Korozijska odpornost tračno navarjenih posod izdelanih iz drobnozrnatega mikrolegiranega jekla NIOMOL 490

Corrosion Resistance of Vessels Manufactured from Finegrained Microalloyed Steel NIOMOL 490 with Built-up Strips

B. Godec, J. Vojvodič-Gvardjančič, Inštitut za metalne konstrukcije, Ljubljana L. Vehovar, Inštitut za kovinske materiale in tehnologije, Ljubljana

Izdelana je bila podnica D/R/v/t = 1000/1000/100/12 z rotacijskim vlečenjem po hladnem postopku iz mikrolegiranega finozrnatega jekla NIOMOL 490, nanj pa navarjen nerjavni trak INOX-TR 22/12/9. Raziskali smo korozijsko odpornost tako izdelane podnice s pomočjo korozijskih testov po ASTM in selektivnih elektrokemičnih korozijskih meritev, z namenom določiti korozijsko obstojnost navara v medijih procesne tehnike, prehrambene, papirne in kemične industrije. Določili smo vrsto korozije, ki se v dani situaciji lahko manifestira in nevarnost, ki jo ta predstavlja.

Ključne besede: tračno navarjanje, posoda, korozijska odpornost

Cold rotary drawing was applied to manufacture a bottom of the following dimensions: D/R/v/t = 1000/1000/100/12. Low-alloyed finegrained NIOMOL 490 steel was used as the base material. An INOX - TR 22/12/9 stainless steel strip was welded onto the bottom. Corrosive resistance of thus manufactured bottom was tested according to the ASTM corrosion tests, and with selective electrochemical corrosion measurements in order to find the corrosion of weld resistance in the media existing in the food in the paper and in the chemical industry. The type of corrosion was determined which could appear in a given situation and represent a danger for a possible failure.

Key words: built up-strips welding, vessel, corrosion resistance.

1. Uvod

Uporaba posebnih pločevin za izdelavo tlačnih posod, rezervoarjev in druge opreme za skladiščenje agresivnih medijev iz ekonomskega stališča ni vedno najboljša rešitev, saj za zaščito pred škodljivimi vplivi medija zadošča tanka plast tega materiala, nosilni del konstrukcije pa je smotrneje izdelati iz običajnih kvalitet jekla. Rešitev tega je lahko platirano jeklo, kjer osnovni material zagotavlja ustrezno nosilnost, plemeniti sloj pa ustrezno obstojnost v agresivnem mediju.

Raziskali smo možnost izdelave tračno navarjenih pločevin z uporabo mikrolegiranega jekla NIOMOL 490.

Preiskave smo vršili na podnici, ki predstavlja najbolj kritični del posode. Podnica je dimenzij D/R/v/t = 1000/1000/100/12 mm in izdelana z rotacijskim vlečenjem po hladnem postopku (slika 1). Podnica je izdelana iz jekla NIOMOL 490 debeline 12 mm, za tračno navarjanje pod praškom pa smo izbrali dodajni material domače proizvodnje in sicer nerjavni trak 1NOX-TR 22/12/9 in aglomerirani prašek OP 71 Cr Železarne Jesenice.

Iz dosedanjih preiskav smo ugotovili, da oblikovanje podnice na stroju za rotacijsko vlečenje po hladnem postopku poslabša žilavost materiala. Meja plastičnosti in natezna trdnost sta se pri tem zvišali, čemur je vzrok utrjevanje materiala pri hladni deformaciji, ki je najbolj izraženo na skrajnem robu podnice in na prehodu območja malega radija v območje ravnega

Slika 1. Prikaz tračno navarjene podnice. Figure 1. Appearance of bottom with a built-up strip.

priviha. Izkazalo se je tudi, da je pravilnejša tehnika dvovarkovnega navarjanja, ker je pri enovarkovnem navaru struktura pod navarom neugodna. Zaradi vnosa toplote je velikost zrna prevelika, medtem ko termični vpliv drugega navara ugodno vpliva na strukturo v toplotno vplivanem področju³.

Korozijska obstojnost podnice je vezana s korozijskimi lastnostmi navarjenega nerjavnega navara. Pod vplivom varjenja (vnos toplote) pride do določenih sprememb, kar lahko spremeni korozijsko obstojnost navara.

