the research. 13. TABLES, GRAPHS, FIGURES, ETC. They should be clear, their place should be marked unambiguously, and the number of them must ration- ally respond to the purport itself. Tables, figures, illus- trations, graphs, etc. should be added within separated sheets. In case that pictures in digital form, tiFF format and cMYK colour scale with 300 DPi/inch resolution should be used. For drawn pictures, ePS format should be used. In cases, when certan plant species are not represented, a dot should be always printed in phytocenologic tables. 14. LITERATURE AND SOURCES The literature used is to be cited within the text. The citation of the authors is to be marked in capitals. One writes the single author as follows: “(Surname year)” or “(Surname year: pages)” or “Surname year” [(Bukry 1974) or (Oberdorfer 1979: 218) or ... Poldini (1991)...]. The works of the same author are to be cited in alphabeti- cal order: “Surname year small letter” [...Horvatić (1963 a)... or (Horvatić (1963 b)]. The first letter of the au- thor’s name is to be added when the surname of several authors is the same (R. Tuxen or J. Tuxen). When there are two or three authors, the citation is to be as follows: “Surname, Surname & Surname year: pages” [(Shearer, Papike & Simon 1984) or Pearce & Cann (1973: 290- 300)...]. When there are more than three authors, the ci- tation is to be as follows: “Surname of the first one et al. year: pages” or “Surname of the first one with collabora- tors year” [Noll et al. 1996: 590 or Meusel with collabo- rators (1965)]. The literature is to be cited in alphabetical order. The author’s name is written in capitals as follows: – treatise or article: Dakskobler, L, 1997: Geografske variante asoci- acije Seslerio autumnalis-Fagetum (Ht.) M. Wraber ex Borhidi 1963. Razprave IV. Razreda SAZU (Ljubljana) 38 (8): 165-255. Kajfež, L. & A. Hočevar, 1984: Klima. Tlatvorni činitelji. V D. Stepančič: Komentar k listu Murska Sobota. Osnovna pedološka karta SFRJ. Pedološka karta Slovenije 1:50.000 (Ljubljana): 7–9. Le Loeuff, J., E. Buffeaut, M. Martin & H. Tong, 1993: Déecouverte d’Hadrosauridae (Dinosauria, Ornithis- chia) dans le Maastrichtien des Corbieres (Aude, France). C. R. Acad. Sci. Paris, t. 316, Ser. II: 1023-1029. – book: GORTANI, L. & M. GORTANI, 1905: Flora Friuliana. Udine. In case that the location of publishing and printing are different, the location of publishing is quoted. – elaborate or report: PRUS, T., 1999: Tla severne Istre. Biotehniška fakulteta. Univerza v Ljubljani. Center za pedologijo in varstvo okolja. Oddelek za agronomijo. Ljubljana. (Elabo- rat, 10 str.). – atlases, maps, plans, etc.: KLIMATOGRAFIJA Slovenije 1988: Prvi zvezek: Temperatura zraka 1951-1980. Hidrometeorološki zavod SR Slovenije. Ljubljana. LETN0 poročilo meteorološke službe za leto 1957. Hidrometeorološki zavod SR Slovenije. Ljubljana. The same rules hold for sources. 15. LATIN NAMES OF TAXA Latin names for order, series, and infraspecific taxa are to be written in italics. All syntaxa written in phyto- coenological treatises or articles are to be in italics. 16. SIZE AND FORM OF THE TREATISE OR AR- TICLE The contribution should be written in RTF format, spacing lines 1.5 on A4 (DIN) size. The original and copy ought to be sent to the editor on diskette 3.5 or on CD- Rom. Tables and figures are to be added separately. Figures may be added as files on CD-Rom. The editorial board is to your disposal giving you detailed information. 17. THE TERM OF DELIVERy The latest term to deliver your contribution is May 31. FOLIA BIOLOGICA ET GEOLOGICA 58/1 - 2017 Slovenska akademija znanosti in umetnosti v Ljubljani Grafična priprava za tisk Medija grafično oblikovanje, d.o.o. Tisk Abo Grafika d.o.o. Ljubljana 2017 FOLIA BIOLOGICA ET GEOLOGICA = Ex RAZPRAVE IV. RAZREDA sAZu issn 1855-7996 · Letnik / Volume 58 · Številka / Number 1 · 2017 RazpRave / essays FO LI A B IO LO G IC A E T G EO LO G IC A 58 /1 – 2 01 7 58/1 · 2017 vseBINa / CoNteNts ISSN 1855-7996 | 25,00 € Igor Dakskobler & Branko Zupan two new scree plant communities in the triglav Mountains (Julian alps, slovenia) Dve novi rastlinski združbi melišč v triglavskem pogorju (Julijske alpe, slovenija) Igor Dakskobler, Andrej Martinčič & Daniel Rojšek New localities of Adiantum capillus-veneris in the river-basin of volarja/volarnik (the Julian alps) and phytosociological analysis of its sites Nova nahajališča vrste Adiantum capillus-veneris v porečju volarje/volarnika (Julijske alpe) in fitocenološka analiza njenih rastišč Jožica Gričar značilnosti zgradbe lesa sadik bora (Pinus sylvestris) in bukve (Fagus sylvatica) izpostavljenih trem različnim okoljskim razmeram Characteristics of wood structure of pine (Pinus sylvestris) and beech (Fagus sylvatica) seedlings exposed to different environmental regimes Vasja Mikuž, Aleš Šoster & Špela Ulaga Fosilni ribji zobje iz najdišč med trbovljami in Laškim Fossil fish teeth from sites between trbovlje and Laško, slovenia Tanja Mrak Razširjenost lišajev iz skupine Lobaria s. lat. v sloveniji Distribution of lichens from the Lobaria s. lat. group in slovenia Rebeka Šiling & Mateja Germ pomen makrofitov v jezerskem ekosistemu the importance of macrophytes in lake ecosystem Jure Škraban, Tjaša Matjašič, Franc Janžekovič, Gottfried Wilharm & Janja Trček Cultivable bacterial microbiota from choanae of free-living birds captured in slovenia Kultivabilna bakterijska mikrobiota iz sapišč prostoživečih ptic, ujetih v sloveniji Tina Unuk & Tine Grebenc silver fir (Abies alba Mill.) ectomycorrhiza across its areal – a review approach ektomikorizni simbionti bele jelke (Abies alba Mill.) na naravnem območju razširjenosti - pregled