2. Namen raziskav

Ker se bodo posode uporabljale za skladiščenje različnih medijev, smo želeli ugotoviti korozijsko obstojnost navara v različnih medijih. Zanimalo nas je katera vrsta korozije se v dani situaciji lahko manifestira in kakšno nevarnost predstavlja. Želeli smo določiti lastnosti pasivnega filma, ki se tvori na nerjavnem jeklu in kakšne so njegove sposobnosti repasivacije pri poškodbah v določenih agresivnejših medijih.

3. Korozijska odpornost austenitnih nerjavnih jekel

Austenitna nerjavna jekla vsebujejo krom in nikelj, nekatera pa še molibden. To so nemagnetna jekla, ki jih ne moremo toplotno obdelati. S hladno predelavo postanejo rahlo magnetna. Tipični predstavnik teh jekel je kvaliteta Č.4580, ki vsebuje 18% Cr in 18 % Ni².

Pri austenitnih nerjavnih jeklih lahko nastopi interkristalna korozija, ki jo povzročajo kromovi karbidi, izločeni po mejah austenitnih zm in pa nastajanje ∂ ferita, ki je ravno tako s kromom bogata faza'.

Do izločanja karbidov po mejah austenitnih zrn pride pri počasnem ohlajanju v temperaturnem območju med približno 425 in 870°C. Topnost ogljika v 18-8 nerjavnem jeklu je prikazana na sliki 2³.

Slika 2. Binami diagram za Fe-18% Cr-8% Ni zlitino z različnim deležem ogljika.

Figure 2. Binary diagram of Fe-18% Cr-8% Ni alloy with various carbon amounts.

Iz diagrama lahko povzamemo, da austenit raztaplja v odvisnosti od temperature le določeno količino ogljika. To je na diagramu prikazano s črto, ki je označena kot meja topnosti ogljika v austenitu. Z ohlajanjem iz višje temperature pa se ogljik izloča v obliki različnih karbidov M₂₃C₆.

Slika 3. Topnost ogljika v austenitu pri različnih temperaturah in izločanje M₂₂C₆ karbidov.

Figure 3. Carbon solubility in austenite at various temperatures, and the precipitation of M₁,C_n.

Iz diagrama na sliki 3 je razvidno, da v primeru, ko je vsebnost ogljika več kot 0,03 % se bodo pri ohlajanju po črti topnosti izločali karbidi $M_{15}C_8$. Ker je glavni karbidotvorec krom, so izločeni karbidi prvenstveno $Cr_{21}C_8$. Kromovi karbidi izločeni po mejah zrn povzročajo osiromašenje neposredne okolice s kromom in s tem so dani pogoji za interkristalno korozijo, oziroma napetostno interkristalno korozijo, če je material obremenjen.

Vpliv & ferita

Ta faza je bogata s kromom. Predstavlja precejšne težave pri predelavi v vročem, njena prisotnost pa znižuje korozijsko odpornost proti pitting koroziji. Če δ ferit izolira feritna zma v duplex nerjavnih jeklih, potem znatno izboljša odpornost do napetostne korozije. Izločena v obliki neprekinjene mreže po mejah zm pa povečuje občutljivost materiala na interkristalno korozijo. Zvari austenitnih nerjavnih jekel pa tudi litin vsebujejo določeno količino δ ferita, kar je zaželjeno. V kloridnih raztopinah δ ferit znižuje občutljivost austenitnih nerjavnih jekel do napetostne korozije, kar zavira širjenje transkristalnih razpok po austenitnih zrnih³.

4. Eksperimentalni del

4.1. Kemična sestava navara

Tračno navarjanje je bilo izvedeno z nerjavnim trakom INOX TR 22/12/9 in aglomeriranim praškom OP 71 Cr Železarne Jesenice. Na velikem radiju je varjeno enovarkovno (C - navar enovarkovno), dočim je na malem radiju varjeno dvovarkovno (A - navar dvovarkovno zgoraj, B - navar dvovarkovno spodaj), s polovično širino traku.

Nerjavni trak in nerjavni navar imata po proizvajalčevih podatkih naslednjo sestavo in lastnosti:

Tabela 1. Kemična sestava in dimenzija traku

Kemična sestava traku	С	Si	Mn	Cr	Ni
INOX-TR 22/12/9 (%)	0,18	0,50	9,0	21.5	11.5
Dimenzija traku (mm)			60 x 50		

B. Godec et. al.: Korozijska odpornost tračno navarjenih posod izdelanih iz drobnozrnatega mikrolegiranega jekla NIOMOL 490

Tabela 2. Lastnosti navarov

	Višina (mm)			Širina (mm)		
Enoslojni navar	4,2			6	63	
Dvoslojni navar	8		65			
Kemična sestava navara (%)	С	Si	Mn	Cr	Ni	
Enoslojní navar	0,18	1.0	5,5	16	8.5	
Dvoslojni navar	0.18	1,0	6,5	19.5	9.5	
Trdota navara	(HV 2/30)					
Enoslojni	160 HV					
Dvoslojni	169 HV					

Izvršena je bila kemična analiza navara na preiskovani podnici in sicer navar A. Analiza je dala naslednje rezultate:

Tabela 3. Kemična sestava čistega navara

Kemična	С	Si	Mn	Р	S	Сг	Ni
sestava	0,21	1,28	5.55	0,028	0,008	21	11.89
navara	Mo	Cu	Nb	Ti	Со	Al	W
$(C_{\mathcal{X}})$	0,12	0,10	0,028	0,007	0,042	0,009	0.047

Analiza kaže na nekoliko višjo vsebnost Cr in Ni in na nekoliko nižjo vsebnost Mn, kot jo predvideva proizvajalec. Vsebnost C je precej visoka. Nb in Ti ne delujeta kot stabilizatorja, ker se nahajata v premajhni količini.

4.2. Metalografska preiskava navara

 4.2.1 Mikrostrukturne značilnosti dvoslojnega in enoslojnega navara

Na sliki 4 je prikazana mikrostruktura na prehodu med osnovnim materialom in nerjavnim navarom. Osnova je NIOMOL 490 s feritno bainitno mikrostrukturo v razmeroma široki toplotno vplivani coni, v kateri se je izoblikovalo grobo zrno. V navaru se je izoblikovala transkristalna cona, kar je običajno za hitro odvajanje toplote. V coni mešanja je manj izločenih karbidov, kar je posledica nižje vsebnosti ogljika (NIOMOL 490 ima od 0.05-0.10 % C) in kroma. V čistem zvaru (zgoraj) je austenit z izločenimi karbidi po mejah grobih transkristalov in v meddendritnih prostorih.

Slika 4. Mikrostruktura na prehodu med osnovnim materialom NIOMOL 490 in nerjavnim navarom B, pov. 100x. Figure 4. Microstructure in the transition between the base NIOMOL 490 and built-up B, magn, 100x.

Po mejah transkristalov in v notranjosti so lepo vidni izločeni kromovi sekundarni karbidi (Cr₂₃C₆). V medprostorih transkristalov so še vidni ostanki dendritov (slika 5).

Slika 5. Mikrostruktura navara B z velikimi transkristali po mejah po katerih so zvezno izločeni kromovi karbidi (zgoraj), pov. 200x.

Figure 5. Microstructure of built-up B with big fringe crystals on boundaries where chromium carbides are continuously precipitated (on top), magn. 200x.

Mikrostruktura zadnjega navara, ki je prikazana na sliki 6 in je sestavljena iz δ ferita, ki je izločen v dendritnih mejah in iz austenita v meddendritnih prostorih. δ ferit je ponekod razpadel v σ fazo.

Figure 6. Microstructure of built-up A where δ ferrite, σ phase, and chromium carbides were found, magn. 200x.

Številni karbidi, ki so izločeni po mejah transkristalov in v manjši meri v njihovi notranjosti, kromovi karbidi, δ ferit in σ faza, ki so bogati na kromu, povzročajo osiromašenje s Cr v njihovi bližini.

4.3. Korozijske raziskave

4.3.1 Odpornost proti pitting koroziji

Preiskavo odpornosti proti nastajanju pitting korozije smo izvedli v raztopini železovega klorida, po ASTM G48-76 in z elektrokemično metodo "ciklične polarizacije"¹.

FeCl, test:

Odpornost proti nastajanju pitting korozije smo preiskali na dveh vzorcih dimenzije 50 x 25 x 4 mm, odvzetih iz navara n sicer:

Vzorec P-1 - C enoslojni navar

Vzorec P-2 - A dvoslojni navar zgoraj

Vzorca sta bila izpostavljena 6 % raztopini FeCL, s temperaturo 22 ± 2°C. Po 3 dnevni izpostavi je bila določena izguba teže različnih navarov, kar je podano v tabeli 4. B. Godec et. al.: Korozijska odpornost tračno navarjenih posod izdelanih iz drobnozmatega mikrolegiranega jekla NIOMOL 490

Tabela 4. Izguba teže po 72 urni izpostavi C-enoslojnega navara (P-1) in A-dvoslojnega navara zgornji (P-2)

Vzorec	izguba teže (g/m ²)	
P-1	704,22	
P-2	605,12	

Izmerili in ocenili smo gostoto, velikost in globino pittov po standardnih kartah (ASTM G 46-76)⁹.

Vzorec P-1

GOSTOTA - A-5; Gostota pittov je 1,17.107/m2

VELIKOST - B-1: Povprečna velikost pittov je 0,0019 mm² GLOBINA - C-1

Vzorec P-2

GOSTOTA - A-5; Gostota pittov je 1,08.107/m2

VELIKOST - B-1: Povprečna velikost pittov je 0,0019 mm² GLOBINA - C-1

Iz rezultatov v tabeli in vizuelnega pregleda stanja korodirane površine smo ugotovili, da navar ni odporen proti pitting koroziji v FeCl₃ raztopini. Pri podrobnem opazovanju pod mikroskopom smo opazili, da se pitti pojavljajo v bližini mej zrn.

Ciklična potenciodinamična polarizacija je bila izvedena po ASTM G61-78 v 3,56 % NaCl pri 20°C. Kisik je bil odstranjen iz medija z 1 urnim prepihovanjem z dušikom, pred polarizacijo pa je bil vzorec 1 uro odstavljen v tako deaeriranem mediju. Povratna polarizacija iz transpasivnega področja je bila izvedena pri 5000 µA.

Preiskava je bila narejena za INOX-TR 22/12/9 in sicer za vse tri tipe navarov A, B in C (Slika 7).

Na osnovi diagrama ciklične potenciodinamične polarizacije, lahko sklepamo, da je jeklo neodpomo proti nastajanju jamičaste korozija v kloridnih medijih. V pasivni v film so se vgrajevali Cl ioni, ki na ta način tudi povzročajo njegovo nehomogenost.

Slika 7. Določevanje odpornosti navara proti pitting koroziji z metodo ciklične polarizacije.

Figure 7. Determination of the build-up resistance to pitting corrosion by the method of cyclic polarization.

Iz primerjave ciklične polarizacije za različne navarjene sloje, vidimo, da so med posameznimi navari A, B in C zelo majhna odstopanja. Pri vseh pa se zanka zaključi nizko. Material je kljub visoki vsebnosti Cr (21 %) podvržen nastopanju pittinga, zaradi že omenjenega osiromašenja s kromom. 4.3.2 Odpornost proti napetostni koroziji

Odpornost proti napetostni koroziji smo določili v nasičeni raztopini MgCl₂, pri temperaturi 155°C, kot to zahteva ASTM G 36-87. Način vpenjanja in vnašanja napetosti v preizkušance v obliki črke U je definirano v ASTM G 30-7. Tako preiskovan material je odporen na napetostno pokanje, če se v 168 urah izpostave ne pojavijo razpoke^{3,8}.

Tabela 5. Rezultati preiskav testa za določanje odpornosti proti napetostni koroziji (U - bend test), za nerjavni navar INOX – TR 22/12/9

Vzorec št.	Čas potreben za nastanek
	prve razpoke (ure)
2.5	168
2.6	168
2.7	20
2.8	112
1.9	16
1.10	16
1.11	40
1.12	16

Primer izgleda vzorca, kjer se je po izpostavi v MgCl₂ pojavila razpoka po šestnajstih urah (slika 8).

Slika 8. Vzorec 1.12 po izpostavi v MgCl₂. Figure 8. Specimen 1.12 after the exposure to MgCl₃.

Slika 9. Napetostno korozijsko pokanje na vzorcu 1.10 ima interkristalni, mestoma tudi transkristalni karakter; pov. 50x. Figure 9. Stress corrosion cracking in the 1.10 specimen has intercrystalline, locally also transcrystalline character; magn. 50x.

Nerjavni navar INOX-TR 22/12/9 je neodporen na napetostno korozijo v kloridnih medijih. Ker je zaradi vnosa toplote pri varjenju prišlo do zveznega izločanja kromovih karbidov po mejah zrn, kakor tudi do nastanka grobih transkristalov, propagirajo razpoke prvenstveno po mejah zrn, kar je ponazorjeno na sliki 9. Če primerjamo enovarkovni zvar z dvovarkovnim vidimo nekoliko boljše napetostno korozijske lastnosti v prid slednjega. Treba pa je poudariti, da je v obeh varkih močno prisotna tendenca napetostno korozijskega pokanja.

4.3.3 Odpornost proti interkristalni koroziji

Meritve odpornosti proti interkristalni koroziji smo izpeljali po zahtevah standarda ASTM A262 postopek C (Huy-ev test)⁶. Preizkušanca dimenzije 50 x 30 x 2 mm, vzeta iz dvovarkovne ga in enovarkovnega vara, tik pod površino, sta bila izpostavljena vreli 65 % dušikovi kislini (HNO₃) v času petih period po 48 ur. Z določitvijo izgube teže v tem času smo določili senzibilnost jekla na interkristalno korozijo (**tabela 6**).

Vzorec H-1 - navar A dvovarkovni zgoraj Vzorec H-2 - navar C enovarkovni

Tabela 6. Izguba tež vzorcev jekla v HNO,

Vzorec	H ₁	Н,
Površina vzorca (cm2)	33,0465	33,0693
Teža vzorca (g)	22,6235	21,9578
Hitrost korozije (g/m ² h) (izguba teže po 48 urnih period.) I. cikel	1,9997	3,7717
II. cikel	5,3214	8.2780
III. cikel	5,2426	
Povprečje	4,1879	6,02485

Slika 10, Slika mikrostrukture po končanem Huy-evem testu, pov. 100x. Figure 10, Micrograph, after the Huy test, magn. 100x.

Izgube teže kažejo na to, da je material izredno neodporen na interkristalno korozijo.

4.3.4 Anodna polarizacija in Tafel

Elektrokemične korozijske raziskave so bile narejene na aparaturi PAR-MODEL 342. V praksi bo tako narejena podnica v kontaktu z različnimi korozijskimi mediji, katerih sestava, stopnja disociacije, pH vrednost, temperatura ali hitrost gibanja bodo različne. S pridobljenimi podatki o korozijski odpornosti, obliki korozijskega napada ali morebitni pasivaciji pri udeležbi le določenih korozijskih parametrov, bo možno ustvariti približno sliko o njeni uporabnosti.

Elektrokemične preiskave smo izvajali v sledečih medijih: 5 %, 30 %, 3 N H₂SO₄ (žveplena kislina) 5 %, 10 %, 30 % H₃PO₄ (fosforna kislina)

5 %, 10 % HCOOH (mravljinčna kislina)

5 %, 10 % CH₃COOH (ocetna kislina)

3,56 %, 5 % NaCl (natrijev klorid)

5 % NaOH (lug)

Poskusi so bili izveđeni do določenih koncentracij medijev, ki se v praksi najpogosteje pojavljajo.

Fosforna kislina

Jeklo INOX-TR 22/12/9 se pri višjih koncentracijah fosforne kisline pasivira. V 5 % fosforni kislini je pasivacija slabo izražena, vendar je hitrost korozije dobljena s Taflovim zapisom majhna (0,048 mm/leto). INOX-TR 22/12/9 kaže dobro korozijsko odpornost tudi v 30 % fosforni kislini. Diagram anodne polarizacije in Taflov zapis v raztopini H₃PO₄ je prikazan na sliki 11 in 12.

Slika 11. Potenciodinamićna anodna polarizacija INOX-TR 22/12/9 (A) jekla v 30 % H.PO4.

Figure 11. Potentiodynamic anodic polarization of INOX-TR 22/12/9 (A) steel in 30 % H₃PO₄,

Slika 12. Taflov zapis INOX-TR 22/12/9 (A) jekla v 5 % H₂PO₄. Figure 12. Tafel record of INOX-TR 22/12/9 (A) steel in 5 % H₂PO₄.

B. Godec et. al.; Korozijska odpornost tračno navarjenih posod izdelanih iz drobnozmatega mikrolegiranega jekla NIOMOL 490

Žveplena kislina

Pri INOX-TR 22/12/9 v žvepleni kislini pasivacija nastopa, vendar je I_{knt} - korozijski tok, ki je bil potreben za nastanek pasivnega filma izredno velik, kar povzroči nastanek debelih nehomogenih pasivnih filmov. Diagram anodne polarizacije je prikazan na **sliki 13**.

Figure 13. Potentiodynamic anodic polarization of INOX-TR 22/12/9 (A) steel in 30 % H₃SO₄ + O₂.

Mravljinčna kislina

Pri jeklu INOX-TR 22/12/9 ne zasledimo značilnega nosa, ki se tvori pri pasivnosti, vendar je korozijski tok majhen, tudi pri večjih koncentracijah mravljinčne kisline. Pri jeklu INOX-TR 22/12/9 opazimo tendenco rahlega povečanja korozijske hitrosti z večanjem koncentracije mravljinčne kisline. Diagram anodne polarizacije je prikazan na sliki 14.

Slika 14. Potenciodinamična anodna polarizacija INOX-TR 22/12/9 (A) jekla v 10 % HCOOH.

Figure 14. Potentiodynamic anodic polarization of INOX-TR 22/12/9 (A) steel in 10 % HCOOH.

Lug

Anodne polarizacijske krivulje kažejo dobro možnost pasivacije in s tem visoko korozijsko odpornost v lužnatih medijih. 246 Diagram anodne polarizacije je prikazan na sliki 15.

Slika 15. Potenciodinamična anodna polarizacija INOX-TR 22/12/9 (A) jekla v 15 % NaOH.

Figure 15. Potentiodynamic anodic polarization of INOX-TR 22/12/9 (A) steel in 15 % NaOH.

Mlečna kislina

Jeklo INOX TR 22/12/9 je dobro obstojno v mlečni kislini. Diagram anodne polarizacije je prikazan na sliki 16.

Slika 16. Potenciodinamična anodna polarizacija INOX-TR 22/12/9 (A) jekla v 10 % C.H.O.

Figure 16. Potentiodynamic anodic polarization of INOX-TR 22/12/9 (A) steel in 10 % C/H₂O₂

Ocetna kislina

Jeklo INOX TR 22/12/9 ima dovolj široko pasivno področje in majhen I_{po}, tako da ga smatramo dobro obstojnega v tem mediju.

Vsa preiskana nerjavna jekla se v tem mediju pasivirajo. Pasivno področje za INOX-TR 22/12/9 je dovolj široko in tudi pasivni film je zadovoljiv v tem mediju. Diagram anodne polarizacije je prikazan v diagramu na sliki 17.

Slika 17. Potenciodinamična anodna polarizacija INOX-TR 22/12/9 (A) jekla v 10 % CH,COOH.

Figure 17. Potentiodynamic anodic polarization of INOX-TR 22/12/9 (A) steel in 10 % CH,COOH.

3,65 % NaCl

Pasivacija nikjer ne nastopa. Jeklo je podvrženo stalni koroziji. Vidimo, da večjih razlik med posameznimi sloji ni. Diagram anodne polarizacije in Taflov zapis je prikazan na sliki 18 in 19.

Slika 18. Potenciodinamična anodna polarizacija INOX-TR 22/12/9 (A) jekla v 3.65 % NaCl.

Figure 18. Potentiodynamic anodic polarization of INOX-TR 22/12/9 (A) steel in 3.65 % NaCL

Večina materialov ni odporna v prisotnosti Cl ionov, INOX-TR 22/12/9 v tem mediju ni odporen. Čeprav na prvi pogled korozijske hitrosti niso zelo velike, pa bo v tem mediju prišlo pri tem jeklu do močne piting korozije. Diagram anodne polarizacije je prikazan na sliki 20.

5. Diskusija rezultatov

Nerjavno jeklo INOX-TR 22/12/9, s katerim je bilo izvedeno navarjanje podnice ima visoko vsebnost kroma in kot tako je odporno na korozijo tudi v agresivnejših medijih. Nerjavni trak ima precej visok % C, ki ni stabiliziran. Proces varjenja je za-

Slika 19. Taflov zapis INOX-TR 22/12/9 (A) jekla v 3.65 % NaCl. Figure 19. Tafel record of INOX-TR 22/12/9 (A) steel in 3.65 % NaCl. 5 % NaCl, 50°C

Slika 20. Potenciodinamična anodna polarizacija INOX-TR 22/12/9 (A) jekla v 5 % NaCl temp. 50°C.

Figure 20. Potentiodynamic anodic polarization of INOX-TR 22/12/9 (A) steel in 5 % NaCI temp. 50°C.

pustil v nerjavnem traku spremembo mikrostrukture. Prišlo je do pojava zveznega izločanja kromovih karbidov po mejah zrn in s tem do osiromašenja matrice s kromom. Tako predeli ob meji zrna vsebujejo prenizek Cr, ki bi še omogočal pasivacijo. Nastajajo tudi precejšne potencialne razlike med osiromašeno cono in matrico, oziroma kristalnimi mejami, kjer so izločeni karbidi, bogati s kromom. Matrica kot tudi kristalna meja deluje kot katoda, neposredna s kromom osiromašena okolica pa je anodna.

Poleg tega smo zasledili veliko ô ferita, ki je razporejen precej neenakomerno. Ta faza je prav tako bogata na Cr.

Korozijske preiskave so pokazale, da ima jeklo sicer dobro splošno korozijsko odpornost v številnih medijih, da pa tako jeklo ni odporno na agresivnejše medije. Pri ciklični potenciodinamični polarizaciji in FeCl, testu se je izkazalo, da jeklo ni odporno na piting korozijo. Popolnoma negativen pa je bil test na interkristalno korozijo v HNO₄, kjer se je pojavila močna interkristalna korozija. Prav tako se je izkazalo, da nerjavni trak ne nudi ustrezne odpornosti proti napetostni koroziji. B. Godec et. al.: Korozijska odpornost tračno navarjenih posod izdelanih iz drobnozmatega mikrolegiranega jekla NIOMOL 490

6. Zaključek

Takšen navar bo marsikje odporen, moramo pa se izogniti kloridnim in drugim agresivnejšim medijem.

Smiselneje bi bilo v prihodnje navarjati z austenitnim nerjavnim trakom, ki ima ne več, kot 0,08 % C in je stabiliziran s Ti ali Nb. V tem primeru do večine teh nevšečnosti ne bi prišlo.

Izkazalo se je, da je prav tako s stališča korozijske odpornosti bolj primerno dvovarkovno navarjanje, ki ima ugodnejšo kemično sestavo.

7. Literatura

- ¹ J. Vojvodič-Gvardjančič: Analiza karakteristik drobnozrnatega mikrolegiranega jekla NIOMOL 490 in študija lastnosti na tem jeklu z dodajnim materialom domače proizvodnje (Raziskovalna naloga: URP/RP 06-2685-218/87)
- ² Mars G. Fontana: Corrosion Engineering, Mc Graw-Hill Book Company, 1987, 181-186

- ¹ L. Vehovar, Korozija kovin in korozijsko preizkušanje, Monografija, samozaložba 1991
- ⁴ Corrosion, Volume 13, Metals Handbook Ninth Edition, 1987, 546-565
- ⁵ ASTM G48-76: Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steel and Related Alloys by the use of Ferric Chloride Solution
- ⁶ ASTM A 262-75: Standard Recommended Practice for Examination and Evaluation of Pitting Corrosion
- ⁷ ASTM G36-87: Standard Practice for Evaluating Stress-Corrosion-Cracking of Metals and Alloys in a Boiling Magnesium Chloride Solution
- ⁶ ASTM G30-79: Standard practice for Making and Using U Band Stress-Corrosion Test Specimens
- " ASTM G46-76: Standard Recommendation Practice for Examination and Evaluation of Pitting Corrosion